lfs_segment.c revision 1.189 1 /* $NetBSD: lfs_segment.c,v 1.189 2006/09/01 19:41:28 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.189 2006/09/01 19:41:28 perseant Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern struct simplelock vnode_free_list_slock; /* XXX */
120 extern struct simplelock bqueue_slock; /* XXX */
121
122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 static void lfs_free_aiodone(struct buf *);
124 static void lfs_super_aiodone(struct buf *);
125 static void lfs_cluster_aiodone(struct buf *);
126 static void lfs_cluster_callback(struct buf *);
127
128 /*
129 * Determine if it's OK to start a partial in this segment, or if we need
130 * to go on to a new segment.
131 */
132 #define LFS_PARTIAL_FITS(fs) \
133 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 fragstofsb((fs), (fs)->lfs_frag))
135
136 /*
137 * Figure out whether we should do a checkpoint write or go ahead with
138 * an ordinary write.
139 */
140 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141 ((flags & SEGM_CLEAN) == 0 && \
142 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
143 (flags & SEGM_CKP) || \
144 fs->lfs_nclean < LFS_MAX_ACTIVE)))
145
146 int lfs_match_fake(struct lfs *, struct buf *);
147 void lfs_newseg(struct lfs *);
148 /* XXX ondisk32 */
149 void lfs_shellsort(struct buf **, int32_t *, int, int);
150 void lfs_supercallback(struct buf *);
151 void lfs_updatemeta(struct segment *);
152 void lfs_writesuper(struct lfs *, daddr_t);
153 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 struct segment *sp, int dirops);
155
156 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
157 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
158 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
159 int lfs_dirvcount = 0; /* # active dirops */
160
161 /* Statistics Counters */
162 int lfs_dostats = 1;
163 struct lfs_stats lfs_stats;
164
165 /* op values to lfs_writevnodes */
166 #define VN_REG 0
167 #define VN_DIROP 1
168 #define VN_EMPTY 2
169 #define VN_CLEAN 3
170
171 /*
172 * XXX KS - Set modification time on the Ifile, so the cleaner can
173 * read the fs mod time off of it. We don't set IN_UPDATE here,
174 * since we don't really need this to be flushed to disk (and in any
175 * case that wouldn't happen to the Ifile until we checkpoint).
176 */
177 void
178 lfs_imtime(struct lfs *fs)
179 {
180 struct timespec ts;
181 struct inode *ip;
182
183 ASSERT_MAYBE_SEGLOCK(fs);
184 vfs_timestamp(&ts);
185 ip = VTOI(fs->lfs_ivnode);
186 ip->i_ffs1_mtime = ts.tv_sec;
187 ip->i_ffs1_mtimensec = ts.tv_nsec;
188 }
189
190 /*
191 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 */
196
197 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 int relock;
209 int loopcount;
210
211 ip = VTOI(vp);
212 fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 relock = 0;
214
215 top:
216 ASSERT_NO_SEGLOCK(fs);
217 if (ip->i_flag & IN_CLEANING) {
218 ivndebug(vp,"vflush/in_cleaning");
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 simple_unlock(&vp->v_interlock);
257 goto nextbp;
258 }
259 }
260 simple_unlock(&vp->v_interlock);
261 }
262 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 tbp = tnbp)
264 {
265 tnbp = LIST_NEXT(tbp, b_vnbufs);
266 if (tbp->b_vp == bp->b_vp
267 && tbp->b_lblkno == bp->b_lblkno
268 && tbp != bp)
269 {
270 fs->lfs_avail += btofsb(fs,
271 bp->b_bcount);
272 wakeup(&fs->lfs_avail);
273 lfs_freebuf(fs, bp);
274 bp = NULL;
275 break;
276 }
277 }
278 nextbp:
279 ;
280 }
281 splx(s);
282 }
283
284 /* If the node is being written, wait until that is done */
285 simple_lock(&vp->v_interlock);
286 s = splbio();
287 if (WRITEINPROG(vp)) {
288 ivndebug(vp,"vflush/writeinprog");
289 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
290 }
291 splx(s);
292 simple_unlock(&vp->v_interlock);
293
294 /* Protect against VXLOCK deadlock in vinvalbuf() */
295 lfs_seglock(fs, SEGM_SYNC);
296
297 /* If we're supposed to flush a freed inode, just toss it */
298 if (ip->i_lfs_iflags & LFSI_DELETED) {
299 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
300 ip->i_number));
301 s = splbio();
302 /* Drain v_numoutput */
303 simple_lock(&global_v_numoutput_slock);
304 while (vp->v_numoutput > 0) {
305 vp->v_flag |= VBWAIT;
306 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
307 &global_v_numoutput_slock);
308 }
309 simple_unlock(&global_v_numoutput_slock);
310 KASSERT(vp->v_numoutput == 0);
311
312 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 nbp = LIST_NEXT(bp, b_vnbufs);
314
315 KASSERT((bp->b_flags & B_GATHERED) == 0);
316 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 wakeup(&fs->lfs_avail);
319 }
320 /* Copied from lfs_writeseg */
321 if (bp->b_flags & B_CALL) {
322 biodone(bp);
323 } else {
324 bremfree(bp);
325 LFS_UNLOCK_BUF(bp);
326 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
327 B_GATHERED);
328 bp->b_flags |= B_DONE;
329 reassignbuf(bp, vp);
330 brelse(bp);
331 }
332 }
333 splx(s);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_flag &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 s = splbio();
355 simple_lock(&global_v_numoutput_slock);
356 while (vp->v_numoutput > 0) {
357 vp->v_flag |= VBWAIT;
358 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
359 &global_v_numoutput_slock);
360 }
361 simple_unlock(&global_v_numoutput_slock);
362 splx(s);
363
364 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
365 KASSERT(vp->v_numoutput == 0);
366
367 return error;
368 }
369 sp = fs->lfs_sp;
370
371 flushed = 0;
372 if (VPISEMPTY(vp)) {
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
374 ++flushed;
375 } else if ((ip->i_flag & IN_CLEANING) &&
376 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
377 ivndebug(vp,"vflush/clean");
378 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
379 ++flushed;
380 } else if (lfs_dostats) {
381 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
382 ++lfs_stats.vflush_invoked;
383 ivndebug(vp,"vflush");
384 }
385
386 #ifdef DIAGNOSTIC
387 if (vp->v_flag & VDIROP) {
388 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
389 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
390 }
391 if (vp->v_usecount < 0) {
392 printf("usecount=%ld\n", (long)vp->v_usecount);
393 panic("lfs_vflush: usecount<0");
394 }
395 #endif
396
397 do {
398 loopcount = 0;
399 do {
400 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
401 relock = lfs_writefile(fs, sp, vp);
402 if (relock) {
403 /*
404 * Might have to wait for the
405 * cleaner to run; but we're
406 * still not done with this vnode.
407 */
408 KDASSERT(ip->i_number != LFS_IFILE_INUM);
409 lfs_writeinode(fs, sp, ip);
410 LFS_SET_UINO(ip, IN_MODIFIED);
411 lfs_writeseg(fs, sp);
412 lfs_segunlock(fs);
413 lfs_segunlock_relock(fs);
414 goto top;
415 }
416 }
417 /*
418 * If we begin a new segment in the middle of writing
419 * the Ifile, it creates an inconsistent checkpoint,
420 * since the Ifile information for the new segment
421 * is not up-to-date. Take care of this here by
422 * sending the Ifile through again in case there
423 * are newly dirtied blocks. But wait, there's more!
424 * This second Ifile write could *also* cross a segment
425 * boundary, if the first one was large. The second
426 * one is guaranteed to be no more than 8 blocks,
427 * though (two segment blocks and supporting indirects)
428 * so the third write *will not* cross the boundary.
429 */
430 if (vp == fs->lfs_ivnode) {
431 lfs_writefile(fs, sp, vp);
432 lfs_writefile(fs, sp, vp);
433 }
434 #ifdef DEBUG
435 if (++loopcount > 1)
436 printf("lfs_vflush: loopcount=%d\n", loopcount);
437 #endif
438 } while (lfs_writeinode(fs, sp, ip));
439 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
440
441 if (lfs_dostats) {
442 ++lfs_stats.nwrites;
443 if (sp->seg_flags & SEGM_SYNC)
444 ++lfs_stats.nsync_writes;
445 if (sp->seg_flags & SEGM_CKP)
446 ++lfs_stats.ncheckpoints;
447 }
448 /*
449 * If we were called from somewhere that has already held the seglock
450 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
451 * the write to complete because we are still locked.
452 * Since lfs_vflush() must return the vnode with no dirty buffers,
453 * we must explicitly wait, if that is the case.
454 *
455 * We compare the iocount against 1, not 0, because it is
456 * artificially incremented by lfs_seglock().
457 */
458 simple_lock(&fs->lfs_interlock);
459 if (fs->lfs_seglock > 1) {
460 while (fs->lfs_iocount > 1)
461 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
462 "lfs_vflush", 0, &fs->lfs_interlock);
463 }
464 simple_unlock(&fs->lfs_interlock);
465
466 lfs_segunlock(fs);
467
468 /* Wait for these buffers to be recovered by aiodoned */
469 s = splbio();
470 simple_lock(&global_v_numoutput_slock);
471 while (vp->v_numoutput > 0) {
472 vp->v_flag |= VBWAIT;
473 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
474 &global_v_numoutput_slock);
475 }
476 simple_unlock(&global_v_numoutput_slock);
477 splx(s);
478
479 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
480 KASSERT(vp->v_numoutput == 0);
481
482 fs->lfs_flushvp = NULL;
483 KASSERT(fs->lfs_flushvp_fakevref == 0);
484
485 return (0);
486 }
487
488 int
489 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
490 {
491 struct inode *ip;
492 struct vnode *vp, *nvp;
493 int inodes_written = 0, only_cleaning;
494 int error = 0;
495
496 ASSERT_SEGLOCK(fs);
497 #ifndef LFS_NO_BACKVP_HACK
498 /* BEGIN HACK */
499 #define VN_OFFSET \
500 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
501 #define BACK_VP(VP) \
502 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
503 #define BEG_OF_VLIST \
504 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \
505 - VN_OFFSET))
506
507 /* Find last vnode. */
508 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
509 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
510 vp = LIST_NEXT(vp, v_mntvnodes));
511 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
512 nvp = BACK_VP(vp);
513 #else
514 loop:
515 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
516 nvp = LIST_NEXT(vp, v_mntvnodes);
517 #endif
518 /*
519 * If the vnode that we are about to sync is no longer
520 * associated with this mount point, start over.
521 */
522 if (vp->v_mount != mp) {
523 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
524 /*
525 * After this, pages might be busy
526 * due to our own previous putpages.
527 * Start actual segment write here to avoid deadlock.
528 */
529 (void)lfs_writeseg(fs, sp);
530 goto loop;
531 }
532
533 if (vp->v_type == VNON) {
534 continue;
535 }
536
537 ip = VTOI(vp);
538 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
539 (op != VN_DIROP && op != VN_CLEAN &&
540 (vp->v_flag & VDIROP))) {
541 vndebug(vp,"dirop");
542 continue;
543 }
544
545 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
546 vndebug(vp,"empty");
547 continue;
548 }
549
550 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
551 && vp != fs->lfs_flushvp
552 && !(ip->i_flag & IN_CLEANING)) {
553 vndebug(vp,"cleaning");
554 continue;
555 }
556
557 if (lfs_vref(vp)) {
558 vndebug(vp,"vref");
559 continue;
560 }
561
562 only_cleaning = 0;
563 /*
564 * Write the inode/file if dirty and it's not the IFILE.
565 */
566 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
567 only_cleaning =
568 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
569
570 if (ip->i_number != LFS_IFILE_INUM) {
571 error = lfs_writefile(fs, sp, vp);
572 if (error) {
573 lfs_vunref(vp);
574 if (error == EAGAIN) {
575 /*
576 * This error from lfs_putpages
577 * indicates we need to drop
578 * the segment lock and start
579 * over after the cleaner has
580 * had a chance to run.
581 */
582 lfs_writeinode(fs, sp, ip);
583 lfs_writeseg(fs, sp);
584 if (!VPISEMPTY(vp) &&
585 !WRITEINPROG(vp) &&
586 !(ip->i_flag & IN_ALLMOD))
587 LFS_SET_UINO(ip, IN_MODIFIED);
588 break;
589 }
590 error = 0; /* XXX not quite right */
591 continue;
592 }
593
594 if (!VPISEMPTY(vp)) {
595 if (WRITEINPROG(vp)) {
596 ivndebug(vp,"writevnodes/write2");
597 } else if (!(ip->i_flag & IN_ALLMOD)) {
598 LFS_SET_UINO(ip, IN_MODIFIED);
599 }
600 }
601 (void) lfs_writeinode(fs, sp, ip);
602 inodes_written++;
603 }
604 }
605
606 if (lfs_clean_vnhead && only_cleaning)
607 lfs_vunref_head(vp);
608 else
609 lfs_vunref(vp);
610 }
611 return error;
612 }
613
614 /*
615 * Do a checkpoint.
616 */
617 int
618 lfs_segwrite(struct mount *mp, int flags)
619 {
620 struct buf *bp;
621 struct inode *ip;
622 struct lfs *fs;
623 struct segment *sp;
624 struct vnode *vp;
625 SEGUSE *segusep;
626 int do_ckp, did_ckp, error, s;
627 unsigned n, segleft, maxseg, sn, i, curseg;
628 int writer_set = 0;
629 int dirty;
630 int redo;
631 int um_error;
632 int loopcount;
633
634 fs = VFSTOUFS(mp)->um_lfs;
635 ASSERT_MAYBE_SEGLOCK(fs);
636
637 if (fs->lfs_ronly)
638 return EROFS;
639
640 lfs_imtime(fs);
641
642 /*
643 * Allocate a segment structure and enough space to hold pointers to
644 * the maximum possible number of buffers which can be described in a
645 * single summary block.
646 */
647 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
648
649 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
650 sp = fs->lfs_sp;
651 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
652 do_ckp = 1;
653
654 /*
655 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
656 * in which case we have to flush *all* buffers off of this vnode.
657 * We don't care about other nodes, but write any non-dirop nodes
658 * anyway in anticipation of another getnewvnode().
659 *
660 * If we're cleaning we only write cleaning and ifile blocks, and
661 * no dirops, since otherwise we'd risk corruption in a crash.
662 */
663 if (sp->seg_flags & SEGM_CLEAN)
664 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
665 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
666 do {
667 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
668 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
669 if (!writer_set) {
670 lfs_writer_enter(fs, "lfs writer");
671 writer_set = 1;
672 }
673 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
674 if (um_error == 0)
675 um_error = error;
676 /* In case writevnodes errored out */
677 lfs_flush_dirops(fs);
678 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
679 lfs_finalize_fs_seguse(fs);
680 }
681 if (do_ckp && um_error) {
682 lfs_segunlock_relock(fs);
683 sp = fs->lfs_sp;
684 }
685 } while (do_ckp && um_error != 0);
686 }
687
688 /*
689 * If we are doing a checkpoint, mark everything since the
690 * last checkpoint as no longer ACTIVE.
691 */
692 if (do_ckp || fs->lfs_doifile) {
693 segleft = fs->lfs_nseg;
694 curseg = 0;
695 for (n = 0; n < fs->lfs_segtabsz; n++) {
696 dirty = 0;
697 if (bread(fs->lfs_ivnode,
698 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
699 panic("lfs_segwrite: ifile read");
700 segusep = (SEGUSE *)bp->b_data;
701 maxseg = min(segleft, fs->lfs_sepb);
702 for (i = 0; i < maxseg; i++) {
703 sn = curseg + i;
704 if (sn != dtosn(fs, fs->lfs_curseg) &&
705 segusep->su_flags & SEGUSE_ACTIVE) {
706 segusep->su_flags &= ~SEGUSE_ACTIVE;
707 --fs->lfs_nactive;
708 ++dirty;
709 }
710 fs->lfs_suflags[fs->lfs_activesb][sn] =
711 segusep->su_flags;
712 if (fs->lfs_version > 1)
713 ++segusep;
714 else
715 segusep = (SEGUSE *)
716 ((SEGUSE_V1 *)segusep + 1);
717 }
718
719 if (dirty)
720 error = LFS_BWRITE_LOG(bp); /* Ifile */
721 else
722 brelse(bp);
723 segleft -= fs->lfs_sepb;
724 curseg += fs->lfs_sepb;
725 }
726 }
727
728 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
729
730 did_ckp = 0;
731 if (do_ckp || fs->lfs_doifile) {
732 vp = fs->lfs_ivnode;
733 vn_lock(vp, LK_EXCLUSIVE);
734 loopcount = 0;
735 do {
736 #ifdef DEBUG
737 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
738 #endif
739 simple_lock(&fs->lfs_interlock);
740 fs->lfs_flags &= ~LFS_IFDIRTY;
741 simple_unlock(&fs->lfs_interlock);
742
743 ip = VTOI(vp);
744
745 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
746 /*
747 * Ifile has no pages, so we don't need
748 * to check error return here.
749 */
750 lfs_writefile(fs, sp, vp);
751 /*
752 * Ensure the Ifile takes the current segment
753 * into account. See comment in lfs_vflush.
754 */
755 lfs_writefile(fs, sp, vp);
756 lfs_writefile(fs, sp, vp);
757 }
758
759 if (ip->i_flag & IN_ALLMOD)
760 ++did_ckp;
761 #if 0
762 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
763 #else
764 redo = lfs_writeinode(fs, sp, ip);
765 #endif
766 redo += lfs_writeseg(fs, sp);
767 simple_lock(&fs->lfs_interlock);
768 redo += (fs->lfs_flags & LFS_IFDIRTY);
769 simple_unlock(&fs->lfs_interlock);
770 #ifdef DEBUG
771 if (++loopcount > 1)
772 printf("lfs_segwrite: loopcount=%d\n",
773 loopcount);
774 #endif
775 } while (redo && do_ckp);
776
777 /*
778 * Unless we are unmounting, the Ifile may continue to have
779 * dirty blocks even after a checkpoint, due to changes to
780 * inodes' atime. If we're checkpointing, it's "impossible"
781 * for other parts of the Ifile to be dirty after the loop
782 * above, since we hold the segment lock.
783 */
784 s = splbio();
785 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
786 LFS_CLR_UINO(ip, IN_ALLMOD);
787 }
788 #ifdef DIAGNOSTIC
789 else if (do_ckp) {
790 int do_panic = 0;
791 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
792 if (bp->b_lblkno < fs->lfs_cleansz +
793 fs->lfs_segtabsz &&
794 !(bp->b_flags & B_GATHERED)) {
795 printf("ifile lbn %ld still dirty (flags %lx)\n",
796 (long)bp->b_lblkno,
797 (long)bp->b_flags);
798 ++do_panic;
799 }
800 }
801 if (do_panic)
802 panic("dirty blocks");
803 }
804 #endif
805 splx(s);
806 VOP_UNLOCK(vp, 0);
807 } else {
808 (void) lfs_writeseg(fs, sp);
809 }
810
811 /* Note Ifile no longer needs to be written */
812 fs->lfs_doifile = 0;
813 if (writer_set)
814 lfs_writer_leave(fs);
815
816 /*
817 * If we didn't write the Ifile, we didn't really do anything.
818 * That means that (1) there is a checkpoint on disk and (2)
819 * nothing has changed since it was written.
820 *
821 * Take the flags off of the segment so that lfs_segunlock
822 * doesn't have to write the superblock either.
823 */
824 if (do_ckp && !did_ckp) {
825 sp->seg_flags &= ~SEGM_CKP;
826 }
827
828 if (lfs_dostats) {
829 ++lfs_stats.nwrites;
830 if (sp->seg_flags & SEGM_SYNC)
831 ++lfs_stats.nsync_writes;
832 if (sp->seg_flags & SEGM_CKP)
833 ++lfs_stats.ncheckpoints;
834 }
835 lfs_segunlock(fs);
836 return (0);
837 }
838
839 /*
840 * Write the dirty blocks associated with a vnode.
841 */
842 int
843 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
844 {
845 struct finfo *fip;
846 struct inode *ip;
847 int i, frag;
848 int error;
849
850 ASSERT_SEGLOCK(fs);
851 error = 0;
852 ip = VTOI(vp);
853
854 fip = sp->fip;
855 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
856
857 if (vp->v_flag & VDIROP)
858 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
859
860 if (sp->seg_flags & SEGM_CLEAN) {
861 lfs_gather(fs, sp, vp, lfs_match_fake);
862 /*
863 * For a file being flushed, we need to write *all* blocks.
864 * This means writing the cleaning blocks first, and then
865 * immediately following with any non-cleaning blocks.
866 * The same is true of the Ifile since checkpoints assume
867 * that all valid Ifile blocks are written.
868 */
869 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
870 lfs_gather(fs, sp, vp, lfs_match_data);
871 /*
872 * Don't call VOP_PUTPAGES: if we're flushing,
873 * we've already done it, and the Ifile doesn't
874 * use the page cache.
875 */
876 }
877 } else {
878 lfs_gather(fs, sp, vp, lfs_match_data);
879 /*
880 * If we're flushing, we've already called VOP_PUTPAGES
881 * so don't do it again. Otherwise, we want to write
882 * everything we've got.
883 */
884 if (!IS_FLUSHING(fs, vp)) {
885 simple_lock(&vp->v_interlock);
886 error = VOP_PUTPAGES(vp, 0, 0,
887 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
888 }
889 }
890
891 /*
892 * It may not be necessary to write the meta-data blocks at this point,
893 * as the roll-forward recovery code should be able to reconstruct the
894 * list.
895 *
896 * We have to write them anyway, though, under two conditions: (1) the
897 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
898 * checkpointing.
899 *
900 * BUT if we are cleaning, we might have indirect blocks that refer to
901 * new blocks not being written yet, in addition to fragments being
902 * moved out of a cleaned segment. If that is the case, don't
903 * write the indirect blocks, or the finfo will have a small block
904 * in the middle of it!
905 * XXX in this case isn't the inode size wrong too?
906 */
907 frag = 0;
908 if (sp->seg_flags & SEGM_CLEAN) {
909 for (i = 0; i < NDADDR; i++)
910 if (ip->i_lfs_fragsize[i] > 0 &&
911 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
912 ++frag;
913 }
914 #ifdef DIAGNOSTIC
915 if (frag > 1)
916 panic("lfs_writefile: more than one fragment!");
917 #endif
918 if (IS_FLUSHING(fs, vp) ||
919 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
920 lfs_gather(fs, sp, vp, lfs_match_indir);
921 lfs_gather(fs, sp, vp, lfs_match_dindir);
922 lfs_gather(fs, sp, vp, lfs_match_tindir);
923 }
924 fip = sp->fip;
925 lfs_release_finfo(fs);
926
927 return error;
928 }
929
930 /*
931 * Update segment accounting to reflect this inode's change of address.
932 */
933 static int
934 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
935 {
936 struct buf *bp;
937 daddr_t daddr;
938 IFILE *ifp;
939 SEGUSE *sup;
940 ino_t ino;
941 int redo_ifile, error;
942 u_int32_t sn;
943
944 redo_ifile = 0;
945
946 /*
947 * If updating the ifile, update the super-block. Update the disk
948 * address and access times for this inode in the ifile.
949 */
950 ino = ip->i_number;
951 if (ino == LFS_IFILE_INUM) {
952 daddr = fs->lfs_idaddr;
953 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
954 } else {
955 LFS_IENTRY(ifp, fs, ino, bp);
956 daddr = ifp->if_daddr;
957 ifp->if_daddr = dbtofsb(fs, ndaddr);
958 error = LFS_BWRITE_LOG(bp); /* Ifile */
959 }
960
961 /*
962 * If this is the Ifile and lfs_offset is set to the first block
963 * in the segment, dirty the new segment's accounting block
964 * (XXX should already be dirty?) and tell the caller to do it again.
965 */
966 if (ip->i_number == LFS_IFILE_INUM) {
967 sn = dtosn(fs, fs->lfs_offset);
968 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
969 fs->lfs_offset) {
970 LFS_SEGENTRY(sup, fs, sn, bp);
971 KASSERT(bp->b_flags & B_DELWRI);
972 LFS_WRITESEGENTRY(sup, fs, sn, bp);
973 /* fs->lfs_flags |= LFS_IFDIRTY; */
974 redo_ifile |= 1;
975 }
976 }
977
978 /*
979 * The inode's last address should not be in the current partial
980 * segment, except under exceptional circumstances (lfs_writevnodes
981 * had to start over, and in the meantime more blocks were written
982 * to a vnode). Both inodes will be accounted to this segment
983 * in lfs_writeseg so we need to subtract the earlier version
984 * here anyway. The segment count can temporarily dip below
985 * zero here; keep track of how many duplicates we have in
986 * "dupino" so we don't panic below.
987 */
988 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
989 ++sp->ndupino;
990 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
991 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
992 (long long)daddr, sp->ndupino));
993 }
994 /*
995 * Account the inode: it no longer belongs to its former segment,
996 * though it will not belong to the new segment until that segment
997 * is actually written.
998 */
999 if (daddr != LFS_UNUSED_DADDR) {
1000 u_int32_t oldsn = dtosn(fs, daddr);
1001 #ifdef DIAGNOSTIC
1002 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1003 #endif
1004 LFS_SEGENTRY(sup, fs, oldsn, bp);
1005 #ifdef DIAGNOSTIC
1006 if (sup->su_nbytes +
1007 sizeof (struct ufs1_dinode) * ndupino
1008 < sizeof (struct ufs1_dinode)) {
1009 printf("lfs_writeinode: negative bytes "
1010 "(segment %" PRIu32 " short by %d, "
1011 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1012 ", daddr=%" PRId64 ", su_nbytes=%u, "
1013 "ndupino=%d)\n",
1014 dtosn(fs, daddr),
1015 (int)sizeof (struct ufs1_dinode) *
1016 (1 - sp->ndupino) - sup->su_nbytes,
1017 oldsn, sp->seg_number, daddr,
1018 (unsigned int)sup->su_nbytes,
1019 sp->ndupino);
1020 panic("lfs_writeinode: negative bytes");
1021 sup->su_nbytes = sizeof (struct ufs1_dinode);
1022 }
1023 #endif
1024 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1025 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1026 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1027 redo_ifile |=
1028 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1029 if (redo_ifile) {
1030 simple_lock(&fs->lfs_interlock);
1031 fs->lfs_flags |= LFS_IFDIRTY;
1032 simple_unlock(&fs->lfs_interlock);
1033 /* Don't double-account */
1034 fs->lfs_idaddr = 0x0;
1035 }
1036 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1037 }
1038
1039 return redo_ifile;
1040 }
1041
1042 int
1043 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1044 {
1045 struct buf *bp;
1046 struct ufs1_dinode *cdp;
1047 daddr_t daddr;
1048 int32_t *daddrp; /* XXX ondisk32 */
1049 int i, ndx;
1050 int redo_ifile = 0;
1051 int gotblk = 0;
1052 int count;
1053
1054 ASSERT_SEGLOCK(fs);
1055 if (!(ip->i_flag & IN_ALLMOD))
1056 return (0);
1057
1058 /* Can't write ifile when writer is not set */
1059 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1060 (sp->seg_flags & SEGM_CLEAN));
1061
1062 /*
1063 * If this is the Ifile, see if writing it here will generate a
1064 * temporary misaccounting. If it will, do the accounting and write
1065 * the blocks, postponing the inode write until the accounting is
1066 * solid.
1067 */
1068 count = 0;
1069 while (ip->i_number == LFS_IFILE_INUM) {
1070 int redo = 0;
1071
1072 if (sp->idp == NULL && sp->ibp == NULL &&
1073 (sp->seg_bytes_left < fs->lfs_ibsize ||
1074 sp->sum_bytes_left < sizeof(int32_t))) {
1075 (void) lfs_writeseg(fs, sp);
1076 continue;
1077 }
1078
1079 /* Look for dirty Ifile blocks */
1080 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1081 if (!(bp->b_flags & B_GATHERED)) {
1082 redo = 1;
1083 break;
1084 }
1085 }
1086
1087 if (redo == 0)
1088 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1089 if (redo == 0)
1090 break;
1091
1092 if (sp->idp) {
1093 sp->idp->di_inumber = 0;
1094 sp->idp = NULL;
1095 }
1096 ++count;
1097 if (count > 1)
1098 printf("lfs_writeinode: looping count=%d\n", count);
1099 lfs_writefile(fs, sp, fs->lfs_ivnode);
1100 }
1101
1102 /* Allocate a new inode block if necessary. */
1103 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1104 sp->ibp == NULL) {
1105 /* Allocate a new segment if necessary. */
1106 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1107 sp->sum_bytes_left < sizeof(int32_t))
1108 (void) lfs_writeseg(fs, sp);
1109
1110 /* Get next inode block. */
1111 daddr = fs->lfs_offset;
1112 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1113 sp->ibp = *sp->cbpp++ =
1114 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1115 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1116 gotblk++;
1117
1118 /* Zero out inode numbers */
1119 for (i = 0; i < INOPB(fs); ++i)
1120 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1121 0;
1122
1123 ++sp->start_bpp;
1124 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1125 /* Set remaining space counters. */
1126 sp->seg_bytes_left -= fs->lfs_ibsize;
1127 sp->sum_bytes_left -= sizeof(int32_t);
1128 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1129 sp->ninodes / INOPB(fs) - 1;
1130 ((int32_t *)(sp->segsum))[ndx] = daddr;
1131 }
1132
1133 /* Check VDIROP in case there is a new file with no data blocks */
1134 if (ITOV(ip)->v_flag & VDIROP)
1135 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1136
1137 /* Update the inode times and copy the inode onto the inode page. */
1138 /* XXX kludge --- don't redirty the ifile just to put times on it */
1139 if (ip->i_number != LFS_IFILE_INUM)
1140 LFS_ITIMES(ip, NULL, NULL, NULL);
1141
1142 /*
1143 * If this is the Ifile, and we've already written the Ifile in this
1144 * partial segment, just overwrite it (it's not on disk yet) and
1145 * continue.
1146 *
1147 * XXX we know that the bp that we get the second time around has
1148 * already been gathered.
1149 */
1150 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1151 *(sp->idp) = *ip->i_din.ffs1_din;
1152 ip->i_lfs_osize = ip->i_size;
1153 return 0;
1154 }
1155
1156 bp = sp->ibp;
1157 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1158 *cdp = *ip->i_din.ffs1_din;
1159
1160 /*
1161 * If cleaning, link counts and directory file sizes cannot change,
1162 * since those would be directory operations---even if the file
1163 * we are writing is marked VDIROP we should write the old values.
1164 * If we're not cleaning, of course, update the values so we get
1165 * current values the next time we clean.
1166 */
1167 if (sp->seg_flags & SEGM_CLEAN) {
1168 if (ITOV(ip)->v_flag & VDIROP) {
1169 cdp->di_nlink = ip->i_lfs_odnlink;
1170 /* if (ITOV(ip)->v_type == VDIR) */
1171 cdp->di_size = ip->i_lfs_osize;
1172 }
1173 } else {
1174 ip->i_lfs_odnlink = cdp->di_nlink;
1175 ip->i_lfs_osize = ip->i_size;
1176 }
1177
1178
1179 /* We can finish the segment accounting for truncations now */
1180 lfs_finalize_ino_seguse(fs, ip);
1181
1182 /*
1183 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1184 * addresses to disk; possibly change the on-disk record of
1185 * the inode size, either by reverting to the previous size
1186 * (in the case of cleaning) or by verifying the inode's block
1187 * holdings (in the case of files being allocated as they are being
1188 * written).
1189 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1190 * XXX count on disk wrong by the same amount. We should be
1191 * XXX able to "borrow" from lfs_avail and return it after the
1192 * XXX Ifile is written. See also in lfs_writeseg.
1193 */
1194
1195 /* Check file size based on highest allocated block */
1196 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1197 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1198 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1199 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1200 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1201 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1202 }
1203 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1204 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1205 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1206 ip->i_ffs1_blocks, fs->lfs_offset));
1207 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1208 daddrp++) {
1209 if (*daddrp == UNWRITTEN) {
1210 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1211 *daddrp = 0;
1212 }
1213 }
1214 }
1215
1216 #ifdef DIAGNOSTIC
1217 /*
1218 * Check dinode held blocks against dinode size.
1219 * This should be identical to the check in lfs_vget().
1220 */
1221 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1222 i < NDADDR; i++) {
1223 KASSERT(i >= 0);
1224 if ((cdp->di_mode & IFMT) == IFLNK)
1225 continue;
1226 if (((cdp->di_mode & IFMT) == IFBLK ||
1227 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1228 continue;
1229 if (cdp->di_db[i] != 0) {
1230 # ifdef DEBUG
1231 lfs_dump_dinode(cdp);
1232 # endif
1233 panic("writing inconsistent inode");
1234 }
1235 }
1236 #endif /* DIAGNOSTIC */
1237
1238 if (ip->i_flag & IN_CLEANING)
1239 LFS_CLR_UINO(ip, IN_CLEANING);
1240 else {
1241 /* XXX IN_ALLMOD */
1242 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1243 IN_UPDATE | IN_MODIFY);
1244 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1245 LFS_CLR_UINO(ip, IN_MODIFIED);
1246 else
1247 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, "
1248 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks,
1249 ip->i_lfs_effnblks));
1250 }
1251
1252 if (ip->i_number == LFS_IFILE_INUM) {
1253 /* We know sp->idp == NULL */
1254 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1255 (sp->ninodes % INOPB(fs));
1256
1257 /* Not dirty any more */
1258 simple_lock(&fs->lfs_interlock);
1259 fs->lfs_flags &= ~LFS_IFDIRTY;
1260 simple_unlock(&fs->lfs_interlock);
1261 }
1262
1263 if (gotblk) {
1264 LFS_LOCK_BUF(bp);
1265 brelse(bp);
1266 }
1267
1268 /* Increment inode count in segment summary block. */
1269 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1270
1271 /* If this page is full, set flag to allocate a new page. */
1272 if (++sp->ninodes % INOPB(fs) == 0)
1273 sp->ibp = NULL;
1274
1275 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1276
1277 KASSERT(redo_ifile == 0);
1278 return (redo_ifile);
1279 }
1280
1281 int
1282 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1283 {
1284 struct lfs *fs;
1285 int vers;
1286 int j, blksinblk;
1287
1288 ASSERT_SEGLOCK(sp->fs);
1289 /*
1290 * If full, finish this segment. We may be doing I/O, so
1291 * release and reacquire the splbio().
1292 */
1293 #ifdef DIAGNOSTIC
1294 if (sp->vp == NULL)
1295 panic ("lfs_gatherblock: Null vp in segment");
1296 #endif
1297 fs = sp->fs;
1298 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1299 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1300 sp->seg_bytes_left < bp->b_bcount) {
1301 if (sptr)
1302 splx(*sptr);
1303 lfs_updatemeta(sp);
1304
1305 vers = sp->fip->fi_version;
1306 (void) lfs_writeseg(fs, sp);
1307
1308 /* Add the current file to the segment summary. */
1309 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1310
1311 if (sptr)
1312 *sptr = splbio();
1313 return (1);
1314 }
1315
1316 if (bp->b_flags & B_GATHERED) {
1317 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1318 " lbn %" PRId64 "\n",
1319 sp->fip->fi_ino, bp->b_lblkno));
1320 return (0);
1321 }
1322
1323 /* Insert into the buffer list, update the FINFO block. */
1324 bp->b_flags |= B_GATHERED;
1325
1326 *sp->cbpp++ = bp;
1327 for (j = 0; j < blksinblk; j++) {
1328 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1329 /* This block's accounting moves from lfs_favail to lfs_avail */
1330 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1331 }
1332
1333 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1334 sp->seg_bytes_left -= bp->b_bcount;
1335 return (0);
1336 }
1337
1338 int
1339 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1340 int (*match)(struct lfs *, struct buf *))
1341 {
1342 struct buf *bp, *nbp;
1343 int s, count = 0;
1344
1345 ASSERT_SEGLOCK(fs);
1346 if (vp->v_type == VBLK)
1347 return 0;
1348 KASSERT(sp->vp == NULL);
1349 sp->vp = vp;
1350 s = splbio();
1351
1352 #ifndef LFS_NO_BACKBUF_HACK
1353 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1354 # define BUF_OFFSET \
1355 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1356 # define BACK_BUF(BP) \
1357 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1358 # define BEG_OF_LIST \
1359 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1360
1361 loop:
1362 /* Find last buffer. */
1363 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1364 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1365 bp = LIST_NEXT(bp, b_vnbufs))
1366 /* nothing */;
1367 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1368 nbp = BACK_BUF(bp);
1369 #else /* LFS_NO_BACKBUF_HACK */
1370 loop:
1371 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1372 nbp = LIST_NEXT(bp, b_vnbufs);
1373 #endif /* LFS_NO_BACKBUF_HACK */
1374 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1375 #ifdef DEBUG
1376 if (vp == fs->lfs_ivnode &&
1377 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1378 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1379 PRId64 " busy (%x) at 0x%x",
1380 bp->b_lblkno, bp->b_flags,
1381 (unsigned)fs->lfs_offset);
1382 #endif
1383 continue;
1384 }
1385 #ifdef DIAGNOSTIC
1386 # ifdef LFS_USE_B_INVAL
1387 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1388 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1389 " is B_INVAL\n", bp->b_lblkno));
1390 VOP_PRINT(bp->b_vp);
1391 }
1392 # endif /* LFS_USE_B_INVAL */
1393 if (!(bp->b_flags & B_DELWRI))
1394 panic("lfs_gather: bp not B_DELWRI");
1395 if (!(bp->b_flags & B_LOCKED)) {
1396 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1397 " blk %" PRId64 " not B_LOCKED\n",
1398 bp->b_lblkno,
1399 dbtofsb(fs, bp->b_blkno)));
1400 VOP_PRINT(bp->b_vp);
1401 panic("lfs_gather: bp not B_LOCKED");
1402 }
1403 #endif
1404 if (lfs_gatherblock(sp, bp, &s)) {
1405 goto loop;
1406 }
1407 count++;
1408 }
1409 splx(s);
1410 lfs_updatemeta(sp);
1411 KASSERT(sp->vp == vp);
1412 sp->vp = NULL;
1413 return count;
1414 }
1415
1416 #if DEBUG
1417 # define DEBUG_OOFF(n) do { \
1418 if (ooff == 0) { \
1419 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1420 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1421 ", was 0x0 (or %" PRId64 ")\n", \
1422 (n), ip->i_number, lbn, ndaddr, daddr)); \
1423 } \
1424 } while (0)
1425 #else
1426 # define DEBUG_OOFF(n)
1427 #endif
1428
1429 /*
1430 * Change the given block's address to ndaddr, finding its previous
1431 * location using ufs_bmaparray().
1432 *
1433 * Account for this change in the segment table.
1434 *
1435 * called with sp == NULL by roll-forwarding code.
1436 */
1437 void
1438 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp,
1439 daddr_t lbn, int32_t ndaddr, int size)
1440 {
1441 SEGUSE *sup;
1442 struct buf *bp;
1443 struct indir a[NIADDR + 2], *ap;
1444 struct inode *ip;
1445 daddr_t daddr, ooff;
1446 int num, error;
1447 int bb, osize, obb;
1448
1449 ASSERT_SEGLOCK(fs);
1450 KASSERT(sp == NULL || sp->vp == vp);
1451 ip = VTOI(vp);
1452
1453 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1454 if (error)
1455 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1456
1457 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1458 KASSERT(daddr <= LFS_MAX_DADDR);
1459 if (daddr > 0)
1460 daddr = dbtofsb(fs, daddr);
1461
1462 bb = fragstofsb(fs, numfrags(fs, size));
1463 switch (num) {
1464 case 0:
1465 ooff = ip->i_ffs1_db[lbn];
1466 DEBUG_OOFF(0);
1467 if (ooff == UNWRITTEN)
1468 ip->i_ffs1_blocks += bb;
1469 else {
1470 /* possible fragment truncation or extension */
1471 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1472 ip->i_ffs1_blocks += (bb - obb);
1473 }
1474 ip->i_ffs1_db[lbn] = ndaddr;
1475 break;
1476 case 1:
1477 ooff = ip->i_ffs1_ib[a[0].in_off];
1478 DEBUG_OOFF(1);
1479 if (ooff == UNWRITTEN)
1480 ip->i_ffs1_blocks += bb;
1481 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1482 break;
1483 default:
1484 ap = &a[num - 1];
1485 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1486 panic("lfs_updatemeta: bread bno %" PRId64,
1487 ap->in_lbn);
1488
1489 /* XXX ondisk32 */
1490 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1491 DEBUG_OOFF(num);
1492 if (ooff == UNWRITTEN)
1493 ip->i_ffs1_blocks += bb;
1494 /* XXX ondisk32 */
1495 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1496 (void) VOP_BWRITE(bp);
1497 }
1498
1499 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1500
1501 /* Update hiblk when extending the file */
1502 if (lbn > ip->i_lfs_hiblk)
1503 ip->i_lfs_hiblk = lbn;
1504
1505 /*
1506 * Though we'd rather it couldn't, this *can* happen right now
1507 * if cleaning blocks and regular blocks coexist.
1508 */
1509 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1510
1511 /*
1512 * Update segment usage information, based on old size
1513 * and location.
1514 */
1515 if (daddr > 0) {
1516 u_int32_t oldsn = dtosn(fs, daddr);
1517 #ifdef DIAGNOSTIC
1518 int ndupino;
1519
1520 if (sp && sp->seg_number == oldsn) {
1521 ndupino = sp->ndupino;
1522 } else {
1523 ndupino = 0;
1524 }
1525 #endif
1526 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg);
1527 if (lbn >= 0 && lbn < NDADDR)
1528 osize = ip->i_lfs_fragsize[lbn];
1529 else
1530 osize = fs->lfs_bsize;
1531 LFS_SEGENTRY(sup, fs, oldsn, bp);
1532 #ifdef DIAGNOSTIC
1533 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1534 < osize) {
1535 printf("lfs_updatemeta: negative bytes "
1536 "(segment %" PRIu32 " short by %" PRId64
1537 ")\n", dtosn(fs, daddr),
1538 (int64_t)osize -
1539 (sizeof (struct ufs1_dinode) * ndupino +
1540 sup->su_nbytes));
1541 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1542 ", addr = 0x%" PRIx64 "\n",
1543 (unsigned long long)ip->i_number, lbn, daddr);
1544 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1545 panic("lfs_updatemeta: negative bytes");
1546 sup->su_nbytes = osize -
1547 sizeof (struct ufs1_dinode) * ndupino;
1548 }
1549 #endif
1550 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1551 " db 0x%" PRIx64 "\n",
1552 dtosn(fs, daddr), osize,
1553 ip->i_number, lbn, daddr));
1554 sup->su_nbytes -= osize;
1555 if (!(bp->b_flags & B_GATHERED)) {
1556 simple_lock(&fs->lfs_interlock);
1557 fs->lfs_flags |= LFS_IFDIRTY;
1558 simple_unlock(&fs->lfs_interlock);
1559 }
1560 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1561 }
1562 /*
1563 * Now that this block has a new address, and its old
1564 * segment no longer owns it, we can forget about its
1565 * old size.
1566 */
1567 if (lbn >= 0 && lbn < NDADDR)
1568 ip->i_lfs_fragsize[lbn] = size;
1569 }
1570
1571 /*
1572 * Update the metadata that points to the blocks listed in the FINFO
1573 * array.
1574 */
1575 void
1576 lfs_updatemeta(struct segment *sp)
1577 {
1578 struct buf *sbp;
1579 struct lfs *fs;
1580 struct vnode *vp;
1581 daddr_t lbn;
1582 int i, nblocks, num;
1583 int bb;
1584 int bytesleft, size;
1585
1586 ASSERT_SEGLOCK(sp->fs);
1587 vp = sp->vp;
1588 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1589 KASSERT(nblocks >= 0);
1590 KASSERT(vp != NULL);
1591 if (nblocks == 0)
1592 return;
1593
1594 /*
1595 * This count may be high due to oversize blocks from lfs_gop_write.
1596 * Correct for this. (XXX we should be able to keep track of these.)
1597 */
1598 fs = sp->fs;
1599 for (i = 0; i < nblocks; i++) {
1600 if (sp->start_bpp[i] == NULL) {
1601 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1602 nblocks = i;
1603 break;
1604 }
1605 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1606 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1607 nblocks -= num - 1;
1608 }
1609
1610 KASSERT(vp->v_type == VREG ||
1611 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1612 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1613
1614 /*
1615 * Sort the blocks.
1616 *
1617 * We have to sort even if the blocks come from the
1618 * cleaner, because there might be other pending blocks on the
1619 * same inode...and if we don't sort, and there are fragments
1620 * present, blocks may be written in the wrong place.
1621 */
1622 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1623
1624 /*
1625 * Record the length of the last block in case it's a fragment.
1626 * If there are indirect blocks present, they sort last. An
1627 * indirect block will be lfs_bsize and its presence indicates
1628 * that you cannot have fragments.
1629 *
1630 * XXX This last is a lie. A cleaned fragment can coexist with
1631 * XXX a later indirect block. This will continue to be
1632 * XXX true until lfs_markv is fixed to do everything with
1633 * XXX fake blocks (including fake inodes and fake indirect blocks).
1634 */
1635 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1636 fs->lfs_bmask) + 1;
1637
1638 /*
1639 * Assign disk addresses, and update references to the logical
1640 * block and the segment usage information.
1641 */
1642 for (i = nblocks; i--; ++sp->start_bpp) {
1643 sbp = *sp->start_bpp;
1644 lbn = *sp->start_lbp;
1645 KASSERT(sbp->b_lblkno == lbn);
1646
1647 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1648
1649 /*
1650 * If we write a frag in the wrong place, the cleaner won't
1651 * be able to correctly identify its size later, and the
1652 * segment will be uncleanable. (Even worse, it will assume
1653 * that the indirect block that actually ends the list
1654 * is of a smaller size!)
1655 */
1656 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1657 panic("lfs_updatemeta: fragment is not last block");
1658
1659 /*
1660 * For each subblock in this possibly oversized block,
1661 * update its address on disk.
1662 */
1663 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1664 KASSERT(vp == sbp->b_vp);
1665 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1666 bytesleft -= fs->lfs_bsize) {
1667 size = MIN(bytesleft, fs->lfs_bsize);
1668 bb = fragstofsb(fs, numfrags(fs, size));
1669 lbn = *sp->start_lbp++;
1670 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1671 size);
1672 fs->lfs_offset += bb;
1673 }
1674
1675 }
1676 }
1677
1678 /*
1679 * Move lfs_offset to a segment earlier than sn.
1680 */
1681 int
1682 lfs_rewind(struct lfs *fs, int newsn)
1683 {
1684 int sn, osn, isdirty;
1685 struct buf *bp;
1686 SEGUSE *sup;
1687
1688 ASSERT_SEGLOCK(fs);
1689
1690 osn = dtosn(fs, fs->lfs_offset);
1691 if (osn < newsn)
1692 return 0;
1693
1694 /* lfs_avail eats the remaining space in this segment */
1695 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1696
1697 /* Find a low-numbered segment */
1698 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1699 LFS_SEGENTRY(sup, fs, sn, bp);
1700 isdirty = sup->su_flags & SEGUSE_DIRTY;
1701 brelse(bp);
1702
1703 if (!isdirty)
1704 break;
1705 }
1706 if (sn == fs->lfs_nseg)
1707 panic("lfs_rewind: no clean segments");
1708 if (newsn >= 0 && sn >= newsn)
1709 return ENOENT;
1710 fs->lfs_nextseg = sn;
1711 lfs_newseg(fs);
1712 fs->lfs_offset = fs->lfs_curseg;
1713
1714 return 0;
1715 }
1716
1717 /*
1718 * Start a new partial segment.
1719 *
1720 * Return 1 when we entered to a new segment.
1721 * Otherwise, return 0.
1722 */
1723 int
1724 lfs_initseg(struct lfs *fs)
1725 {
1726 struct segment *sp = fs->lfs_sp;
1727 SEGSUM *ssp;
1728 struct buf *sbp; /* buffer for SEGSUM */
1729 int repeat = 0; /* return value */
1730
1731 ASSERT_SEGLOCK(fs);
1732 /* Advance to the next segment. */
1733 if (!LFS_PARTIAL_FITS(fs)) {
1734 SEGUSE *sup;
1735 struct buf *bp;
1736
1737 /* lfs_avail eats the remaining space */
1738 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1739 fs->lfs_curseg);
1740 /* Wake up any cleaning procs waiting on this file system. */
1741 lfs_wakeup_cleaner(fs);
1742 lfs_newseg(fs);
1743 repeat = 1;
1744 fs->lfs_offset = fs->lfs_curseg;
1745
1746 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1747 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1748
1749 /*
1750 * If the segment contains a superblock, update the offset
1751 * and summary address to skip over it.
1752 */
1753 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1754 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1755 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1756 sp->seg_bytes_left -= LFS_SBPAD;
1757 }
1758 brelse(bp);
1759 /* Segment zero could also contain the labelpad */
1760 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1761 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1762 fs->lfs_offset +=
1763 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1764 sp->seg_bytes_left -=
1765 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1766 }
1767 } else {
1768 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1769 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1770 (fs->lfs_offset - fs->lfs_curseg));
1771 }
1772 fs->lfs_lastpseg = fs->lfs_offset;
1773
1774 /* Record first address of this partial segment */
1775 if (sp->seg_flags & SEGM_CLEAN) {
1776 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1777 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1778 /* "1" is the artificial inc in lfs_seglock */
1779 simple_lock(&fs->lfs_interlock);
1780 while (fs->lfs_iocount > 1) {
1781 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1782 "lfs_initseg", 0, &fs->lfs_interlock);
1783 }
1784 simple_unlock(&fs->lfs_interlock);
1785 fs->lfs_cleanind = 0;
1786 }
1787 }
1788
1789 sp->fs = fs;
1790 sp->ibp = NULL;
1791 sp->idp = NULL;
1792 sp->ninodes = 0;
1793 sp->ndupino = 0;
1794
1795 sp->cbpp = sp->bpp;
1796
1797 /* Get a new buffer for SEGSUM */
1798 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1799 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1800
1801 /* ... and enter it into the buffer list. */
1802 *sp->cbpp = sbp;
1803 sp->cbpp++;
1804 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1805
1806 sp->start_bpp = sp->cbpp;
1807
1808 /* Set point to SEGSUM, initialize it. */
1809 ssp = sp->segsum = sbp->b_data;
1810 memset(ssp, 0, fs->lfs_sumsize);
1811 ssp->ss_next = fs->lfs_nextseg;
1812 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1813 ssp->ss_magic = SS_MAGIC;
1814
1815 /* Set pointer to first FINFO, initialize it. */
1816 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1817 sp->fip->fi_nblocks = 0;
1818 sp->start_lbp = &sp->fip->fi_blocks[0];
1819 sp->fip->fi_lastlength = 0;
1820
1821 sp->seg_bytes_left -= fs->lfs_sumsize;
1822 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1823
1824 return (repeat);
1825 }
1826
1827 /*
1828 * Remove SEGUSE_INVAL from all segments.
1829 */
1830 void
1831 lfs_unset_inval_all(struct lfs *fs)
1832 {
1833 SEGUSE *sup;
1834 struct buf *bp;
1835 int i;
1836
1837 for (i = 0; i < fs->lfs_nseg; i++) {
1838 LFS_SEGENTRY(sup, fs, i, bp);
1839 if (sup->su_flags & SEGUSE_INVAL) {
1840 sup->su_flags &= ~SEGUSE_INVAL;
1841 LFS_WRITESEGENTRY(sup, fs, i, bp);
1842 } else
1843 brelse(bp);
1844 }
1845 }
1846
1847 /*
1848 * Return the next segment to write.
1849 */
1850 void
1851 lfs_newseg(struct lfs *fs)
1852 {
1853 CLEANERINFO *cip;
1854 SEGUSE *sup;
1855 struct buf *bp;
1856 int curseg, isdirty, sn, skip_inval;
1857
1858 ASSERT_SEGLOCK(fs);
1859
1860 /* Honor LFCNWRAPSTOP */
1861 simple_lock(&fs->lfs_interlock);
1862 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1863 if (fs->lfs_wrappass) {
1864 log(LOG_NOTICE, "%s: wrappass=%d\n",
1865 fs->lfs_fsmnt, fs->lfs_wrappass);
1866 fs->lfs_wrappass = 0;
1867 break;
1868 }
1869 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1870 wakeup(&fs->lfs_nowrap);
1871 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1872 ltsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1873 &fs->lfs_interlock);
1874 }
1875 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1876 simple_unlock(&fs->lfs_interlock);
1877
1878 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1879 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1880 dtosn(fs, fs->lfs_nextseg)));
1881 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1882 sup->su_nbytes = 0;
1883 sup->su_nsums = 0;
1884 sup->su_ninos = 0;
1885 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1886
1887 LFS_CLEANERINFO(cip, fs, bp);
1888 --cip->clean;
1889 ++cip->dirty;
1890 fs->lfs_nclean = cip->clean;
1891 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1892
1893 fs->lfs_lastseg = fs->lfs_curseg;
1894 fs->lfs_curseg = fs->lfs_nextseg;
1895 skip_inval = 1;
1896 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1897 sn = (sn + 1) % fs->lfs_nseg;
1898
1899 if (sn == curseg) {
1900 if (skip_inval)
1901 skip_inval = 0;
1902 else
1903 panic("lfs_nextseg: no clean segments");
1904 }
1905 LFS_SEGENTRY(sup, fs, sn, bp);
1906 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1907 /* Check SEGUSE_EMPTY as we go along */
1908 if (isdirty && sup->su_nbytes == 0 &&
1909 !(sup->su_flags & SEGUSE_EMPTY))
1910 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1911 else
1912 brelse(bp);
1913
1914 if (!isdirty)
1915 break;
1916 }
1917 if (skip_inval == 0)
1918 lfs_unset_inval_all(fs);
1919
1920 ++fs->lfs_nactive;
1921 fs->lfs_nextseg = sntod(fs, sn);
1922 if (lfs_dostats) {
1923 ++lfs_stats.segsused;
1924 }
1925 }
1926
1927 static struct buf *
1928 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1929 {
1930 struct lfs_cluster *cl;
1931 struct buf **bpp, *bp;
1932
1933 ASSERT_SEGLOCK(fs);
1934 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1935 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1936 memset(cl, 0, sizeof(*cl));
1937 cl->fs = fs;
1938 cl->bpp = bpp;
1939 cl->bufcount = 0;
1940 cl->bufsize = 0;
1941
1942 /* If this segment is being written synchronously, note that */
1943 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1944 cl->flags |= LFS_CL_SYNC;
1945 cl->seg = fs->lfs_sp;
1946 ++cl->seg->seg_iocount;
1947 }
1948
1949 /* Get an empty buffer header, or maybe one with something on it */
1950 bp = getiobuf();
1951 bp->b_flags = B_BUSY | B_CALL;
1952 bp->b_dev = NODEV;
1953 bp->b_blkno = bp->b_lblkno = addr;
1954 bp->b_iodone = lfs_cluster_callback;
1955 bp->b_private = cl;
1956 bp->b_vp = vp;
1957
1958 return bp;
1959 }
1960
1961 int
1962 lfs_writeseg(struct lfs *fs, struct segment *sp)
1963 {
1964 struct buf **bpp, *bp, *cbp, *newbp;
1965 SEGUSE *sup;
1966 SEGSUM *ssp;
1967 int i, s;
1968 int do_again, nblocks, byteoffset;
1969 size_t el_size;
1970 struct lfs_cluster *cl;
1971 u_short ninos;
1972 struct vnode *devvp;
1973 char *p = NULL;
1974 struct vnode *vp;
1975 int32_t *daddrp; /* XXX ondisk32 */
1976 int changed;
1977 u_int32_t sum;
1978 #ifdef DEBUG
1979 FINFO *fip;
1980 int findex;
1981 #endif
1982
1983 ASSERT_SEGLOCK(fs);
1984
1985 ssp = (SEGSUM *)sp->segsum;
1986
1987 /*
1988 * If there are no buffers other than the segment summary to write,
1989 * don't do anything. If we are the end of a dirop sequence, however,
1990 * write the empty segment summary anyway, to help out the
1991 * roll-forward agent.
1992 */
1993 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1994 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1995 return 0;
1996 }
1997
1998 /* Note if partial segment is being written by the cleaner */
1999 if (sp->seg_flags & SEGM_CLEAN)
2000 ssp->ss_flags |= SS_CLEAN;
2001
2002 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2003
2004 /* Update the segment usage information. */
2005 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2006
2007 /* Loop through all blocks, except the segment summary. */
2008 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2009 if ((*bpp)->b_vp != devvp) {
2010 sup->su_nbytes += (*bpp)->b_bcount;
2011 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2012 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2013 sp->seg_number, (*bpp)->b_bcount,
2014 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2015 (*bpp)->b_blkno));
2016 }
2017 }
2018
2019 #ifdef DEBUG
2020 /* Check for zero-length and zero-version FINFO entries. */
2021 fip = (struct finfo *)((caddr_t)ssp + SEGSUM_SIZE(fs));
2022 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2023 KDASSERT(fip->fi_nblocks > 0);
2024 KDASSERT(fip->fi_version > 0);
2025 fip = (FINFO *)((caddr_t)fip + FINFOSIZE +
2026 sizeof(int32_t) * fip->fi_nblocks);
2027 }
2028 #endif /* DEBUG */
2029
2030 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2031 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2032 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2033 ssp->ss_ninos));
2034 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2035 /* sup->su_nbytes += fs->lfs_sumsize; */
2036 if (fs->lfs_version == 1)
2037 sup->su_olastmod = time_second;
2038 else
2039 sup->su_lastmod = time_second;
2040 sup->su_ninos += ninos;
2041 ++sup->su_nsums;
2042 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2043
2044 do_again = !(bp->b_flags & B_GATHERED);
2045 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2046
2047 /*
2048 * Mark blocks B_BUSY, to prevent then from being changed between
2049 * the checksum computation and the actual write.
2050 *
2051 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2052 * there are any, replace them with copies that have UNASSIGNED
2053 * instead.
2054 */
2055 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2056 ++bpp;
2057 bp = *bpp;
2058 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2059 bp->b_flags |= B_BUSY;
2060 continue;
2061 }
2062
2063 simple_lock(&bp->b_interlock);
2064 s = splbio();
2065 while (bp->b_flags & B_BUSY) {
2066 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2067 " data summary corruption for ino %d, lbn %"
2068 PRId64 "\n",
2069 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2070 bp->b_flags |= B_WANTED;
2071 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2072 &bp->b_interlock);
2073 splx(s);
2074 s = splbio();
2075 }
2076 bp->b_flags |= B_BUSY;
2077 splx(s);
2078 simple_unlock(&bp->b_interlock);
2079
2080 /*
2081 * Check and replace indirect block UNWRITTEN bogosity.
2082 * XXX See comment in lfs_writefile.
2083 */
2084 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2085 VTOI(bp->b_vp)->i_ffs1_blocks !=
2086 VTOI(bp->b_vp)->i_lfs_effnblks) {
2087 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2088 VTOI(bp->b_vp)->i_number,
2089 VTOI(bp->b_vp)->i_lfs_effnblks,
2090 VTOI(bp->b_vp)->i_ffs1_blocks));
2091 /* Make a copy we'll make changes to */
2092 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2093 bp->b_bcount, LFS_NB_IBLOCK);
2094 newbp->b_blkno = bp->b_blkno;
2095 memcpy(newbp->b_data, bp->b_data,
2096 newbp->b_bcount);
2097
2098 changed = 0;
2099 /* XXX ondisk32 */
2100 for (daddrp = (int32_t *)(newbp->b_data);
2101 daddrp < (int32_t *)(newbp->b_data +
2102 newbp->b_bcount); daddrp++) {
2103 if (*daddrp == UNWRITTEN) {
2104 ++changed;
2105 *daddrp = 0;
2106 }
2107 }
2108 /*
2109 * Get rid of the old buffer. Don't mark it clean,
2110 * though, if it still has dirty data on it.
2111 */
2112 if (changed) {
2113 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2114 " bp = %p newbp = %p\n", changed, bp,
2115 newbp));
2116 *bpp = newbp;
2117 bp->b_flags &= ~(B_ERROR | B_GATHERED);
2118 if (bp->b_flags & B_CALL) {
2119 DLOG((DLOG_SEG, "lfs_writeseg: "
2120 "indir bp should not be B_CALL\n"));
2121 s = splbio();
2122 biodone(bp);
2123 splx(s);
2124 bp = NULL;
2125 } else {
2126 /* Still on free list, leave it there */
2127 s = splbio();
2128 bp->b_flags &= ~B_BUSY;
2129 if (bp->b_flags & B_WANTED)
2130 wakeup(bp);
2131 splx(s);
2132 /*
2133 * We have to re-decrement lfs_avail
2134 * since this block is going to come
2135 * back around to us in the next
2136 * segment.
2137 */
2138 fs->lfs_avail -=
2139 btofsb(fs, bp->b_bcount);
2140 }
2141 } else {
2142 lfs_freebuf(fs, newbp);
2143 }
2144 }
2145 }
2146 /*
2147 * Compute checksum across data and then across summary; the first
2148 * block (the summary block) is skipped. Set the create time here
2149 * so that it's guaranteed to be later than the inode mod times.
2150 */
2151 sum = 0;
2152 if (fs->lfs_version == 1)
2153 el_size = sizeof(u_long);
2154 else
2155 el_size = sizeof(u_int32_t);
2156 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2157 ++bpp;
2158 /* Loop through gop_write cluster blocks */
2159 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2160 byteoffset += fs->lfs_bsize) {
2161 #ifdef LFS_USE_B_INVAL
2162 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2163 (B_CALL | B_INVAL)) {
2164 if (copyin((caddr_t)(*bpp)->b_saveaddr +
2165 byteoffset, dp, el_size)) {
2166 panic("lfs_writeseg: copyin failed [1]:"
2167 " ino %d blk %" PRId64,
2168 VTOI((*bpp)->b_vp)->i_number,
2169 (*bpp)->b_lblkno);
2170 }
2171 } else
2172 #endif /* LFS_USE_B_INVAL */
2173 {
2174 sum = lfs_cksum_part(
2175 (*bpp)->b_data + byteoffset, el_size, sum);
2176 }
2177 }
2178 }
2179 if (fs->lfs_version == 1)
2180 ssp->ss_ocreate = time_second;
2181 else {
2182 ssp->ss_create = time_second;
2183 ssp->ss_serial = ++fs->lfs_serial;
2184 ssp->ss_ident = fs->lfs_ident;
2185 }
2186 ssp->ss_datasum = lfs_cksum_fold(sum);
2187 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2188 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2189
2190 simple_lock(&fs->lfs_interlock);
2191 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2192 btofsb(fs, fs->lfs_sumsize));
2193 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2194 btofsb(fs, fs->lfs_sumsize));
2195 simple_unlock(&fs->lfs_interlock);
2196
2197 /*
2198 * When we simply write the blocks we lose a rotation for every block
2199 * written. To avoid this problem, we cluster the buffers into a
2200 * chunk and write the chunk. MAXPHYS is the largest size I/O
2201 * devices can handle, use that for the size of the chunks.
2202 *
2203 * Blocks that are already clusters (from GOP_WRITE), however, we
2204 * don't bother to copy into other clusters.
2205 */
2206
2207 #define CHUNKSIZE MAXPHYS
2208
2209 if (devvp == NULL)
2210 panic("devvp is NULL");
2211 for (bpp = sp->bpp, i = nblocks; i;) {
2212 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2213 cl = cbp->b_private;
2214
2215 cbp->b_flags |= B_ASYNC | B_BUSY;
2216 cbp->b_bcount = 0;
2217
2218 #if defined(DEBUG) && defined(DIAGNOSTIC)
2219 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2220 / sizeof(int32_t)) {
2221 panic("lfs_writeseg: real bpp overwrite");
2222 }
2223 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2224 panic("lfs_writeseg: theoretical bpp overwrite");
2225 }
2226 #endif
2227
2228 /*
2229 * Construct the cluster.
2230 */
2231 simple_lock(&fs->lfs_interlock);
2232 ++fs->lfs_iocount;
2233 simple_unlock(&fs->lfs_interlock);
2234 while (i && cbp->b_bcount < CHUNKSIZE) {
2235 bp = *bpp;
2236
2237 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2238 break;
2239 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2240 break;
2241
2242 /* Clusters from GOP_WRITE are expedited */
2243 if (bp->b_bcount > fs->lfs_bsize) {
2244 if (cbp->b_bcount > 0)
2245 /* Put in its own buffer */
2246 break;
2247 else {
2248 cbp->b_data = bp->b_data;
2249 }
2250 } else if (cbp->b_bcount == 0) {
2251 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2252 LFS_NB_CLUSTER);
2253 cl->flags |= LFS_CL_MALLOC;
2254 }
2255 #ifdef DIAGNOSTIC
2256 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2257 btodb(bp->b_bcount - 1))) !=
2258 sp->seg_number) {
2259 printf("blk size %d daddr %" PRIx64
2260 " not in seg %d\n",
2261 bp->b_bcount, bp->b_blkno,
2262 sp->seg_number);
2263 panic("segment overwrite");
2264 }
2265 #endif
2266
2267 #ifdef LFS_USE_B_INVAL
2268 /*
2269 * Fake buffers from the cleaner are marked as B_INVAL.
2270 * We need to copy the data from user space rather than
2271 * from the buffer indicated.
2272 * XXX == what do I do on an error?
2273 */
2274 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2275 (B_CALL|B_INVAL)) {
2276 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2277 panic("lfs_writeseg: "
2278 "copyin failed [2]");
2279 } else
2280 #endif /* LFS_USE_B_INVAL */
2281 if (cl->flags & LFS_CL_MALLOC) {
2282 /* copy data into our cluster. */
2283 memcpy(p, bp->b_data, bp->b_bcount);
2284 p += bp->b_bcount;
2285 }
2286
2287 cbp->b_bcount += bp->b_bcount;
2288 cl->bufsize += bp->b_bcount;
2289
2290 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2291 cl->bpp[cl->bufcount++] = bp;
2292 vp = bp->b_vp;
2293 s = splbio();
2294 reassignbuf(bp, vp);
2295 V_INCR_NUMOUTPUT(vp);
2296 splx(s);
2297
2298 bpp++;
2299 i--;
2300 }
2301 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2302 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2303 else
2304 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2305 s = splbio();
2306 V_INCR_NUMOUTPUT(devvp);
2307 splx(s);
2308 VOP_STRATEGY(devvp, cbp);
2309 curproc->p_stats->p_ru.ru_oublock++;
2310 }
2311
2312 if (lfs_dostats) {
2313 ++lfs_stats.psegwrites;
2314 lfs_stats.blocktot += nblocks - 1;
2315 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2316 ++lfs_stats.psyncwrites;
2317 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2318 ++lfs_stats.pcleanwrites;
2319 lfs_stats.cleanblocks += nblocks - 1;
2320 }
2321 }
2322 return (lfs_initseg(fs) || do_again);
2323 }
2324
2325 void
2326 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2327 {
2328 struct buf *bp;
2329 int s;
2330 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2331
2332 ASSERT_MAYBE_SEGLOCK(fs);
2333 #ifdef DIAGNOSTIC
2334 KASSERT(fs->lfs_magic == LFS_MAGIC);
2335 #endif
2336 /*
2337 * If we can write one superblock while another is in
2338 * progress, we risk not having a complete checkpoint if we crash.
2339 * So, block here if a superblock write is in progress.
2340 */
2341 simple_lock(&fs->lfs_interlock);
2342 s = splbio();
2343 while (fs->lfs_sbactive) {
2344 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2345 &fs->lfs_interlock);
2346 }
2347 fs->lfs_sbactive = daddr;
2348 splx(s);
2349 simple_unlock(&fs->lfs_interlock);
2350
2351 /* Set timestamp of this version of the superblock */
2352 if (fs->lfs_version == 1)
2353 fs->lfs_otstamp = time_second;
2354 fs->lfs_tstamp = time_second;
2355
2356 /* Checksum the superblock and copy it into a buffer. */
2357 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2358 bp = lfs_newbuf(fs, devvp,
2359 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2360 memset(bp->b_data + sizeof(struct dlfs), 0,
2361 LFS_SBPAD - sizeof(struct dlfs));
2362 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2363
2364 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2365 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2366 bp->b_iodone = lfs_supercallback;
2367
2368 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2369 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2370 else
2371 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2372 curproc->p_stats->p_ru.ru_oublock++;
2373 s = splbio();
2374 V_INCR_NUMOUTPUT(bp->b_vp);
2375 splx(s);
2376 simple_lock(&fs->lfs_interlock);
2377 ++fs->lfs_iocount;
2378 simple_unlock(&fs->lfs_interlock);
2379 VOP_STRATEGY(devvp, bp);
2380 }
2381
2382 /*
2383 * Logical block number match routines used when traversing the dirty block
2384 * chain.
2385 */
2386 int
2387 lfs_match_fake(struct lfs *fs, struct buf *bp)
2388 {
2389
2390 ASSERT_SEGLOCK(fs);
2391 return LFS_IS_MALLOC_BUF(bp);
2392 }
2393
2394 #if 0
2395 int
2396 lfs_match_real(struct lfs *fs, struct buf *bp)
2397 {
2398
2399 ASSERT_SEGLOCK(fs);
2400 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2401 }
2402 #endif
2403
2404 int
2405 lfs_match_data(struct lfs *fs, struct buf *bp)
2406 {
2407
2408 ASSERT_SEGLOCK(fs);
2409 return (bp->b_lblkno >= 0);
2410 }
2411
2412 int
2413 lfs_match_indir(struct lfs *fs, struct buf *bp)
2414 {
2415 daddr_t lbn;
2416
2417 ASSERT_SEGLOCK(fs);
2418 lbn = bp->b_lblkno;
2419 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2420 }
2421
2422 int
2423 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2424 {
2425 daddr_t lbn;
2426
2427 ASSERT_SEGLOCK(fs);
2428 lbn = bp->b_lblkno;
2429 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2430 }
2431
2432 int
2433 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2434 {
2435 daddr_t lbn;
2436
2437 ASSERT_SEGLOCK(fs);
2438 lbn = bp->b_lblkno;
2439 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2440 }
2441
2442 static void
2443 lfs_free_aiodone(struct buf *bp)
2444 {
2445 struct lfs *fs;
2446
2447 fs = bp->b_private;
2448 ASSERT_NO_SEGLOCK(fs);
2449 lfs_freebuf(fs, bp);
2450 }
2451
2452 static void
2453 lfs_super_aiodone(struct buf *bp)
2454 {
2455 struct lfs *fs;
2456
2457 fs = bp->b_private;
2458 ASSERT_NO_SEGLOCK(fs);
2459 simple_lock(&fs->lfs_interlock);
2460 fs->lfs_sbactive = 0;
2461 if (--fs->lfs_iocount <= 1)
2462 wakeup(&fs->lfs_iocount);
2463 simple_unlock(&fs->lfs_interlock);
2464 wakeup(&fs->lfs_sbactive);
2465 lfs_freebuf(fs, bp);
2466 }
2467
2468 static void
2469 lfs_cluster_aiodone(struct buf *bp)
2470 {
2471 struct lfs_cluster *cl;
2472 struct lfs *fs;
2473 struct buf *tbp, *fbp;
2474 struct vnode *vp, *devvp;
2475 struct inode *ip;
2476 int s, error=0;
2477
2478 if (bp->b_flags & B_ERROR)
2479 error = bp->b_error;
2480
2481 cl = bp->b_private;
2482 fs = cl->fs;
2483 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2484 ASSERT_NO_SEGLOCK(fs);
2485
2486 /* Put the pages back, and release the buffer */
2487 while (cl->bufcount--) {
2488 tbp = cl->bpp[cl->bufcount];
2489 KASSERT(tbp->b_flags & B_BUSY);
2490 if (error) {
2491 tbp->b_flags |= B_ERROR;
2492 tbp->b_error = error;
2493 }
2494
2495 /*
2496 * We're done with tbp. If it has not been re-dirtied since
2497 * the cluster was written, free it. Otherwise, keep it on
2498 * the locked list to be written again.
2499 */
2500 vp = tbp->b_vp;
2501
2502 tbp->b_flags &= ~B_GATHERED;
2503
2504 LFS_BCLEAN_LOG(fs, tbp);
2505
2506 if (!(tbp->b_flags & B_CALL)) {
2507 KASSERT(tbp->b_flags & B_LOCKED);
2508 s = splbio();
2509 simple_lock(&bqueue_slock);
2510 bremfree(tbp);
2511 simple_unlock(&bqueue_slock);
2512 if (vp)
2513 reassignbuf(tbp, vp);
2514 splx(s);
2515 tbp->b_flags |= B_ASYNC; /* for biodone */
2516 }
2517
2518 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2519 LFS_UNLOCK_BUF(tbp);
2520
2521 if (tbp->b_flags & B_DONE) {
2522 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2523 cl->bufcount, (long)tbp->b_flags));
2524 }
2525
2526 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2527 /*
2528 * A buffer from the page daemon.
2529 * We use the same iodone as it does,
2530 * so we must manually disassociate its
2531 * buffers from the vp.
2532 */
2533 if (tbp->b_vp) {
2534 /* This is just silly */
2535 s = splbio();
2536 brelvp(tbp);
2537 tbp->b_vp = vp;
2538 splx(s);
2539 }
2540 /* Put it back the way it was */
2541 tbp->b_flags |= B_ASYNC;
2542 /* Master buffers have B_AGE */
2543 if (tbp->b_private == tbp)
2544 tbp->b_flags |= B_AGE;
2545 }
2546 s = splbio();
2547 biodone(tbp);
2548
2549 /*
2550 * If this is the last block for this vnode, but
2551 * there are other blocks on its dirty list,
2552 * set IN_MODIFIED/IN_CLEANING depending on what
2553 * sort of block. Only do this for our mount point,
2554 * not for, e.g., inode blocks that are attached to
2555 * the devvp.
2556 * XXX KS - Shouldn't we set *both* if both types
2557 * of blocks are present (traverse the dirty list?)
2558 */
2559 simple_lock(&global_v_numoutput_slock);
2560 if (vp != devvp && vp->v_numoutput == 0 &&
2561 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2562 ip = VTOI(vp);
2563 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2564 ip->i_number));
2565 if (LFS_IS_MALLOC_BUF(fbp))
2566 LFS_SET_UINO(ip, IN_CLEANING);
2567 else
2568 LFS_SET_UINO(ip, IN_MODIFIED);
2569 }
2570 simple_unlock(&global_v_numoutput_slock);
2571 splx(s);
2572 wakeup(vp);
2573 }
2574
2575 /* Fix up the cluster buffer, and release it */
2576 if (cl->flags & LFS_CL_MALLOC)
2577 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2578 putiobuf(bp);
2579
2580 /* Note i/o done */
2581 if (cl->flags & LFS_CL_SYNC) {
2582 if (--cl->seg->seg_iocount == 0)
2583 wakeup(&cl->seg->seg_iocount);
2584 }
2585 simple_lock(&fs->lfs_interlock);
2586 #ifdef DIAGNOSTIC
2587 if (fs->lfs_iocount == 0)
2588 panic("lfs_cluster_aiodone: zero iocount");
2589 #endif
2590 if (--fs->lfs_iocount <= 1)
2591 wakeup(&fs->lfs_iocount);
2592 simple_unlock(&fs->lfs_interlock);
2593
2594 pool_put(&fs->lfs_bpppool, cl->bpp);
2595 cl->bpp = NULL;
2596 pool_put(&fs->lfs_clpool, cl);
2597 }
2598
2599 static void
2600 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2601 {
2602 /* reset b_iodone for when this is a single-buf i/o. */
2603 bp->b_iodone = aiodone;
2604
2605 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2606 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2607 wakeup(&uvm.aiodoned);
2608 simple_unlock(&uvm.aiodoned_lock);
2609 }
2610
2611 static void
2612 lfs_cluster_callback(struct buf *bp)
2613 {
2614
2615 lfs_generic_callback(bp, lfs_cluster_aiodone);
2616 }
2617
2618 void
2619 lfs_supercallback(struct buf *bp)
2620 {
2621
2622 lfs_generic_callback(bp, lfs_super_aiodone);
2623 }
2624
2625 /*
2626 * The only buffers that are going to hit these functions are the
2627 * segment write blocks, or the segment summaries, or the superblocks.
2628 *
2629 * All of the above are created by lfs_newbuf, and so do not need to be
2630 * released via brelse.
2631 */
2632 void
2633 lfs_callback(struct buf *bp)
2634 {
2635
2636 lfs_generic_callback(bp, lfs_free_aiodone);
2637 }
2638
2639 /*
2640 * Shellsort (diminishing increment sort) from Data Structures and
2641 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2642 * see also Knuth Vol. 3, page 84. The increments are selected from
2643 * formula (8), page 95. Roughly O(N^3/2).
2644 */
2645 /*
2646 * This is our own private copy of shellsort because we want to sort
2647 * two parallel arrays (the array of buffer pointers and the array of
2648 * logical block numbers) simultaneously. Note that we cast the array
2649 * of logical block numbers to a unsigned in this routine so that the
2650 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2651 */
2652
2653 void
2654 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2655 {
2656 static int __rsshell_increments[] = { 4, 1, 0 };
2657 int incr, *incrp, t1, t2;
2658 struct buf *bp_temp;
2659
2660 #ifdef DEBUG
2661 incr = 0;
2662 for (t1 = 0; t1 < nmemb; t1++) {
2663 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2664 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2665 /* dump before panic */
2666 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2667 nmemb, size);
2668 incr = 0;
2669 for (t1 = 0; t1 < nmemb; t1++) {
2670 const struct buf *bp = bp_array[t1];
2671
2672 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2673 PRIu64 "\n", t1,
2674 (uint64_t)bp->b_bcount,
2675 (uint64_t)bp->b_lblkno);
2676 printf("lbns:");
2677 for (t2 = 0; t2 * size < bp->b_bcount;
2678 t2++) {
2679 printf(" %" PRId32,
2680 lb_array[incr++]);
2681 }
2682 printf("\n");
2683 }
2684 panic("lfs_shellsort: inconsistent input");
2685 }
2686 }
2687 }
2688 #endif
2689
2690 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2691 for (t1 = incr; t1 < nmemb; ++t1)
2692 for (t2 = t1 - incr; t2 >= 0;)
2693 if ((u_int32_t)bp_array[t2]->b_lblkno >
2694 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2695 bp_temp = bp_array[t2];
2696 bp_array[t2] = bp_array[t2 + incr];
2697 bp_array[t2 + incr] = bp_temp;
2698 t2 -= incr;
2699 } else
2700 break;
2701
2702 /* Reform the list of logical blocks */
2703 incr = 0;
2704 for (t1 = 0; t1 < nmemb; t1++) {
2705 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2706 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2707 }
2708 }
2709 }
2710
2711 /*
2712 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2713 * however, we must press on. Just fake success in that case.
2714 */
2715 int
2716 lfs_vref(struct vnode *vp)
2717 {
2718 int error;
2719 struct lfs *fs;
2720
2721 fs = VTOI(vp)->i_lfs;
2722
2723 ASSERT_MAYBE_SEGLOCK(fs);
2724
2725 /*
2726 * If we return 1 here during a flush, we risk vinvalbuf() not
2727 * being able to flush all of the pages from this vnode, which
2728 * will cause it to panic. So, return 0 if a flush is in progress.
2729 */
2730 error = vget(vp, LK_NOWAIT);
2731 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2732 ++fs->lfs_flushvp_fakevref;
2733 return 0;
2734 }
2735 return error;
2736 }
2737
2738 /*
2739 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2740 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2741 */
2742 void
2743 lfs_vunref(struct vnode *vp)
2744 {
2745 struct lfs *fs;
2746
2747 fs = VTOI(vp)->i_lfs;
2748 ASSERT_MAYBE_SEGLOCK(fs);
2749
2750 /*
2751 * Analogous to lfs_vref, if the node is flushing, fake it.
2752 */
2753 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2754 --fs->lfs_flushvp_fakevref;
2755 return;
2756 }
2757
2758 simple_lock(&vp->v_interlock);
2759 #ifdef DIAGNOSTIC
2760 if (vp->v_usecount <= 0) {
2761 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2762 VTOI(vp)->i_number);
2763 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2764 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2765 panic("lfs_vunref: v_usecount < 0");
2766 }
2767 #endif
2768 vp->v_usecount--;
2769 if (vp->v_usecount > 0) {
2770 simple_unlock(&vp->v_interlock);
2771 return;
2772 }
2773 /*
2774 * insert at tail of LRU list
2775 */
2776 simple_lock(&vnode_free_list_slock);
2777 if (vp->v_holdcnt > 0)
2778 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2779 else
2780 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2781 simple_unlock(&vnode_free_list_slock);
2782 simple_unlock(&vp->v_interlock);
2783 }
2784
2785 /*
2786 * We use this when we have vnodes that were loaded in solely for cleaning.
2787 * There is no reason to believe that these vnodes will be referenced again
2788 * soon, since the cleaning process is unrelated to normal filesystem
2789 * activity. Putting cleaned vnodes at the tail of the list has the effect
2790 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2791 * cleaning at the head of the list, instead.
2792 */
2793 void
2794 lfs_vunref_head(struct vnode *vp)
2795 {
2796
2797 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2798 simple_lock(&vp->v_interlock);
2799 #ifdef DIAGNOSTIC
2800 if (vp->v_usecount == 0) {
2801 panic("lfs_vunref: v_usecount<0");
2802 }
2803 #endif
2804 vp->v_usecount--;
2805 if (vp->v_usecount > 0) {
2806 simple_unlock(&vp->v_interlock);
2807 return;
2808 }
2809 /*
2810 * insert at head of LRU list
2811 */
2812 simple_lock(&vnode_free_list_slock);
2813 if (vp->v_holdcnt > 0)
2814 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2815 else
2816 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2817 simple_unlock(&vnode_free_list_slock);
2818 simple_unlock(&vp->v_interlock);
2819 }
2820
2821
2822 /*
2823 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2824 * point at uninitialized space.
2825 */
2826 void
2827 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2828 {
2829 struct segment *sp = fs->lfs_sp;
2830
2831 KASSERT(vers > 0);
2832
2833 if (sp->seg_bytes_left < fs->lfs_bsize ||
2834 sp->sum_bytes_left < sizeof(struct finfo))
2835 (void) lfs_writeseg(fs, fs->lfs_sp);
2836
2837 sp->sum_bytes_left -= FINFOSIZE;
2838 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2839 sp->fip->fi_nblocks = 0;
2840 sp->fip->fi_ino = ino;
2841 sp->fip->fi_version = vers;
2842 }
2843
2844 /*
2845 * Release the FINFO entry, either clearing out an unused entry or
2846 * advancing us to the next available entry.
2847 */
2848 void
2849 lfs_release_finfo(struct lfs *fs)
2850 {
2851 struct segment *sp = fs->lfs_sp;
2852
2853 if (sp->fip->fi_nblocks != 0) {
2854 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2855 sizeof(int32_t) * sp->fip->fi_nblocks);
2856 sp->start_lbp = &sp->fip->fi_blocks[0];
2857 } else {
2858 sp->sum_bytes_left += FINFOSIZE;
2859 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2860 }
2861 }
2862