lfs_segment.c revision 1.198 1 /* $NetBSD: lfs_segment.c,v 1.198 2007/03/04 06:03:45 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.198 2007/03/04 06:03:45 christos Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern struct simplelock vnode_free_list_slock; /* XXX */
120 extern struct simplelock bqueue_slock; /* XXX */
121
122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 static void lfs_free_aiodone(struct buf *);
124 static void lfs_super_aiodone(struct buf *);
125 static void lfs_cluster_aiodone(struct buf *);
126 static void lfs_cluster_callback(struct buf *);
127
128 /*
129 * Determine if it's OK to start a partial in this segment, or if we need
130 * to go on to a new segment.
131 */
132 #define LFS_PARTIAL_FITS(fs) \
133 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 fragstofsb((fs), (fs)->lfs_frag))
135
136 /*
137 * Figure out whether we should do a checkpoint write or go ahead with
138 * an ordinary write.
139 */
140 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141 ((flags & SEGM_CLEAN) == 0 && \
142 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
143 (flags & SEGM_CKP) || \
144 fs->lfs_nclean < LFS_MAX_ACTIVE)))
145
146 int lfs_match_fake(struct lfs *, struct buf *);
147 void lfs_newseg(struct lfs *);
148 /* XXX ondisk32 */
149 void lfs_shellsort(struct buf **, int32_t *, int, int);
150 void lfs_supercallback(struct buf *);
151 void lfs_updatemeta(struct segment *);
152 void lfs_writesuper(struct lfs *, daddr_t);
153 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 struct segment *sp, int dirops);
155
156 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
157 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
158 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
159 int lfs_dirvcount = 0; /* # active dirops */
160
161 /* Statistics Counters */
162 int lfs_dostats = 1;
163 struct lfs_stats lfs_stats;
164
165 /* op values to lfs_writevnodes */
166 #define VN_REG 0
167 #define VN_DIROP 1
168 #define VN_EMPTY 2
169 #define VN_CLEAN 3
170
171 /*
172 * XXX KS - Set modification time on the Ifile, so the cleaner can
173 * read the fs mod time off of it. We don't set IN_UPDATE here,
174 * since we don't really need this to be flushed to disk (and in any
175 * case that wouldn't happen to the Ifile until we checkpoint).
176 */
177 void
178 lfs_imtime(struct lfs *fs)
179 {
180 struct timespec ts;
181 struct inode *ip;
182
183 ASSERT_MAYBE_SEGLOCK(fs);
184 vfs_timestamp(&ts);
185 ip = VTOI(fs->lfs_ivnode);
186 ip->i_ffs1_mtime = ts.tv_sec;
187 ip->i_ffs1_mtimensec = ts.tv_nsec;
188 }
189
190 /*
191 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 */
196
197 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 int relock;
209 int loopcount;
210
211 ip = VTOI(vp);
212 fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 relock = 0;
214
215 top:
216 ASSERT_NO_SEGLOCK(fs);
217 if (ip->i_flag & IN_CLEANING) {
218 ivndebug(vp,"vflush/in_cleaning");
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 simple_unlock(&vp->v_interlock);
257 goto nextbp;
258 }
259 }
260 simple_unlock(&vp->v_interlock);
261 }
262 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 tbp = tnbp)
264 {
265 tnbp = LIST_NEXT(tbp, b_vnbufs);
266 if (tbp->b_vp == bp->b_vp
267 && tbp->b_lblkno == bp->b_lblkno
268 && tbp != bp)
269 {
270 fs->lfs_avail += btofsb(fs,
271 bp->b_bcount);
272 wakeup(&fs->lfs_avail);
273 lfs_freebuf(fs, bp);
274 bp = NULL;
275 break;
276 }
277 }
278 nextbp:
279 ;
280 }
281 splx(s);
282 }
283
284 /* If the node is being written, wait until that is done */
285 simple_lock(&vp->v_interlock);
286 s = splbio();
287 if (WRITEINPROG(vp)) {
288 ivndebug(vp,"vflush/writeinprog");
289 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
290 }
291 splx(s);
292 simple_unlock(&vp->v_interlock);
293
294 /* Protect against VXLOCK deadlock in vinvalbuf() */
295 lfs_seglock(fs, SEGM_SYNC);
296
297 /* If we're supposed to flush a freed inode, just toss it */
298 if (ip->i_lfs_iflags & LFSI_DELETED) {
299 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
300 ip->i_number));
301 s = splbio();
302 /* Drain v_numoutput */
303 simple_lock(&global_v_numoutput_slock);
304 while (vp->v_numoutput > 0) {
305 vp->v_flag |= VBWAIT;
306 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
307 &global_v_numoutput_slock);
308 }
309 simple_unlock(&global_v_numoutput_slock);
310 KASSERT(vp->v_numoutput == 0);
311
312 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 nbp = LIST_NEXT(bp, b_vnbufs);
314
315 KASSERT((bp->b_flags & B_GATHERED) == 0);
316 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 wakeup(&fs->lfs_avail);
319 }
320 /* Copied from lfs_writeseg */
321 if (bp->b_flags & B_CALL) {
322 biodone(bp);
323 } else {
324 bremfree(bp);
325 LFS_UNLOCK_BUF(bp);
326 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
327 B_GATHERED);
328 bp->b_flags |= B_DONE;
329 reassignbuf(bp, vp);
330 brelse(bp);
331 }
332 }
333 splx(s);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_flag &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 s = splbio();
355 simple_lock(&global_v_numoutput_slock);
356 while (vp->v_numoutput > 0) {
357 vp->v_flag |= VBWAIT;
358 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
359 &global_v_numoutput_slock);
360 }
361 simple_unlock(&global_v_numoutput_slock);
362 splx(s);
363
364 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
365 KASSERT(vp->v_numoutput == 0);
366
367 return error;
368 }
369 sp = fs->lfs_sp;
370
371 flushed = 0;
372 if (VPISEMPTY(vp)) {
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
374 ++flushed;
375 } else if ((ip->i_flag & IN_CLEANING) &&
376 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
377 ivndebug(vp,"vflush/clean");
378 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
379 ++flushed;
380 } else if (lfs_dostats) {
381 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
382 ++lfs_stats.vflush_invoked;
383 ivndebug(vp,"vflush");
384 }
385
386 #ifdef DIAGNOSTIC
387 if (vp->v_flag & VDIROP) {
388 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
389 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
390 }
391 if (vp->v_usecount < 0) {
392 printf("usecount=%ld\n", (long)vp->v_usecount);
393 panic("lfs_vflush: usecount<0");
394 }
395 #endif
396
397 do {
398 loopcount = 0;
399 do {
400 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
401 relock = lfs_writefile(fs, sp, vp);
402 if (relock) {
403 /*
404 * Might have to wait for the
405 * cleaner to run; but we're
406 * still not done with this vnode.
407 */
408 KDASSERT(ip->i_number != LFS_IFILE_INUM);
409 lfs_writeinode(fs, sp, ip);
410 LFS_SET_UINO(ip, IN_MODIFIED);
411 lfs_writeseg(fs, sp);
412 lfs_segunlock(fs);
413 lfs_segunlock_relock(fs);
414 goto top;
415 }
416 }
417 /*
418 * If we begin a new segment in the middle of writing
419 * the Ifile, it creates an inconsistent checkpoint,
420 * since the Ifile information for the new segment
421 * is not up-to-date. Take care of this here by
422 * sending the Ifile through again in case there
423 * are newly dirtied blocks. But wait, there's more!
424 * This second Ifile write could *also* cross a segment
425 * boundary, if the first one was large. The second
426 * one is guaranteed to be no more than 8 blocks,
427 * though (two segment blocks and supporting indirects)
428 * so the third write *will not* cross the boundary.
429 */
430 if (vp == fs->lfs_ivnode) {
431 lfs_writefile(fs, sp, vp);
432 lfs_writefile(fs, sp, vp);
433 }
434 #ifdef DEBUG
435 if (++loopcount > 2)
436 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
437 #endif
438 } while (lfs_writeinode(fs, sp, ip));
439 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
440
441 if (lfs_dostats) {
442 ++lfs_stats.nwrites;
443 if (sp->seg_flags & SEGM_SYNC)
444 ++lfs_stats.nsync_writes;
445 if (sp->seg_flags & SEGM_CKP)
446 ++lfs_stats.ncheckpoints;
447 }
448 /*
449 * If we were called from somewhere that has already held the seglock
450 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
451 * the write to complete because we are still locked.
452 * Since lfs_vflush() must return the vnode with no dirty buffers,
453 * we must explicitly wait, if that is the case.
454 *
455 * We compare the iocount against 1, not 0, because it is
456 * artificially incremented by lfs_seglock().
457 */
458 simple_lock(&fs->lfs_interlock);
459 if (fs->lfs_seglock > 1) {
460 while (fs->lfs_iocount > 1)
461 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
462 "lfs_vflush", 0, &fs->lfs_interlock);
463 }
464 simple_unlock(&fs->lfs_interlock);
465
466 lfs_segunlock(fs);
467
468 /* Wait for these buffers to be recovered by aiodoned */
469 s = splbio();
470 simple_lock(&global_v_numoutput_slock);
471 while (vp->v_numoutput > 0) {
472 vp->v_flag |= VBWAIT;
473 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
474 &global_v_numoutput_slock);
475 }
476 simple_unlock(&global_v_numoutput_slock);
477 splx(s);
478
479 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
480 KASSERT(vp->v_numoutput == 0);
481
482 fs->lfs_flushvp = NULL;
483 KASSERT(fs->lfs_flushvp_fakevref == 0);
484
485 return (0);
486 }
487
488 int
489 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
490 {
491 struct inode *ip;
492 struct vnode *vp;
493 int inodes_written = 0, only_cleaning;
494 int error = 0;
495
496 ASSERT_SEGLOCK(fs);
497 loop:
498 /* start at last (newest) vnode. */
499 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
500 /*
501 * If the vnode that we are about to sync is no longer
502 * associated with this mount point, start over.
503 */
504 if (vp->v_mount != mp) {
505 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
506 /*
507 * After this, pages might be busy
508 * due to our own previous putpages.
509 * Start actual segment write here to avoid deadlock.
510 */
511 (void)lfs_writeseg(fs, sp);
512 goto loop;
513 }
514
515 if (vp->v_type == VNON) {
516 continue;
517 }
518
519 ip = VTOI(vp);
520 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
521 (op != VN_DIROP && op != VN_CLEAN &&
522 (vp->v_flag & VDIROP))) {
523 vndebug(vp,"dirop");
524 continue;
525 }
526
527 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
528 vndebug(vp,"empty");
529 continue;
530 }
531
532 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
533 && vp != fs->lfs_flushvp
534 && !(ip->i_flag & IN_CLEANING)) {
535 vndebug(vp,"cleaning");
536 continue;
537 }
538
539 if (lfs_vref(vp)) {
540 vndebug(vp,"vref");
541 continue;
542 }
543
544 only_cleaning = 0;
545 /*
546 * Write the inode/file if dirty and it's not the IFILE.
547 */
548 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
549 only_cleaning =
550 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
551
552 if (ip->i_number != LFS_IFILE_INUM) {
553 error = lfs_writefile(fs, sp, vp);
554 if (error) {
555 lfs_vunref(vp);
556 if (error == EAGAIN) {
557 /*
558 * This error from lfs_putpages
559 * indicates we need to drop
560 * the segment lock and start
561 * over after the cleaner has
562 * had a chance to run.
563 */
564 lfs_writeinode(fs, sp, ip);
565 lfs_writeseg(fs, sp);
566 if (!VPISEMPTY(vp) &&
567 !WRITEINPROG(vp) &&
568 !(ip->i_flag & IN_ALLMOD))
569 LFS_SET_UINO(ip, IN_MODIFIED);
570 break;
571 }
572 error = 0; /* XXX not quite right */
573 continue;
574 }
575
576 if (!VPISEMPTY(vp)) {
577 if (WRITEINPROG(vp)) {
578 ivndebug(vp,"writevnodes/write2");
579 } else if (!(ip->i_flag & IN_ALLMOD)) {
580 LFS_SET_UINO(ip, IN_MODIFIED);
581 }
582 }
583 (void) lfs_writeinode(fs, sp, ip);
584 inodes_written++;
585 }
586 }
587
588 if (lfs_clean_vnhead && only_cleaning)
589 lfs_vunref_head(vp);
590 else
591 lfs_vunref(vp);
592 }
593 return error;
594 }
595
596 /*
597 * Do a checkpoint.
598 */
599 int
600 lfs_segwrite(struct mount *mp, int flags)
601 {
602 struct buf *bp;
603 struct inode *ip;
604 struct lfs *fs;
605 struct segment *sp;
606 struct vnode *vp;
607 SEGUSE *segusep;
608 int do_ckp, did_ckp, error, s;
609 unsigned n, segleft, maxseg, sn, i, curseg;
610 int writer_set = 0;
611 int dirty;
612 int redo;
613 int um_error;
614 int loopcount;
615
616 fs = VFSTOUFS(mp)->um_lfs;
617 ASSERT_MAYBE_SEGLOCK(fs);
618
619 if (fs->lfs_ronly)
620 return EROFS;
621
622 lfs_imtime(fs);
623
624 /*
625 * Allocate a segment structure and enough space to hold pointers to
626 * the maximum possible number of buffers which can be described in a
627 * single summary block.
628 */
629 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
630
631 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
632 sp = fs->lfs_sp;
633 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
634 do_ckp = 1;
635
636 /*
637 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
638 * in which case we have to flush *all* buffers off of this vnode.
639 * We don't care about other nodes, but write any non-dirop nodes
640 * anyway in anticipation of another getnewvnode().
641 *
642 * If we're cleaning we only write cleaning and ifile blocks, and
643 * no dirops, since otherwise we'd risk corruption in a crash.
644 */
645 if (sp->seg_flags & SEGM_CLEAN)
646 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
647 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
648 do {
649 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
650 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
651 if (!writer_set) {
652 lfs_writer_enter(fs, "lfs writer");
653 writer_set = 1;
654 }
655 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
656 if (um_error == 0)
657 um_error = error;
658 /* In case writevnodes errored out */
659 lfs_flush_dirops(fs);
660 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
661 lfs_finalize_fs_seguse(fs);
662 }
663 if (do_ckp && um_error) {
664 lfs_segunlock_relock(fs);
665 sp = fs->lfs_sp;
666 }
667 } while (do_ckp && um_error != 0);
668 }
669
670 /*
671 * If we are doing a checkpoint, mark everything since the
672 * last checkpoint as no longer ACTIVE.
673 */
674 if (do_ckp || fs->lfs_doifile) {
675 segleft = fs->lfs_nseg;
676 curseg = 0;
677 for (n = 0; n < fs->lfs_segtabsz; n++) {
678 dirty = 0;
679 if (bread(fs->lfs_ivnode,
680 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
681 panic("lfs_segwrite: ifile read");
682 segusep = (SEGUSE *)bp->b_data;
683 maxseg = min(segleft, fs->lfs_sepb);
684 for (i = 0; i < maxseg; i++) {
685 sn = curseg + i;
686 if (sn != dtosn(fs, fs->lfs_curseg) &&
687 segusep->su_flags & SEGUSE_ACTIVE) {
688 segusep->su_flags &= ~SEGUSE_ACTIVE;
689 --fs->lfs_nactive;
690 ++dirty;
691 }
692 fs->lfs_suflags[fs->lfs_activesb][sn] =
693 segusep->su_flags;
694 if (fs->lfs_version > 1)
695 ++segusep;
696 else
697 segusep = (SEGUSE *)
698 ((SEGUSE_V1 *)segusep + 1);
699 }
700
701 if (dirty)
702 error = LFS_BWRITE_LOG(bp); /* Ifile */
703 else
704 brelse(bp);
705 segleft -= fs->lfs_sepb;
706 curseg += fs->lfs_sepb;
707 }
708 }
709
710 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
711
712 did_ckp = 0;
713 if (do_ckp || fs->lfs_doifile) {
714 vp = fs->lfs_ivnode;
715 vn_lock(vp, LK_EXCLUSIVE);
716 loopcount = 0;
717 do {
718 #ifdef DEBUG
719 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
720 #endif
721 simple_lock(&fs->lfs_interlock);
722 fs->lfs_flags &= ~LFS_IFDIRTY;
723 simple_unlock(&fs->lfs_interlock);
724
725 ip = VTOI(vp);
726
727 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
728 /*
729 * Ifile has no pages, so we don't need
730 * to check error return here.
731 */
732 lfs_writefile(fs, sp, vp);
733 /*
734 * Ensure the Ifile takes the current segment
735 * into account. See comment in lfs_vflush.
736 */
737 lfs_writefile(fs, sp, vp);
738 lfs_writefile(fs, sp, vp);
739 }
740
741 if (ip->i_flag & IN_ALLMOD)
742 ++did_ckp;
743 #if 0
744 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
745 #else
746 redo = lfs_writeinode(fs, sp, ip);
747 #endif
748 redo += lfs_writeseg(fs, sp);
749 simple_lock(&fs->lfs_interlock);
750 redo += (fs->lfs_flags & LFS_IFDIRTY);
751 simple_unlock(&fs->lfs_interlock);
752 #ifdef DEBUG
753 if (++loopcount > 2)
754 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
755 loopcount);
756 #endif
757 } while (redo && do_ckp);
758
759 /*
760 * Unless we are unmounting, the Ifile may continue to have
761 * dirty blocks even after a checkpoint, due to changes to
762 * inodes' atime. If we're checkpointing, it's "impossible"
763 * for other parts of the Ifile to be dirty after the loop
764 * above, since we hold the segment lock.
765 */
766 s = splbio();
767 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
768 LFS_CLR_UINO(ip, IN_ALLMOD);
769 }
770 #ifdef DIAGNOSTIC
771 else if (do_ckp) {
772 int do_panic = 0;
773 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
774 if (bp->b_lblkno < fs->lfs_cleansz +
775 fs->lfs_segtabsz &&
776 !(bp->b_flags & B_GATHERED)) {
777 printf("ifile lbn %ld still dirty (flags %lx)\n",
778 (long)bp->b_lblkno,
779 (long)bp->b_flags);
780 ++do_panic;
781 }
782 }
783 if (do_panic)
784 panic("dirty blocks");
785 }
786 #endif
787 splx(s);
788 VOP_UNLOCK(vp, 0);
789 } else {
790 (void) lfs_writeseg(fs, sp);
791 }
792
793 /* Note Ifile no longer needs to be written */
794 fs->lfs_doifile = 0;
795 if (writer_set)
796 lfs_writer_leave(fs);
797
798 /*
799 * If we didn't write the Ifile, we didn't really do anything.
800 * That means that (1) there is a checkpoint on disk and (2)
801 * nothing has changed since it was written.
802 *
803 * Take the flags off of the segment so that lfs_segunlock
804 * doesn't have to write the superblock either.
805 */
806 if (do_ckp && !did_ckp) {
807 sp->seg_flags &= ~SEGM_CKP;
808 }
809
810 if (lfs_dostats) {
811 ++lfs_stats.nwrites;
812 if (sp->seg_flags & SEGM_SYNC)
813 ++lfs_stats.nsync_writes;
814 if (sp->seg_flags & SEGM_CKP)
815 ++lfs_stats.ncheckpoints;
816 }
817 lfs_segunlock(fs);
818 return (0);
819 }
820
821 /*
822 * Write the dirty blocks associated with a vnode.
823 */
824 int
825 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
826 {
827 struct finfo *fip;
828 struct inode *ip;
829 int i, frag;
830 int error;
831
832 ASSERT_SEGLOCK(fs);
833 error = 0;
834 ip = VTOI(vp);
835
836 fip = sp->fip;
837 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
838
839 if (vp->v_flag & VDIROP)
840 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
841
842 if (sp->seg_flags & SEGM_CLEAN) {
843 lfs_gather(fs, sp, vp, lfs_match_fake);
844 /*
845 * For a file being flushed, we need to write *all* blocks.
846 * This means writing the cleaning blocks first, and then
847 * immediately following with any non-cleaning blocks.
848 * The same is true of the Ifile since checkpoints assume
849 * that all valid Ifile blocks are written.
850 */
851 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
852 lfs_gather(fs, sp, vp, lfs_match_data);
853 /*
854 * Don't call VOP_PUTPAGES: if we're flushing,
855 * we've already done it, and the Ifile doesn't
856 * use the page cache.
857 */
858 }
859 } else {
860 lfs_gather(fs, sp, vp, lfs_match_data);
861 /*
862 * If we're flushing, we've already called VOP_PUTPAGES
863 * so don't do it again. Otherwise, we want to write
864 * everything we've got.
865 */
866 if (!IS_FLUSHING(fs, vp)) {
867 simple_lock(&vp->v_interlock);
868 error = VOP_PUTPAGES(vp, 0, 0,
869 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
870 }
871 }
872
873 /*
874 * It may not be necessary to write the meta-data blocks at this point,
875 * as the roll-forward recovery code should be able to reconstruct the
876 * list.
877 *
878 * We have to write them anyway, though, under two conditions: (1) the
879 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
880 * checkpointing.
881 *
882 * BUT if we are cleaning, we might have indirect blocks that refer to
883 * new blocks not being written yet, in addition to fragments being
884 * moved out of a cleaned segment. If that is the case, don't
885 * write the indirect blocks, or the finfo will have a small block
886 * in the middle of it!
887 * XXX in this case isn't the inode size wrong too?
888 */
889 frag = 0;
890 if (sp->seg_flags & SEGM_CLEAN) {
891 for (i = 0; i < NDADDR; i++)
892 if (ip->i_lfs_fragsize[i] > 0 &&
893 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
894 ++frag;
895 }
896 #ifdef DIAGNOSTIC
897 if (frag > 1)
898 panic("lfs_writefile: more than one fragment!");
899 #endif
900 if (IS_FLUSHING(fs, vp) ||
901 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
902 lfs_gather(fs, sp, vp, lfs_match_indir);
903 lfs_gather(fs, sp, vp, lfs_match_dindir);
904 lfs_gather(fs, sp, vp, lfs_match_tindir);
905 }
906 fip = sp->fip;
907 lfs_release_finfo(fs);
908
909 return error;
910 }
911
912 /*
913 * Update segment accounting to reflect this inode's change of address.
914 */
915 static int
916 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
917 {
918 struct buf *bp;
919 daddr_t daddr;
920 IFILE *ifp;
921 SEGUSE *sup;
922 ino_t ino;
923 int redo_ifile, error;
924 u_int32_t sn;
925
926 redo_ifile = 0;
927
928 /*
929 * If updating the ifile, update the super-block. Update the disk
930 * address and access times for this inode in the ifile.
931 */
932 ino = ip->i_number;
933 if (ino == LFS_IFILE_INUM) {
934 daddr = fs->lfs_idaddr;
935 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
936 } else {
937 LFS_IENTRY(ifp, fs, ino, bp);
938 daddr = ifp->if_daddr;
939 ifp->if_daddr = dbtofsb(fs, ndaddr);
940 error = LFS_BWRITE_LOG(bp); /* Ifile */
941 }
942
943 /*
944 * If this is the Ifile and lfs_offset is set to the first block
945 * in the segment, dirty the new segment's accounting block
946 * (XXX should already be dirty?) and tell the caller to do it again.
947 */
948 if (ip->i_number == LFS_IFILE_INUM) {
949 sn = dtosn(fs, fs->lfs_offset);
950 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
951 fs->lfs_offset) {
952 LFS_SEGENTRY(sup, fs, sn, bp);
953 KASSERT(bp->b_flags & B_DELWRI);
954 LFS_WRITESEGENTRY(sup, fs, sn, bp);
955 /* fs->lfs_flags |= LFS_IFDIRTY; */
956 redo_ifile |= 1;
957 }
958 }
959
960 /*
961 * The inode's last address should not be in the current partial
962 * segment, except under exceptional circumstances (lfs_writevnodes
963 * had to start over, and in the meantime more blocks were written
964 * to a vnode). Both inodes will be accounted to this segment
965 * in lfs_writeseg so we need to subtract the earlier version
966 * here anyway. The segment count can temporarily dip below
967 * zero here; keep track of how many duplicates we have in
968 * "dupino" so we don't panic below.
969 */
970 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
971 ++sp->ndupino;
972 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
973 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
974 (long long)daddr, sp->ndupino));
975 }
976 /*
977 * Account the inode: it no longer belongs to its former segment,
978 * though it will not belong to the new segment until that segment
979 * is actually written.
980 */
981 if (daddr != LFS_UNUSED_DADDR) {
982 u_int32_t oldsn = dtosn(fs, daddr);
983 #ifdef DIAGNOSTIC
984 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
985 #endif
986 LFS_SEGENTRY(sup, fs, oldsn, bp);
987 #ifdef DIAGNOSTIC
988 if (sup->su_nbytes +
989 sizeof (struct ufs1_dinode) * ndupino
990 < sizeof (struct ufs1_dinode)) {
991 printf("lfs_writeinode: negative bytes "
992 "(segment %" PRIu32 " short by %d, "
993 "oldsn=%" PRIu32 ", cursn=%" PRIu32
994 ", daddr=%" PRId64 ", su_nbytes=%u, "
995 "ndupino=%d)\n",
996 dtosn(fs, daddr),
997 (int)sizeof (struct ufs1_dinode) *
998 (1 - sp->ndupino) - sup->su_nbytes,
999 oldsn, sp->seg_number, daddr,
1000 (unsigned int)sup->su_nbytes,
1001 sp->ndupino);
1002 panic("lfs_writeinode: negative bytes");
1003 sup->su_nbytes = sizeof (struct ufs1_dinode);
1004 }
1005 #endif
1006 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1007 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1008 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1009 redo_ifile |=
1010 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1011 if (redo_ifile) {
1012 simple_lock(&fs->lfs_interlock);
1013 fs->lfs_flags |= LFS_IFDIRTY;
1014 simple_unlock(&fs->lfs_interlock);
1015 /* Don't double-account */
1016 fs->lfs_idaddr = 0x0;
1017 }
1018 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1019 }
1020
1021 return redo_ifile;
1022 }
1023
1024 int
1025 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1026 {
1027 struct buf *bp;
1028 struct ufs1_dinode *cdp;
1029 daddr_t daddr;
1030 int32_t *daddrp; /* XXX ondisk32 */
1031 int i, ndx;
1032 int redo_ifile = 0;
1033 int gotblk = 0;
1034 int count;
1035
1036 ASSERT_SEGLOCK(fs);
1037 if (!(ip->i_flag & IN_ALLMOD))
1038 return (0);
1039
1040 /* Can't write ifile when writer is not set */
1041 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1042 (sp->seg_flags & SEGM_CLEAN));
1043
1044 /*
1045 * If this is the Ifile, see if writing it here will generate a
1046 * temporary misaccounting. If it will, do the accounting and write
1047 * the blocks, postponing the inode write until the accounting is
1048 * solid.
1049 */
1050 count = 0;
1051 while (ip->i_number == LFS_IFILE_INUM) {
1052 int redo = 0;
1053
1054 if (sp->idp == NULL && sp->ibp == NULL &&
1055 (sp->seg_bytes_left < fs->lfs_ibsize ||
1056 sp->sum_bytes_left < sizeof(int32_t))) {
1057 (void) lfs_writeseg(fs, sp);
1058 continue;
1059 }
1060
1061 /* Look for dirty Ifile blocks */
1062 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1063 if (!(bp->b_flags & B_GATHERED)) {
1064 redo = 1;
1065 break;
1066 }
1067 }
1068
1069 if (redo == 0)
1070 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1071 if (redo == 0)
1072 break;
1073
1074 if (sp->idp) {
1075 sp->idp->di_inumber = 0;
1076 sp->idp = NULL;
1077 }
1078 ++count;
1079 if (count > 2)
1080 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1081 lfs_writefile(fs, sp, fs->lfs_ivnode);
1082 }
1083
1084 /* Allocate a new inode block if necessary. */
1085 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1086 sp->ibp == NULL) {
1087 /* Allocate a new segment if necessary. */
1088 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1089 sp->sum_bytes_left < sizeof(int32_t))
1090 (void) lfs_writeseg(fs, sp);
1091
1092 /* Get next inode block. */
1093 daddr = fs->lfs_offset;
1094 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1095 sp->ibp = *sp->cbpp++ =
1096 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1097 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1098 gotblk++;
1099
1100 /* Zero out inode numbers */
1101 for (i = 0; i < INOPB(fs); ++i)
1102 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1103 0;
1104
1105 ++sp->start_bpp;
1106 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1107 /* Set remaining space counters. */
1108 sp->seg_bytes_left -= fs->lfs_ibsize;
1109 sp->sum_bytes_left -= sizeof(int32_t);
1110 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1111 sp->ninodes / INOPB(fs) - 1;
1112 ((int32_t *)(sp->segsum))[ndx] = daddr;
1113 }
1114
1115 /* Check VDIROP in case there is a new file with no data blocks */
1116 if (ITOV(ip)->v_flag & VDIROP)
1117 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1118
1119 /* Update the inode times and copy the inode onto the inode page. */
1120 /* XXX kludge --- don't redirty the ifile just to put times on it */
1121 if (ip->i_number != LFS_IFILE_INUM)
1122 LFS_ITIMES(ip, NULL, NULL, NULL);
1123
1124 /*
1125 * If this is the Ifile, and we've already written the Ifile in this
1126 * partial segment, just overwrite it (it's not on disk yet) and
1127 * continue.
1128 *
1129 * XXX we know that the bp that we get the second time around has
1130 * already been gathered.
1131 */
1132 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1133 *(sp->idp) = *ip->i_din.ffs1_din;
1134 ip->i_lfs_osize = ip->i_size;
1135 return 0;
1136 }
1137
1138 bp = sp->ibp;
1139 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1140 *cdp = *ip->i_din.ffs1_din;
1141
1142 /*
1143 * If cleaning, link counts and directory file sizes cannot change,
1144 * since those would be directory operations---even if the file
1145 * we are writing is marked VDIROP we should write the old values.
1146 * If we're not cleaning, of course, update the values so we get
1147 * current values the next time we clean.
1148 */
1149 if (sp->seg_flags & SEGM_CLEAN) {
1150 if (ITOV(ip)->v_flag & VDIROP) {
1151 cdp->di_nlink = ip->i_lfs_odnlink;
1152 /* if (ITOV(ip)->v_type == VDIR) */
1153 cdp->di_size = ip->i_lfs_osize;
1154 }
1155 } else {
1156 ip->i_lfs_odnlink = cdp->di_nlink;
1157 ip->i_lfs_osize = ip->i_size;
1158 }
1159
1160
1161 /* We can finish the segment accounting for truncations now */
1162 lfs_finalize_ino_seguse(fs, ip);
1163
1164 /*
1165 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1166 * addresses to disk; possibly change the on-disk record of
1167 * the inode size, either by reverting to the previous size
1168 * (in the case of cleaning) or by verifying the inode's block
1169 * holdings (in the case of files being allocated as they are being
1170 * written).
1171 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1172 * XXX count on disk wrong by the same amount. We should be
1173 * XXX able to "borrow" from lfs_avail and return it after the
1174 * XXX Ifile is written. See also in lfs_writeseg.
1175 */
1176
1177 /* Check file size based on highest allocated block */
1178 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1179 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1180 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1181 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1182 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1183 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1184 }
1185 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1186 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1187 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1188 ip->i_ffs1_blocks, fs->lfs_offset));
1189 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1190 daddrp++) {
1191 if (*daddrp == UNWRITTEN) {
1192 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1193 *daddrp = 0;
1194 }
1195 }
1196 }
1197
1198 #ifdef DIAGNOSTIC
1199 /*
1200 * Check dinode held blocks against dinode size.
1201 * This should be identical to the check in lfs_vget().
1202 */
1203 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1204 i < NDADDR; i++) {
1205 KASSERT(i >= 0);
1206 if ((cdp->di_mode & IFMT) == IFLNK)
1207 continue;
1208 if (((cdp->di_mode & IFMT) == IFBLK ||
1209 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1210 continue;
1211 if (cdp->di_db[i] != 0) {
1212 # ifdef DEBUG
1213 lfs_dump_dinode(cdp);
1214 # endif
1215 panic("writing inconsistent inode");
1216 }
1217 }
1218 #endif /* DIAGNOSTIC */
1219
1220 if (ip->i_flag & IN_CLEANING)
1221 LFS_CLR_UINO(ip, IN_CLEANING);
1222 else {
1223 /* XXX IN_ALLMOD */
1224 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1225 IN_UPDATE | IN_MODIFY);
1226 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1227 LFS_CLR_UINO(ip, IN_MODIFIED);
1228 else {
1229 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1230 "blks=%d, eff=%d\n", ip->i_number,
1231 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1232 }
1233 }
1234
1235 if (ip->i_number == LFS_IFILE_INUM) {
1236 /* We know sp->idp == NULL */
1237 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1238 (sp->ninodes % INOPB(fs));
1239
1240 /* Not dirty any more */
1241 simple_lock(&fs->lfs_interlock);
1242 fs->lfs_flags &= ~LFS_IFDIRTY;
1243 simple_unlock(&fs->lfs_interlock);
1244 }
1245
1246 if (gotblk) {
1247 LFS_LOCK_BUF(bp);
1248 brelse(bp);
1249 }
1250
1251 /* Increment inode count in segment summary block. */
1252 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1253
1254 /* If this page is full, set flag to allocate a new page. */
1255 if (++sp->ninodes % INOPB(fs) == 0)
1256 sp->ibp = NULL;
1257
1258 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1259
1260 KASSERT(redo_ifile == 0);
1261 return (redo_ifile);
1262 }
1263
1264 int
1265 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1266 {
1267 struct lfs *fs;
1268 int vers;
1269 int j, blksinblk;
1270
1271 ASSERT_SEGLOCK(sp->fs);
1272 /*
1273 * If full, finish this segment. We may be doing I/O, so
1274 * release and reacquire the splbio().
1275 */
1276 #ifdef DIAGNOSTIC
1277 if (sp->vp == NULL)
1278 panic ("lfs_gatherblock: Null vp in segment");
1279 #endif
1280 fs = sp->fs;
1281 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1282 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1283 sp->seg_bytes_left < bp->b_bcount) {
1284 if (sptr)
1285 splx(*sptr);
1286 lfs_updatemeta(sp);
1287
1288 vers = sp->fip->fi_version;
1289 (void) lfs_writeseg(fs, sp);
1290
1291 /* Add the current file to the segment summary. */
1292 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1293
1294 if (sptr)
1295 *sptr = splbio();
1296 return (1);
1297 }
1298
1299 if (bp->b_flags & B_GATHERED) {
1300 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1301 " lbn %" PRId64 "\n",
1302 sp->fip->fi_ino, bp->b_lblkno));
1303 return (0);
1304 }
1305
1306 /* Insert into the buffer list, update the FINFO block. */
1307 bp->b_flags |= B_GATHERED;
1308
1309 *sp->cbpp++ = bp;
1310 for (j = 0; j < blksinblk; j++) {
1311 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1312 /* This block's accounting moves from lfs_favail to lfs_avail */
1313 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1314 }
1315
1316 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1317 sp->seg_bytes_left -= bp->b_bcount;
1318 return (0);
1319 }
1320
1321 int
1322 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1323 int (*match)(struct lfs *, struct buf *))
1324 {
1325 struct buf *bp, *nbp;
1326 int s, count = 0;
1327
1328 ASSERT_SEGLOCK(fs);
1329 if (vp->v_type == VBLK)
1330 return 0;
1331 KASSERT(sp->vp == NULL);
1332 sp->vp = vp;
1333 s = splbio();
1334
1335 #ifndef LFS_NO_BACKBUF_HACK
1336 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1337 # define BUF_OFFSET \
1338 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1339 # define BACK_BUF(BP) \
1340 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1341 # define BEG_OF_LIST \
1342 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1343
1344 loop:
1345 /* Find last buffer. */
1346 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1347 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1348 bp = LIST_NEXT(bp, b_vnbufs))
1349 /* nothing */;
1350 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1351 nbp = BACK_BUF(bp);
1352 #else /* LFS_NO_BACKBUF_HACK */
1353 loop:
1354 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1355 nbp = LIST_NEXT(bp, b_vnbufs);
1356 #endif /* LFS_NO_BACKBUF_HACK */
1357 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1358 #ifdef DEBUG
1359 if (vp == fs->lfs_ivnode &&
1360 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1361 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1362 PRId64 " busy (%x) at 0x%x",
1363 bp->b_lblkno, bp->b_flags,
1364 (unsigned)fs->lfs_offset);
1365 #endif
1366 continue;
1367 }
1368 #ifdef DIAGNOSTIC
1369 # ifdef LFS_USE_B_INVAL
1370 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1371 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1372 " is B_INVAL\n", bp->b_lblkno));
1373 VOP_PRINT(bp->b_vp);
1374 }
1375 # endif /* LFS_USE_B_INVAL */
1376 if (!(bp->b_flags & B_DELWRI))
1377 panic("lfs_gather: bp not B_DELWRI");
1378 if (!(bp->b_flags & B_LOCKED)) {
1379 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1380 " blk %" PRId64 " not B_LOCKED\n",
1381 bp->b_lblkno,
1382 dbtofsb(fs, bp->b_blkno)));
1383 VOP_PRINT(bp->b_vp);
1384 panic("lfs_gather: bp not B_LOCKED");
1385 }
1386 #endif
1387 if (lfs_gatherblock(sp, bp, &s)) {
1388 goto loop;
1389 }
1390 count++;
1391 }
1392 splx(s);
1393 lfs_updatemeta(sp);
1394 KASSERT(sp->vp == vp);
1395 sp->vp = NULL;
1396 return count;
1397 }
1398
1399 #if DEBUG
1400 # define DEBUG_OOFF(n) do { \
1401 if (ooff == 0) { \
1402 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1403 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1404 ", was 0x0 (or %" PRId64 ")\n", \
1405 (n), ip->i_number, lbn, ndaddr, daddr)); \
1406 } \
1407 } while (0)
1408 #else
1409 # define DEBUG_OOFF(n)
1410 #endif
1411
1412 /*
1413 * Change the given block's address to ndaddr, finding its previous
1414 * location using ufs_bmaparray().
1415 *
1416 * Account for this change in the segment table.
1417 *
1418 * called with sp == NULL by roll-forwarding code.
1419 */
1420 void
1421 lfs_update_single(struct lfs *fs, struct segment *sp,
1422 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1423 {
1424 SEGUSE *sup;
1425 struct buf *bp;
1426 struct indir a[NIADDR + 2], *ap;
1427 struct inode *ip;
1428 daddr_t daddr, ooff;
1429 int num, error;
1430 int bb, osize, obb;
1431
1432 ASSERT_SEGLOCK(fs);
1433 KASSERT(sp == NULL || sp->vp == vp);
1434 ip = VTOI(vp);
1435
1436 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1437 if (error)
1438 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1439
1440 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1441 KASSERT(daddr <= LFS_MAX_DADDR);
1442 if (daddr > 0)
1443 daddr = dbtofsb(fs, daddr);
1444
1445 bb = fragstofsb(fs, numfrags(fs, size));
1446 switch (num) {
1447 case 0:
1448 ooff = ip->i_ffs1_db[lbn];
1449 DEBUG_OOFF(0);
1450 if (ooff == UNWRITTEN)
1451 ip->i_ffs1_blocks += bb;
1452 else {
1453 /* possible fragment truncation or extension */
1454 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1455 ip->i_ffs1_blocks += (bb - obb);
1456 }
1457 ip->i_ffs1_db[lbn] = ndaddr;
1458 break;
1459 case 1:
1460 ooff = ip->i_ffs1_ib[a[0].in_off];
1461 DEBUG_OOFF(1);
1462 if (ooff == UNWRITTEN)
1463 ip->i_ffs1_blocks += bb;
1464 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1465 break;
1466 default:
1467 ap = &a[num - 1];
1468 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1469 panic("lfs_updatemeta: bread bno %" PRId64,
1470 ap->in_lbn);
1471
1472 /* XXX ondisk32 */
1473 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1474 DEBUG_OOFF(num);
1475 if (ooff == UNWRITTEN)
1476 ip->i_ffs1_blocks += bb;
1477 /* XXX ondisk32 */
1478 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1479 (void) VOP_BWRITE(bp);
1480 }
1481
1482 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1483
1484 /* Update hiblk when extending the file */
1485 if (lbn > ip->i_lfs_hiblk)
1486 ip->i_lfs_hiblk = lbn;
1487
1488 /*
1489 * Though we'd rather it couldn't, this *can* happen right now
1490 * if cleaning blocks and regular blocks coexist.
1491 */
1492 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1493
1494 /*
1495 * Update segment usage information, based on old size
1496 * and location.
1497 */
1498 if (daddr > 0) {
1499 u_int32_t oldsn = dtosn(fs, daddr);
1500 #ifdef DIAGNOSTIC
1501 int ndupino;
1502
1503 if (sp && sp->seg_number == oldsn) {
1504 ndupino = sp->ndupino;
1505 } else {
1506 ndupino = 0;
1507 }
1508 #endif
1509 KASSERT(oldsn < fs->lfs_nseg);
1510 if (lbn >= 0 && lbn < NDADDR)
1511 osize = ip->i_lfs_fragsize[lbn];
1512 else
1513 osize = fs->lfs_bsize;
1514 LFS_SEGENTRY(sup, fs, oldsn, bp);
1515 #ifdef DIAGNOSTIC
1516 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1517 < osize) {
1518 printf("lfs_updatemeta: negative bytes "
1519 "(segment %" PRIu32 " short by %" PRId64
1520 ")\n", dtosn(fs, daddr),
1521 (int64_t)osize -
1522 (sizeof (struct ufs1_dinode) * ndupino +
1523 sup->su_nbytes));
1524 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1525 ", addr = 0x%" PRIx64 "\n",
1526 (unsigned long long)ip->i_number, lbn, daddr);
1527 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1528 panic("lfs_updatemeta: negative bytes");
1529 sup->su_nbytes = osize -
1530 sizeof (struct ufs1_dinode) * ndupino;
1531 }
1532 #endif
1533 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1534 " db 0x%" PRIx64 "\n",
1535 dtosn(fs, daddr), osize,
1536 ip->i_number, lbn, daddr));
1537 sup->su_nbytes -= osize;
1538 if (!(bp->b_flags & B_GATHERED)) {
1539 simple_lock(&fs->lfs_interlock);
1540 fs->lfs_flags |= LFS_IFDIRTY;
1541 simple_unlock(&fs->lfs_interlock);
1542 }
1543 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1544 }
1545 /*
1546 * Now that this block has a new address, and its old
1547 * segment no longer owns it, we can forget about its
1548 * old size.
1549 */
1550 if (lbn >= 0 && lbn < NDADDR)
1551 ip->i_lfs_fragsize[lbn] = size;
1552 }
1553
1554 /*
1555 * Update the metadata that points to the blocks listed in the FINFO
1556 * array.
1557 */
1558 void
1559 lfs_updatemeta(struct segment *sp)
1560 {
1561 struct buf *sbp;
1562 struct lfs *fs;
1563 struct vnode *vp;
1564 daddr_t lbn;
1565 int i, nblocks, num;
1566 int bb;
1567 int bytesleft, size;
1568
1569 ASSERT_SEGLOCK(sp->fs);
1570 vp = sp->vp;
1571 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1572 KASSERT(nblocks >= 0);
1573 KASSERT(vp != NULL);
1574 if (nblocks == 0)
1575 return;
1576
1577 /*
1578 * This count may be high due to oversize blocks from lfs_gop_write.
1579 * Correct for this. (XXX we should be able to keep track of these.)
1580 */
1581 fs = sp->fs;
1582 for (i = 0; i < nblocks; i++) {
1583 if (sp->start_bpp[i] == NULL) {
1584 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1585 nblocks = i;
1586 break;
1587 }
1588 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1589 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1590 nblocks -= num - 1;
1591 }
1592
1593 KASSERT(vp->v_type == VREG ||
1594 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1595 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1596
1597 /*
1598 * Sort the blocks.
1599 *
1600 * We have to sort even if the blocks come from the
1601 * cleaner, because there might be other pending blocks on the
1602 * same inode...and if we don't sort, and there are fragments
1603 * present, blocks may be written in the wrong place.
1604 */
1605 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1606
1607 /*
1608 * Record the length of the last block in case it's a fragment.
1609 * If there are indirect blocks present, they sort last. An
1610 * indirect block will be lfs_bsize and its presence indicates
1611 * that you cannot have fragments.
1612 *
1613 * XXX This last is a lie. A cleaned fragment can coexist with
1614 * XXX a later indirect block. This will continue to be
1615 * XXX true until lfs_markv is fixed to do everything with
1616 * XXX fake blocks (including fake inodes and fake indirect blocks).
1617 */
1618 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1619 fs->lfs_bmask) + 1;
1620
1621 /*
1622 * Assign disk addresses, and update references to the logical
1623 * block and the segment usage information.
1624 */
1625 for (i = nblocks; i--; ++sp->start_bpp) {
1626 sbp = *sp->start_bpp;
1627 lbn = *sp->start_lbp;
1628 KASSERT(sbp->b_lblkno == lbn);
1629
1630 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1631
1632 /*
1633 * If we write a frag in the wrong place, the cleaner won't
1634 * be able to correctly identify its size later, and the
1635 * segment will be uncleanable. (Even worse, it will assume
1636 * that the indirect block that actually ends the list
1637 * is of a smaller size!)
1638 */
1639 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1640 panic("lfs_updatemeta: fragment is not last block");
1641
1642 /*
1643 * For each subblock in this possibly oversized block,
1644 * update its address on disk.
1645 */
1646 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1647 KASSERT(vp == sbp->b_vp);
1648 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1649 bytesleft -= fs->lfs_bsize) {
1650 size = MIN(bytesleft, fs->lfs_bsize);
1651 bb = fragstofsb(fs, numfrags(fs, size));
1652 lbn = *sp->start_lbp++;
1653 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1654 size);
1655 fs->lfs_offset += bb;
1656 }
1657
1658 }
1659 }
1660
1661 /*
1662 * Move lfs_offset to a segment earlier than sn.
1663 */
1664 int
1665 lfs_rewind(struct lfs *fs, int newsn)
1666 {
1667 int sn, osn, isdirty;
1668 struct buf *bp;
1669 SEGUSE *sup;
1670
1671 ASSERT_SEGLOCK(fs);
1672
1673 osn = dtosn(fs, fs->lfs_offset);
1674 if (osn < newsn)
1675 return 0;
1676
1677 /* lfs_avail eats the remaining space in this segment */
1678 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1679
1680 /* Find a low-numbered segment */
1681 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1682 LFS_SEGENTRY(sup, fs, sn, bp);
1683 isdirty = sup->su_flags & SEGUSE_DIRTY;
1684 brelse(bp);
1685
1686 if (!isdirty)
1687 break;
1688 }
1689 if (sn == fs->lfs_nseg)
1690 panic("lfs_rewind: no clean segments");
1691 if (newsn >= 0 && sn >= newsn)
1692 return ENOENT;
1693 fs->lfs_nextseg = sn;
1694 lfs_newseg(fs);
1695 fs->lfs_offset = fs->lfs_curseg;
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * Start a new partial segment.
1702 *
1703 * Return 1 when we entered to a new segment.
1704 * Otherwise, return 0.
1705 */
1706 int
1707 lfs_initseg(struct lfs *fs)
1708 {
1709 struct segment *sp = fs->lfs_sp;
1710 SEGSUM *ssp;
1711 struct buf *sbp; /* buffer for SEGSUM */
1712 int repeat = 0; /* return value */
1713
1714 ASSERT_SEGLOCK(fs);
1715 /* Advance to the next segment. */
1716 if (!LFS_PARTIAL_FITS(fs)) {
1717 SEGUSE *sup;
1718 struct buf *bp;
1719
1720 /* lfs_avail eats the remaining space */
1721 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1722 fs->lfs_curseg);
1723 /* Wake up any cleaning procs waiting on this file system. */
1724 lfs_wakeup_cleaner(fs);
1725 lfs_newseg(fs);
1726 repeat = 1;
1727 fs->lfs_offset = fs->lfs_curseg;
1728
1729 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1730 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1731
1732 /*
1733 * If the segment contains a superblock, update the offset
1734 * and summary address to skip over it.
1735 */
1736 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1737 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1738 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1739 sp->seg_bytes_left -= LFS_SBPAD;
1740 }
1741 brelse(bp);
1742 /* Segment zero could also contain the labelpad */
1743 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1744 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1745 fs->lfs_offset +=
1746 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1747 sp->seg_bytes_left -=
1748 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1749 }
1750 } else {
1751 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1752 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1753 (fs->lfs_offset - fs->lfs_curseg));
1754 }
1755 fs->lfs_lastpseg = fs->lfs_offset;
1756
1757 /* Record first address of this partial segment */
1758 if (sp->seg_flags & SEGM_CLEAN) {
1759 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1760 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1761 /* "1" is the artificial inc in lfs_seglock */
1762 simple_lock(&fs->lfs_interlock);
1763 while (fs->lfs_iocount > 1) {
1764 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1765 "lfs_initseg", 0, &fs->lfs_interlock);
1766 }
1767 simple_unlock(&fs->lfs_interlock);
1768 fs->lfs_cleanind = 0;
1769 }
1770 }
1771
1772 sp->fs = fs;
1773 sp->ibp = NULL;
1774 sp->idp = NULL;
1775 sp->ninodes = 0;
1776 sp->ndupino = 0;
1777
1778 sp->cbpp = sp->bpp;
1779
1780 /* Get a new buffer for SEGSUM */
1781 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1782 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1783
1784 /* ... and enter it into the buffer list. */
1785 *sp->cbpp = sbp;
1786 sp->cbpp++;
1787 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1788
1789 sp->start_bpp = sp->cbpp;
1790
1791 /* Set point to SEGSUM, initialize it. */
1792 ssp = sp->segsum = sbp->b_data;
1793 memset(ssp, 0, fs->lfs_sumsize);
1794 ssp->ss_next = fs->lfs_nextseg;
1795 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1796 ssp->ss_magic = SS_MAGIC;
1797
1798 /* Set pointer to first FINFO, initialize it. */
1799 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1800 sp->fip->fi_nblocks = 0;
1801 sp->start_lbp = &sp->fip->fi_blocks[0];
1802 sp->fip->fi_lastlength = 0;
1803
1804 sp->seg_bytes_left -= fs->lfs_sumsize;
1805 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1806
1807 return (repeat);
1808 }
1809
1810 /*
1811 * Remove SEGUSE_INVAL from all segments.
1812 */
1813 void
1814 lfs_unset_inval_all(struct lfs *fs)
1815 {
1816 SEGUSE *sup;
1817 struct buf *bp;
1818 int i;
1819
1820 for (i = 0; i < fs->lfs_nseg; i++) {
1821 LFS_SEGENTRY(sup, fs, i, bp);
1822 if (sup->su_flags & SEGUSE_INVAL) {
1823 sup->su_flags &= ~SEGUSE_INVAL;
1824 LFS_WRITESEGENTRY(sup, fs, i, bp);
1825 } else
1826 brelse(bp);
1827 }
1828 }
1829
1830 /*
1831 * Return the next segment to write.
1832 */
1833 void
1834 lfs_newseg(struct lfs *fs)
1835 {
1836 CLEANERINFO *cip;
1837 SEGUSE *sup;
1838 struct buf *bp;
1839 int curseg, isdirty, sn, skip_inval;
1840
1841 ASSERT_SEGLOCK(fs);
1842
1843 /* Honor LFCNWRAPSTOP */
1844 simple_lock(&fs->lfs_interlock);
1845 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1846 if (fs->lfs_wrappass) {
1847 log(LOG_NOTICE, "%s: wrappass=%d\n",
1848 fs->lfs_fsmnt, fs->lfs_wrappass);
1849 fs->lfs_wrappass = 0;
1850 break;
1851 }
1852 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1853 wakeup(&fs->lfs_nowrap);
1854 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1855 ltsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1856 &fs->lfs_interlock);
1857 }
1858 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1859 simple_unlock(&fs->lfs_interlock);
1860
1861 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1862 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1863 dtosn(fs, fs->lfs_nextseg)));
1864 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1865 sup->su_nbytes = 0;
1866 sup->su_nsums = 0;
1867 sup->su_ninos = 0;
1868 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1869
1870 LFS_CLEANERINFO(cip, fs, bp);
1871 --cip->clean;
1872 ++cip->dirty;
1873 fs->lfs_nclean = cip->clean;
1874 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1875
1876 fs->lfs_lastseg = fs->lfs_curseg;
1877 fs->lfs_curseg = fs->lfs_nextseg;
1878 skip_inval = 1;
1879 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1880 sn = (sn + 1) % fs->lfs_nseg;
1881
1882 if (sn == curseg) {
1883 if (skip_inval)
1884 skip_inval = 0;
1885 else
1886 panic("lfs_nextseg: no clean segments");
1887 }
1888 LFS_SEGENTRY(sup, fs, sn, bp);
1889 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1890 /* Check SEGUSE_EMPTY as we go along */
1891 if (isdirty && sup->su_nbytes == 0 &&
1892 !(sup->su_flags & SEGUSE_EMPTY))
1893 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1894 else
1895 brelse(bp);
1896
1897 if (!isdirty)
1898 break;
1899 }
1900 if (skip_inval == 0)
1901 lfs_unset_inval_all(fs);
1902
1903 ++fs->lfs_nactive;
1904 fs->lfs_nextseg = sntod(fs, sn);
1905 if (lfs_dostats) {
1906 ++lfs_stats.segsused;
1907 }
1908 }
1909
1910 static struct buf *
1911 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1912 int n)
1913 {
1914 struct lfs_cluster *cl;
1915 struct buf **bpp, *bp;
1916
1917 ASSERT_SEGLOCK(fs);
1918 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1919 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1920 memset(cl, 0, sizeof(*cl));
1921 cl->fs = fs;
1922 cl->bpp = bpp;
1923 cl->bufcount = 0;
1924 cl->bufsize = 0;
1925
1926 /* If this segment is being written synchronously, note that */
1927 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1928 cl->flags |= LFS_CL_SYNC;
1929 cl->seg = fs->lfs_sp;
1930 ++cl->seg->seg_iocount;
1931 }
1932
1933 /* Get an empty buffer header, or maybe one with something on it */
1934 bp = getiobuf();
1935 bp->b_flags = B_BUSY | B_CALL;
1936 bp->b_dev = NODEV;
1937 bp->b_blkno = bp->b_lblkno = addr;
1938 bp->b_iodone = lfs_cluster_callback;
1939 bp->b_private = cl;
1940 bp->b_vp = vp;
1941
1942 return bp;
1943 }
1944
1945 int
1946 lfs_writeseg(struct lfs *fs, struct segment *sp)
1947 {
1948 struct buf **bpp, *bp, *cbp, *newbp;
1949 SEGUSE *sup;
1950 SEGSUM *ssp;
1951 int i, s;
1952 int do_again, nblocks, byteoffset;
1953 size_t el_size;
1954 struct lfs_cluster *cl;
1955 u_short ninos;
1956 struct vnode *devvp;
1957 char *p = NULL;
1958 struct vnode *vp;
1959 int32_t *daddrp; /* XXX ondisk32 */
1960 int changed;
1961 u_int32_t sum;
1962 #ifdef DEBUG
1963 FINFO *fip;
1964 int findex;
1965 #endif
1966
1967 ASSERT_SEGLOCK(fs);
1968
1969 ssp = (SEGSUM *)sp->segsum;
1970
1971 /*
1972 * If there are no buffers other than the segment summary to write,
1973 * don't do anything. If we are the end of a dirop sequence, however,
1974 * write the empty segment summary anyway, to help out the
1975 * roll-forward agent.
1976 */
1977 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1978 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1979 return 0;
1980 }
1981
1982 /* Note if partial segment is being written by the cleaner */
1983 if (sp->seg_flags & SEGM_CLEAN)
1984 ssp->ss_flags |= SS_CLEAN;
1985
1986 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1987
1988 /* Update the segment usage information. */
1989 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1990
1991 /* Loop through all blocks, except the segment summary. */
1992 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1993 if ((*bpp)->b_vp != devvp) {
1994 sup->su_nbytes += (*bpp)->b_bcount;
1995 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1996 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
1997 sp->seg_number, (*bpp)->b_bcount,
1998 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
1999 (*bpp)->b_blkno));
2000 }
2001 }
2002
2003 #ifdef DEBUG
2004 /* Check for zero-length and zero-version FINFO entries. */
2005 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2006 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2007 KDASSERT(fip->fi_nblocks > 0);
2008 KDASSERT(fip->fi_version > 0);
2009 fip = (FINFO *)((char *)fip + FINFOSIZE +
2010 sizeof(int32_t) * fip->fi_nblocks);
2011 }
2012 #endif /* DEBUG */
2013
2014 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2015 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2016 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2017 ssp->ss_ninos));
2018 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2019 /* sup->su_nbytes += fs->lfs_sumsize; */
2020 if (fs->lfs_version == 1)
2021 sup->su_olastmod = time_second;
2022 else
2023 sup->su_lastmod = time_second;
2024 sup->su_ninos += ninos;
2025 ++sup->su_nsums;
2026 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2027
2028 do_again = !(bp->b_flags & B_GATHERED);
2029 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2030
2031 /*
2032 * Mark blocks B_BUSY, to prevent then from being changed between
2033 * the checksum computation and the actual write.
2034 *
2035 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2036 * there are any, replace them with copies that have UNASSIGNED
2037 * instead.
2038 */
2039 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2040 ++bpp;
2041 bp = *bpp;
2042 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2043 bp->b_flags |= B_BUSY;
2044 continue;
2045 }
2046
2047 simple_lock(&bp->b_interlock);
2048 s = splbio();
2049 while (bp->b_flags & B_BUSY) {
2050 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2051 " data summary corruption for ino %d, lbn %"
2052 PRId64 "\n",
2053 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2054 bp->b_flags |= B_WANTED;
2055 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2056 &bp->b_interlock);
2057 splx(s);
2058 s = splbio();
2059 }
2060 bp->b_flags |= B_BUSY;
2061 splx(s);
2062 simple_unlock(&bp->b_interlock);
2063
2064 /*
2065 * Check and replace indirect block UNWRITTEN bogosity.
2066 * XXX See comment in lfs_writefile.
2067 */
2068 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2069 VTOI(bp->b_vp)->i_ffs1_blocks !=
2070 VTOI(bp->b_vp)->i_lfs_effnblks) {
2071 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2072 VTOI(bp->b_vp)->i_number,
2073 VTOI(bp->b_vp)->i_lfs_effnblks,
2074 VTOI(bp->b_vp)->i_ffs1_blocks));
2075 /* Make a copy we'll make changes to */
2076 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2077 bp->b_bcount, LFS_NB_IBLOCK);
2078 newbp->b_blkno = bp->b_blkno;
2079 memcpy(newbp->b_data, bp->b_data,
2080 newbp->b_bcount);
2081
2082 changed = 0;
2083 /* XXX ondisk32 */
2084 for (daddrp = (int32_t *)(newbp->b_data);
2085 daddrp < (int32_t *)((char *)newbp->b_data +
2086 newbp->b_bcount); daddrp++) {
2087 if (*daddrp == UNWRITTEN) {
2088 ++changed;
2089 *daddrp = 0;
2090 }
2091 }
2092 /*
2093 * Get rid of the old buffer. Don't mark it clean,
2094 * though, if it still has dirty data on it.
2095 */
2096 if (changed) {
2097 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2098 " bp = %p newbp = %p\n", changed, bp,
2099 newbp));
2100 *bpp = newbp;
2101 bp->b_flags &= ~(B_ERROR | B_GATHERED);
2102 if (bp->b_flags & B_CALL) {
2103 DLOG((DLOG_SEG, "lfs_writeseg: "
2104 "indir bp should not be B_CALL\n"));
2105 s = splbio();
2106 biodone(bp);
2107 splx(s);
2108 bp = NULL;
2109 } else {
2110 /* Still on free list, leave it there */
2111 s = splbio();
2112 bp->b_flags &= ~B_BUSY;
2113 if (bp->b_flags & B_WANTED)
2114 wakeup(bp);
2115 splx(s);
2116 /*
2117 * We have to re-decrement lfs_avail
2118 * since this block is going to come
2119 * back around to us in the next
2120 * segment.
2121 */
2122 fs->lfs_avail -=
2123 btofsb(fs, bp->b_bcount);
2124 }
2125 } else {
2126 lfs_freebuf(fs, newbp);
2127 }
2128 }
2129 }
2130 /*
2131 * Compute checksum across data and then across summary; the first
2132 * block (the summary block) is skipped. Set the create time here
2133 * so that it's guaranteed to be later than the inode mod times.
2134 */
2135 sum = 0;
2136 if (fs->lfs_version == 1)
2137 el_size = sizeof(u_long);
2138 else
2139 el_size = sizeof(u_int32_t);
2140 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2141 ++bpp;
2142 /* Loop through gop_write cluster blocks */
2143 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2144 byteoffset += fs->lfs_bsize) {
2145 #ifdef LFS_USE_B_INVAL
2146 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2147 (B_CALL | B_INVAL)) {
2148 if (copyin((void *)(*bpp)->b_saveaddr +
2149 byteoffset, dp, el_size)) {
2150 panic("lfs_writeseg: copyin failed [1]:"
2151 " ino %d blk %" PRId64,
2152 VTOI((*bpp)->b_vp)->i_number,
2153 (*bpp)->b_lblkno);
2154 }
2155 } else
2156 #endif /* LFS_USE_B_INVAL */
2157 {
2158 sum = lfs_cksum_part((char *)
2159 (*bpp)->b_data + byteoffset, el_size, sum);
2160 }
2161 }
2162 }
2163 if (fs->lfs_version == 1)
2164 ssp->ss_ocreate = time_second;
2165 else {
2166 ssp->ss_create = time_second;
2167 ssp->ss_serial = ++fs->lfs_serial;
2168 ssp->ss_ident = fs->lfs_ident;
2169 }
2170 ssp->ss_datasum = lfs_cksum_fold(sum);
2171 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2172 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2173
2174 simple_lock(&fs->lfs_interlock);
2175 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2176 btofsb(fs, fs->lfs_sumsize));
2177 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2178 btofsb(fs, fs->lfs_sumsize));
2179 simple_unlock(&fs->lfs_interlock);
2180
2181 /*
2182 * When we simply write the blocks we lose a rotation for every block
2183 * written. To avoid this problem, we cluster the buffers into a
2184 * chunk and write the chunk. MAXPHYS is the largest size I/O
2185 * devices can handle, use that for the size of the chunks.
2186 *
2187 * Blocks that are already clusters (from GOP_WRITE), however, we
2188 * don't bother to copy into other clusters.
2189 */
2190
2191 #define CHUNKSIZE MAXPHYS
2192
2193 if (devvp == NULL)
2194 panic("devvp is NULL");
2195 for (bpp = sp->bpp, i = nblocks; i;) {
2196 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2197 cl = cbp->b_private;
2198
2199 cbp->b_flags |= B_ASYNC | B_BUSY;
2200 cbp->b_bcount = 0;
2201
2202 #if defined(DEBUG) && defined(DIAGNOSTIC)
2203 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2204 / sizeof(int32_t)) {
2205 panic("lfs_writeseg: real bpp overwrite");
2206 }
2207 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2208 panic("lfs_writeseg: theoretical bpp overwrite");
2209 }
2210 #endif
2211
2212 /*
2213 * Construct the cluster.
2214 */
2215 simple_lock(&fs->lfs_interlock);
2216 ++fs->lfs_iocount;
2217 simple_unlock(&fs->lfs_interlock);
2218 while (i && cbp->b_bcount < CHUNKSIZE) {
2219 bp = *bpp;
2220
2221 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2222 break;
2223 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2224 break;
2225
2226 /* Clusters from GOP_WRITE are expedited */
2227 if (bp->b_bcount > fs->lfs_bsize) {
2228 if (cbp->b_bcount > 0)
2229 /* Put in its own buffer */
2230 break;
2231 else {
2232 cbp->b_data = bp->b_data;
2233 }
2234 } else if (cbp->b_bcount == 0) {
2235 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2236 LFS_NB_CLUSTER);
2237 cl->flags |= LFS_CL_MALLOC;
2238 }
2239 #ifdef DIAGNOSTIC
2240 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2241 btodb(bp->b_bcount - 1))) !=
2242 sp->seg_number) {
2243 printf("blk size %d daddr %" PRIx64
2244 " not in seg %d\n",
2245 bp->b_bcount, bp->b_blkno,
2246 sp->seg_number);
2247 panic("segment overwrite");
2248 }
2249 #endif
2250
2251 #ifdef LFS_USE_B_INVAL
2252 /*
2253 * Fake buffers from the cleaner are marked as B_INVAL.
2254 * We need to copy the data from user space rather than
2255 * from the buffer indicated.
2256 * XXX == what do I do on an error?
2257 */
2258 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2259 (B_CALL|B_INVAL)) {
2260 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2261 panic("lfs_writeseg: "
2262 "copyin failed [2]");
2263 } else
2264 #endif /* LFS_USE_B_INVAL */
2265 if (cl->flags & LFS_CL_MALLOC) {
2266 /* copy data into our cluster. */
2267 memcpy(p, bp->b_data, bp->b_bcount);
2268 p += bp->b_bcount;
2269 }
2270
2271 cbp->b_bcount += bp->b_bcount;
2272 cl->bufsize += bp->b_bcount;
2273
2274 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2275 cl->bpp[cl->bufcount++] = bp;
2276 vp = bp->b_vp;
2277 s = splbio();
2278 reassignbuf(bp, vp);
2279 V_INCR_NUMOUTPUT(vp);
2280 splx(s);
2281
2282 bpp++;
2283 i--;
2284 }
2285 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2286 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2287 else
2288 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2289 s = splbio();
2290 V_INCR_NUMOUTPUT(devvp);
2291 splx(s);
2292 VOP_STRATEGY(devvp, cbp);
2293 curproc->p_stats->p_ru.ru_oublock++;
2294 }
2295
2296 if (lfs_dostats) {
2297 ++lfs_stats.psegwrites;
2298 lfs_stats.blocktot += nblocks - 1;
2299 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2300 ++lfs_stats.psyncwrites;
2301 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2302 ++lfs_stats.pcleanwrites;
2303 lfs_stats.cleanblocks += nblocks - 1;
2304 }
2305 }
2306 return (lfs_initseg(fs) || do_again);
2307 }
2308
2309 void
2310 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2311 {
2312 struct buf *bp;
2313 int s;
2314 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2315
2316 ASSERT_MAYBE_SEGLOCK(fs);
2317 #ifdef DIAGNOSTIC
2318 KASSERT(fs->lfs_magic == LFS_MAGIC);
2319 #endif
2320 /*
2321 * If we can write one superblock while another is in
2322 * progress, we risk not having a complete checkpoint if we crash.
2323 * So, block here if a superblock write is in progress.
2324 */
2325 simple_lock(&fs->lfs_interlock);
2326 s = splbio();
2327 while (fs->lfs_sbactive) {
2328 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2329 &fs->lfs_interlock);
2330 }
2331 fs->lfs_sbactive = daddr;
2332 splx(s);
2333 simple_unlock(&fs->lfs_interlock);
2334
2335 /* Set timestamp of this version of the superblock */
2336 if (fs->lfs_version == 1)
2337 fs->lfs_otstamp = time_second;
2338 fs->lfs_tstamp = time_second;
2339
2340 /* Checksum the superblock and copy it into a buffer. */
2341 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2342 bp = lfs_newbuf(fs, devvp,
2343 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2344 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2345 LFS_SBPAD - sizeof(struct dlfs));
2346 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2347
2348 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2349 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2350 bp->b_iodone = lfs_supercallback;
2351
2352 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2353 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2354 else
2355 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2356 curproc->p_stats->p_ru.ru_oublock++;
2357 s = splbio();
2358 V_INCR_NUMOUTPUT(bp->b_vp);
2359 splx(s);
2360 simple_lock(&fs->lfs_interlock);
2361 ++fs->lfs_iocount;
2362 simple_unlock(&fs->lfs_interlock);
2363 VOP_STRATEGY(devvp, bp);
2364 }
2365
2366 /*
2367 * Logical block number match routines used when traversing the dirty block
2368 * chain.
2369 */
2370 int
2371 lfs_match_fake(struct lfs *fs, struct buf *bp)
2372 {
2373
2374 ASSERT_SEGLOCK(fs);
2375 return LFS_IS_MALLOC_BUF(bp);
2376 }
2377
2378 #if 0
2379 int
2380 lfs_match_real(struct lfs *fs, struct buf *bp)
2381 {
2382
2383 ASSERT_SEGLOCK(fs);
2384 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2385 }
2386 #endif
2387
2388 int
2389 lfs_match_data(struct lfs *fs, struct buf *bp)
2390 {
2391
2392 ASSERT_SEGLOCK(fs);
2393 return (bp->b_lblkno >= 0);
2394 }
2395
2396 int
2397 lfs_match_indir(struct lfs *fs, struct buf *bp)
2398 {
2399 daddr_t lbn;
2400
2401 ASSERT_SEGLOCK(fs);
2402 lbn = bp->b_lblkno;
2403 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2404 }
2405
2406 int
2407 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2408 {
2409 daddr_t lbn;
2410
2411 ASSERT_SEGLOCK(fs);
2412 lbn = bp->b_lblkno;
2413 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2414 }
2415
2416 int
2417 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2418 {
2419 daddr_t lbn;
2420
2421 ASSERT_SEGLOCK(fs);
2422 lbn = bp->b_lblkno;
2423 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2424 }
2425
2426 static void
2427 lfs_free_aiodone(struct buf *bp)
2428 {
2429 struct lfs *fs;
2430
2431 fs = bp->b_private;
2432 ASSERT_NO_SEGLOCK(fs);
2433 lfs_freebuf(fs, bp);
2434 }
2435
2436 static void
2437 lfs_super_aiodone(struct buf *bp)
2438 {
2439 struct lfs *fs;
2440
2441 fs = bp->b_private;
2442 ASSERT_NO_SEGLOCK(fs);
2443 simple_lock(&fs->lfs_interlock);
2444 fs->lfs_sbactive = 0;
2445 if (--fs->lfs_iocount <= 1)
2446 wakeup(&fs->lfs_iocount);
2447 simple_unlock(&fs->lfs_interlock);
2448 wakeup(&fs->lfs_sbactive);
2449 lfs_freebuf(fs, bp);
2450 }
2451
2452 static void
2453 lfs_cluster_aiodone(struct buf *bp)
2454 {
2455 struct lfs_cluster *cl;
2456 struct lfs *fs;
2457 struct buf *tbp, *fbp;
2458 struct vnode *vp, *devvp;
2459 struct inode *ip;
2460 int s, error=0;
2461
2462 if (bp->b_flags & B_ERROR)
2463 error = bp->b_error;
2464
2465 cl = bp->b_private;
2466 fs = cl->fs;
2467 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2468 ASSERT_NO_SEGLOCK(fs);
2469
2470 /* Put the pages back, and release the buffer */
2471 while (cl->bufcount--) {
2472 tbp = cl->bpp[cl->bufcount];
2473 KASSERT(tbp->b_flags & B_BUSY);
2474 if (error) {
2475 tbp->b_flags |= B_ERROR;
2476 tbp->b_error = error;
2477 }
2478
2479 /*
2480 * We're done with tbp. If it has not been re-dirtied since
2481 * the cluster was written, free it. Otherwise, keep it on
2482 * the locked list to be written again.
2483 */
2484 vp = tbp->b_vp;
2485
2486 tbp->b_flags &= ~B_GATHERED;
2487
2488 LFS_BCLEAN_LOG(fs, tbp);
2489
2490 if (!(tbp->b_flags & B_CALL)) {
2491 KASSERT(tbp->b_flags & B_LOCKED);
2492 s = splbio();
2493 simple_lock(&bqueue_slock);
2494 bremfree(tbp);
2495 simple_unlock(&bqueue_slock);
2496 if (vp)
2497 reassignbuf(tbp, vp);
2498 splx(s);
2499 tbp->b_flags |= B_ASYNC; /* for biodone */
2500 }
2501
2502 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2503 LFS_UNLOCK_BUF(tbp);
2504
2505 if (tbp->b_flags & B_DONE) {
2506 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2507 cl->bufcount, (long)tbp->b_flags));
2508 }
2509
2510 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2511 /*
2512 * A buffer from the page daemon.
2513 * We use the same iodone as it does,
2514 * so we must manually disassociate its
2515 * buffers from the vp.
2516 */
2517 if (tbp->b_vp) {
2518 /* This is just silly */
2519 s = splbio();
2520 brelvp(tbp);
2521 tbp->b_vp = vp;
2522 splx(s);
2523 }
2524 /* Put it back the way it was */
2525 tbp->b_flags |= B_ASYNC;
2526 /* Master buffers have B_AGE */
2527 if (tbp->b_private == tbp)
2528 tbp->b_flags |= B_AGE;
2529 }
2530 s = splbio();
2531 biodone(tbp);
2532
2533 /*
2534 * If this is the last block for this vnode, but
2535 * there are other blocks on its dirty list,
2536 * set IN_MODIFIED/IN_CLEANING depending on what
2537 * sort of block. Only do this for our mount point,
2538 * not for, e.g., inode blocks that are attached to
2539 * the devvp.
2540 * XXX KS - Shouldn't we set *both* if both types
2541 * of blocks are present (traverse the dirty list?)
2542 */
2543 simple_lock(&global_v_numoutput_slock);
2544 if (vp != devvp && vp->v_numoutput == 0 &&
2545 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2546 ip = VTOI(vp);
2547 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2548 ip->i_number));
2549 if (LFS_IS_MALLOC_BUF(fbp))
2550 LFS_SET_UINO(ip, IN_CLEANING);
2551 else
2552 LFS_SET_UINO(ip, IN_MODIFIED);
2553 }
2554 simple_unlock(&global_v_numoutput_slock);
2555 splx(s);
2556 wakeup(vp);
2557 }
2558
2559 /* Fix up the cluster buffer, and release it */
2560 if (cl->flags & LFS_CL_MALLOC)
2561 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2562 putiobuf(bp);
2563
2564 /* Note i/o done */
2565 if (cl->flags & LFS_CL_SYNC) {
2566 if (--cl->seg->seg_iocount == 0)
2567 wakeup(&cl->seg->seg_iocount);
2568 }
2569 simple_lock(&fs->lfs_interlock);
2570 #ifdef DIAGNOSTIC
2571 if (fs->lfs_iocount == 0)
2572 panic("lfs_cluster_aiodone: zero iocount");
2573 #endif
2574 if (--fs->lfs_iocount <= 1)
2575 wakeup(&fs->lfs_iocount);
2576 simple_unlock(&fs->lfs_interlock);
2577
2578 pool_put(&fs->lfs_bpppool, cl->bpp);
2579 cl->bpp = NULL;
2580 pool_put(&fs->lfs_clpool, cl);
2581 }
2582
2583 static void
2584 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2585 {
2586 /* reset b_iodone for when this is a single-buf i/o. */
2587 bp->b_iodone = aiodone;
2588
2589 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work);
2590 }
2591
2592 static void
2593 lfs_cluster_callback(struct buf *bp)
2594 {
2595
2596 lfs_generic_callback(bp, lfs_cluster_aiodone);
2597 }
2598
2599 void
2600 lfs_supercallback(struct buf *bp)
2601 {
2602
2603 lfs_generic_callback(bp, lfs_super_aiodone);
2604 }
2605
2606 /*
2607 * The only buffers that are going to hit these functions are the
2608 * segment write blocks, or the segment summaries, or the superblocks.
2609 *
2610 * All of the above are created by lfs_newbuf, and so do not need to be
2611 * released via brelse.
2612 */
2613 void
2614 lfs_callback(struct buf *bp)
2615 {
2616
2617 lfs_generic_callback(bp, lfs_free_aiodone);
2618 }
2619
2620 /*
2621 * Shellsort (diminishing increment sort) from Data Structures and
2622 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2623 * see also Knuth Vol. 3, page 84. The increments are selected from
2624 * formula (8), page 95. Roughly O(N^3/2).
2625 */
2626 /*
2627 * This is our own private copy of shellsort because we want to sort
2628 * two parallel arrays (the array of buffer pointers and the array of
2629 * logical block numbers) simultaneously. Note that we cast the array
2630 * of logical block numbers to a unsigned in this routine so that the
2631 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2632 */
2633
2634 void
2635 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2636 {
2637 static int __rsshell_increments[] = { 4, 1, 0 };
2638 int incr, *incrp, t1, t2;
2639 struct buf *bp_temp;
2640
2641 #ifdef DEBUG
2642 incr = 0;
2643 for (t1 = 0; t1 < nmemb; t1++) {
2644 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2645 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2646 /* dump before panic */
2647 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2648 nmemb, size);
2649 incr = 0;
2650 for (t1 = 0; t1 < nmemb; t1++) {
2651 const struct buf *bp = bp_array[t1];
2652
2653 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2654 PRIu64 "\n", t1,
2655 (uint64_t)bp->b_bcount,
2656 (uint64_t)bp->b_lblkno);
2657 printf("lbns:");
2658 for (t2 = 0; t2 * size < bp->b_bcount;
2659 t2++) {
2660 printf(" %" PRId32,
2661 lb_array[incr++]);
2662 }
2663 printf("\n");
2664 }
2665 panic("lfs_shellsort: inconsistent input");
2666 }
2667 }
2668 }
2669 #endif
2670
2671 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2672 for (t1 = incr; t1 < nmemb; ++t1)
2673 for (t2 = t1 - incr; t2 >= 0;)
2674 if ((u_int32_t)bp_array[t2]->b_lblkno >
2675 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2676 bp_temp = bp_array[t2];
2677 bp_array[t2] = bp_array[t2 + incr];
2678 bp_array[t2 + incr] = bp_temp;
2679 t2 -= incr;
2680 } else
2681 break;
2682
2683 /* Reform the list of logical blocks */
2684 incr = 0;
2685 for (t1 = 0; t1 < nmemb; t1++) {
2686 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2687 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2688 }
2689 }
2690 }
2691
2692 /*
2693 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2694 * however, we must press on. Just fake success in that case.
2695 */
2696 int
2697 lfs_vref(struct vnode *vp)
2698 {
2699 int error;
2700 struct lfs *fs;
2701
2702 fs = VTOI(vp)->i_lfs;
2703
2704 ASSERT_MAYBE_SEGLOCK(fs);
2705
2706 /*
2707 * If we return 1 here during a flush, we risk vinvalbuf() not
2708 * being able to flush all of the pages from this vnode, which
2709 * will cause it to panic. So, return 0 if a flush is in progress.
2710 */
2711 error = vget(vp, LK_NOWAIT);
2712 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2713 ++fs->lfs_flushvp_fakevref;
2714 return 0;
2715 }
2716 return error;
2717 }
2718
2719 /*
2720 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2721 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2722 */
2723 void
2724 lfs_vunref(struct vnode *vp)
2725 {
2726 struct lfs *fs;
2727
2728 fs = VTOI(vp)->i_lfs;
2729 ASSERT_MAYBE_SEGLOCK(fs);
2730
2731 /*
2732 * Analogous to lfs_vref, if the node is flushing, fake it.
2733 */
2734 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2735 --fs->lfs_flushvp_fakevref;
2736 return;
2737 }
2738
2739 simple_lock(&vp->v_interlock);
2740 #ifdef DIAGNOSTIC
2741 if (vp->v_usecount <= 0) {
2742 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2743 VTOI(vp)->i_number);
2744 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2745 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2746 panic("lfs_vunref: v_usecount < 0");
2747 }
2748 #endif
2749 vp->v_usecount--;
2750 if (vp->v_usecount > 0) {
2751 simple_unlock(&vp->v_interlock);
2752 return;
2753 }
2754 /*
2755 * insert at tail of LRU list
2756 */
2757 simple_lock(&vnode_free_list_slock);
2758 if (vp->v_holdcnt > 0)
2759 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2760 else
2761 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2762 simple_unlock(&vnode_free_list_slock);
2763 simple_unlock(&vp->v_interlock);
2764 }
2765
2766 /*
2767 * We use this when we have vnodes that were loaded in solely for cleaning.
2768 * There is no reason to believe that these vnodes will be referenced again
2769 * soon, since the cleaning process is unrelated to normal filesystem
2770 * activity. Putting cleaned vnodes at the tail of the list has the effect
2771 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2772 * cleaning at the head of the list, instead.
2773 */
2774 void
2775 lfs_vunref_head(struct vnode *vp)
2776 {
2777
2778 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2779 simple_lock(&vp->v_interlock);
2780 #ifdef DIAGNOSTIC
2781 if (vp->v_usecount == 0) {
2782 panic("lfs_vunref: v_usecount<0");
2783 }
2784 #endif
2785 vp->v_usecount--;
2786 if (vp->v_usecount > 0) {
2787 simple_unlock(&vp->v_interlock);
2788 return;
2789 }
2790 /*
2791 * insert at head of LRU list
2792 */
2793 simple_lock(&vnode_free_list_slock);
2794 if (vp->v_holdcnt > 0)
2795 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2796 else
2797 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2798 simple_unlock(&vnode_free_list_slock);
2799 simple_unlock(&vp->v_interlock);
2800 }
2801
2802
2803 /*
2804 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2805 * point at uninitialized space.
2806 */
2807 void
2808 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2809 {
2810 struct segment *sp = fs->lfs_sp;
2811
2812 KASSERT(vers > 0);
2813
2814 if (sp->seg_bytes_left < fs->lfs_bsize ||
2815 sp->sum_bytes_left < sizeof(struct finfo))
2816 (void) lfs_writeseg(fs, fs->lfs_sp);
2817
2818 sp->sum_bytes_left -= FINFOSIZE;
2819 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2820 sp->fip->fi_nblocks = 0;
2821 sp->fip->fi_ino = ino;
2822 sp->fip->fi_version = vers;
2823 }
2824
2825 /*
2826 * Release the FINFO entry, either clearing out an unused entry or
2827 * advancing us to the next available entry.
2828 */
2829 void
2830 lfs_release_finfo(struct lfs *fs)
2831 {
2832 struct segment *sp = fs->lfs_sp;
2833
2834 if (sp->fip->fi_nblocks != 0) {
2835 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2836 sizeof(int32_t) * sp->fip->fi_nblocks);
2837 sp->start_lbp = &sp->fip->fi_blocks[0];
2838 } else {
2839 sp->sum_bytes_left += FINFOSIZE;
2840 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2841 }
2842 }
2843