lfs_segment.c revision 1.198.2.10 1 /* $NetBSD: lfs_segment.c,v 1.198.2.10 2007/08/24 23:28:47 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.198.2.10 2007/08/24 23:28:47 ad Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern kmutex_t vnode_free_list_lock; /* XXX */
120
121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
122 static void lfs_free_aiodone(struct buf *);
123 static void lfs_super_aiodone(struct buf *);
124 static void lfs_cluster_aiodone(struct buf *);
125 static void lfs_cluster_callback(struct buf *);
126
127 /*
128 * Determine if it's OK to start a partial in this segment, or if we need
129 * to go on to a new segment.
130 */
131 #define LFS_PARTIAL_FITS(fs) \
132 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
133 fragstofsb((fs), (fs)->lfs_frag))
134
135 /*
136 * Figure out whether we should do a checkpoint write or go ahead with
137 * an ordinary write.
138 */
139 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
140 ((flags & SEGM_CLEAN) == 0 && \
141 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
142 (flags & SEGM_CKP) || \
143 fs->lfs_nclean < LFS_MAX_ACTIVE)))
144
145 int lfs_match_fake(struct lfs *, struct buf *);
146 void lfs_newseg(struct lfs *);
147 /* XXX ondisk32 */
148 void lfs_shellsort(struct buf **, int32_t *, int, int);
149 void lfs_supercallback(struct buf *);
150 void lfs_updatemeta(struct segment *);
151 void lfs_writesuper(struct lfs *, daddr_t);
152 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
153 struct segment *sp, int dirops);
154
155 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
156 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
157 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
158 int lfs_dirvcount = 0; /* # active dirops */
159
160 /* Statistics Counters */
161 int lfs_dostats = 1;
162 struct lfs_stats lfs_stats;
163
164 /* op values to lfs_writevnodes */
165 #define VN_REG 0
166 #define VN_DIROP 1
167 #define VN_EMPTY 2
168 #define VN_CLEAN 3
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 ASSERT_MAYBE_SEGLOCK(fs);
183 vfs_timestamp(&ts);
184 ip = VTOI(fs->lfs_ivnode);
185 ip->i_ffs1_mtime = ts.tv_sec;
186 ip->i_ffs1_mtimensec = ts.tv_nsec;
187 }
188
189 /*
190 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
191 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
192 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
193 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
194 */
195
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 struct inode *ip;
202 struct lfs *fs;
203 struct segment *sp;
204 struct buf *bp, *nbp, *tbp, *tnbp;
205 int error, s;
206 int flushed;
207 int relock;
208 int loopcount;
209
210 ip = VTOI(vp);
211 fs = VFSTOUFS(vp->v_mount)->um_lfs;
212 relock = 0;
213
214 top:
215 ASSERT_NO_SEGLOCK(fs);
216 if (ip->i_flag & IN_CLEANING) {
217 ivndebug(vp,"vflush/in_cleaning");
218 mutex_enter(&fs->lfs_interlock);
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221 mutex_exit(&fs->lfs_interlock);
222
223 /*
224 * Toss any cleaning buffers that have real counterparts
225 * to avoid losing new data.
226 */
227 s = splbio();
228 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
229 nbp = LIST_NEXT(bp, b_vnbufs);
230 if (!LFS_IS_MALLOC_BUF(bp))
231 continue;
232 /*
233 * Look for pages matching the range covered
234 * by cleaning blocks. It's okay if more dirty
235 * pages appear, so long as none disappear out
236 * from under us.
237 */
238 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
239 vp != fs->lfs_ivnode) {
240 struct vm_page *pg;
241 voff_t off;
242
243 mutex_enter(&vp->v_interlock);
244 for (off = lblktosize(fs, bp->b_lblkno);
245 off < lblktosize(fs, bp->b_lblkno + 1);
246 off += PAGE_SIZE) {
247 pg = uvm_pagelookup(&vp->v_uobj, off);
248 if (pg == NULL)
249 continue;
250 if ((pg->flags & PG_CLEAN) == 0 ||
251 pmap_is_modified(pg)) {
252 fs->lfs_avail += btofsb(fs,
253 bp->b_bcount);
254 wakeup(&fs->lfs_avail);
255 lfs_freebuf(fs, bp);
256 bp = NULL;
257 mutex_exit(&vp->v_interlock);
258 goto nextbp;
259 }
260 }
261 mutex_exit(&vp->v_interlock);
262 }
263 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
264 tbp = tnbp)
265 {
266 tnbp = LIST_NEXT(tbp, b_vnbufs);
267 if (tbp->b_vp == bp->b_vp
268 && tbp->b_lblkno == bp->b_lblkno
269 && tbp != bp)
270 {
271 fs->lfs_avail += btofsb(fs,
272 bp->b_bcount);
273 wakeup(&fs->lfs_avail);
274 lfs_freebuf(fs, bp);
275 bp = NULL;
276 break;
277 }
278 }
279 nextbp:
280 ;
281 }
282 splx(s);
283 }
284
285 /* If the node is being written, wait until that is done */
286 mutex_enter(&vp->v_interlock);
287 if (WRITEINPROG(vp)) {
288 ivndebug(vp,"vflush/writeinprog");
289 mtsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
290 }
291 mutex_exit(&vp->v_interlock);
292
293 /* Protect against VXLOCK deadlock in vinvalbuf() */
294 lfs_seglock(fs, SEGM_SYNC);
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 if (ip->i_lfs_iflags & LFSI_DELETED) {
298 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
299 ip->i_number));
300 /* Drain v_numoutput */
301 mutex_enter(&vp->v_interlock);
302 while (vp->v_numoutput > 0) {
303 cv_wait(&vp->v_cv, &vp->v_interlock);
304 }
305 KASSERT(vp->v_numoutput == 0);
306 mutex_exit(&vp->v_interlock);
307
308 mutex_enter(&bufcache_lock);
309 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
310 nbp = LIST_NEXT(bp, b_vnbufs);
311
312 KASSERT((bp->b_flags & B_GATHERED) == 0);
313 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
314 fs->lfs_avail += btofsb(fs, bp->b_bcount);
315 wakeup(&fs->lfs_avail);
316 }
317 /* Copied from lfs_writeseg */
318 if (bp->b_iodone != NULL) {
319 mutex_exit(&bufcache_lock);
320 biodone(bp);
321 mutex_enter(&bufcache_lock);
322 } else {
323 bremfree(bp);
324 LFS_UNLOCK_BUF(bp);
325 mutex_enter(&vp->v_interlock);
326 bp->b_flags &= ~(B_READ | B_GATHERED);
327 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
328 bp->b_error = 0;
329 reassignbuf(bp, vp);
330 mutex_exit(&vp->v_interlock);
331 brelse(bp, 0);
332 }
333 }
334 mutex_exit(&bufcache_lock);
335 LFS_CLR_UINO(ip, IN_CLEANING);
336 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
337 ip->i_flag &= ~IN_ALLMOD;
338 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
339 ip->i_number));
340 lfs_segunlock(fs);
341
342 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
343
344 return 0;
345 }
346
347 fs->lfs_flushvp = vp;
348 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
349 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
350 fs->lfs_flushvp = NULL;
351 KASSERT(fs->lfs_flushvp_fakevref == 0);
352 lfs_segunlock(fs);
353
354 /* Make sure that any pending buffers get written */
355 mutex_enter(&vp->v_interlock);
356 while (vp->v_numoutput > 0) {
357 cv_wait(&vp->v_cv, &vp->v_interlock);
358 }
359 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
360 KASSERT(vp->v_numoutput == 0);
361 mutex_exit(&vp->v_interlock);
362
363 return error;
364 }
365 sp = fs->lfs_sp;
366
367 flushed = 0;
368 if (VPISEMPTY(vp)) {
369 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
370 ++flushed;
371 } else if ((ip->i_flag & IN_CLEANING) &&
372 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
373 ivndebug(vp,"vflush/clean");
374 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
375 ++flushed;
376 } else if (lfs_dostats) {
377 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
378 ++lfs_stats.vflush_invoked;
379 ivndebug(vp,"vflush");
380 }
381
382 #ifdef DIAGNOSTIC
383 if (vp->v_uflag & VU_DIROP) {
384 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
385 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
386 }
387 if (vp->v_usecount < 0) {
388 printf("usecount=%ld\n", (long)vp->v_usecount);
389 panic("lfs_vflush: usecount<0");
390 }
391 #endif
392
393 do {
394 loopcount = 0;
395 do {
396 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
397 relock = lfs_writefile(fs, sp, vp);
398 if (relock) {
399 /*
400 * Might have to wait for the
401 * cleaner to run; but we're
402 * still not done with this vnode.
403 */
404 KDASSERT(ip->i_number != LFS_IFILE_INUM);
405 lfs_writeinode(fs, sp, ip);
406 mutex_enter(&fs->lfs_interlock);
407 LFS_SET_UINO(ip, IN_MODIFIED);
408 mutex_exit(&fs->lfs_interlock);
409 lfs_writeseg(fs, sp);
410 lfs_segunlock(fs);
411 lfs_segunlock_relock(fs);
412 goto top;
413 }
414 }
415 /*
416 * If we begin a new segment in the middle of writing
417 * the Ifile, it creates an inconsistent checkpoint,
418 * since the Ifile information for the new segment
419 * is not up-to-date. Take care of this here by
420 * sending the Ifile through again in case there
421 * are newly dirtied blocks. But wait, there's more!
422 * This second Ifile write could *also* cross a segment
423 * boundary, if the first one was large. The second
424 * one is guaranteed to be no more than 8 blocks,
425 * though (two segment blocks and supporting indirects)
426 * so the third write *will not* cross the boundary.
427 */
428 if (vp == fs->lfs_ivnode) {
429 lfs_writefile(fs, sp, vp);
430 lfs_writefile(fs, sp, vp);
431 }
432 #ifdef DEBUG
433 if (++loopcount > 2)
434 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
435 #endif
436 } while (lfs_writeinode(fs, sp, ip));
437 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
438
439 if (lfs_dostats) {
440 ++lfs_stats.nwrites;
441 if (sp->seg_flags & SEGM_SYNC)
442 ++lfs_stats.nsync_writes;
443 if (sp->seg_flags & SEGM_CKP)
444 ++lfs_stats.ncheckpoints;
445 }
446 /*
447 * If we were called from somewhere that has already held the seglock
448 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
449 * the write to complete because we are still locked.
450 * Since lfs_vflush() must return the vnode with no dirty buffers,
451 * we must explicitly wait, if that is the case.
452 *
453 * We compare the iocount against 1, not 0, because it is
454 * artificially incremented by lfs_seglock().
455 */
456 mutex_enter(&fs->lfs_interlock);
457 if (fs->lfs_seglock > 1) {
458 while (fs->lfs_iocount > 1)
459 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
460 "lfs_vflush", 0, &fs->lfs_interlock);
461 }
462 mutex_exit(&fs->lfs_interlock);
463
464 lfs_segunlock(fs);
465
466 /* Wait for these buffers to be recovered by aiodoned */
467 mutex_enter(&vp->v_interlock);
468 while (vp->v_numoutput > 0) {
469 cv_wait(&vp->v_cv, &vp->v_interlock);
470 }
471 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
472 KASSERT(vp->v_numoutput == 0);
473 mutex_exit(&vp->v_interlock);
474
475 fs->lfs_flushvp = NULL;
476 KASSERT(fs->lfs_flushvp_fakevref == 0);
477
478 return (0);
479 }
480
481 int
482 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
483 {
484 struct inode *ip;
485 struct vnode *vp;
486 int inodes_written = 0, only_cleaning;
487 int error = 0;
488
489 ASSERT_SEGLOCK(fs);
490 loop:
491 /* start at last (newest) vnode. */
492 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
493 /*
494 * If the vnode that we are about to sync is no longer
495 * associated with this mount point, start over.
496 */
497 if (vp->v_mount != mp) {
498 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
499 /*
500 * After this, pages might be busy
501 * due to our own previous putpages.
502 * Start actual segment write here to avoid deadlock.
503 */
504 (void)lfs_writeseg(fs, sp);
505 goto loop;
506 }
507
508 if (vp->v_type == VNON) {
509 continue;
510 }
511
512 ip = VTOI(vp);
513 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
514 (op != VN_DIROP && op != VN_CLEAN &&
515 (vp->v_uflag & VU_DIROP))) {
516 vndebug(vp,"dirop");
517 continue;
518 }
519
520 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
521 vndebug(vp,"empty");
522 continue;
523 }
524
525 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
526 && vp != fs->lfs_flushvp
527 && !(ip->i_flag & IN_CLEANING)) {
528 vndebug(vp,"cleaning");
529 continue;
530 }
531
532 if (lfs_vref(vp)) {
533 vndebug(vp,"vref");
534 continue;
535 }
536
537 only_cleaning = 0;
538 /*
539 * Write the inode/file if dirty and it's not the IFILE.
540 */
541 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
542 only_cleaning =
543 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
544
545 if (ip->i_number != LFS_IFILE_INUM) {
546 error = lfs_writefile(fs, sp, vp);
547 if (error) {
548 lfs_vunref(vp);
549 if (error == EAGAIN) {
550 /*
551 * This error from lfs_putpages
552 * indicates we need to drop
553 * the segment lock and start
554 * over after the cleaner has
555 * had a chance to run.
556 */
557 lfs_writeinode(fs, sp, ip);
558 lfs_writeseg(fs, sp);
559 if (!VPISEMPTY(vp) &&
560 !WRITEINPROG(vp) &&
561 !(ip->i_flag & IN_ALLMOD)) {
562 mutex_enter(&fs->lfs_interlock);
563 LFS_SET_UINO(ip, IN_MODIFIED);
564 mutex_exit(&fs->lfs_interlock);
565 }
566 break;
567 }
568 error = 0; /* XXX not quite right */
569 continue;
570 }
571
572 if (!VPISEMPTY(vp)) {
573 if (WRITEINPROG(vp)) {
574 ivndebug(vp,"writevnodes/write2");
575 } else if (!(ip->i_flag & IN_ALLMOD)) {
576 mutex_enter(&fs->lfs_interlock);
577 LFS_SET_UINO(ip, IN_MODIFIED);
578 mutex_exit(&fs->lfs_interlock);
579 }
580 }
581 (void) lfs_writeinode(fs, sp, ip);
582 inodes_written++;
583 }
584 }
585
586 if (lfs_clean_vnhead && only_cleaning)
587 lfs_vunref_head(vp);
588 else
589 lfs_vunref(vp);
590 }
591 return error;
592 }
593
594 /*
595 * Do a checkpoint.
596 */
597 int
598 lfs_segwrite(struct mount *mp, int flags)
599 {
600 struct buf *bp;
601 struct inode *ip;
602 struct lfs *fs;
603 struct segment *sp;
604 struct vnode *vp;
605 SEGUSE *segusep;
606 int do_ckp, did_ckp, error, s;
607 unsigned n, segleft, maxseg, sn, i, curseg;
608 int writer_set = 0;
609 int dirty;
610 int redo;
611 int um_error;
612 int loopcount;
613
614 fs = VFSTOUFS(mp)->um_lfs;
615 ASSERT_MAYBE_SEGLOCK(fs);
616
617 if (fs->lfs_ronly)
618 return EROFS;
619
620 lfs_imtime(fs);
621
622 /*
623 * Allocate a segment structure and enough space to hold pointers to
624 * the maximum possible number of buffers which can be described in a
625 * single summary block.
626 */
627 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
628
629 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
630 sp = fs->lfs_sp;
631 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
632 do_ckp = 1;
633
634 /*
635 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
636 * in which case we have to flush *all* buffers off of this vnode.
637 * We don't care about other nodes, but write any non-dirop nodes
638 * anyway in anticipation of another getnewvnode().
639 *
640 * If we're cleaning we only write cleaning and ifile blocks, and
641 * no dirops, since otherwise we'd risk corruption in a crash.
642 */
643 if (sp->seg_flags & SEGM_CLEAN)
644 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
645 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
646 do {
647 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
648
649 if (do_ckp || fs->lfs_dirops == 0) {
650 if (!writer_set) {
651 lfs_writer_enter(fs, "lfs writer");
652 writer_set = 1;
653 }
654 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
655 if (um_error == 0)
656 um_error = error;
657 /* In case writevnodes errored out */
658 lfs_flush_dirops(fs);
659 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
660 lfs_finalize_fs_seguse(fs);
661 }
662 if (do_ckp && um_error) {
663 lfs_segunlock_relock(fs);
664 sp = fs->lfs_sp;
665 }
666 } while (do_ckp && um_error != 0);
667 }
668
669 /*
670 * If we are doing a checkpoint, mark everything since the
671 * last checkpoint as no longer ACTIVE.
672 */
673 if (do_ckp || fs->lfs_doifile) {
674 segleft = fs->lfs_nseg;
675 curseg = 0;
676 for (n = 0; n < fs->lfs_segtabsz; n++) {
677 dirty = 0;
678 if (bread(fs->lfs_ivnode,
679 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
680 panic("lfs_segwrite: ifile read");
681 segusep = (SEGUSE *)bp->b_data;
682 maxseg = min(segleft, fs->lfs_sepb);
683 for (i = 0; i < maxseg; i++) {
684 sn = curseg + i;
685 if (sn != dtosn(fs, fs->lfs_curseg) &&
686 segusep->su_flags & SEGUSE_ACTIVE) {
687 segusep->su_flags &= ~SEGUSE_ACTIVE;
688 --fs->lfs_nactive;
689 ++dirty;
690 }
691 fs->lfs_suflags[fs->lfs_activesb][sn] =
692 segusep->su_flags;
693 if (fs->lfs_version > 1)
694 ++segusep;
695 else
696 segusep = (SEGUSE *)
697 ((SEGUSE_V1 *)segusep + 1);
698 }
699
700 if (dirty)
701 error = LFS_BWRITE_LOG(bp); /* Ifile */
702 else
703 brelse(bp, 0);
704 segleft -= fs->lfs_sepb;
705 curseg += fs->lfs_sepb;
706 }
707 }
708
709 KASSERT(LFS_SEGLOCK_HELD(fs));
710
711 did_ckp = 0;
712 if (do_ckp || fs->lfs_doifile) {
713 vp = fs->lfs_ivnode;
714 vn_lock(vp, LK_EXCLUSIVE);
715 loopcount = 0;
716 do {
717 #ifdef DEBUG
718 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
719 #endif
720 mutex_enter(&fs->lfs_interlock);
721 fs->lfs_flags &= ~LFS_IFDIRTY;
722 mutex_exit(&fs->lfs_interlock);
723
724 ip = VTOI(vp);
725
726 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
727 /*
728 * Ifile has no pages, so we don't need
729 * to check error return here.
730 */
731 lfs_writefile(fs, sp, vp);
732 /*
733 * Ensure the Ifile takes the current segment
734 * into account. See comment in lfs_vflush.
735 */
736 lfs_writefile(fs, sp, vp);
737 lfs_writefile(fs, sp, vp);
738 }
739
740 if (ip->i_flag & IN_ALLMOD)
741 ++did_ckp;
742 #if 0
743 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
744 #else
745 redo = lfs_writeinode(fs, sp, ip);
746 #endif
747 redo += lfs_writeseg(fs, sp);
748 mutex_enter(&fs->lfs_interlock);
749 redo += (fs->lfs_flags & LFS_IFDIRTY);
750 mutex_exit(&fs->lfs_interlock);
751 #ifdef DEBUG
752 if (++loopcount > 2)
753 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
754 loopcount);
755 #endif
756 } while (redo && do_ckp);
757
758 /*
759 * Unless we are unmounting, the Ifile may continue to have
760 * dirty blocks even after a checkpoint, due to changes to
761 * inodes' atime. If we're checkpointing, it's "impossible"
762 * for other parts of the Ifile to be dirty after the loop
763 * above, since we hold the segment lock.
764 */
765 s = splbio();
766 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
767 LFS_CLR_UINO(ip, IN_ALLMOD);
768 }
769 #ifdef DIAGNOSTIC
770 else if (do_ckp) {
771 int do_panic = 0;
772 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
773 if (bp->b_lblkno < fs->lfs_cleansz +
774 fs->lfs_segtabsz &&
775 !(bp->b_flags & B_GATHERED)) {
776 printf("ifile lbn %ld still dirty (flags %lx)\n",
777 (long)bp->b_lblkno,
778 (long)bp->b_flags);
779 ++do_panic;
780 }
781 }
782 if (do_panic)
783 panic("dirty blocks");
784 }
785 #endif
786 splx(s);
787 VOP_UNLOCK(vp, 0);
788 } else {
789 (void) lfs_writeseg(fs, sp);
790 }
791
792 /* Note Ifile no longer needs to be written */
793 fs->lfs_doifile = 0;
794 if (writer_set)
795 lfs_writer_leave(fs);
796
797 /*
798 * If we didn't write the Ifile, we didn't really do anything.
799 * That means that (1) there is a checkpoint on disk and (2)
800 * nothing has changed since it was written.
801 *
802 * Take the flags off of the segment so that lfs_segunlock
803 * doesn't have to write the superblock either.
804 */
805 if (do_ckp && !did_ckp) {
806 sp->seg_flags &= ~SEGM_CKP;
807 }
808
809 if (lfs_dostats) {
810 ++lfs_stats.nwrites;
811 if (sp->seg_flags & SEGM_SYNC)
812 ++lfs_stats.nsync_writes;
813 if (sp->seg_flags & SEGM_CKP)
814 ++lfs_stats.ncheckpoints;
815 }
816 lfs_segunlock(fs);
817 return (0);
818 }
819
820 /*
821 * Write the dirty blocks associated with a vnode.
822 */
823 int
824 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
825 {
826 struct finfo *fip;
827 struct inode *ip;
828 int i, frag;
829 int error;
830
831 ASSERT_SEGLOCK(fs);
832 error = 0;
833 ip = VTOI(vp);
834
835 fip = sp->fip;
836 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
837
838 if (vp->v_uflag & VU_DIROP)
839 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
840
841 if (sp->seg_flags & SEGM_CLEAN) {
842 lfs_gather(fs, sp, vp, lfs_match_fake);
843 /*
844 * For a file being flushed, we need to write *all* blocks.
845 * This means writing the cleaning blocks first, and then
846 * immediately following with any non-cleaning blocks.
847 * The same is true of the Ifile since checkpoints assume
848 * that all valid Ifile blocks are written.
849 */
850 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
851 lfs_gather(fs, sp, vp, lfs_match_data);
852 /*
853 * Don't call VOP_PUTPAGES: if we're flushing,
854 * we've already done it, and the Ifile doesn't
855 * use the page cache.
856 */
857 }
858 } else {
859 lfs_gather(fs, sp, vp, lfs_match_data);
860 /*
861 * If we're flushing, we've already called VOP_PUTPAGES
862 * so don't do it again. Otherwise, we want to write
863 * everything we've got.
864 */
865 if (!IS_FLUSHING(fs, vp)) {
866 mutex_enter(&vp->v_interlock);
867 error = VOP_PUTPAGES(vp, 0, 0,
868 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
869 }
870 }
871
872 /*
873 * It may not be necessary to write the meta-data blocks at this point,
874 * as the roll-forward recovery code should be able to reconstruct the
875 * list.
876 *
877 * We have to write them anyway, though, under two conditions: (1) the
878 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
879 * checkpointing.
880 *
881 * BUT if we are cleaning, we might have indirect blocks that refer to
882 * new blocks not being written yet, in addition to fragments being
883 * moved out of a cleaned segment. If that is the case, don't
884 * write the indirect blocks, or the finfo will have a small block
885 * in the middle of it!
886 * XXX in this case isn't the inode size wrong too?
887 */
888 frag = 0;
889 if (sp->seg_flags & SEGM_CLEAN) {
890 for (i = 0; i < NDADDR; i++)
891 if (ip->i_lfs_fragsize[i] > 0 &&
892 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
893 ++frag;
894 }
895 #ifdef DIAGNOSTIC
896 if (frag > 1)
897 panic("lfs_writefile: more than one fragment!");
898 #endif
899 if (IS_FLUSHING(fs, vp) ||
900 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
901 lfs_gather(fs, sp, vp, lfs_match_indir);
902 lfs_gather(fs, sp, vp, lfs_match_dindir);
903 lfs_gather(fs, sp, vp, lfs_match_tindir);
904 }
905 fip = sp->fip;
906 lfs_release_finfo(fs);
907
908 return error;
909 }
910
911 /*
912 * Update segment accounting to reflect this inode's change of address.
913 */
914 static int
915 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
916 {
917 struct buf *bp;
918 daddr_t daddr;
919 IFILE *ifp;
920 SEGUSE *sup;
921 ino_t ino;
922 int redo_ifile, error;
923 u_int32_t sn;
924
925 redo_ifile = 0;
926
927 /*
928 * If updating the ifile, update the super-block. Update the disk
929 * address and access times for this inode in the ifile.
930 */
931 ino = ip->i_number;
932 if (ino == LFS_IFILE_INUM) {
933 daddr = fs->lfs_idaddr;
934 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
935 } else {
936 LFS_IENTRY(ifp, fs, ino, bp);
937 daddr = ifp->if_daddr;
938 ifp->if_daddr = dbtofsb(fs, ndaddr);
939 error = LFS_BWRITE_LOG(bp); /* Ifile */
940 }
941
942 /*
943 * If this is the Ifile and lfs_offset is set to the first block
944 * in the segment, dirty the new segment's accounting block
945 * (XXX should already be dirty?) and tell the caller to do it again.
946 */
947 if (ip->i_number == LFS_IFILE_INUM) {
948 sn = dtosn(fs, fs->lfs_offset);
949 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
950 fs->lfs_offset) {
951 LFS_SEGENTRY(sup, fs, sn, bp);
952 KASSERT(bp->b_oflags & BO_DELWRI);
953 LFS_WRITESEGENTRY(sup, fs, sn, bp);
954 /* fs->lfs_flags |= LFS_IFDIRTY; */
955 redo_ifile |= 1;
956 }
957 }
958
959 /*
960 * The inode's last address should not be in the current partial
961 * segment, except under exceptional circumstances (lfs_writevnodes
962 * had to start over, and in the meantime more blocks were written
963 * to a vnode). Both inodes will be accounted to this segment
964 * in lfs_writeseg so we need to subtract the earlier version
965 * here anyway. The segment count can temporarily dip below
966 * zero here; keep track of how many duplicates we have in
967 * "dupino" so we don't panic below.
968 */
969 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
970 ++sp->ndupino;
971 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
972 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
973 (long long)daddr, sp->ndupino));
974 }
975 /*
976 * Account the inode: it no longer belongs to its former segment,
977 * though it will not belong to the new segment until that segment
978 * is actually written.
979 */
980 if (daddr != LFS_UNUSED_DADDR) {
981 u_int32_t oldsn = dtosn(fs, daddr);
982 #ifdef DIAGNOSTIC
983 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
984 #endif
985 LFS_SEGENTRY(sup, fs, oldsn, bp);
986 #ifdef DIAGNOSTIC
987 if (sup->su_nbytes +
988 sizeof (struct ufs1_dinode) * ndupino
989 < sizeof (struct ufs1_dinode)) {
990 printf("lfs_writeinode: negative bytes "
991 "(segment %" PRIu32 " short by %d, "
992 "oldsn=%" PRIu32 ", cursn=%" PRIu32
993 ", daddr=%" PRId64 ", su_nbytes=%u, "
994 "ndupino=%d)\n",
995 dtosn(fs, daddr),
996 (int)sizeof (struct ufs1_dinode) *
997 (1 - sp->ndupino) - sup->su_nbytes,
998 oldsn, sp->seg_number, daddr,
999 (unsigned int)sup->su_nbytes,
1000 sp->ndupino);
1001 panic("lfs_writeinode: negative bytes");
1002 sup->su_nbytes = sizeof (struct ufs1_dinode);
1003 }
1004 #endif
1005 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1006 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1007 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1008 redo_ifile |=
1009 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1010 if (redo_ifile) {
1011 mutex_enter(&fs->lfs_interlock);
1012 fs->lfs_flags |= LFS_IFDIRTY;
1013 mutex_exit(&fs->lfs_interlock);
1014 /* Don't double-account */
1015 fs->lfs_idaddr = 0x0;
1016 }
1017 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1018 }
1019
1020 return redo_ifile;
1021 }
1022
1023 int
1024 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1025 {
1026 struct buf *bp;
1027 struct ufs1_dinode *cdp;
1028 daddr_t daddr;
1029 int32_t *daddrp; /* XXX ondisk32 */
1030 int i, ndx;
1031 int redo_ifile = 0;
1032 int gotblk = 0;
1033 int count;
1034
1035 ASSERT_SEGLOCK(fs);
1036 if (!(ip->i_flag & IN_ALLMOD))
1037 return (0);
1038
1039 /* Can't write ifile when writer is not set */
1040 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1041 (sp->seg_flags & SEGM_CLEAN));
1042
1043 /*
1044 * If this is the Ifile, see if writing it here will generate a
1045 * temporary misaccounting. If it will, do the accounting and write
1046 * the blocks, postponing the inode write until the accounting is
1047 * solid.
1048 */
1049 count = 0;
1050 while (ip->i_number == LFS_IFILE_INUM) {
1051 int redo = 0;
1052
1053 if (sp->idp == NULL && sp->ibp == NULL &&
1054 (sp->seg_bytes_left < fs->lfs_ibsize ||
1055 sp->sum_bytes_left < sizeof(int32_t))) {
1056 (void) lfs_writeseg(fs, sp);
1057 continue;
1058 }
1059
1060 /* Look for dirty Ifile blocks */
1061 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1062 if (!(bp->b_flags & B_GATHERED)) {
1063 redo = 1;
1064 break;
1065 }
1066 }
1067
1068 if (redo == 0)
1069 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1070 if (redo == 0)
1071 break;
1072
1073 if (sp->idp) {
1074 sp->idp->di_inumber = 0;
1075 sp->idp = NULL;
1076 }
1077 ++count;
1078 if (count > 2)
1079 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1080 lfs_writefile(fs, sp, fs->lfs_ivnode);
1081 }
1082
1083 /* Allocate a new inode block if necessary. */
1084 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1085 sp->ibp == NULL) {
1086 /* Allocate a new segment if necessary. */
1087 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1088 sp->sum_bytes_left < sizeof(int32_t))
1089 (void) lfs_writeseg(fs, sp);
1090
1091 /* Get next inode block. */
1092 daddr = fs->lfs_offset;
1093 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1094 sp->ibp = *sp->cbpp++ =
1095 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1096 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1097 gotblk++;
1098
1099 /* Zero out inode numbers */
1100 for (i = 0; i < INOPB(fs); ++i)
1101 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1102 0;
1103
1104 ++sp->start_bpp;
1105 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1106 /* Set remaining space counters. */
1107 sp->seg_bytes_left -= fs->lfs_ibsize;
1108 sp->sum_bytes_left -= sizeof(int32_t);
1109 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1110 sp->ninodes / INOPB(fs) - 1;
1111 ((int32_t *)(sp->segsum))[ndx] = daddr;
1112 }
1113
1114 /* Check VDIROP in case there is a new file with no data blocks */
1115 if (ITOV(ip)->v_uflag & VU_DIROP)
1116 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1117
1118 /* Update the inode times and copy the inode onto the inode page. */
1119 /* XXX kludge --- don't redirty the ifile just to put times on it */
1120 if (ip->i_number != LFS_IFILE_INUM)
1121 LFS_ITIMES(ip, NULL, NULL, NULL);
1122
1123 /*
1124 * If this is the Ifile, and we've already written the Ifile in this
1125 * partial segment, just overwrite it (it's not on disk yet) and
1126 * continue.
1127 *
1128 * XXX we know that the bp that we get the second time around has
1129 * already been gathered.
1130 */
1131 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1132 *(sp->idp) = *ip->i_din.ffs1_din;
1133 ip->i_lfs_osize = ip->i_size;
1134 return 0;
1135 }
1136
1137 bp = sp->ibp;
1138 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1139 *cdp = *ip->i_din.ffs1_din;
1140
1141 /*
1142 * If cleaning, link counts and directory file sizes cannot change,
1143 * since those would be directory operations---even if the file
1144 * we are writing is marked VDIROP we should write the old values.
1145 * If we're not cleaning, of course, update the values so we get
1146 * current values the next time we clean.
1147 */
1148 if (sp->seg_flags & SEGM_CLEAN) {
1149 if (ITOV(ip)->v_uflag & VU_DIROP) {
1150 cdp->di_nlink = ip->i_lfs_odnlink;
1151 /* if (ITOV(ip)->v_type == VDIR) */
1152 cdp->di_size = ip->i_lfs_osize;
1153 }
1154 } else {
1155 ip->i_lfs_odnlink = cdp->di_nlink;
1156 ip->i_lfs_osize = ip->i_size;
1157 }
1158
1159
1160 /* We can finish the segment accounting for truncations now */
1161 lfs_finalize_ino_seguse(fs, ip);
1162
1163 /*
1164 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1165 * addresses to disk; possibly change the on-disk record of
1166 * the inode size, either by reverting to the previous size
1167 * (in the case of cleaning) or by verifying the inode's block
1168 * holdings (in the case of files being allocated as they are being
1169 * written).
1170 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1171 * XXX count on disk wrong by the same amount. We should be
1172 * XXX able to "borrow" from lfs_avail and return it after the
1173 * XXX Ifile is written. See also in lfs_writeseg.
1174 */
1175
1176 /* Check file size based on highest allocated block */
1177 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1178 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1179 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1180 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1181 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1182 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1183 }
1184 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1185 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1186 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1187 ip->i_ffs1_blocks, fs->lfs_offset));
1188 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1189 daddrp++) {
1190 if (*daddrp == UNWRITTEN) {
1191 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1192 *daddrp = 0;
1193 }
1194 }
1195 }
1196
1197 #ifdef DIAGNOSTIC
1198 /*
1199 * Check dinode held blocks against dinode size.
1200 * This should be identical to the check in lfs_vget().
1201 */
1202 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1203 i < NDADDR; i++) {
1204 KASSERT(i >= 0);
1205 if ((cdp->di_mode & IFMT) == IFLNK)
1206 continue;
1207 if (((cdp->di_mode & IFMT) == IFBLK ||
1208 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1209 continue;
1210 if (cdp->di_db[i] != 0) {
1211 # ifdef DEBUG
1212 lfs_dump_dinode(cdp);
1213 # endif
1214 panic("writing inconsistent inode");
1215 }
1216 }
1217 #endif /* DIAGNOSTIC */
1218
1219 if (ip->i_flag & IN_CLEANING)
1220 LFS_CLR_UINO(ip, IN_CLEANING);
1221 else {
1222 /* XXX IN_ALLMOD */
1223 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1224 IN_UPDATE | IN_MODIFY);
1225 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1226 LFS_CLR_UINO(ip, IN_MODIFIED);
1227 else {
1228 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1229 "blks=%d, eff=%d\n", ip->i_number,
1230 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1231 }
1232 }
1233
1234 if (ip->i_number == LFS_IFILE_INUM) {
1235 /* We know sp->idp == NULL */
1236 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1237 (sp->ninodes % INOPB(fs));
1238
1239 /* Not dirty any more */
1240 mutex_enter(&fs->lfs_interlock);
1241 fs->lfs_flags &= ~LFS_IFDIRTY;
1242 mutex_exit(&fs->lfs_interlock);
1243 }
1244
1245 if (gotblk) {
1246 mutex_enter(&bufcache_lock);
1247 LFS_LOCK_BUF(bp);
1248 brelsel(bp, 0);
1249 mutex_exit(&bufcache_lock);
1250 }
1251
1252 /* Increment inode count in segment summary block. */
1253 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1254
1255 /* If this page is full, set flag to allocate a new page. */
1256 if (++sp->ninodes % INOPB(fs) == 0)
1257 sp->ibp = NULL;
1258
1259 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1260
1261 KASSERT(redo_ifile == 0);
1262 return (redo_ifile);
1263 }
1264
1265 int
1266 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1267 {
1268 struct lfs *fs;
1269 int vers;
1270 int j, blksinblk;
1271
1272 ASSERT_SEGLOCK(sp->fs);
1273 /*
1274 * If full, finish this segment. We may be doing I/O, so
1275 * release and reacquire the splbio().
1276 */
1277 #ifdef DIAGNOSTIC
1278 if (sp->vp == NULL)
1279 panic ("lfs_gatherblock: Null vp in segment");
1280 #endif
1281 fs = sp->fs;
1282 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1283 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1284 sp->seg_bytes_left < bp->b_bcount) {
1285 if (sptr)
1286 splx(*sptr);
1287 lfs_updatemeta(sp);
1288
1289 vers = sp->fip->fi_version;
1290 (void) lfs_writeseg(fs, sp);
1291
1292 /* Add the current file to the segment summary. */
1293 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1294
1295 if (sptr)
1296 *sptr = splbio();
1297 return (1);
1298 }
1299
1300 if (bp->b_flags & B_GATHERED) {
1301 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1302 " lbn %" PRId64 "\n",
1303 sp->fip->fi_ino, bp->b_lblkno));
1304 return (0);
1305 }
1306
1307 /* Insert into the buffer list, update the FINFO block. */
1308 bp->b_flags |= B_GATHERED;
1309
1310 *sp->cbpp++ = bp;
1311 for (j = 0; j < blksinblk; j++) {
1312 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1313 /* This block's accounting moves from lfs_favail to lfs_avail */
1314 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1315 }
1316
1317 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1318 sp->seg_bytes_left -= bp->b_bcount;
1319 return (0);
1320 }
1321
1322 int
1323 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1324 int (*match)(struct lfs *, struct buf *))
1325 {
1326 struct buf *bp, *nbp;
1327 int s, count = 0;
1328
1329 ASSERT_SEGLOCK(fs);
1330 if (vp->v_type == VBLK)
1331 return 0;
1332 KASSERT(sp->vp == NULL);
1333 sp->vp = vp;
1334 s = splbio();
1335
1336 #ifndef LFS_NO_BACKBUF_HACK
1337 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1338 # define BUF_OFFSET \
1339 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1340 # define BACK_BUF(BP) \
1341 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1342 # define BEG_OF_LIST \
1343 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1344
1345 loop:
1346 /* Find last buffer. */
1347 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1348 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1349 bp = LIST_NEXT(bp, b_vnbufs))
1350 /* nothing */;
1351 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1352 nbp = BACK_BUF(bp);
1353 #else /* LFS_NO_BACKBUF_HACK */
1354 loop:
1355 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1356 nbp = LIST_NEXT(bp, b_vnbufs);
1357 #endif /* LFS_NO_BACKBUF_HACK */
1358 if ((bp->b_cflags & BC_BUSY) != 0 ||
1359 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1360 #ifdef DEBUG
1361 if (vp == fs->lfs_ivnode &&
1362 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1363 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1364 PRId64 " busy (%x) at 0x%x",
1365 bp->b_lblkno, bp->b_flags,
1366 (unsigned)fs->lfs_offset);
1367 #endif
1368 continue;
1369 }
1370 #ifdef DIAGNOSTIC
1371 # ifdef LFS_USE_B_INVAL
1372 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1373 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1374 " is BC_INVAL\n", bp->b_lblkno));
1375 VOP_PRINT(bp->b_vp);
1376 }
1377 # endif /* LFS_USE_B_INVAL */
1378 if (!(bp->b_oflags & BO_DELWRI))
1379 panic("lfs_gather: bp not BO_DELWRI");
1380 if (!(bp->b_cflags & BC_LOCKED)) {
1381 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1382 " blk %" PRId64 " not BC_LOCKED\n",
1383 bp->b_lblkno,
1384 dbtofsb(fs, bp->b_blkno)));
1385 VOP_PRINT(bp->b_vp);
1386 panic("lfs_gather: bp not BC_LOCKED");
1387 }
1388 #endif
1389 if (lfs_gatherblock(sp, bp, &s)) {
1390 goto loop;
1391 }
1392 count++;
1393 }
1394 splx(s);
1395 lfs_updatemeta(sp);
1396 KASSERT(sp->vp == vp);
1397 sp->vp = NULL;
1398 return count;
1399 }
1400
1401 #if DEBUG
1402 # define DEBUG_OOFF(n) do { \
1403 if (ooff == 0) { \
1404 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1405 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1406 ", was 0x0 (or %" PRId64 ")\n", \
1407 (n), ip->i_number, lbn, ndaddr, daddr)); \
1408 } \
1409 } while (0)
1410 #else
1411 # define DEBUG_OOFF(n)
1412 #endif
1413
1414 /*
1415 * Change the given block's address to ndaddr, finding its previous
1416 * location using ufs_bmaparray().
1417 *
1418 * Account for this change in the segment table.
1419 *
1420 * called with sp == NULL by roll-forwarding code.
1421 */
1422 void
1423 lfs_update_single(struct lfs *fs, struct segment *sp,
1424 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1425 {
1426 SEGUSE *sup;
1427 struct buf *bp;
1428 struct indir a[NIADDR + 2], *ap;
1429 struct inode *ip;
1430 daddr_t daddr, ooff;
1431 int num, error;
1432 int bb, osize, obb;
1433
1434 ASSERT_SEGLOCK(fs);
1435 KASSERT(sp == NULL || sp->vp == vp);
1436 ip = VTOI(vp);
1437
1438 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1439 if (error)
1440 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1441
1442 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1443 KASSERT(daddr <= LFS_MAX_DADDR);
1444 if (daddr > 0)
1445 daddr = dbtofsb(fs, daddr);
1446
1447 bb = fragstofsb(fs, numfrags(fs, size));
1448 switch (num) {
1449 case 0:
1450 ooff = ip->i_ffs1_db[lbn];
1451 DEBUG_OOFF(0);
1452 if (ooff == UNWRITTEN)
1453 ip->i_ffs1_blocks += bb;
1454 else {
1455 /* possible fragment truncation or extension */
1456 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1457 ip->i_ffs1_blocks += (bb - obb);
1458 }
1459 ip->i_ffs1_db[lbn] = ndaddr;
1460 break;
1461 case 1:
1462 ooff = ip->i_ffs1_ib[a[0].in_off];
1463 DEBUG_OOFF(1);
1464 if (ooff == UNWRITTEN)
1465 ip->i_ffs1_blocks += bb;
1466 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1467 break;
1468 default:
1469 ap = &a[num - 1];
1470 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1471 panic("lfs_updatemeta: bread bno %" PRId64,
1472 ap->in_lbn);
1473
1474 /* XXX ondisk32 */
1475 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1476 DEBUG_OOFF(num);
1477 if (ooff == UNWRITTEN)
1478 ip->i_ffs1_blocks += bb;
1479 /* XXX ondisk32 */
1480 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1481 (void) VOP_BWRITE(bp);
1482 }
1483
1484 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1485
1486 /* Update hiblk when extending the file */
1487 if (lbn > ip->i_lfs_hiblk)
1488 ip->i_lfs_hiblk = lbn;
1489
1490 /*
1491 * Though we'd rather it couldn't, this *can* happen right now
1492 * if cleaning blocks and regular blocks coexist.
1493 */
1494 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1495
1496 /*
1497 * Update segment usage information, based on old size
1498 * and location.
1499 */
1500 if (daddr > 0) {
1501 u_int32_t oldsn = dtosn(fs, daddr);
1502 #ifdef DIAGNOSTIC
1503 int ndupino;
1504
1505 if (sp && sp->seg_number == oldsn) {
1506 ndupino = sp->ndupino;
1507 } else {
1508 ndupino = 0;
1509 }
1510 #endif
1511 KASSERT(oldsn < fs->lfs_nseg);
1512 if (lbn >= 0 && lbn < NDADDR)
1513 osize = ip->i_lfs_fragsize[lbn];
1514 else
1515 osize = fs->lfs_bsize;
1516 LFS_SEGENTRY(sup, fs, oldsn, bp);
1517 #ifdef DIAGNOSTIC
1518 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1519 < osize) {
1520 printf("lfs_updatemeta: negative bytes "
1521 "(segment %" PRIu32 " short by %" PRId64
1522 ")\n", dtosn(fs, daddr),
1523 (int64_t)osize -
1524 (sizeof (struct ufs1_dinode) * ndupino +
1525 sup->su_nbytes));
1526 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1527 ", addr = 0x%" PRIx64 "\n",
1528 (unsigned long long)ip->i_number, lbn, daddr);
1529 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1530 panic("lfs_updatemeta: negative bytes");
1531 sup->su_nbytes = osize -
1532 sizeof (struct ufs1_dinode) * ndupino;
1533 }
1534 #endif
1535 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1536 " db 0x%" PRIx64 "\n",
1537 dtosn(fs, daddr), osize,
1538 ip->i_number, lbn, daddr));
1539 sup->su_nbytes -= osize;
1540 if (!(bp->b_flags & B_GATHERED)) {
1541 mutex_enter(&fs->lfs_interlock);
1542 fs->lfs_flags |= LFS_IFDIRTY;
1543 mutex_exit(&fs->lfs_interlock);
1544 }
1545 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1546 }
1547 /*
1548 * Now that this block has a new address, and its old
1549 * segment no longer owns it, we can forget about its
1550 * old size.
1551 */
1552 if (lbn >= 0 && lbn < NDADDR)
1553 ip->i_lfs_fragsize[lbn] = size;
1554 }
1555
1556 /*
1557 * Update the metadata that points to the blocks listed in the FINFO
1558 * array.
1559 */
1560 void
1561 lfs_updatemeta(struct segment *sp)
1562 {
1563 struct buf *sbp;
1564 struct lfs *fs;
1565 struct vnode *vp;
1566 daddr_t lbn;
1567 int i, nblocks, num;
1568 int bb;
1569 int bytesleft, size;
1570
1571 ASSERT_SEGLOCK(sp->fs);
1572 vp = sp->vp;
1573 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1574 KASSERT(nblocks >= 0);
1575 KASSERT(vp != NULL);
1576 if (nblocks == 0)
1577 return;
1578
1579 /*
1580 * This count may be high due to oversize blocks from lfs_gop_write.
1581 * Correct for this. (XXX we should be able to keep track of these.)
1582 */
1583 fs = sp->fs;
1584 for (i = 0; i < nblocks; i++) {
1585 if (sp->start_bpp[i] == NULL) {
1586 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1587 nblocks = i;
1588 break;
1589 }
1590 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1591 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1592 nblocks -= num - 1;
1593 }
1594
1595 KASSERT(vp->v_type == VREG ||
1596 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1597 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1598
1599 /*
1600 * Sort the blocks.
1601 *
1602 * We have to sort even if the blocks come from the
1603 * cleaner, because there might be other pending blocks on the
1604 * same inode...and if we don't sort, and there are fragments
1605 * present, blocks may be written in the wrong place.
1606 */
1607 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1608
1609 /*
1610 * Record the length of the last block in case it's a fragment.
1611 * If there are indirect blocks present, they sort last. An
1612 * indirect block will be lfs_bsize and its presence indicates
1613 * that you cannot have fragments.
1614 *
1615 * XXX This last is a lie. A cleaned fragment can coexist with
1616 * XXX a later indirect block. This will continue to be
1617 * XXX true until lfs_markv is fixed to do everything with
1618 * XXX fake blocks (including fake inodes and fake indirect blocks).
1619 */
1620 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1621 fs->lfs_bmask) + 1;
1622
1623 /*
1624 * Assign disk addresses, and update references to the logical
1625 * block and the segment usage information.
1626 */
1627 for (i = nblocks; i--; ++sp->start_bpp) {
1628 sbp = *sp->start_bpp;
1629 lbn = *sp->start_lbp;
1630 KASSERT(sbp->b_lblkno == lbn);
1631
1632 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1633
1634 /*
1635 * If we write a frag in the wrong place, the cleaner won't
1636 * be able to correctly identify its size later, and the
1637 * segment will be uncleanable. (Even worse, it will assume
1638 * that the indirect block that actually ends the list
1639 * is of a smaller size!)
1640 */
1641 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1642 panic("lfs_updatemeta: fragment is not last block");
1643
1644 /*
1645 * For each subblock in this possibly oversized block,
1646 * update its address on disk.
1647 */
1648 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1649 KASSERT(vp == sbp->b_vp);
1650 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1651 bytesleft -= fs->lfs_bsize) {
1652 size = MIN(bytesleft, fs->lfs_bsize);
1653 bb = fragstofsb(fs, numfrags(fs, size));
1654 lbn = *sp->start_lbp++;
1655 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1656 size);
1657 fs->lfs_offset += bb;
1658 }
1659
1660 }
1661
1662 /* This inode has been modified */
1663 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1664 }
1665
1666 /*
1667 * Move lfs_offset to a segment earlier than sn.
1668 */
1669 int
1670 lfs_rewind(struct lfs *fs, int newsn)
1671 {
1672 int sn, osn, isdirty;
1673 struct buf *bp;
1674 SEGUSE *sup;
1675
1676 ASSERT_SEGLOCK(fs);
1677
1678 osn = dtosn(fs, fs->lfs_offset);
1679 if (osn < newsn)
1680 return 0;
1681
1682 /* lfs_avail eats the remaining space in this segment */
1683 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1684
1685 /* Find a low-numbered segment */
1686 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1687 LFS_SEGENTRY(sup, fs, sn, bp);
1688 isdirty = sup->su_flags & SEGUSE_DIRTY;
1689 brelse(bp, 0);
1690
1691 if (!isdirty)
1692 break;
1693 }
1694 if (sn == fs->lfs_nseg)
1695 panic("lfs_rewind: no clean segments");
1696 if (newsn >= 0 && sn >= newsn)
1697 return ENOENT;
1698 fs->lfs_nextseg = sn;
1699 lfs_newseg(fs);
1700 fs->lfs_offset = fs->lfs_curseg;
1701
1702 return 0;
1703 }
1704
1705 /*
1706 * Start a new partial segment.
1707 *
1708 * Return 1 when we entered to a new segment.
1709 * Otherwise, return 0.
1710 */
1711 int
1712 lfs_initseg(struct lfs *fs)
1713 {
1714 struct segment *sp = fs->lfs_sp;
1715 SEGSUM *ssp;
1716 struct buf *sbp; /* buffer for SEGSUM */
1717 int repeat = 0; /* return value */
1718
1719 ASSERT_SEGLOCK(fs);
1720 /* Advance to the next segment. */
1721 if (!LFS_PARTIAL_FITS(fs)) {
1722 SEGUSE *sup;
1723 struct buf *bp;
1724
1725 /* lfs_avail eats the remaining space */
1726 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1727 fs->lfs_curseg);
1728 /* Wake up any cleaning procs waiting on this file system. */
1729 lfs_wakeup_cleaner(fs);
1730 lfs_newseg(fs);
1731 repeat = 1;
1732 fs->lfs_offset = fs->lfs_curseg;
1733
1734 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1735 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1736
1737 /*
1738 * If the segment contains a superblock, update the offset
1739 * and summary address to skip over it.
1740 */
1741 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1742 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1743 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1744 sp->seg_bytes_left -= LFS_SBPAD;
1745 }
1746 brelse(bp, 0);
1747 /* Segment zero could also contain the labelpad */
1748 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1749 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1750 fs->lfs_offset +=
1751 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1752 sp->seg_bytes_left -=
1753 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1754 }
1755 } else {
1756 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1757 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1758 (fs->lfs_offset - fs->lfs_curseg));
1759 }
1760 fs->lfs_lastpseg = fs->lfs_offset;
1761
1762 /* Record first address of this partial segment */
1763 if (sp->seg_flags & SEGM_CLEAN) {
1764 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1765 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1766 /* "1" is the artificial inc in lfs_seglock */
1767 mutex_enter(&fs->lfs_interlock);
1768 while (fs->lfs_iocount > 1) {
1769 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1770 "lfs_initseg", 0, &fs->lfs_interlock);
1771 }
1772 mutex_exit(&fs->lfs_interlock);
1773 fs->lfs_cleanind = 0;
1774 }
1775 }
1776
1777 sp->fs = fs;
1778 sp->ibp = NULL;
1779 sp->idp = NULL;
1780 sp->ninodes = 0;
1781 sp->ndupino = 0;
1782
1783 sp->cbpp = sp->bpp;
1784
1785 /* Get a new buffer for SEGSUM */
1786 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1787 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1788
1789 /* ... and enter it into the buffer list. */
1790 *sp->cbpp = sbp;
1791 sp->cbpp++;
1792 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1793
1794 sp->start_bpp = sp->cbpp;
1795
1796 /* Set point to SEGSUM, initialize it. */
1797 ssp = sp->segsum = sbp->b_data;
1798 memset(ssp, 0, fs->lfs_sumsize);
1799 ssp->ss_next = fs->lfs_nextseg;
1800 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1801 ssp->ss_magic = SS_MAGIC;
1802
1803 /* Set pointer to first FINFO, initialize it. */
1804 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1805 sp->fip->fi_nblocks = 0;
1806 sp->start_lbp = &sp->fip->fi_blocks[0];
1807 sp->fip->fi_lastlength = 0;
1808
1809 sp->seg_bytes_left -= fs->lfs_sumsize;
1810 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1811
1812 return (repeat);
1813 }
1814
1815 /*
1816 * Remove SEGUSE_INVAL from all segments.
1817 */
1818 void
1819 lfs_unset_inval_all(struct lfs *fs)
1820 {
1821 SEGUSE *sup;
1822 struct buf *bp;
1823 int i;
1824
1825 for (i = 0; i < fs->lfs_nseg; i++) {
1826 LFS_SEGENTRY(sup, fs, i, bp);
1827 if (sup->su_flags & SEGUSE_INVAL) {
1828 sup->su_flags &= ~SEGUSE_INVAL;
1829 LFS_WRITESEGENTRY(sup, fs, i, bp);
1830 } else
1831 brelse(bp, 0);
1832 }
1833 }
1834
1835 /*
1836 * Return the next segment to write.
1837 */
1838 void
1839 lfs_newseg(struct lfs *fs)
1840 {
1841 CLEANERINFO *cip;
1842 SEGUSE *sup;
1843 struct buf *bp;
1844 int curseg, isdirty, sn, skip_inval;
1845
1846 ASSERT_SEGLOCK(fs);
1847
1848 /* Honor LFCNWRAPSTOP */
1849 mutex_enter(&fs->lfs_interlock);
1850 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1851 if (fs->lfs_wrappass) {
1852 log(LOG_NOTICE, "%s: wrappass=%d\n",
1853 fs->lfs_fsmnt, fs->lfs_wrappass);
1854 fs->lfs_wrappass = 0;
1855 break;
1856 }
1857 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1858 wakeup(&fs->lfs_nowrap);
1859 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1860 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1861 &fs->lfs_interlock);
1862 }
1863 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1864 mutex_exit(&fs->lfs_interlock);
1865
1866 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1867 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1868 dtosn(fs, fs->lfs_nextseg)));
1869 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1870 sup->su_nbytes = 0;
1871 sup->su_nsums = 0;
1872 sup->su_ninos = 0;
1873 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1874
1875 LFS_CLEANERINFO(cip, fs, bp);
1876 --cip->clean;
1877 ++cip->dirty;
1878 fs->lfs_nclean = cip->clean;
1879 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1880
1881 fs->lfs_lastseg = fs->lfs_curseg;
1882 fs->lfs_curseg = fs->lfs_nextseg;
1883 skip_inval = 1;
1884 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1885 sn = (sn + 1) % fs->lfs_nseg;
1886
1887 if (sn == curseg) {
1888 if (skip_inval)
1889 skip_inval = 0;
1890 else
1891 panic("lfs_nextseg: no clean segments");
1892 }
1893 LFS_SEGENTRY(sup, fs, sn, bp);
1894 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1895 /* Check SEGUSE_EMPTY as we go along */
1896 if (isdirty && sup->su_nbytes == 0 &&
1897 !(sup->su_flags & SEGUSE_EMPTY))
1898 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1899 else
1900 brelse(bp, 0);
1901
1902 if (!isdirty)
1903 break;
1904 }
1905 if (skip_inval == 0)
1906 lfs_unset_inval_all(fs);
1907
1908 ++fs->lfs_nactive;
1909 fs->lfs_nextseg = sntod(fs, sn);
1910 if (lfs_dostats) {
1911 ++lfs_stats.segsused;
1912 }
1913 }
1914
1915 static struct buf *
1916 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1917 int n)
1918 {
1919 struct lfs_cluster *cl;
1920 struct buf **bpp, *bp;
1921
1922 ASSERT_SEGLOCK(fs);
1923 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1924 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1925 memset(cl, 0, sizeof(*cl));
1926 cl->fs = fs;
1927 cl->bpp = bpp;
1928 cl->bufcount = 0;
1929 cl->bufsize = 0;
1930
1931 /* If this segment is being written synchronously, note that */
1932 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1933 cl->flags |= LFS_CL_SYNC;
1934 cl->seg = fs->lfs_sp;
1935 ++cl->seg->seg_iocount;
1936 }
1937
1938 /* Get an empty buffer header, or maybe one with something on it */
1939 bp = getiobuf(vp, true);
1940 bp->b_dev = NODEV;
1941 bp->b_blkno = bp->b_lblkno = addr;
1942 bp->b_iodone = lfs_cluster_callback;
1943 bp->b_private = cl;
1944
1945 return bp;
1946 }
1947
1948 int
1949 lfs_writeseg(struct lfs *fs, struct segment *sp)
1950 {
1951 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1952 SEGUSE *sup;
1953 SEGSUM *ssp;
1954 int i;
1955 int do_again, nblocks, byteoffset;
1956 size_t el_size;
1957 struct lfs_cluster *cl;
1958 u_short ninos;
1959 struct vnode *devvp;
1960 char *p = NULL;
1961 struct vnode *vp;
1962 int32_t *daddrp; /* XXX ondisk32 */
1963 int changed;
1964 u_int32_t sum;
1965 #ifdef DEBUG
1966 FINFO *fip;
1967 int findex;
1968 #endif
1969
1970 ASSERT_SEGLOCK(fs);
1971
1972 ssp = (SEGSUM *)sp->segsum;
1973
1974 /*
1975 * If there are no buffers other than the segment summary to write,
1976 * don't do anything. If we are the end of a dirop sequence, however,
1977 * write the empty segment summary anyway, to help out the
1978 * roll-forward agent.
1979 */
1980 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1981 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1982 return 0;
1983 }
1984
1985 /* Note if partial segment is being written by the cleaner */
1986 if (sp->seg_flags & SEGM_CLEAN)
1987 ssp->ss_flags |= SS_CLEAN;
1988
1989 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1990
1991 /* Update the segment usage information. */
1992 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1993
1994 /* Loop through all blocks, except the segment summary. */
1995 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1996 if ((*bpp)->b_vp != devvp) {
1997 sup->su_nbytes += (*bpp)->b_bcount;
1998 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
1999 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2000 sp->seg_number, (*bpp)->b_bcount,
2001 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2002 (*bpp)->b_blkno));
2003 }
2004 }
2005
2006 #ifdef DEBUG
2007 /* Check for zero-length and zero-version FINFO entries. */
2008 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2009 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2010 KDASSERT(fip->fi_nblocks > 0);
2011 KDASSERT(fip->fi_version > 0);
2012 fip = (FINFO *)((char *)fip + FINFOSIZE +
2013 sizeof(int32_t) * fip->fi_nblocks);
2014 }
2015 #endif /* DEBUG */
2016
2017 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2018 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2019 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2020 ssp->ss_ninos));
2021 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2022 /* sup->su_nbytes += fs->lfs_sumsize; */
2023 if (fs->lfs_version == 1)
2024 sup->su_olastmod = time_second;
2025 else
2026 sup->su_lastmod = time_second;
2027 sup->su_ninos += ninos;
2028 ++sup->su_nsums;
2029 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2030
2031 do_again = !(bp->b_flags & B_GATHERED);
2032 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2033
2034 /*
2035 * Mark blocks B_BUSY, to prevent then from being changed between
2036 * the checksum computation and the actual write.
2037 *
2038 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2039 * there are any, replace them with copies that have UNASSIGNED
2040 * instead.
2041 */
2042 mutex_enter(&bufcache_lock);
2043 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2044 ++bpp;
2045 bp = *bpp;
2046 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2047 bp->b_cflags |= BC_BUSY;
2048 continue;
2049 }
2050
2051 while (bp->b_cflags & BC_BUSY) {
2052 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2053 " data summary corruption for ino %d, lbn %"
2054 PRId64 "\n",
2055 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2056 bp->b_cflags |= BC_WANTED;
2057 cv_wait(&bp->b_busy, &bufcache_lock);
2058 }
2059 bp->b_cflags |= BC_BUSY;
2060 mutex_exit(&bufcache_lock);
2061 unbusybp = NULL;
2062
2063 /*
2064 * Check and replace indirect block UNWRITTEN bogosity.
2065 * XXX See comment in lfs_writefile.
2066 */
2067 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2068 VTOI(bp->b_vp)->i_ffs1_blocks !=
2069 VTOI(bp->b_vp)->i_lfs_effnblks) {
2070 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2071 VTOI(bp->b_vp)->i_number,
2072 VTOI(bp->b_vp)->i_lfs_effnblks,
2073 VTOI(bp->b_vp)->i_ffs1_blocks));
2074 /* Make a copy we'll make changes to */
2075 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2076 bp->b_bcount, LFS_NB_IBLOCK);
2077 newbp->b_blkno = bp->b_blkno;
2078 memcpy(newbp->b_data, bp->b_data,
2079 newbp->b_bcount);
2080
2081 changed = 0;
2082 /* XXX ondisk32 */
2083 for (daddrp = (int32_t *)(newbp->b_data);
2084 daddrp < (int32_t *)((char *)newbp->b_data +
2085 newbp->b_bcount); daddrp++) {
2086 if (*daddrp == UNWRITTEN) {
2087 ++changed;
2088 *daddrp = 0;
2089 }
2090 }
2091 /*
2092 * Get rid of the old buffer. Don't mark it clean,
2093 * though, if it still has dirty data on it.
2094 */
2095 if (changed) {
2096 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2097 " bp = %p newbp = %p\n", changed, bp,
2098 newbp));
2099 *bpp = newbp;
2100 bp->b_flags &= ~B_GATHERED;
2101 bp->b_error = 0;
2102 if (bp->b_iodone != NULL) {
2103 DLOG((DLOG_SEG, "lfs_writeseg: "
2104 "indir bp should not be B_CALL\n"));
2105 biodone(bp);
2106 bp = NULL;
2107 } else {
2108 /* Still on free list, leave it there */
2109 unbusybp = bp;
2110 /*
2111 * We have to re-decrement lfs_avail
2112 * since this block is going to come
2113 * back around to us in the next
2114 * segment.
2115 */
2116 fs->lfs_avail -=
2117 btofsb(fs, bp->b_bcount);
2118 }
2119 } else {
2120 lfs_freebuf(fs, newbp);
2121 }
2122 }
2123 mutex_enter(&bufcache_lock);
2124 if (unbusybp != NULL) {
2125 unbusybp->b_cflags &= ~BC_BUSY;
2126 if (unbusybp->b_cflags & BC_WANTED)
2127 cv_broadcast(&bp->b_busy);
2128 }
2129 }
2130 mutex_exit(&bufcache_lock);
2131
2132 /*
2133 * Compute checksum across data and then across summary; the first
2134 * block (the summary block) is skipped. Set the create time here
2135 * so that it's guaranteed to be later than the inode mod times.
2136 */
2137 sum = 0;
2138 if (fs->lfs_version == 1)
2139 el_size = sizeof(u_long);
2140 else
2141 el_size = sizeof(u_int32_t);
2142 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2143 ++bpp;
2144 /* Loop through gop_write cluster blocks */
2145 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2146 byteoffset += fs->lfs_bsize) {
2147 #ifdef LFS_USE_B_INVAL
2148 if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2149 (*bpp)->b_iodone != NULL) {
2150 if (copyin((void *)(*bpp)->b_saveaddr +
2151 byteoffset, dp, el_size)) {
2152 panic("lfs_writeseg: copyin failed [1]:"
2153 " ino %d blk %" PRId64,
2154 VTOI((*bpp)->b_vp)->i_number,
2155 (*bpp)->b_lblkno);
2156 }
2157 } else
2158 #endif /* LFS_USE_B_INVAL */
2159 {
2160 sum = lfs_cksum_part((char *)
2161 (*bpp)->b_data + byteoffset, el_size, sum);
2162 }
2163 }
2164 }
2165 if (fs->lfs_version == 1)
2166 ssp->ss_ocreate = time_second;
2167 else {
2168 ssp->ss_create = time_second;
2169 ssp->ss_serial = ++fs->lfs_serial;
2170 ssp->ss_ident = fs->lfs_ident;
2171 }
2172 ssp->ss_datasum = lfs_cksum_fold(sum);
2173 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2174 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2175
2176 mutex_enter(&fs->lfs_interlock);
2177 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2178 btofsb(fs, fs->lfs_sumsize));
2179 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2180 btofsb(fs, fs->lfs_sumsize));
2181 mutex_exit(&fs->lfs_interlock);
2182
2183 /*
2184 * When we simply write the blocks we lose a rotation for every block
2185 * written. To avoid this problem, we cluster the buffers into a
2186 * chunk and write the chunk. MAXPHYS is the largest size I/O
2187 * devices can handle, use that for the size of the chunks.
2188 *
2189 * Blocks that are already clusters (from GOP_WRITE), however, we
2190 * don't bother to copy into other clusters.
2191 */
2192
2193 #define CHUNKSIZE MAXPHYS
2194
2195 if (devvp == NULL)
2196 panic("devvp is NULL");
2197 for (bpp = sp->bpp, i = nblocks; i;) {
2198 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2199 cl = cbp->b_private;
2200
2201 cbp->b_flags |= B_ASYNC;
2202 cbp->b_cflags |= BC_BUSY;
2203 cbp->b_bcount = 0;
2204
2205 #if defined(DEBUG) && defined(DIAGNOSTIC)
2206 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2207 / sizeof(int32_t)) {
2208 panic("lfs_writeseg: real bpp overwrite");
2209 }
2210 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2211 panic("lfs_writeseg: theoretical bpp overwrite");
2212 }
2213 #endif
2214
2215 /*
2216 * Construct the cluster.
2217 */
2218 mutex_enter(&fs->lfs_interlock);
2219 ++fs->lfs_iocount;
2220 mutex_exit(&fs->lfs_interlock);
2221 while (i && cbp->b_bcount < CHUNKSIZE) {
2222 bp = *bpp;
2223
2224 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2225 break;
2226 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2227 break;
2228
2229 /* Clusters from GOP_WRITE are expedited */
2230 if (bp->b_bcount > fs->lfs_bsize) {
2231 if (cbp->b_bcount > 0)
2232 /* Put in its own buffer */
2233 break;
2234 else {
2235 cbp->b_data = bp->b_data;
2236 }
2237 } else if (cbp->b_bcount == 0) {
2238 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2239 LFS_NB_CLUSTER);
2240 cl->flags |= LFS_CL_MALLOC;
2241 }
2242 #ifdef DIAGNOSTIC
2243 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2244 btodb(bp->b_bcount - 1))) !=
2245 sp->seg_number) {
2246 printf("blk size %d daddr %" PRIx64
2247 " not in seg %d\n",
2248 bp->b_bcount, bp->b_blkno,
2249 sp->seg_number);
2250 panic("segment overwrite");
2251 }
2252 #endif
2253
2254 #ifdef LFS_USE_B_INVAL
2255 /*
2256 * Fake buffers from the cleaner are marked as B_INVAL.
2257 * We need to copy the data from user space rather than
2258 * from the buffer indicated.
2259 * XXX == what do I do on an error?
2260 */
2261 if ((bp->b_cflags & BC_INVAL) != 0 &&
2262 bp->b_iodone != NULL) {
2263 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2264 panic("lfs_writeseg: "
2265 "copyin failed [2]");
2266 } else
2267 #endif /* LFS_USE_B_INVAL */
2268 if (cl->flags & LFS_CL_MALLOC) {
2269 /* copy data into our cluster. */
2270 memcpy(p, bp->b_data, bp->b_bcount);
2271 p += bp->b_bcount;
2272 }
2273
2274 cbp->b_bcount += bp->b_bcount;
2275 cl->bufsize += bp->b_bcount;
2276
2277 bp->b_flags &= ~B_READ;
2278 bp->b_error = 0;
2279 cl->bpp[cl->bufcount++] = bp;
2280
2281 vp = bp->b_vp;
2282 mutex_enter(&bufcache_lock);
2283 mutex_enter(&vp->v_interlock);
2284 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2285 reassignbuf(bp, vp);
2286 vp->v_numoutput++;
2287 mutex_exit(&vp->v_interlock);
2288 mutex_exit(&bufcache_lock);
2289
2290 bpp++;
2291 i--;
2292 }
2293 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2294 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2295 else
2296 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2297 mutex_enter(&devvp->v_interlock);
2298 devvp->v_numoutput++;
2299 mutex_exit(&devvp->v_interlock);
2300 VOP_STRATEGY(devvp, cbp);
2301 curproc->p_stats->p_ru.ru_oublock++;
2302 }
2303
2304 if (lfs_dostats) {
2305 ++lfs_stats.psegwrites;
2306 lfs_stats.blocktot += nblocks - 1;
2307 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2308 ++lfs_stats.psyncwrites;
2309 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2310 ++lfs_stats.pcleanwrites;
2311 lfs_stats.cleanblocks += nblocks - 1;
2312 }
2313 }
2314
2315 return (lfs_initseg(fs) || do_again);
2316 }
2317
2318 void
2319 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2320 {
2321 struct buf *bp;
2322 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2323 int s;
2324
2325 ASSERT_MAYBE_SEGLOCK(fs);
2326 #ifdef DIAGNOSTIC
2327 KASSERT(fs->lfs_magic == LFS_MAGIC);
2328 #endif
2329 /*
2330 * If we can write one superblock while another is in
2331 * progress, we risk not having a complete checkpoint if we crash.
2332 * So, block here if a superblock write is in progress.
2333 */
2334 mutex_enter(&fs->lfs_interlock);
2335 s = splbio();
2336 while (fs->lfs_sbactive) {
2337 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2338 &fs->lfs_interlock);
2339 }
2340 fs->lfs_sbactive = daddr;
2341 splx(s);
2342 mutex_exit(&fs->lfs_interlock);
2343
2344 /* Set timestamp of this version of the superblock */
2345 if (fs->lfs_version == 1)
2346 fs->lfs_otstamp = time_second;
2347 fs->lfs_tstamp = time_second;
2348
2349 /* Checksum the superblock and copy it into a buffer. */
2350 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2351 bp = lfs_newbuf(fs, devvp,
2352 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2353 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2354 LFS_SBPAD - sizeof(struct dlfs));
2355 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2356
2357 bp->b_cflags |= BC_BUSY;
2358 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2359 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2360 bp->b_error = 0;
2361 bp->b_iodone = lfs_supercallback;
2362
2363 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2364 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2365 else
2366 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2367 curproc->p_stats->p_ru.ru_oublock++;
2368
2369 mutex_enter(&devvp->v_interlock);
2370 devvp->v_numoutput++;
2371 mutex_exit(&devvp->v_interlock);
2372
2373 mutex_enter(&fs->lfs_interlock);
2374 ++fs->lfs_iocount;
2375 mutex_exit(&fs->lfs_interlock);
2376 VOP_STRATEGY(devvp, bp);
2377 }
2378
2379 /*
2380 * Logical block number match routines used when traversing the dirty block
2381 * chain.
2382 */
2383 int
2384 lfs_match_fake(struct lfs *fs, struct buf *bp)
2385 {
2386
2387 ASSERT_SEGLOCK(fs);
2388 return LFS_IS_MALLOC_BUF(bp);
2389 }
2390
2391 #if 0
2392 int
2393 lfs_match_real(struct lfs *fs, struct buf *bp)
2394 {
2395
2396 ASSERT_SEGLOCK(fs);
2397 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2398 }
2399 #endif
2400
2401 int
2402 lfs_match_data(struct lfs *fs, struct buf *bp)
2403 {
2404
2405 ASSERT_SEGLOCK(fs);
2406 return (bp->b_lblkno >= 0);
2407 }
2408
2409 int
2410 lfs_match_indir(struct lfs *fs, struct buf *bp)
2411 {
2412 daddr_t lbn;
2413
2414 ASSERT_SEGLOCK(fs);
2415 lbn = bp->b_lblkno;
2416 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2417 }
2418
2419 int
2420 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2421 {
2422 daddr_t lbn;
2423
2424 ASSERT_SEGLOCK(fs);
2425 lbn = bp->b_lblkno;
2426 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2427 }
2428
2429 int
2430 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2431 {
2432 daddr_t lbn;
2433
2434 ASSERT_SEGLOCK(fs);
2435 lbn = bp->b_lblkno;
2436 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2437 }
2438
2439 static void
2440 lfs_free_aiodone(struct buf *bp)
2441 {
2442 struct lfs *fs;
2443
2444 fs = bp->b_private;
2445 ASSERT_NO_SEGLOCK(fs);
2446 lfs_freebuf(fs, bp);
2447 }
2448
2449 static void
2450 lfs_super_aiodone(struct buf *bp)
2451 {
2452 struct lfs *fs;
2453
2454 fs = bp->b_private;
2455 ASSERT_NO_SEGLOCK(fs);
2456 mutex_enter(&fs->lfs_interlock);
2457 fs->lfs_sbactive = 0;
2458 if (--fs->lfs_iocount <= 1)
2459 wakeup(&fs->lfs_iocount);
2460 mutex_exit(&fs->lfs_interlock);
2461 wakeup(&fs->lfs_sbactive);
2462 lfs_freebuf(fs, bp);
2463 }
2464
2465 static void
2466 lfs_cluster_aiodone(struct buf *bp)
2467 {
2468 struct lfs_cluster *cl;
2469 struct lfs *fs;
2470 struct buf *tbp, *fbp;
2471 struct vnode *vp, *devvp, *ovp;
2472 struct inode *ip;
2473 int error;
2474
2475 error = bp->b_error;
2476 cl = bp->b_private;
2477 fs = cl->fs;
2478 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2479 ASSERT_NO_SEGLOCK(fs);
2480
2481 /* Put the pages back, and release the buffer */
2482 while (cl->bufcount--) {
2483 tbp = cl->bpp[cl->bufcount];
2484 KASSERT(tbp->b_cflags & BC_BUSY);
2485 if (error) {
2486 tbp->b_error = error;
2487 }
2488
2489 /*
2490 * We're done with tbp. If it has not been re-dirtied since
2491 * the cluster was written, free it. Otherwise, keep it on
2492 * the locked list to be written again.
2493 */
2494 vp = tbp->b_vp;
2495
2496 tbp->b_flags &= ~B_GATHERED;
2497
2498 LFS_BCLEAN_LOG(fs, tbp);
2499
2500 if (tbp->b_iodone == NULL) {
2501 KASSERT(tbp->b_cflags & BC_LOCKED);
2502 mutex_enter(&bufcache_lock);
2503 bremfree(tbp);
2504 mutex_exit(&bufcache_lock);
2505 if (vp) {
2506 mutex_enter(&vp->v_interlock);
2507 reassignbuf(tbp, vp);
2508 mutex_exit(&vp->v_interlock);
2509 }
2510 tbp->b_flags |= B_ASYNC; /* for biodone */
2511 }
2512
2513 if (((tbp->b_cflags | tbp->b_oflags) &
2514 (BC_LOCKED | BO_DELWRI)) == BC_LOCKED)
2515 LFS_UNLOCK_BUF(tbp);
2516
2517 if (tbp->b_oflags & BO_DONE) {
2518 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2519 cl->bufcount, (long)tbp->b_flags));
2520 }
2521
2522 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2523 /*
2524 * A buffer from the page daemon.
2525 * We use the same iodone as it does,
2526 * so we must manually disassociate its
2527 * buffers from the vp.
2528 */
2529 if (tbp->b_vp) {
2530 /* This is just silly */
2531 ovp = tbp->b_vp;
2532 mutex_enter(&vp->v_interlock);
2533 brelvp(tbp);
2534 tbp->b_vp = vp;
2535 holdrelel(ovp);
2536 mutex_exit(&vp->v_interlock);
2537 }
2538 /* Put it back the way it was */
2539 tbp->b_flags |= B_ASYNC;
2540 /* Master buffers have BC_AGE */
2541 if (tbp->b_private == tbp)
2542 tbp->b_flags |= BC_AGE;
2543 }
2544
2545 biodone(tbp);
2546
2547 /*
2548 * If this is the last block for this vnode, but
2549 * there are other blocks on its dirty list,
2550 * set IN_MODIFIED/IN_CLEANING depending on what
2551 * sort of block. Only do this for our mount point,
2552 * not for, e.g., inode blocks that are attached to
2553 * the devvp.
2554 * XXX KS - Shouldn't we set *both* if both types
2555 * of blocks are present (traverse the dirty list?)
2556 */
2557 mutex_enter(&fs->lfs_interlock);
2558 mutex_enter(&vp->v_interlock);
2559 if (vp != devvp && vp->v_numoutput == 0 &&
2560 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2561 ip = VTOI(vp);
2562 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2563 ip->i_number));
2564 if (LFS_IS_MALLOC_BUF(fbp))
2565 LFS_SET_UINO(ip, IN_CLEANING);
2566 else
2567 LFS_SET_UINO(ip, IN_MODIFIED);
2568 }
2569 cv_broadcast(&vp->v_cv);
2570 mutex_exit(&vp->v_interlock);
2571 mutex_exit(&fs->lfs_interlock);
2572 }
2573
2574 /* Fix up the cluster buffer, and release it */
2575 if (cl->flags & LFS_CL_MALLOC)
2576 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2577 putiobuf(bp);
2578
2579 /* Note i/o done */
2580 if (cl->flags & LFS_CL_SYNC) {
2581 if (--cl->seg->seg_iocount == 0)
2582 wakeup(&cl->seg->seg_iocount);
2583 }
2584 mutex_enter(&fs->lfs_interlock);
2585 #ifdef DIAGNOSTIC
2586 if (fs->lfs_iocount == 0)
2587 panic("lfs_cluster_aiodone: zero iocount");
2588 #endif
2589 if (--fs->lfs_iocount <= 1)
2590 wakeup(&fs->lfs_iocount);
2591 mutex_exit(&fs->lfs_interlock);
2592
2593 pool_put(&fs->lfs_bpppool, cl->bpp);
2594 cl->bpp = NULL;
2595 pool_put(&fs->lfs_clpool, cl);
2596 }
2597
2598 static void
2599 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2600 {
2601 /* reset b_iodone for when this is a single-buf i/o. */
2602 bp->b_iodone = aiodone;
2603
2604 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2605 }
2606
2607 static void
2608 lfs_cluster_callback(struct buf *bp)
2609 {
2610
2611 lfs_generic_callback(bp, lfs_cluster_aiodone);
2612 }
2613
2614 void
2615 lfs_supercallback(struct buf *bp)
2616 {
2617
2618 lfs_generic_callback(bp, lfs_super_aiodone);
2619 }
2620
2621 /*
2622 * The only buffers that are going to hit these functions are the
2623 * segment write blocks, or the segment summaries, or the superblocks.
2624 *
2625 * All of the above are created by lfs_newbuf, and so do not need to be
2626 * released via brelse.
2627 */
2628 void
2629 lfs_callback(struct buf *bp)
2630 {
2631
2632 lfs_generic_callback(bp, lfs_free_aiodone);
2633 }
2634
2635 /*
2636 * Shellsort (diminishing increment sort) from Data Structures and
2637 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2638 * see also Knuth Vol. 3, page 84. The increments are selected from
2639 * formula (8), page 95. Roughly O(N^3/2).
2640 */
2641 /*
2642 * This is our own private copy of shellsort because we want to sort
2643 * two parallel arrays (the array of buffer pointers and the array of
2644 * logical block numbers) simultaneously. Note that we cast the array
2645 * of logical block numbers to a unsigned in this routine so that the
2646 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2647 */
2648
2649 void
2650 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2651 {
2652 static int __rsshell_increments[] = { 4, 1, 0 };
2653 int incr, *incrp, t1, t2;
2654 struct buf *bp_temp;
2655
2656 #ifdef DEBUG
2657 incr = 0;
2658 for (t1 = 0; t1 < nmemb; t1++) {
2659 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2660 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2661 /* dump before panic */
2662 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2663 nmemb, size);
2664 incr = 0;
2665 for (t1 = 0; t1 < nmemb; t1++) {
2666 const struct buf *bp = bp_array[t1];
2667
2668 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2669 PRIu64 "\n", t1,
2670 (uint64_t)bp->b_bcount,
2671 (uint64_t)bp->b_lblkno);
2672 printf("lbns:");
2673 for (t2 = 0; t2 * size < bp->b_bcount;
2674 t2++) {
2675 printf(" %" PRId32,
2676 lb_array[incr++]);
2677 }
2678 printf("\n");
2679 }
2680 panic("lfs_shellsort: inconsistent input");
2681 }
2682 }
2683 }
2684 #endif
2685
2686 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2687 for (t1 = incr; t1 < nmemb; ++t1)
2688 for (t2 = t1 - incr; t2 >= 0;)
2689 if ((u_int32_t)bp_array[t2]->b_lblkno >
2690 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2691 bp_temp = bp_array[t2];
2692 bp_array[t2] = bp_array[t2 + incr];
2693 bp_array[t2 + incr] = bp_temp;
2694 t2 -= incr;
2695 } else
2696 break;
2697
2698 /* Reform the list of logical blocks */
2699 incr = 0;
2700 for (t1 = 0; t1 < nmemb; t1++) {
2701 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2702 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2703 }
2704 }
2705 }
2706
2707 /*
2708 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2709 * however, we must press on. Just fake success in that case.
2710 */
2711 int
2712 lfs_vref(struct vnode *vp)
2713 {
2714 int error;
2715 struct lfs *fs;
2716
2717 fs = VTOI(vp)->i_lfs;
2718
2719 ASSERT_MAYBE_SEGLOCK(fs);
2720
2721 /*
2722 * If we return 1 here during a flush, we risk vinvalbuf() not
2723 * being able to flush all of the pages from this vnode, which
2724 * will cause it to panic. So, return 0 if a flush is in progress.
2725 */
2726 error = vget(vp, LK_NOWAIT);
2727 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2728 ++fs->lfs_flushvp_fakevref;
2729 return 0;
2730 }
2731 return error;
2732 }
2733
2734 /*
2735 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2736 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2737 */
2738 void
2739 lfs_vunref(struct vnode *vp)
2740 {
2741 struct lfs *fs;
2742
2743 fs = VTOI(vp)->i_lfs;
2744 ASSERT_MAYBE_SEGLOCK(fs);
2745
2746 /*
2747 * Analogous to lfs_vref, if the node is flushing, fake it.
2748 */
2749 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2750 --fs->lfs_flushvp_fakevref;
2751 return;
2752 }
2753
2754 /* does not call inactive */
2755 vrele2(vp, 0);
2756 }
2757
2758 /*
2759 * We use this when we have vnodes that were loaded in solely for cleaning.
2760 * There is no reason to believe that these vnodes will be referenced again
2761 * soon, since the cleaning process is unrelated to normal filesystem
2762 * activity. Putting cleaned vnodes at the tail of the list has the effect
2763 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2764 * cleaning at the head of the list, instead.
2765 */
2766 void
2767 lfs_vunref_head(struct vnode *vp)
2768 {
2769
2770 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2771
2772 /* does not call inactive, inserts non-held vnode at head of freelist */
2773 vrele2(vp, 1);
2774 }
2775
2776
2777 /*
2778 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2779 * point at uninitialized space.
2780 */
2781 void
2782 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2783 {
2784 struct segment *sp = fs->lfs_sp;
2785
2786 KASSERT(vers > 0);
2787
2788 if (sp->seg_bytes_left < fs->lfs_bsize ||
2789 sp->sum_bytes_left < sizeof(struct finfo))
2790 (void) lfs_writeseg(fs, fs->lfs_sp);
2791
2792 sp->sum_bytes_left -= FINFOSIZE;
2793 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2794 sp->fip->fi_nblocks = 0;
2795 sp->fip->fi_ino = ino;
2796 sp->fip->fi_version = vers;
2797 }
2798
2799 /*
2800 * Release the FINFO entry, either clearing out an unused entry or
2801 * advancing us to the next available entry.
2802 */
2803 void
2804 lfs_release_finfo(struct lfs *fs)
2805 {
2806 struct segment *sp = fs->lfs_sp;
2807
2808 if (sp->fip->fi_nblocks != 0) {
2809 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2810 sizeof(int32_t) * sp->fip->fi_nblocks);
2811 sp->start_lbp = &sp->fip->fi_blocks[0];
2812 } else {
2813 sp->sum_bytes_left += FINFOSIZE;
2814 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2815 }
2816 }
2817