lfs_segment.c revision 1.198.2.4 1 /* $NetBSD: lfs_segment.c,v 1.198.2.4 2007/06/08 14:18:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.198.2.4 2007/06/08 14:18:17 ad Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern kmutex_t vnode_free_list_lock; /* XXX */
120 extern kmutex_t bqueue_lock; /* XXX */
121
122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 static void lfs_free_aiodone(struct buf *);
124 static void lfs_super_aiodone(struct buf *);
125 static void lfs_cluster_aiodone(struct buf *);
126 static void lfs_cluster_callback(struct buf *);
127
128 /*
129 * Determine if it's OK to start a partial in this segment, or if we need
130 * to go on to a new segment.
131 */
132 #define LFS_PARTIAL_FITS(fs) \
133 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 fragstofsb((fs), (fs)->lfs_frag))
135
136 /*
137 * Figure out whether we should do a checkpoint write or go ahead with
138 * an ordinary write.
139 */
140 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141 ((flags & SEGM_CLEAN) == 0 && \
142 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
143 (flags & SEGM_CKP) || \
144 fs->lfs_nclean < LFS_MAX_ACTIVE)))
145
146 int lfs_match_fake(struct lfs *, struct buf *);
147 void lfs_newseg(struct lfs *);
148 /* XXX ondisk32 */
149 void lfs_shellsort(struct buf **, int32_t *, int, int);
150 void lfs_supercallback(struct buf *);
151 void lfs_updatemeta(struct segment *);
152 void lfs_writesuper(struct lfs *, daddr_t);
153 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 struct segment *sp, int dirops);
155
156 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
157 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
158 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
159 int lfs_dirvcount = 0; /* # active dirops */
160
161 /* Statistics Counters */
162 int lfs_dostats = 1;
163 struct lfs_stats lfs_stats;
164
165 /* op values to lfs_writevnodes */
166 #define VN_REG 0
167 #define VN_DIROP 1
168 #define VN_EMPTY 2
169 #define VN_CLEAN 3
170
171 /*
172 * XXX KS - Set modification time on the Ifile, so the cleaner can
173 * read the fs mod time off of it. We don't set IN_UPDATE here,
174 * since we don't really need this to be flushed to disk (and in any
175 * case that wouldn't happen to the Ifile until we checkpoint).
176 */
177 void
178 lfs_imtime(struct lfs *fs)
179 {
180 struct timespec ts;
181 struct inode *ip;
182
183 ASSERT_MAYBE_SEGLOCK(fs);
184 vfs_timestamp(&ts);
185 ip = VTOI(fs->lfs_ivnode);
186 ip->i_ffs1_mtime = ts.tv_sec;
187 ip->i_ffs1_mtimensec = ts.tv_nsec;
188 }
189
190 /*
191 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 */
196
197 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 int relock;
209 int loopcount;
210
211 ip = VTOI(vp);
212 fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 relock = 0;
214
215 top:
216 ASSERT_NO_SEGLOCK(fs);
217 if (ip->i_flag & IN_CLEANING) {
218 ivndebug(vp,"vflush/in_cleaning");
219 mutex_enter(&fs->lfs_interlock);
220 LFS_CLR_UINO(ip, IN_CLEANING);
221 LFS_SET_UINO(ip, IN_MODIFIED);
222 mutex_exit(&fs->lfs_interlock);
223
224 /*
225 * Toss any cleaning buffers that have real counterparts
226 * to avoid losing new data.
227 */
228 s = splbio();
229 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
230 nbp = LIST_NEXT(bp, b_vnbufs);
231 if (!LFS_IS_MALLOC_BUF(bp))
232 continue;
233 /*
234 * Look for pages matching the range covered
235 * by cleaning blocks. It's okay if more dirty
236 * pages appear, so long as none disappear out
237 * from under us.
238 */
239 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
240 vp != fs->lfs_ivnode) {
241 struct vm_page *pg;
242 voff_t off;
243
244 mutex_enter(&vp->v_interlock);
245 for (off = lblktosize(fs, bp->b_lblkno);
246 off < lblktosize(fs, bp->b_lblkno + 1);
247 off += PAGE_SIZE) {
248 pg = uvm_pagelookup(&vp->v_uobj, off);
249 if (pg == NULL)
250 continue;
251 if ((pg->flags & PG_CLEAN) == 0 ||
252 pmap_is_modified(pg)) {
253 fs->lfs_avail += btofsb(fs,
254 bp->b_bcount);
255 wakeup(&fs->lfs_avail);
256 lfs_freebuf(fs, bp);
257 bp = NULL;
258 mutex_exit(&vp->v_interlock);
259 goto nextbp;
260 }
261 }
262 mutex_exit(&vp->v_interlock);
263 }
264 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
265 tbp = tnbp)
266 {
267 tnbp = LIST_NEXT(tbp, b_vnbufs);
268 if (tbp->b_vp == bp->b_vp
269 && tbp->b_lblkno == bp->b_lblkno
270 && tbp != bp)
271 {
272 fs->lfs_avail += btofsb(fs,
273 bp->b_bcount);
274 wakeup(&fs->lfs_avail);
275 lfs_freebuf(fs, bp);
276 bp = NULL;
277 break;
278 }
279 }
280 nextbp:
281 ;
282 }
283 splx(s);
284 }
285
286 /* If the node is being written, wait until that is done */
287 mutex_enter(&vp->v_interlock);
288 s = splbio();
289 if (WRITEINPROG(vp)) {
290 ivndebug(vp,"vflush/writeinprog");
291 mtsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
292 }
293 splx(s);
294 mutex_exit(&vp->v_interlock);
295
296 /* Protect against VXLOCK deadlock in vinvalbuf() */
297 lfs_seglock(fs, SEGM_SYNC);
298
299 /* If we're supposed to flush a freed inode, just toss it */
300 if (ip->i_lfs_iflags & LFSI_DELETED) {
301 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
302 ip->i_number));
303 s = splbio();
304 /* Drain v_numoutput */
305 mutex_enter(&global_v_numoutput_lock);
306 while (vp->v_numoutput > 0) {
307 cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
308 }
309 mutex_exit(&global_v_numoutput_lock);
310 KASSERT(vp->v_numoutput == 0);
311
312 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 nbp = LIST_NEXT(bp, b_vnbufs);
314
315 KASSERT((bp->b_flags & B_GATHERED) == 0);
316 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 wakeup(&fs->lfs_avail);
319 }
320 /* Copied from lfs_writeseg */
321 if (bp->b_flags & B_CALL) {
322 biodone(bp, bp->b_error, bp->b_resid);
323 } else {
324 bremfree(bp);
325 LFS_UNLOCK_BUF(bp);
326 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
327 B_GATHERED);
328 bp->b_flags |= B_DONE;
329 reassignbuf(bp, vp);
330 brelse(bp, 0);
331 }
332 }
333 splx(s);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_flag &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 s = splbio();
355 mutex_enter(&global_v_numoutput_lock);
356 while (vp->v_numoutput > 0) {
357 cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
358 }
359 mutex_exit(&global_v_numoutput_lock);
360 splx(s);
361
362 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
363 KASSERT(vp->v_numoutput == 0);
364
365 return error;
366 }
367 sp = fs->lfs_sp;
368
369 flushed = 0;
370 if (VPISEMPTY(vp)) {
371 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
372 ++flushed;
373 } else if ((ip->i_flag & IN_CLEANING) &&
374 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
375 ivndebug(vp,"vflush/clean");
376 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
377 ++flushed;
378 } else if (lfs_dostats) {
379 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
380 ++lfs_stats.vflush_invoked;
381 ivndebug(vp,"vflush");
382 }
383
384 #ifdef DIAGNOSTIC
385 if (vp->v_flag & VDIROP) {
386 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
387 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
388 }
389 if (vp->v_usecount < 0) {
390 printf("usecount=%ld\n", (long)vp->v_usecount);
391 panic("lfs_vflush: usecount<0");
392 }
393 #endif
394
395 do {
396 loopcount = 0;
397 do {
398 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
399 relock = lfs_writefile(fs, sp, vp);
400 if (relock) {
401 /*
402 * Might have to wait for the
403 * cleaner to run; but we're
404 * still not done with this vnode.
405 */
406 KDASSERT(ip->i_number != LFS_IFILE_INUM);
407 lfs_writeinode(fs, sp, ip);
408 mutex_enter(&fs->lfs_interlock);
409 LFS_SET_UINO(ip, IN_MODIFIED);
410 mutex_exit(&fs->lfs_interlock);
411 lfs_writeseg(fs, sp);
412 lfs_segunlock(fs);
413 lfs_segunlock_relock(fs);
414 goto top;
415 }
416 }
417 /*
418 * If we begin a new segment in the middle of writing
419 * the Ifile, it creates an inconsistent checkpoint,
420 * since the Ifile information for the new segment
421 * is not up-to-date. Take care of this here by
422 * sending the Ifile through again in case there
423 * are newly dirtied blocks. But wait, there's more!
424 * This second Ifile write could *also* cross a segment
425 * boundary, if the first one was large. The second
426 * one is guaranteed to be no more than 8 blocks,
427 * though (two segment blocks and supporting indirects)
428 * so the third write *will not* cross the boundary.
429 */
430 if (vp == fs->lfs_ivnode) {
431 lfs_writefile(fs, sp, vp);
432 lfs_writefile(fs, sp, vp);
433 }
434 #ifdef DEBUG
435 if (++loopcount > 2)
436 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
437 #endif
438 } while (lfs_writeinode(fs, sp, ip));
439 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
440
441 if (lfs_dostats) {
442 ++lfs_stats.nwrites;
443 if (sp->seg_flags & SEGM_SYNC)
444 ++lfs_stats.nsync_writes;
445 if (sp->seg_flags & SEGM_CKP)
446 ++lfs_stats.ncheckpoints;
447 }
448 /*
449 * If we were called from somewhere that has already held the seglock
450 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
451 * the write to complete because we are still locked.
452 * Since lfs_vflush() must return the vnode with no dirty buffers,
453 * we must explicitly wait, if that is the case.
454 *
455 * We compare the iocount against 1, not 0, because it is
456 * artificially incremented by lfs_seglock().
457 */
458 mutex_enter(&fs->lfs_interlock);
459 if (fs->lfs_seglock > 1) {
460 while (fs->lfs_iocount > 1)
461 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
462 "lfs_vflush", 0, &fs->lfs_interlock);
463 }
464 mutex_exit(&fs->lfs_interlock);
465
466 lfs_segunlock(fs);
467
468 /* Wait for these buffers to be recovered by aiodoned */
469 s = splbio();
470 mutex_enter(&global_v_numoutput_lock);
471 while (vp->v_numoutput > 0) {
472 cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
473 }
474 mutex_exit(&global_v_numoutput_lock);
475 splx(s);
476
477 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
478 KASSERT(vp->v_numoutput == 0);
479
480 fs->lfs_flushvp = NULL;
481 KASSERT(fs->lfs_flushvp_fakevref == 0);
482
483 return (0);
484 }
485
486 int
487 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
488 {
489 struct inode *ip;
490 struct vnode *vp;
491 int inodes_written = 0, only_cleaning;
492 int error = 0;
493
494 ASSERT_SEGLOCK(fs);
495 loop:
496 /* start at last (newest) vnode. */
497 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
498 /*
499 * If the vnode that we are about to sync is no longer
500 * associated with this mount point, start over.
501 */
502 if (vp->v_mount != mp) {
503 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
504 /*
505 * After this, pages might be busy
506 * due to our own previous putpages.
507 * Start actual segment write here to avoid deadlock.
508 */
509 (void)lfs_writeseg(fs, sp);
510 goto loop;
511 }
512
513 if (vp->v_type == VNON) {
514 continue;
515 }
516
517 ip = VTOI(vp);
518 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
519 (op != VN_DIROP && op != VN_CLEAN &&
520 (vp->v_flag & VDIROP))) {
521 vndebug(vp,"dirop");
522 continue;
523 }
524
525 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 vndebug(vp,"empty");
527 continue;
528 }
529
530 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
531 && vp != fs->lfs_flushvp
532 && !(ip->i_flag & IN_CLEANING)) {
533 vndebug(vp,"cleaning");
534 continue;
535 }
536
537 if (lfs_vref(vp)) {
538 vndebug(vp,"vref");
539 continue;
540 }
541
542 only_cleaning = 0;
543 /*
544 * Write the inode/file if dirty and it's not the IFILE.
545 */
546 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
547 only_cleaning =
548 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
549
550 if (ip->i_number != LFS_IFILE_INUM) {
551 error = lfs_writefile(fs, sp, vp);
552 if (error) {
553 lfs_vunref(vp);
554 if (error == EAGAIN) {
555 /*
556 * This error from lfs_putpages
557 * indicates we need to drop
558 * the segment lock and start
559 * over after the cleaner has
560 * had a chance to run.
561 */
562 lfs_writeinode(fs, sp, ip);
563 lfs_writeseg(fs, sp);
564 if (!VPISEMPTY(vp) &&
565 !WRITEINPROG(vp) &&
566 !(ip->i_flag & IN_ALLMOD)) {
567 mutex_enter(&fs->lfs_interlock);
568 LFS_SET_UINO(ip, IN_MODIFIED);
569 mutex_exit(&fs->lfs_interlock);
570 }
571 break;
572 }
573 error = 0; /* XXX not quite right */
574 continue;
575 }
576
577 if (!VPISEMPTY(vp)) {
578 if (WRITEINPROG(vp)) {
579 ivndebug(vp,"writevnodes/write2");
580 } else if (!(ip->i_flag & IN_ALLMOD)) {
581 mutex_enter(&fs->lfs_interlock);
582 LFS_SET_UINO(ip, IN_MODIFIED);
583 mutex_exit(&fs->lfs_interlock);
584 }
585 }
586 (void) lfs_writeinode(fs, sp, ip);
587 inodes_written++;
588 }
589 }
590
591 if (lfs_clean_vnhead && only_cleaning)
592 lfs_vunref_head(vp);
593 else
594 lfs_vunref(vp);
595 }
596 return error;
597 }
598
599 /*
600 * Do a checkpoint.
601 */
602 int
603 lfs_segwrite(struct mount *mp, int flags)
604 {
605 struct buf *bp;
606 struct inode *ip;
607 struct lfs *fs;
608 struct segment *sp;
609 struct vnode *vp;
610 SEGUSE *segusep;
611 int do_ckp, did_ckp, error, s;
612 unsigned n, segleft, maxseg, sn, i, curseg;
613 int writer_set = 0;
614 int dirty;
615 int redo;
616 int um_error;
617 int loopcount;
618
619 fs = VFSTOUFS(mp)->um_lfs;
620 ASSERT_MAYBE_SEGLOCK(fs);
621
622 if (fs->lfs_ronly)
623 return EROFS;
624
625 lfs_imtime(fs);
626
627 /*
628 * Allocate a segment structure and enough space to hold pointers to
629 * the maximum possible number of buffers which can be described in a
630 * single summary block.
631 */
632 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
633
634 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
635 sp = fs->lfs_sp;
636 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
637 do_ckp = 1;
638
639 /*
640 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
641 * in which case we have to flush *all* buffers off of this vnode.
642 * We don't care about other nodes, but write any non-dirop nodes
643 * anyway in anticipation of another getnewvnode().
644 *
645 * If we're cleaning we only write cleaning and ifile blocks, and
646 * no dirops, since otherwise we'd risk corruption in a crash.
647 */
648 if (sp->seg_flags & SEGM_CLEAN)
649 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
650 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
651 do {
652 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
653
654 if (do_ckp || fs->lfs_dirops == 0) {
655 if (!writer_set) {
656 lfs_writer_enter(fs, "lfs writer");
657 writer_set = 1;
658 }
659 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
660 if (um_error == 0)
661 um_error = error;
662 /* In case writevnodes errored out */
663 lfs_flush_dirops(fs);
664 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
665 lfs_finalize_fs_seguse(fs);
666 }
667 if (do_ckp && um_error) {
668 lfs_segunlock_relock(fs);
669 sp = fs->lfs_sp;
670 }
671 } while (do_ckp && um_error != 0);
672 }
673
674 /*
675 * If we are doing a checkpoint, mark everything since the
676 * last checkpoint as no longer ACTIVE.
677 */
678 if (do_ckp || fs->lfs_doifile) {
679 segleft = fs->lfs_nseg;
680 curseg = 0;
681 for (n = 0; n < fs->lfs_segtabsz; n++) {
682 dirty = 0;
683 if (bread(fs->lfs_ivnode,
684 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
685 panic("lfs_segwrite: ifile read");
686 segusep = (SEGUSE *)bp->b_data;
687 maxseg = min(segleft, fs->lfs_sepb);
688 for (i = 0; i < maxseg; i++) {
689 sn = curseg + i;
690 if (sn != dtosn(fs, fs->lfs_curseg) &&
691 segusep->su_flags & SEGUSE_ACTIVE) {
692 segusep->su_flags &= ~SEGUSE_ACTIVE;
693 --fs->lfs_nactive;
694 ++dirty;
695 }
696 fs->lfs_suflags[fs->lfs_activesb][sn] =
697 segusep->su_flags;
698 if (fs->lfs_version > 1)
699 ++segusep;
700 else
701 segusep = (SEGUSE *)
702 ((SEGUSE_V1 *)segusep + 1);
703 }
704
705 if (dirty)
706 error = LFS_BWRITE_LOG(bp); /* Ifile */
707 else
708 brelse(bp, 0);
709 segleft -= fs->lfs_sepb;
710 curseg += fs->lfs_sepb;
711 }
712 }
713
714 KASSERT(LFS_SEGLOCK_HELD(fs));
715
716 did_ckp = 0;
717 if (do_ckp || fs->lfs_doifile) {
718 vp = fs->lfs_ivnode;
719 vn_lock(vp, LK_EXCLUSIVE);
720 loopcount = 0;
721 do {
722 #ifdef DEBUG
723 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
724 #endif
725 mutex_enter(&fs->lfs_interlock);
726 fs->lfs_flags &= ~LFS_IFDIRTY;
727 mutex_exit(&fs->lfs_interlock);
728
729 ip = VTOI(vp);
730
731 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
732 /*
733 * Ifile has no pages, so we don't need
734 * to check error return here.
735 */
736 lfs_writefile(fs, sp, vp);
737 /*
738 * Ensure the Ifile takes the current segment
739 * into account. See comment in lfs_vflush.
740 */
741 lfs_writefile(fs, sp, vp);
742 lfs_writefile(fs, sp, vp);
743 }
744
745 if (ip->i_flag & IN_ALLMOD)
746 ++did_ckp;
747 #if 0
748 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
749 #else
750 redo = lfs_writeinode(fs, sp, ip);
751 #endif
752 redo += lfs_writeseg(fs, sp);
753 mutex_enter(&fs->lfs_interlock);
754 redo += (fs->lfs_flags & LFS_IFDIRTY);
755 mutex_exit(&fs->lfs_interlock);
756 #ifdef DEBUG
757 if (++loopcount > 2)
758 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
759 loopcount);
760 #endif
761 } while (redo && do_ckp);
762
763 /*
764 * Unless we are unmounting, the Ifile may continue to have
765 * dirty blocks even after a checkpoint, due to changes to
766 * inodes' atime. If we're checkpointing, it's "impossible"
767 * for other parts of the Ifile to be dirty after the loop
768 * above, since we hold the segment lock.
769 */
770 s = splbio();
771 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
772 LFS_CLR_UINO(ip, IN_ALLMOD);
773 }
774 #ifdef DIAGNOSTIC
775 else if (do_ckp) {
776 int do_panic = 0;
777 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
778 if (bp->b_lblkno < fs->lfs_cleansz +
779 fs->lfs_segtabsz &&
780 !(bp->b_flags & B_GATHERED)) {
781 printf("ifile lbn %ld still dirty (flags %lx)\n",
782 (long)bp->b_lblkno,
783 (long)bp->b_flags);
784 ++do_panic;
785 }
786 }
787 if (do_panic)
788 panic("dirty blocks");
789 }
790 #endif
791 splx(s);
792 VOP_UNLOCK(vp, 0);
793 } else {
794 (void) lfs_writeseg(fs, sp);
795 }
796
797 /* Note Ifile no longer needs to be written */
798 fs->lfs_doifile = 0;
799 if (writer_set)
800 lfs_writer_leave(fs);
801
802 /*
803 * If we didn't write the Ifile, we didn't really do anything.
804 * That means that (1) there is a checkpoint on disk and (2)
805 * nothing has changed since it was written.
806 *
807 * Take the flags off of the segment so that lfs_segunlock
808 * doesn't have to write the superblock either.
809 */
810 if (do_ckp && !did_ckp) {
811 sp->seg_flags &= ~SEGM_CKP;
812 }
813
814 if (lfs_dostats) {
815 ++lfs_stats.nwrites;
816 if (sp->seg_flags & SEGM_SYNC)
817 ++lfs_stats.nsync_writes;
818 if (sp->seg_flags & SEGM_CKP)
819 ++lfs_stats.ncheckpoints;
820 }
821 lfs_segunlock(fs);
822 return (0);
823 }
824
825 /*
826 * Write the dirty blocks associated with a vnode.
827 */
828 int
829 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
830 {
831 struct finfo *fip;
832 struct inode *ip;
833 int i, frag;
834 int error;
835
836 ASSERT_SEGLOCK(fs);
837 error = 0;
838 ip = VTOI(vp);
839
840 fip = sp->fip;
841 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
842
843 if (vp->v_flag & VDIROP)
844 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
845
846 if (sp->seg_flags & SEGM_CLEAN) {
847 lfs_gather(fs, sp, vp, lfs_match_fake);
848 /*
849 * For a file being flushed, we need to write *all* blocks.
850 * This means writing the cleaning blocks first, and then
851 * immediately following with any non-cleaning blocks.
852 * The same is true of the Ifile since checkpoints assume
853 * that all valid Ifile blocks are written.
854 */
855 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
856 lfs_gather(fs, sp, vp, lfs_match_data);
857 /*
858 * Don't call VOP_PUTPAGES: if we're flushing,
859 * we've already done it, and the Ifile doesn't
860 * use the page cache.
861 */
862 }
863 } else {
864 lfs_gather(fs, sp, vp, lfs_match_data);
865 /*
866 * If we're flushing, we've already called VOP_PUTPAGES
867 * so don't do it again. Otherwise, we want to write
868 * everything we've got.
869 */
870 if (!IS_FLUSHING(fs, vp)) {
871 mutex_enter(&vp->v_interlock);
872 error = VOP_PUTPAGES(vp, 0, 0,
873 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
874 }
875 }
876
877 /*
878 * It may not be necessary to write the meta-data blocks at this point,
879 * as the roll-forward recovery code should be able to reconstruct the
880 * list.
881 *
882 * We have to write them anyway, though, under two conditions: (1) the
883 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
884 * checkpointing.
885 *
886 * BUT if we are cleaning, we might have indirect blocks that refer to
887 * new blocks not being written yet, in addition to fragments being
888 * moved out of a cleaned segment. If that is the case, don't
889 * write the indirect blocks, or the finfo will have a small block
890 * in the middle of it!
891 * XXX in this case isn't the inode size wrong too?
892 */
893 frag = 0;
894 if (sp->seg_flags & SEGM_CLEAN) {
895 for (i = 0; i < NDADDR; i++)
896 if (ip->i_lfs_fragsize[i] > 0 &&
897 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
898 ++frag;
899 }
900 #ifdef DIAGNOSTIC
901 if (frag > 1)
902 panic("lfs_writefile: more than one fragment!");
903 #endif
904 if (IS_FLUSHING(fs, vp) ||
905 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
906 lfs_gather(fs, sp, vp, lfs_match_indir);
907 lfs_gather(fs, sp, vp, lfs_match_dindir);
908 lfs_gather(fs, sp, vp, lfs_match_tindir);
909 }
910 fip = sp->fip;
911 lfs_release_finfo(fs);
912
913 return error;
914 }
915
916 /*
917 * Update segment accounting to reflect this inode's change of address.
918 */
919 static int
920 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
921 {
922 struct buf *bp;
923 daddr_t daddr;
924 IFILE *ifp;
925 SEGUSE *sup;
926 ino_t ino;
927 int redo_ifile, error;
928 u_int32_t sn;
929
930 redo_ifile = 0;
931
932 /*
933 * If updating the ifile, update the super-block. Update the disk
934 * address and access times for this inode in the ifile.
935 */
936 ino = ip->i_number;
937 if (ino == LFS_IFILE_INUM) {
938 daddr = fs->lfs_idaddr;
939 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
940 } else {
941 LFS_IENTRY(ifp, fs, ino, bp);
942 daddr = ifp->if_daddr;
943 ifp->if_daddr = dbtofsb(fs, ndaddr);
944 error = LFS_BWRITE_LOG(bp); /* Ifile */
945 }
946
947 /*
948 * If this is the Ifile and lfs_offset is set to the first block
949 * in the segment, dirty the new segment's accounting block
950 * (XXX should already be dirty?) and tell the caller to do it again.
951 */
952 if (ip->i_number == LFS_IFILE_INUM) {
953 sn = dtosn(fs, fs->lfs_offset);
954 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
955 fs->lfs_offset) {
956 LFS_SEGENTRY(sup, fs, sn, bp);
957 KASSERT(bp->b_flags & B_DELWRI);
958 LFS_WRITESEGENTRY(sup, fs, sn, bp);
959 /* fs->lfs_flags |= LFS_IFDIRTY; */
960 redo_ifile |= 1;
961 }
962 }
963
964 /*
965 * The inode's last address should not be in the current partial
966 * segment, except under exceptional circumstances (lfs_writevnodes
967 * had to start over, and in the meantime more blocks were written
968 * to a vnode). Both inodes will be accounted to this segment
969 * in lfs_writeseg so we need to subtract the earlier version
970 * here anyway. The segment count can temporarily dip below
971 * zero here; keep track of how many duplicates we have in
972 * "dupino" so we don't panic below.
973 */
974 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
975 ++sp->ndupino;
976 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
977 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
978 (long long)daddr, sp->ndupino));
979 }
980 /*
981 * Account the inode: it no longer belongs to its former segment,
982 * though it will not belong to the new segment until that segment
983 * is actually written.
984 */
985 if (daddr != LFS_UNUSED_DADDR) {
986 u_int32_t oldsn = dtosn(fs, daddr);
987 #ifdef DIAGNOSTIC
988 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
989 #endif
990 LFS_SEGENTRY(sup, fs, oldsn, bp);
991 #ifdef DIAGNOSTIC
992 if (sup->su_nbytes +
993 sizeof (struct ufs1_dinode) * ndupino
994 < sizeof (struct ufs1_dinode)) {
995 printf("lfs_writeinode: negative bytes "
996 "(segment %" PRIu32 " short by %d, "
997 "oldsn=%" PRIu32 ", cursn=%" PRIu32
998 ", daddr=%" PRId64 ", su_nbytes=%u, "
999 "ndupino=%d)\n",
1000 dtosn(fs, daddr),
1001 (int)sizeof (struct ufs1_dinode) *
1002 (1 - sp->ndupino) - sup->su_nbytes,
1003 oldsn, sp->seg_number, daddr,
1004 (unsigned int)sup->su_nbytes,
1005 sp->ndupino);
1006 panic("lfs_writeinode: negative bytes");
1007 sup->su_nbytes = sizeof (struct ufs1_dinode);
1008 }
1009 #endif
1010 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1011 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1012 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1013 redo_ifile |=
1014 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1015 if (redo_ifile) {
1016 mutex_enter(&fs->lfs_interlock);
1017 fs->lfs_flags |= LFS_IFDIRTY;
1018 mutex_exit(&fs->lfs_interlock);
1019 /* Don't double-account */
1020 fs->lfs_idaddr = 0x0;
1021 }
1022 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1023 }
1024
1025 return redo_ifile;
1026 }
1027
1028 int
1029 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1030 {
1031 struct buf *bp;
1032 struct ufs1_dinode *cdp;
1033 daddr_t daddr;
1034 int32_t *daddrp; /* XXX ondisk32 */
1035 int i, ndx;
1036 int redo_ifile = 0;
1037 int gotblk = 0;
1038 int count;
1039
1040 ASSERT_SEGLOCK(fs);
1041 if (!(ip->i_flag & IN_ALLMOD))
1042 return (0);
1043
1044 /* Can't write ifile when writer is not set */
1045 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1046 (sp->seg_flags & SEGM_CLEAN));
1047
1048 /*
1049 * If this is the Ifile, see if writing it here will generate a
1050 * temporary misaccounting. If it will, do the accounting and write
1051 * the blocks, postponing the inode write until the accounting is
1052 * solid.
1053 */
1054 count = 0;
1055 while (ip->i_number == LFS_IFILE_INUM) {
1056 int redo = 0;
1057
1058 if (sp->idp == NULL && sp->ibp == NULL &&
1059 (sp->seg_bytes_left < fs->lfs_ibsize ||
1060 sp->sum_bytes_left < sizeof(int32_t))) {
1061 (void) lfs_writeseg(fs, sp);
1062 continue;
1063 }
1064
1065 /* Look for dirty Ifile blocks */
1066 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1067 if (!(bp->b_flags & B_GATHERED)) {
1068 redo = 1;
1069 break;
1070 }
1071 }
1072
1073 if (redo == 0)
1074 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1075 if (redo == 0)
1076 break;
1077
1078 if (sp->idp) {
1079 sp->idp->di_inumber = 0;
1080 sp->idp = NULL;
1081 }
1082 ++count;
1083 if (count > 2)
1084 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1085 lfs_writefile(fs, sp, fs->lfs_ivnode);
1086 }
1087
1088 /* Allocate a new inode block if necessary. */
1089 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1090 sp->ibp == NULL) {
1091 /* Allocate a new segment if necessary. */
1092 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1093 sp->sum_bytes_left < sizeof(int32_t))
1094 (void) lfs_writeseg(fs, sp);
1095
1096 /* Get next inode block. */
1097 daddr = fs->lfs_offset;
1098 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1099 sp->ibp = *sp->cbpp++ =
1100 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1101 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1102 gotblk++;
1103
1104 /* Zero out inode numbers */
1105 for (i = 0; i < INOPB(fs); ++i)
1106 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1107 0;
1108
1109 ++sp->start_bpp;
1110 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1111 /* Set remaining space counters. */
1112 sp->seg_bytes_left -= fs->lfs_ibsize;
1113 sp->sum_bytes_left -= sizeof(int32_t);
1114 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1115 sp->ninodes / INOPB(fs) - 1;
1116 ((int32_t *)(sp->segsum))[ndx] = daddr;
1117 }
1118
1119 /* Check VDIROP in case there is a new file with no data blocks */
1120 if (ITOV(ip)->v_flag & VDIROP)
1121 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1122
1123 /* Update the inode times and copy the inode onto the inode page. */
1124 /* XXX kludge --- don't redirty the ifile just to put times on it */
1125 if (ip->i_number != LFS_IFILE_INUM)
1126 LFS_ITIMES(ip, NULL, NULL, NULL);
1127
1128 /*
1129 * If this is the Ifile, and we've already written the Ifile in this
1130 * partial segment, just overwrite it (it's not on disk yet) and
1131 * continue.
1132 *
1133 * XXX we know that the bp that we get the second time around has
1134 * already been gathered.
1135 */
1136 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1137 *(sp->idp) = *ip->i_din.ffs1_din;
1138 ip->i_lfs_osize = ip->i_size;
1139 return 0;
1140 }
1141
1142 bp = sp->ibp;
1143 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1144 *cdp = *ip->i_din.ffs1_din;
1145
1146 /*
1147 * If cleaning, link counts and directory file sizes cannot change,
1148 * since those would be directory operations---even if the file
1149 * we are writing is marked VDIROP we should write the old values.
1150 * If we're not cleaning, of course, update the values so we get
1151 * current values the next time we clean.
1152 */
1153 if (sp->seg_flags & SEGM_CLEAN) {
1154 if (ITOV(ip)->v_flag & VDIROP) {
1155 cdp->di_nlink = ip->i_lfs_odnlink;
1156 /* if (ITOV(ip)->v_type == VDIR) */
1157 cdp->di_size = ip->i_lfs_osize;
1158 }
1159 } else {
1160 ip->i_lfs_odnlink = cdp->di_nlink;
1161 ip->i_lfs_osize = ip->i_size;
1162 }
1163
1164
1165 /* We can finish the segment accounting for truncations now */
1166 lfs_finalize_ino_seguse(fs, ip);
1167
1168 /*
1169 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1170 * addresses to disk; possibly change the on-disk record of
1171 * the inode size, either by reverting to the previous size
1172 * (in the case of cleaning) or by verifying the inode's block
1173 * holdings (in the case of files being allocated as they are being
1174 * written).
1175 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1176 * XXX count on disk wrong by the same amount. We should be
1177 * XXX able to "borrow" from lfs_avail and return it after the
1178 * XXX Ifile is written. See also in lfs_writeseg.
1179 */
1180
1181 /* Check file size based on highest allocated block */
1182 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1183 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1184 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1185 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1186 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1187 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1188 }
1189 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1190 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1191 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1192 ip->i_ffs1_blocks, fs->lfs_offset));
1193 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1194 daddrp++) {
1195 if (*daddrp == UNWRITTEN) {
1196 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1197 *daddrp = 0;
1198 }
1199 }
1200 }
1201
1202 #ifdef DIAGNOSTIC
1203 /*
1204 * Check dinode held blocks against dinode size.
1205 * This should be identical to the check in lfs_vget().
1206 */
1207 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1208 i < NDADDR; i++) {
1209 KASSERT(i >= 0);
1210 if ((cdp->di_mode & IFMT) == IFLNK)
1211 continue;
1212 if (((cdp->di_mode & IFMT) == IFBLK ||
1213 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1214 continue;
1215 if (cdp->di_db[i] != 0) {
1216 # ifdef DEBUG
1217 lfs_dump_dinode(cdp);
1218 # endif
1219 panic("writing inconsistent inode");
1220 }
1221 }
1222 #endif /* DIAGNOSTIC */
1223
1224 if (ip->i_flag & IN_CLEANING)
1225 LFS_CLR_UINO(ip, IN_CLEANING);
1226 else {
1227 /* XXX IN_ALLMOD */
1228 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1229 IN_UPDATE | IN_MODIFY);
1230 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1231 LFS_CLR_UINO(ip, IN_MODIFIED);
1232 else {
1233 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1234 "blks=%d, eff=%d\n", ip->i_number,
1235 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1236 }
1237 }
1238
1239 if (ip->i_number == LFS_IFILE_INUM) {
1240 /* We know sp->idp == NULL */
1241 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1242 (sp->ninodes % INOPB(fs));
1243
1244 /* Not dirty any more */
1245 mutex_enter(&fs->lfs_interlock);
1246 fs->lfs_flags &= ~LFS_IFDIRTY;
1247 mutex_exit(&fs->lfs_interlock);
1248 }
1249
1250 if (gotblk) {
1251 LFS_LOCK_BUF(bp);
1252 brelse(bp, 0);
1253 }
1254
1255 /* Increment inode count in segment summary block. */
1256 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1257
1258 /* If this page is full, set flag to allocate a new page. */
1259 if (++sp->ninodes % INOPB(fs) == 0)
1260 sp->ibp = NULL;
1261
1262 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1263
1264 KASSERT(redo_ifile == 0);
1265 return (redo_ifile);
1266 }
1267
1268 int
1269 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1270 {
1271 struct lfs *fs;
1272 int vers;
1273 int j, blksinblk;
1274
1275 ASSERT_SEGLOCK(sp->fs);
1276 /*
1277 * If full, finish this segment. We may be doing I/O, so
1278 * release and reacquire the splbio().
1279 */
1280 #ifdef DIAGNOSTIC
1281 if (sp->vp == NULL)
1282 panic ("lfs_gatherblock: Null vp in segment");
1283 #endif
1284 fs = sp->fs;
1285 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1286 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1287 sp->seg_bytes_left < bp->b_bcount) {
1288 if (sptr)
1289 splx(*sptr);
1290 lfs_updatemeta(sp);
1291
1292 vers = sp->fip->fi_version;
1293 (void) lfs_writeseg(fs, sp);
1294
1295 /* Add the current file to the segment summary. */
1296 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1297
1298 if (sptr)
1299 *sptr = splbio();
1300 return (1);
1301 }
1302
1303 if (bp->b_flags & B_GATHERED) {
1304 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1305 " lbn %" PRId64 "\n",
1306 sp->fip->fi_ino, bp->b_lblkno));
1307 return (0);
1308 }
1309
1310 /* Insert into the buffer list, update the FINFO block. */
1311 bp->b_flags |= B_GATHERED;
1312
1313 *sp->cbpp++ = bp;
1314 for (j = 0; j < blksinblk; j++) {
1315 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1316 /* This block's accounting moves from lfs_favail to lfs_avail */
1317 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1318 }
1319
1320 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1321 sp->seg_bytes_left -= bp->b_bcount;
1322 return (0);
1323 }
1324
1325 int
1326 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1327 int (*match)(struct lfs *, struct buf *))
1328 {
1329 struct buf *bp, *nbp;
1330 int s, count = 0;
1331
1332 ASSERT_SEGLOCK(fs);
1333 if (vp->v_type == VBLK)
1334 return 0;
1335 KASSERT(sp->vp == NULL);
1336 sp->vp = vp;
1337 s = splbio();
1338
1339 #ifndef LFS_NO_BACKBUF_HACK
1340 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1341 # define BUF_OFFSET \
1342 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1343 # define BACK_BUF(BP) \
1344 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1345 # define BEG_OF_LIST \
1346 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1347
1348 loop:
1349 /* Find last buffer. */
1350 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1351 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1352 bp = LIST_NEXT(bp, b_vnbufs))
1353 /* nothing */;
1354 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1355 nbp = BACK_BUF(bp);
1356 #else /* LFS_NO_BACKBUF_HACK */
1357 loop:
1358 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1359 nbp = LIST_NEXT(bp, b_vnbufs);
1360 #endif /* LFS_NO_BACKBUF_HACK */
1361 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1362 #ifdef DEBUG
1363 if (vp == fs->lfs_ivnode &&
1364 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1365 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1366 PRId64 " busy (%x) at 0x%x",
1367 bp->b_lblkno, bp->b_flags,
1368 (unsigned)fs->lfs_offset);
1369 #endif
1370 continue;
1371 }
1372 #ifdef DIAGNOSTIC
1373 # ifdef LFS_USE_B_INVAL
1374 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1375 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1376 " is B_INVAL\n", bp->b_lblkno));
1377 VOP_PRINT(bp->b_vp);
1378 }
1379 # endif /* LFS_USE_B_INVAL */
1380 if (!(bp->b_flags & B_DELWRI))
1381 panic("lfs_gather: bp not B_DELWRI");
1382 if (!(bp->b_flags & B_LOCKED)) {
1383 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1384 " blk %" PRId64 " not B_LOCKED\n",
1385 bp->b_lblkno,
1386 dbtofsb(fs, bp->b_blkno)));
1387 VOP_PRINT(bp->b_vp);
1388 panic("lfs_gather: bp not B_LOCKED");
1389 }
1390 #endif
1391 if (lfs_gatherblock(sp, bp, &s)) {
1392 goto loop;
1393 }
1394 count++;
1395 }
1396 splx(s);
1397 lfs_updatemeta(sp);
1398 KASSERT(sp->vp == vp);
1399 sp->vp = NULL;
1400 return count;
1401 }
1402
1403 #if DEBUG
1404 # define DEBUG_OOFF(n) do { \
1405 if (ooff == 0) { \
1406 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1407 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1408 ", was 0x0 (or %" PRId64 ")\n", \
1409 (n), ip->i_number, lbn, ndaddr, daddr)); \
1410 } \
1411 } while (0)
1412 #else
1413 # define DEBUG_OOFF(n)
1414 #endif
1415
1416 /*
1417 * Change the given block's address to ndaddr, finding its previous
1418 * location using ufs_bmaparray().
1419 *
1420 * Account for this change in the segment table.
1421 *
1422 * called with sp == NULL by roll-forwarding code.
1423 */
1424 void
1425 lfs_update_single(struct lfs *fs, struct segment *sp,
1426 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1427 {
1428 SEGUSE *sup;
1429 struct buf *bp;
1430 struct indir a[NIADDR + 2], *ap;
1431 struct inode *ip;
1432 daddr_t daddr, ooff;
1433 int num, error;
1434 int bb, osize, obb;
1435
1436 ASSERT_SEGLOCK(fs);
1437 KASSERT(sp == NULL || sp->vp == vp);
1438 ip = VTOI(vp);
1439
1440 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1441 if (error)
1442 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1443
1444 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1445 KASSERT(daddr <= LFS_MAX_DADDR);
1446 if (daddr > 0)
1447 daddr = dbtofsb(fs, daddr);
1448
1449 bb = fragstofsb(fs, numfrags(fs, size));
1450 switch (num) {
1451 case 0:
1452 ooff = ip->i_ffs1_db[lbn];
1453 DEBUG_OOFF(0);
1454 if (ooff == UNWRITTEN)
1455 ip->i_ffs1_blocks += bb;
1456 else {
1457 /* possible fragment truncation or extension */
1458 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1459 ip->i_ffs1_blocks += (bb - obb);
1460 }
1461 ip->i_ffs1_db[lbn] = ndaddr;
1462 break;
1463 case 1:
1464 ooff = ip->i_ffs1_ib[a[0].in_off];
1465 DEBUG_OOFF(1);
1466 if (ooff == UNWRITTEN)
1467 ip->i_ffs1_blocks += bb;
1468 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1469 break;
1470 default:
1471 ap = &a[num - 1];
1472 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1473 panic("lfs_updatemeta: bread bno %" PRId64,
1474 ap->in_lbn);
1475
1476 /* XXX ondisk32 */
1477 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1478 DEBUG_OOFF(num);
1479 if (ooff == UNWRITTEN)
1480 ip->i_ffs1_blocks += bb;
1481 /* XXX ondisk32 */
1482 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1483 (void) VOP_BWRITE(bp);
1484 }
1485
1486 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1487
1488 /* Update hiblk when extending the file */
1489 if (lbn > ip->i_lfs_hiblk)
1490 ip->i_lfs_hiblk = lbn;
1491
1492 /*
1493 * Though we'd rather it couldn't, this *can* happen right now
1494 * if cleaning blocks and regular blocks coexist.
1495 */
1496 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1497
1498 /*
1499 * Update segment usage information, based on old size
1500 * and location.
1501 */
1502 if (daddr > 0) {
1503 u_int32_t oldsn = dtosn(fs, daddr);
1504 #ifdef DIAGNOSTIC
1505 int ndupino;
1506
1507 if (sp && sp->seg_number == oldsn) {
1508 ndupino = sp->ndupino;
1509 } else {
1510 ndupino = 0;
1511 }
1512 #endif
1513 KASSERT(oldsn < fs->lfs_nseg);
1514 if (lbn >= 0 && lbn < NDADDR)
1515 osize = ip->i_lfs_fragsize[lbn];
1516 else
1517 osize = fs->lfs_bsize;
1518 LFS_SEGENTRY(sup, fs, oldsn, bp);
1519 #ifdef DIAGNOSTIC
1520 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1521 < osize) {
1522 printf("lfs_updatemeta: negative bytes "
1523 "(segment %" PRIu32 " short by %" PRId64
1524 ")\n", dtosn(fs, daddr),
1525 (int64_t)osize -
1526 (sizeof (struct ufs1_dinode) * ndupino +
1527 sup->su_nbytes));
1528 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1529 ", addr = 0x%" PRIx64 "\n",
1530 (unsigned long long)ip->i_number, lbn, daddr);
1531 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1532 panic("lfs_updatemeta: negative bytes");
1533 sup->su_nbytes = osize -
1534 sizeof (struct ufs1_dinode) * ndupino;
1535 }
1536 #endif
1537 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1538 " db 0x%" PRIx64 "\n",
1539 dtosn(fs, daddr), osize,
1540 ip->i_number, lbn, daddr));
1541 sup->su_nbytes -= osize;
1542 if (!(bp->b_flags & B_GATHERED)) {
1543 mutex_enter(&fs->lfs_interlock);
1544 fs->lfs_flags |= LFS_IFDIRTY;
1545 mutex_exit(&fs->lfs_interlock);
1546 }
1547 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1548 }
1549 /*
1550 * Now that this block has a new address, and its old
1551 * segment no longer owns it, we can forget about its
1552 * old size.
1553 */
1554 if (lbn >= 0 && lbn < NDADDR)
1555 ip->i_lfs_fragsize[lbn] = size;
1556 }
1557
1558 /*
1559 * Update the metadata that points to the blocks listed in the FINFO
1560 * array.
1561 */
1562 void
1563 lfs_updatemeta(struct segment *sp)
1564 {
1565 struct buf *sbp;
1566 struct lfs *fs;
1567 struct vnode *vp;
1568 daddr_t lbn;
1569 int i, nblocks, num;
1570 int bb;
1571 int bytesleft, size;
1572
1573 ASSERT_SEGLOCK(sp->fs);
1574 vp = sp->vp;
1575 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1576 KASSERT(nblocks >= 0);
1577 KASSERT(vp != NULL);
1578 if (nblocks == 0)
1579 return;
1580
1581 /*
1582 * This count may be high due to oversize blocks from lfs_gop_write.
1583 * Correct for this. (XXX we should be able to keep track of these.)
1584 */
1585 fs = sp->fs;
1586 for (i = 0; i < nblocks; i++) {
1587 if (sp->start_bpp[i] == NULL) {
1588 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1589 nblocks = i;
1590 break;
1591 }
1592 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1593 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1594 nblocks -= num - 1;
1595 }
1596
1597 KASSERT(vp->v_type == VREG ||
1598 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1599 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1600
1601 /*
1602 * Sort the blocks.
1603 *
1604 * We have to sort even if the blocks come from the
1605 * cleaner, because there might be other pending blocks on the
1606 * same inode...and if we don't sort, and there are fragments
1607 * present, blocks may be written in the wrong place.
1608 */
1609 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1610
1611 /*
1612 * Record the length of the last block in case it's a fragment.
1613 * If there are indirect blocks present, they sort last. An
1614 * indirect block will be lfs_bsize and its presence indicates
1615 * that you cannot have fragments.
1616 *
1617 * XXX This last is a lie. A cleaned fragment can coexist with
1618 * XXX a later indirect block. This will continue to be
1619 * XXX true until lfs_markv is fixed to do everything with
1620 * XXX fake blocks (including fake inodes and fake indirect blocks).
1621 */
1622 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1623 fs->lfs_bmask) + 1;
1624
1625 /*
1626 * Assign disk addresses, and update references to the logical
1627 * block and the segment usage information.
1628 */
1629 for (i = nblocks; i--; ++sp->start_bpp) {
1630 sbp = *sp->start_bpp;
1631 lbn = *sp->start_lbp;
1632 KASSERT(sbp->b_lblkno == lbn);
1633
1634 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1635
1636 /*
1637 * If we write a frag in the wrong place, the cleaner won't
1638 * be able to correctly identify its size later, and the
1639 * segment will be uncleanable. (Even worse, it will assume
1640 * that the indirect block that actually ends the list
1641 * is of a smaller size!)
1642 */
1643 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1644 panic("lfs_updatemeta: fragment is not last block");
1645
1646 /*
1647 * For each subblock in this possibly oversized block,
1648 * update its address on disk.
1649 */
1650 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1651 KASSERT(vp == sbp->b_vp);
1652 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1653 bytesleft -= fs->lfs_bsize) {
1654 size = MIN(bytesleft, fs->lfs_bsize);
1655 bb = fragstofsb(fs, numfrags(fs, size));
1656 lbn = *sp->start_lbp++;
1657 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1658 size);
1659 fs->lfs_offset += bb;
1660 }
1661
1662 }
1663
1664 /* This inode has been modified */
1665 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1666 }
1667
1668 /*
1669 * Move lfs_offset to a segment earlier than sn.
1670 */
1671 int
1672 lfs_rewind(struct lfs *fs, int newsn)
1673 {
1674 int sn, osn, isdirty;
1675 struct buf *bp;
1676 SEGUSE *sup;
1677
1678 ASSERT_SEGLOCK(fs);
1679
1680 osn = dtosn(fs, fs->lfs_offset);
1681 if (osn < newsn)
1682 return 0;
1683
1684 /* lfs_avail eats the remaining space in this segment */
1685 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1686
1687 /* Find a low-numbered segment */
1688 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1689 LFS_SEGENTRY(sup, fs, sn, bp);
1690 isdirty = sup->su_flags & SEGUSE_DIRTY;
1691 brelse(bp, 0);
1692
1693 if (!isdirty)
1694 break;
1695 }
1696 if (sn == fs->lfs_nseg)
1697 panic("lfs_rewind: no clean segments");
1698 if (newsn >= 0 && sn >= newsn)
1699 return ENOENT;
1700 fs->lfs_nextseg = sn;
1701 lfs_newseg(fs);
1702 fs->lfs_offset = fs->lfs_curseg;
1703
1704 return 0;
1705 }
1706
1707 /*
1708 * Start a new partial segment.
1709 *
1710 * Return 1 when we entered to a new segment.
1711 * Otherwise, return 0.
1712 */
1713 int
1714 lfs_initseg(struct lfs *fs)
1715 {
1716 struct segment *sp = fs->lfs_sp;
1717 SEGSUM *ssp;
1718 struct buf *sbp; /* buffer for SEGSUM */
1719 int repeat = 0; /* return value */
1720
1721 ASSERT_SEGLOCK(fs);
1722 /* Advance to the next segment. */
1723 if (!LFS_PARTIAL_FITS(fs)) {
1724 SEGUSE *sup;
1725 struct buf *bp;
1726
1727 /* lfs_avail eats the remaining space */
1728 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1729 fs->lfs_curseg);
1730 /* Wake up any cleaning procs waiting on this file system. */
1731 lfs_wakeup_cleaner(fs);
1732 lfs_newseg(fs);
1733 repeat = 1;
1734 fs->lfs_offset = fs->lfs_curseg;
1735
1736 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1737 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1738
1739 /*
1740 * If the segment contains a superblock, update the offset
1741 * and summary address to skip over it.
1742 */
1743 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1744 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1745 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1746 sp->seg_bytes_left -= LFS_SBPAD;
1747 }
1748 brelse(bp, 0);
1749 /* Segment zero could also contain the labelpad */
1750 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1751 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1752 fs->lfs_offset +=
1753 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1754 sp->seg_bytes_left -=
1755 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1756 }
1757 } else {
1758 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1759 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1760 (fs->lfs_offset - fs->lfs_curseg));
1761 }
1762 fs->lfs_lastpseg = fs->lfs_offset;
1763
1764 /* Record first address of this partial segment */
1765 if (sp->seg_flags & SEGM_CLEAN) {
1766 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1767 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1768 /* "1" is the artificial inc in lfs_seglock */
1769 mutex_enter(&fs->lfs_interlock);
1770 while (fs->lfs_iocount > 1) {
1771 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1772 "lfs_initseg", 0, &fs->lfs_interlock);
1773 }
1774 mutex_exit(&fs->lfs_interlock);
1775 fs->lfs_cleanind = 0;
1776 }
1777 }
1778
1779 sp->fs = fs;
1780 sp->ibp = NULL;
1781 sp->idp = NULL;
1782 sp->ninodes = 0;
1783 sp->ndupino = 0;
1784
1785 sp->cbpp = sp->bpp;
1786
1787 /* Get a new buffer for SEGSUM */
1788 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1789 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1790
1791 /* ... and enter it into the buffer list. */
1792 *sp->cbpp = sbp;
1793 sp->cbpp++;
1794 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1795
1796 sp->start_bpp = sp->cbpp;
1797
1798 /* Set point to SEGSUM, initialize it. */
1799 ssp = sp->segsum = sbp->b_data;
1800 memset(ssp, 0, fs->lfs_sumsize);
1801 ssp->ss_next = fs->lfs_nextseg;
1802 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1803 ssp->ss_magic = SS_MAGIC;
1804
1805 /* Set pointer to first FINFO, initialize it. */
1806 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1807 sp->fip->fi_nblocks = 0;
1808 sp->start_lbp = &sp->fip->fi_blocks[0];
1809 sp->fip->fi_lastlength = 0;
1810
1811 sp->seg_bytes_left -= fs->lfs_sumsize;
1812 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1813
1814 return (repeat);
1815 }
1816
1817 /*
1818 * Remove SEGUSE_INVAL from all segments.
1819 */
1820 void
1821 lfs_unset_inval_all(struct lfs *fs)
1822 {
1823 SEGUSE *sup;
1824 struct buf *bp;
1825 int i;
1826
1827 for (i = 0; i < fs->lfs_nseg; i++) {
1828 LFS_SEGENTRY(sup, fs, i, bp);
1829 if (sup->su_flags & SEGUSE_INVAL) {
1830 sup->su_flags &= ~SEGUSE_INVAL;
1831 LFS_WRITESEGENTRY(sup, fs, i, bp);
1832 } else
1833 brelse(bp, 0);
1834 }
1835 }
1836
1837 /*
1838 * Return the next segment to write.
1839 */
1840 void
1841 lfs_newseg(struct lfs *fs)
1842 {
1843 CLEANERINFO *cip;
1844 SEGUSE *sup;
1845 struct buf *bp;
1846 int curseg, isdirty, sn, skip_inval;
1847
1848 ASSERT_SEGLOCK(fs);
1849
1850 /* Honor LFCNWRAPSTOP */
1851 mutex_enter(&fs->lfs_interlock);
1852 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1853 if (fs->lfs_wrappass) {
1854 log(LOG_NOTICE, "%s: wrappass=%d\n",
1855 fs->lfs_fsmnt, fs->lfs_wrappass);
1856 fs->lfs_wrappass = 0;
1857 break;
1858 }
1859 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1860 wakeup(&fs->lfs_nowrap);
1861 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1862 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1863 &fs->lfs_interlock);
1864 }
1865 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1866 mutex_exit(&fs->lfs_interlock);
1867
1868 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1869 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1870 dtosn(fs, fs->lfs_nextseg)));
1871 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1872 sup->su_nbytes = 0;
1873 sup->su_nsums = 0;
1874 sup->su_ninos = 0;
1875 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1876
1877 LFS_CLEANERINFO(cip, fs, bp);
1878 --cip->clean;
1879 ++cip->dirty;
1880 fs->lfs_nclean = cip->clean;
1881 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1882
1883 fs->lfs_lastseg = fs->lfs_curseg;
1884 fs->lfs_curseg = fs->lfs_nextseg;
1885 skip_inval = 1;
1886 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1887 sn = (sn + 1) % fs->lfs_nseg;
1888
1889 if (sn == curseg) {
1890 if (skip_inval)
1891 skip_inval = 0;
1892 else
1893 panic("lfs_nextseg: no clean segments");
1894 }
1895 LFS_SEGENTRY(sup, fs, sn, bp);
1896 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1897 /* Check SEGUSE_EMPTY as we go along */
1898 if (isdirty && sup->su_nbytes == 0 &&
1899 !(sup->su_flags & SEGUSE_EMPTY))
1900 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1901 else
1902 brelse(bp, 0);
1903
1904 if (!isdirty)
1905 break;
1906 }
1907 if (skip_inval == 0)
1908 lfs_unset_inval_all(fs);
1909
1910 ++fs->lfs_nactive;
1911 fs->lfs_nextseg = sntod(fs, sn);
1912 if (lfs_dostats) {
1913 ++lfs_stats.segsused;
1914 }
1915 }
1916
1917 static struct buf *
1918 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1919 int n)
1920 {
1921 struct lfs_cluster *cl;
1922 struct buf **bpp, *bp;
1923
1924 ASSERT_SEGLOCK(fs);
1925 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1926 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1927 memset(cl, 0, sizeof(*cl));
1928 cl->fs = fs;
1929 cl->bpp = bpp;
1930 cl->bufcount = 0;
1931 cl->bufsize = 0;
1932
1933 /* If this segment is being written synchronously, note that */
1934 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1935 cl->flags |= LFS_CL_SYNC;
1936 cl->seg = fs->lfs_sp;
1937 ++cl->seg->seg_iocount;
1938 }
1939
1940 /* Get an empty buffer header, or maybe one with something on it */
1941 bp = getiobuf();
1942 bp->b_flags = B_BUSY | B_CALL;
1943 bp->b_dev = NODEV;
1944 bp->b_blkno = bp->b_lblkno = addr;
1945 bp->b_iodone = lfs_cluster_callback;
1946 bp->b_private = cl;
1947 bp->b_vp = vp;
1948
1949 return bp;
1950 }
1951
1952 int
1953 lfs_writeseg(struct lfs *fs, struct segment *sp)
1954 {
1955 struct buf **bpp, *bp, *cbp, *newbp;
1956 SEGUSE *sup;
1957 SEGSUM *ssp;
1958 int i, s;
1959 int do_again, nblocks, byteoffset;
1960 size_t el_size;
1961 struct lfs_cluster *cl;
1962 u_short ninos;
1963 struct vnode *devvp;
1964 char *p = NULL;
1965 struct vnode *vp;
1966 int32_t *daddrp; /* XXX ondisk32 */
1967 int changed;
1968 u_int32_t sum;
1969 #ifdef DEBUG
1970 FINFO *fip;
1971 int findex;
1972 #endif
1973
1974 ASSERT_SEGLOCK(fs);
1975
1976 ssp = (SEGSUM *)sp->segsum;
1977
1978 /*
1979 * If there are no buffers other than the segment summary to write,
1980 * don't do anything. If we are the end of a dirop sequence, however,
1981 * write the empty segment summary anyway, to help out the
1982 * roll-forward agent.
1983 */
1984 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1985 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1986 return 0;
1987 }
1988
1989 /* Note if partial segment is being written by the cleaner */
1990 if (sp->seg_flags & SEGM_CLEAN)
1991 ssp->ss_flags |= SS_CLEAN;
1992
1993 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1994
1995 /* Update the segment usage information. */
1996 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1997
1998 /* Loop through all blocks, except the segment summary. */
1999 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2000 if ((*bpp)->b_vp != devvp) {
2001 sup->su_nbytes += (*bpp)->b_bcount;
2002 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2003 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2004 sp->seg_number, (*bpp)->b_bcount,
2005 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2006 (*bpp)->b_blkno));
2007 }
2008 }
2009
2010 #ifdef DEBUG
2011 /* Check for zero-length and zero-version FINFO entries. */
2012 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2013 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2014 KDASSERT(fip->fi_nblocks > 0);
2015 KDASSERT(fip->fi_version > 0);
2016 fip = (FINFO *)((char *)fip + FINFOSIZE +
2017 sizeof(int32_t) * fip->fi_nblocks);
2018 }
2019 #endif /* DEBUG */
2020
2021 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2022 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2023 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2024 ssp->ss_ninos));
2025 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2026 /* sup->su_nbytes += fs->lfs_sumsize; */
2027 if (fs->lfs_version == 1)
2028 sup->su_olastmod = time_second;
2029 else
2030 sup->su_lastmod = time_second;
2031 sup->su_ninos += ninos;
2032 ++sup->su_nsums;
2033 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2034
2035 do_again = !(bp->b_flags & B_GATHERED);
2036 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2037
2038 /*
2039 * Mark blocks B_BUSY, to prevent then from being changed between
2040 * the checksum computation and the actual write.
2041 *
2042 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2043 * there are any, replace them with copies that have UNASSIGNED
2044 * instead.
2045 */
2046 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2047 ++bpp;
2048 bp = *bpp;
2049 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2050 bp->b_flags |= B_BUSY;
2051 continue;
2052 }
2053
2054 mutex_enter(&bp->b_interlock);
2055 s = splbio();
2056 while (bp->b_flags & B_BUSY) {
2057 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2058 " data summary corruption for ino %d, lbn %"
2059 PRId64 "\n",
2060 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2061 bp->b_flags |= B_WANTED;
2062 mtsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2063 &bp->b_interlock);
2064 splx(s);
2065 s = splbio();
2066 }
2067 bp->b_flags |= B_BUSY;
2068 splx(s);
2069 mutex_exit(&bp->b_interlock);
2070
2071 /*
2072 * Check and replace indirect block UNWRITTEN bogosity.
2073 * XXX See comment in lfs_writefile.
2074 */
2075 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2076 VTOI(bp->b_vp)->i_ffs1_blocks !=
2077 VTOI(bp->b_vp)->i_lfs_effnblks) {
2078 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2079 VTOI(bp->b_vp)->i_number,
2080 VTOI(bp->b_vp)->i_lfs_effnblks,
2081 VTOI(bp->b_vp)->i_ffs1_blocks));
2082 /* Make a copy we'll make changes to */
2083 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2084 bp->b_bcount, LFS_NB_IBLOCK);
2085 newbp->b_blkno = bp->b_blkno;
2086 memcpy(newbp->b_data, bp->b_data,
2087 newbp->b_bcount);
2088
2089 changed = 0;
2090 /* XXX ondisk32 */
2091 for (daddrp = (int32_t *)(newbp->b_data);
2092 daddrp < (int32_t *)((char *)newbp->b_data +
2093 newbp->b_bcount); daddrp++) {
2094 if (*daddrp == UNWRITTEN) {
2095 ++changed;
2096 *daddrp = 0;
2097 }
2098 }
2099 /*
2100 * Get rid of the old buffer. Don't mark it clean,
2101 * though, if it still has dirty data on it.
2102 */
2103 if (changed) {
2104 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2105 " bp = %p newbp = %p\n", changed, bp,
2106 newbp));
2107 *bpp = newbp;
2108 bp->b_flags &= ~(B_ERROR | B_GATHERED);
2109 if (bp->b_flags & B_CALL) {
2110 DLOG((DLOG_SEG, "lfs_writeseg: "
2111 "indir bp should not be B_CALL\n"));
2112 biodone(bp, bp->b_error, bp->b_resid);
2113 bp = NULL;
2114 } else {
2115 /* Still on free list, leave it there */
2116 s = splbio();
2117 bp->b_flags &= ~B_BUSY;
2118 if (bp->b_flags & B_WANTED)
2119 wakeup(bp);
2120 splx(s);
2121 /*
2122 * We have to re-decrement lfs_avail
2123 * since this block is going to come
2124 * back around to us in the next
2125 * segment.
2126 */
2127 fs->lfs_avail -=
2128 btofsb(fs, bp->b_bcount);
2129 }
2130 } else {
2131 lfs_freebuf(fs, newbp);
2132 }
2133 }
2134 }
2135 /*
2136 * Compute checksum across data and then across summary; the first
2137 * block (the summary block) is skipped. Set the create time here
2138 * so that it's guaranteed to be later than the inode mod times.
2139 */
2140 sum = 0;
2141 if (fs->lfs_version == 1)
2142 el_size = sizeof(u_long);
2143 else
2144 el_size = sizeof(u_int32_t);
2145 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2146 ++bpp;
2147 /* Loop through gop_write cluster blocks */
2148 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2149 byteoffset += fs->lfs_bsize) {
2150 #ifdef LFS_USE_B_INVAL
2151 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2152 (B_CALL | B_INVAL)) {
2153 if (copyin((void *)(*bpp)->b_saveaddr +
2154 byteoffset, dp, el_size)) {
2155 panic("lfs_writeseg: copyin failed [1]:"
2156 " ino %d blk %" PRId64,
2157 VTOI((*bpp)->b_vp)->i_number,
2158 (*bpp)->b_lblkno);
2159 }
2160 } else
2161 #endif /* LFS_USE_B_INVAL */
2162 {
2163 sum = lfs_cksum_part((char *)
2164 (*bpp)->b_data + byteoffset, el_size, sum);
2165 }
2166 }
2167 }
2168 if (fs->lfs_version == 1)
2169 ssp->ss_ocreate = time_second;
2170 else {
2171 ssp->ss_create = time_second;
2172 ssp->ss_serial = ++fs->lfs_serial;
2173 ssp->ss_ident = fs->lfs_ident;
2174 }
2175 ssp->ss_datasum = lfs_cksum_fold(sum);
2176 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2177 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2178
2179 mutex_enter(&fs->lfs_interlock);
2180 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2181 btofsb(fs, fs->lfs_sumsize));
2182 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2183 btofsb(fs, fs->lfs_sumsize));
2184 mutex_exit(&fs->lfs_interlock);
2185
2186 /*
2187 * When we simply write the blocks we lose a rotation for every block
2188 * written. To avoid this problem, we cluster the buffers into a
2189 * chunk and write the chunk. MAXPHYS is the largest size I/O
2190 * devices can handle, use that for the size of the chunks.
2191 *
2192 * Blocks that are already clusters (from GOP_WRITE), however, we
2193 * don't bother to copy into other clusters.
2194 */
2195
2196 #define CHUNKSIZE MAXPHYS
2197
2198 if (devvp == NULL)
2199 panic("devvp is NULL");
2200 for (bpp = sp->bpp, i = nblocks; i;) {
2201 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2202 cl = cbp->b_private;
2203
2204 cbp->b_flags |= B_ASYNC | B_BUSY;
2205 cbp->b_bcount = 0;
2206
2207 #if defined(DEBUG) && defined(DIAGNOSTIC)
2208 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2209 / sizeof(int32_t)) {
2210 panic("lfs_writeseg: real bpp overwrite");
2211 }
2212 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2213 panic("lfs_writeseg: theoretical bpp overwrite");
2214 }
2215 #endif
2216
2217 /*
2218 * Construct the cluster.
2219 */
2220 mutex_enter(&fs->lfs_interlock);
2221 ++fs->lfs_iocount;
2222 mutex_exit(&fs->lfs_interlock);
2223 while (i && cbp->b_bcount < CHUNKSIZE) {
2224 bp = *bpp;
2225
2226 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2227 break;
2228 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2229 break;
2230
2231 /* Clusters from GOP_WRITE are expedited */
2232 if (bp->b_bcount > fs->lfs_bsize) {
2233 if (cbp->b_bcount > 0)
2234 /* Put in its own buffer */
2235 break;
2236 else {
2237 cbp->b_data = bp->b_data;
2238 }
2239 } else if (cbp->b_bcount == 0) {
2240 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2241 LFS_NB_CLUSTER);
2242 cl->flags |= LFS_CL_MALLOC;
2243 }
2244 #ifdef DIAGNOSTIC
2245 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2246 btodb(bp->b_bcount - 1))) !=
2247 sp->seg_number) {
2248 printf("blk size %d daddr %" PRIx64
2249 " not in seg %d\n",
2250 bp->b_bcount, bp->b_blkno,
2251 sp->seg_number);
2252 panic("segment overwrite");
2253 }
2254 #endif
2255
2256 #ifdef LFS_USE_B_INVAL
2257 /*
2258 * Fake buffers from the cleaner are marked as B_INVAL.
2259 * We need to copy the data from user space rather than
2260 * from the buffer indicated.
2261 * XXX == what do I do on an error?
2262 */
2263 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2264 (B_CALL|B_INVAL)) {
2265 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2266 panic("lfs_writeseg: "
2267 "copyin failed [2]");
2268 } else
2269 #endif /* LFS_USE_B_INVAL */
2270 if (cl->flags & LFS_CL_MALLOC) {
2271 /* copy data into our cluster. */
2272 memcpy(p, bp->b_data, bp->b_bcount);
2273 p += bp->b_bcount;
2274 }
2275
2276 cbp->b_bcount += bp->b_bcount;
2277 cl->bufsize += bp->b_bcount;
2278
2279 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2280 cl->bpp[cl->bufcount++] = bp;
2281 vp = bp->b_vp;
2282 s = splbio();
2283 reassignbuf(bp, vp);
2284 V_INCR_NUMOUTPUT(vp);
2285 splx(s);
2286
2287 bpp++;
2288 i--;
2289 }
2290 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2291 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2292 else
2293 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2294 s = splbio();
2295 V_INCR_NUMOUTPUT(devvp);
2296 splx(s);
2297 VOP_STRATEGY(devvp, cbp);
2298 curproc->p_stats->p_ru.ru_oublock++;
2299 }
2300
2301 if (lfs_dostats) {
2302 ++lfs_stats.psegwrites;
2303 lfs_stats.blocktot += nblocks - 1;
2304 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2305 ++lfs_stats.psyncwrites;
2306 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2307 ++lfs_stats.pcleanwrites;
2308 lfs_stats.cleanblocks += nblocks - 1;
2309 }
2310 }
2311
2312 return (lfs_initseg(fs) || do_again);
2313 }
2314
2315 void
2316 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2317 {
2318 struct buf *bp;
2319 int s;
2320 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2321
2322 ASSERT_MAYBE_SEGLOCK(fs);
2323 #ifdef DIAGNOSTIC
2324 KASSERT(fs->lfs_magic == LFS_MAGIC);
2325 #endif
2326 /*
2327 * If we can write one superblock while another is in
2328 * progress, we risk not having a complete checkpoint if we crash.
2329 * So, block here if a superblock write is in progress.
2330 */
2331 mutex_enter(&fs->lfs_interlock);
2332 s = splbio();
2333 while (fs->lfs_sbactive) {
2334 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2335 &fs->lfs_interlock);
2336 }
2337 fs->lfs_sbactive = daddr;
2338 splx(s);
2339 mutex_exit(&fs->lfs_interlock);
2340
2341 /* Set timestamp of this version of the superblock */
2342 if (fs->lfs_version == 1)
2343 fs->lfs_otstamp = time_second;
2344 fs->lfs_tstamp = time_second;
2345
2346 /* Checksum the superblock and copy it into a buffer. */
2347 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2348 bp = lfs_newbuf(fs, devvp,
2349 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2350 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2351 LFS_SBPAD - sizeof(struct dlfs));
2352 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2353
2354 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2355 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2356 bp->b_iodone = lfs_supercallback;
2357
2358 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2359 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2360 else
2361 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2362 curproc->p_stats->p_ru.ru_oublock++;
2363 s = splbio();
2364 V_INCR_NUMOUTPUT(bp->b_vp);
2365 splx(s);
2366 mutex_enter(&fs->lfs_interlock);
2367 ++fs->lfs_iocount;
2368 mutex_exit(&fs->lfs_interlock);
2369 VOP_STRATEGY(devvp, bp);
2370 }
2371
2372 /*
2373 * Logical block number match routines used when traversing the dirty block
2374 * chain.
2375 */
2376 int
2377 lfs_match_fake(struct lfs *fs, struct buf *bp)
2378 {
2379
2380 ASSERT_SEGLOCK(fs);
2381 return LFS_IS_MALLOC_BUF(bp);
2382 }
2383
2384 #if 0
2385 int
2386 lfs_match_real(struct lfs *fs, struct buf *bp)
2387 {
2388
2389 ASSERT_SEGLOCK(fs);
2390 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2391 }
2392 #endif
2393
2394 int
2395 lfs_match_data(struct lfs *fs, struct buf *bp)
2396 {
2397
2398 ASSERT_SEGLOCK(fs);
2399 return (bp->b_lblkno >= 0);
2400 }
2401
2402 int
2403 lfs_match_indir(struct lfs *fs, struct buf *bp)
2404 {
2405 daddr_t lbn;
2406
2407 ASSERT_SEGLOCK(fs);
2408 lbn = bp->b_lblkno;
2409 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2410 }
2411
2412 int
2413 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2414 {
2415 daddr_t lbn;
2416
2417 ASSERT_SEGLOCK(fs);
2418 lbn = bp->b_lblkno;
2419 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2420 }
2421
2422 int
2423 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2424 {
2425 daddr_t lbn;
2426
2427 ASSERT_SEGLOCK(fs);
2428 lbn = bp->b_lblkno;
2429 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2430 }
2431
2432 static void
2433 lfs_free_aiodone(struct buf *bp)
2434 {
2435 struct lfs *fs;
2436
2437 fs = bp->b_private;
2438 ASSERT_NO_SEGLOCK(fs);
2439 lfs_freebuf(fs, bp);
2440 }
2441
2442 static void
2443 lfs_super_aiodone(struct buf *bp)
2444 {
2445 struct lfs *fs;
2446
2447 fs = bp->b_private;
2448 ASSERT_NO_SEGLOCK(fs);
2449 mutex_enter(&fs->lfs_interlock);
2450 fs->lfs_sbactive = 0;
2451 if (--fs->lfs_iocount <= 1)
2452 wakeup(&fs->lfs_iocount);
2453 mutex_exit(&fs->lfs_interlock);
2454 wakeup(&fs->lfs_sbactive);
2455 lfs_freebuf(fs, bp);
2456 }
2457
2458 static void
2459 lfs_cluster_aiodone(struct buf *bp)
2460 {
2461 struct lfs_cluster *cl;
2462 struct lfs *fs;
2463 struct buf *tbp, *fbp;
2464 struct vnode *vp, *devvp, *ovp;
2465 struct inode *ip;
2466 int s, error=0;
2467
2468 if (bp->b_flags & B_ERROR)
2469 error = bp->b_error;
2470
2471 cl = bp->b_private;
2472 fs = cl->fs;
2473 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2474 ASSERT_NO_SEGLOCK(fs);
2475
2476 /* Put the pages back, and release the buffer */
2477 while (cl->bufcount--) {
2478 tbp = cl->bpp[cl->bufcount];
2479 KASSERT(tbp->b_flags & B_BUSY);
2480 if (error) {
2481 tbp->b_flags |= B_ERROR;
2482 tbp->b_error = error;
2483 }
2484
2485 /*
2486 * We're done with tbp. If it has not been re-dirtied since
2487 * the cluster was written, free it. Otherwise, keep it on
2488 * the locked list to be written again.
2489 */
2490 vp = tbp->b_vp;
2491
2492 tbp->b_flags &= ~B_GATHERED;
2493
2494 LFS_BCLEAN_LOG(fs, tbp);
2495
2496 if (!(tbp->b_flags & B_CALL)) {
2497 KASSERT(tbp->b_flags & B_LOCKED);
2498 mutex_enter(&bqueue_lock);
2499 bremfree(tbp);
2500 mutex_exit(&bqueue_lock);
2501 if (vp)
2502 reassignbuf(tbp, vp);
2503 tbp->b_flags |= B_ASYNC; /* for biodone */
2504 }
2505
2506 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2507 LFS_UNLOCK_BUF(tbp);
2508
2509 if (tbp->b_flags & B_DONE) {
2510 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2511 cl->bufcount, (long)tbp->b_flags));
2512 }
2513
2514 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2515 /*
2516 * A buffer from the page daemon.
2517 * We use the same iodone as it does,
2518 * so we must manually disassociate its
2519 * buffers from the vp.
2520 */
2521 if (tbp->b_vp) {
2522 /* This is just silly */
2523 ovp = tbp->b_vp;
2524 s = splbio();
2525 brelvp(tbp);
2526 tbp->b_vp = vp;
2527 splx(s);
2528 HOLDRELE(ovp);
2529 }
2530 /* Put it back the way it was */
2531 tbp->b_flags |= B_ASYNC;
2532 /* Master buffers have B_AGE */
2533 if (tbp->b_private == tbp)
2534 tbp->b_flags |= B_AGE;
2535 }
2536
2537 biodone(tbp, tbp->b_error, tbp->b_resid);
2538
2539 /*
2540 * If this is the last block for this vnode, but
2541 * there are other blocks on its dirty list,
2542 * set IN_MODIFIED/IN_CLEANING depending on what
2543 * sort of block. Only do this for our mount point,
2544 * not for, e.g., inode blocks that are attached to
2545 * the devvp.
2546 * XXX KS - Shouldn't we set *both* if both types
2547 * of blocks are present (traverse the dirty list?)
2548 */
2549 mutex_enter(&fs->lfs_interlock);
2550 mutex_enter(&global_v_numoutput_lock);
2551 if (vp != devvp && vp->v_numoutput == 0 &&
2552 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2553 ip = VTOI(vp);
2554 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2555 ip->i_number));
2556 if (LFS_IS_MALLOC_BUF(fbp))
2557 LFS_SET_UINO(ip, IN_CLEANING);
2558 else
2559 LFS_SET_UINO(ip, IN_MODIFIED);
2560 }
2561 wakeup(vp);
2562 mutex_exit(&global_v_numoutput_lock);
2563 mutex_exit(&fs->lfs_interlock);
2564 }
2565
2566 /* Fix up the cluster buffer, and release it */
2567 if (cl->flags & LFS_CL_MALLOC)
2568 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2569 putiobuf(bp);
2570
2571 /* Note i/o done */
2572 if (cl->flags & LFS_CL_SYNC) {
2573 if (--cl->seg->seg_iocount == 0)
2574 wakeup(&cl->seg->seg_iocount);
2575 }
2576 mutex_enter(&fs->lfs_interlock);
2577 #ifdef DIAGNOSTIC
2578 if (fs->lfs_iocount == 0)
2579 panic("lfs_cluster_aiodone: zero iocount");
2580 #endif
2581 if (--fs->lfs_iocount <= 1)
2582 wakeup(&fs->lfs_iocount);
2583 mutex_exit(&fs->lfs_interlock);
2584
2585 pool_put(&fs->lfs_bpppool, cl->bpp);
2586 cl->bpp = NULL;
2587 pool_put(&fs->lfs_clpool, cl);
2588 }
2589
2590 static void
2591 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2592 {
2593 /* reset b_iodone for when this is a single-buf i/o. */
2594 bp->b_iodone = aiodone;
2595
2596 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work);
2597 }
2598
2599 static void
2600 lfs_cluster_callback(struct buf *bp)
2601 {
2602
2603 lfs_generic_callback(bp, lfs_cluster_aiodone);
2604 }
2605
2606 void
2607 lfs_supercallback(struct buf *bp)
2608 {
2609
2610 lfs_generic_callback(bp, lfs_super_aiodone);
2611 }
2612
2613 /*
2614 * The only buffers that are going to hit these functions are the
2615 * segment write blocks, or the segment summaries, or the superblocks.
2616 *
2617 * All of the above are created by lfs_newbuf, and so do not need to be
2618 * released via brelse.
2619 */
2620 void
2621 lfs_callback(struct buf *bp)
2622 {
2623
2624 lfs_generic_callback(bp, lfs_free_aiodone);
2625 }
2626
2627 /*
2628 * Shellsort (diminishing increment sort) from Data Structures and
2629 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2630 * see also Knuth Vol. 3, page 84. The increments are selected from
2631 * formula (8), page 95. Roughly O(N^3/2).
2632 */
2633 /*
2634 * This is our own private copy of shellsort because we want to sort
2635 * two parallel arrays (the array of buffer pointers and the array of
2636 * logical block numbers) simultaneously. Note that we cast the array
2637 * of logical block numbers to a unsigned in this routine so that the
2638 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2639 */
2640
2641 void
2642 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2643 {
2644 static int __rsshell_increments[] = { 4, 1, 0 };
2645 int incr, *incrp, t1, t2;
2646 struct buf *bp_temp;
2647
2648 #ifdef DEBUG
2649 incr = 0;
2650 for (t1 = 0; t1 < nmemb; t1++) {
2651 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2652 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2653 /* dump before panic */
2654 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2655 nmemb, size);
2656 incr = 0;
2657 for (t1 = 0; t1 < nmemb; t1++) {
2658 const struct buf *bp = bp_array[t1];
2659
2660 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2661 PRIu64 "\n", t1,
2662 (uint64_t)bp->b_bcount,
2663 (uint64_t)bp->b_lblkno);
2664 printf("lbns:");
2665 for (t2 = 0; t2 * size < bp->b_bcount;
2666 t2++) {
2667 printf(" %" PRId32,
2668 lb_array[incr++]);
2669 }
2670 printf("\n");
2671 }
2672 panic("lfs_shellsort: inconsistent input");
2673 }
2674 }
2675 }
2676 #endif
2677
2678 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2679 for (t1 = incr; t1 < nmemb; ++t1)
2680 for (t2 = t1 - incr; t2 >= 0;)
2681 if ((u_int32_t)bp_array[t2]->b_lblkno >
2682 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2683 bp_temp = bp_array[t2];
2684 bp_array[t2] = bp_array[t2 + incr];
2685 bp_array[t2 + incr] = bp_temp;
2686 t2 -= incr;
2687 } else
2688 break;
2689
2690 /* Reform the list of logical blocks */
2691 incr = 0;
2692 for (t1 = 0; t1 < nmemb; t1++) {
2693 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2694 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2695 }
2696 }
2697 }
2698
2699 /*
2700 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2701 * however, we must press on. Just fake success in that case.
2702 */
2703 int
2704 lfs_vref(struct vnode *vp)
2705 {
2706 int error;
2707 struct lfs *fs;
2708
2709 fs = VTOI(vp)->i_lfs;
2710
2711 ASSERT_MAYBE_SEGLOCK(fs);
2712
2713 /*
2714 * If we return 1 here during a flush, we risk vinvalbuf() not
2715 * being able to flush all of the pages from this vnode, which
2716 * will cause it to panic. So, return 0 if a flush is in progress.
2717 */
2718 error = vget(vp, LK_NOWAIT);
2719 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2720 ++fs->lfs_flushvp_fakevref;
2721 return 0;
2722 }
2723 return error;
2724 }
2725
2726 /*
2727 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2728 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2729 */
2730 void
2731 lfs_vunref(struct vnode *vp)
2732 {
2733 struct lfs *fs;
2734
2735 fs = VTOI(vp)->i_lfs;
2736 ASSERT_MAYBE_SEGLOCK(fs);
2737
2738 /*
2739 * Analogous to lfs_vref, if the node is flushing, fake it.
2740 */
2741 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2742 --fs->lfs_flushvp_fakevref;
2743 return;
2744 }
2745
2746 mutex_enter(&vp->v_interlock);
2747 #ifdef DIAGNOSTIC
2748 if (vp->v_usecount <= 0) {
2749 printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2750 VTOI(vp)->i_number);
2751 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2752 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2753 panic("lfs_vunref: v_usecount < 0");
2754 }
2755 #endif
2756 vp->v_usecount--;
2757 if (vp->v_usecount > 0) {
2758 mutex_exit(&vp->v_interlock);
2759 return;
2760 }
2761 /*
2762 * insert at tail of LRU list
2763 */
2764 mutex_enter(&vnode_free_list_lock);
2765 if (vp->v_holdcnt > 0)
2766 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2767 else
2768 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2769 mutex_exit(&vnode_free_list_lock);
2770 mutex_exit(&vp->v_interlock);
2771 }
2772
2773 /*
2774 * We use this when we have vnodes that were loaded in solely for cleaning.
2775 * There is no reason to believe that these vnodes will be referenced again
2776 * soon, since the cleaning process is unrelated to normal filesystem
2777 * activity. Putting cleaned vnodes at the tail of the list has the effect
2778 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2779 * cleaning at the head of the list, instead.
2780 */
2781 void
2782 lfs_vunref_head(struct vnode *vp)
2783 {
2784
2785 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2786 mutex_enter(&vp->v_interlock);
2787 #ifdef DIAGNOSTIC
2788 if (vp->v_usecount == 0) {
2789 panic("lfs_vunref: v_usecount<0");
2790 }
2791 #endif
2792 vp->v_usecount--;
2793 if (vp->v_usecount > 0) {
2794 mutex_exit(&vp->v_interlock);
2795 return;
2796 }
2797 /*
2798 * insert at head of LRU list
2799 */
2800 mutex_enter(&vnode_free_list_lock);
2801 if (vp->v_holdcnt > 0)
2802 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2803 else
2804 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2805 mutex_exit(&vnode_free_list_lock);
2806 mutex_exit(&vp->v_interlock);
2807 }
2808
2809
2810 /*
2811 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2812 * point at uninitialized space.
2813 */
2814 void
2815 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2816 {
2817 struct segment *sp = fs->lfs_sp;
2818
2819 KASSERT(vers > 0);
2820
2821 if (sp->seg_bytes_left < fs->lfs_bsize ||
2822 sp->sum_bytes_left < sizeof(struct finfo))
2823 (void) lfs_writeseg(fs, fs->lfs_sp);
2824
2825 sp->sum_bytes_left -= FINFOSIZE;
2826 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2827 sp->fip->fi_nblocks = 0;
2828 sp->fip->fi_ino = ino;
2829 sp->fip->fi_version = vers;
2830 }
2831
2832 /*
2833 * Release the FINFO entry, either clearing out an unused entry or
2834 * advancing us to the next available entry.
2835 */
2836 void
2837 lfs_release_finfo(struct lfs *fs)
2838 {
2839 struct segment *sp = fs->lfs_sp;
2840
2841 if (sp->fip->fi_nblocks != 0) {
2842 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2843 sizeof(int32_t) * sp->fip->fi_nblocks);
2844 sp->start_lbp = &sp->fip->fi_blocks[0];
2845 } else {
2846 sp->sum_bytes_left += FINFOSIZE;
2847 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2848 }
2849 }
2850