lfs_segment.c revision 1.2 1 /* $NetBSD: lfs_segment.c,v 1.2 1994/06/29 06:46:58 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)lfs_segment.c 8.5 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/namei.h>
41 #include <sys/kernel.h>
42 #include <sys/resourcevar.h>
43 #include <sys/file.h>
44 #include <sys/stat.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51
52 #include <miscfs/specfs/specdev.h>
53 #include <miscfs/fifofs/fifo.h>
54
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/dir.h>
58 #include <ufs/ufs/ufsmount.h>
59 #include <ufs/ufs/ufs_extern.h>
60
61 #include <ufs/lfs/lfs.h>
62 #include <ufs/lfs/lfs_extern.h>
63
64 extern int count_lock_queue __P((void));
65
66 #define MAX_ACTIVE 10
67 /*
68 * Determine if it's OK to start a partial in this segment, or if we need
69 * to go on to a new segment.
70 */
71 #define LFS_PARTIAL_FITS(fs) \
72 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
73 1 << (fs)->lfs_fsbtodb)
74
75 void lfs_callback __P((struct buf *));
76 void lfs_gather __P((struct lfs *, struct segment *,
77 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
78 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
79 void lfs_iset __P((struct inode *, daddr_t, time_t));
80 int lfs_match_data __P((struct lfs *, struct buf *));
81 int lfs_match_dindir __P((struct lfs *, struct buf *));
82 int lfs_match_indir __P((struct lfs *, struct buf *));
83 int lfs_match_tindir __P((struct lfs *, struct buf *));
84 void lfs_newseg __P((struct lfs *));
85 void lfs_shellsort __P((struct buf **, daddr_t *, register int));
86 void lfs_supercallback __P((struct buf *));
87 void lfs_updatemeta __P((struct segment *));
88 int lfs_vref __P((struct vnode *));
89 void lfs_vunref __P((struct vnode *));
90 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
91 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
92 int lfs_writeseg __P((struct lfs *, struct segment *));
93 void lfs_writesuper __P((struct lfs *));
94 void lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
95 struct segment *sp, int dirops));
96
97 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
98
99 /* Statistics Counters */
100 #define DOSTATS
101 struct lfs_stats lfs_stats;
102
103 /* op values to lfs_writevnodes */
104 #define VN_REG 0
105 #define VN_DIROP 1
106 #define VN_EMPTY 2
107
108 /*
109 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
110 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
111 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
112 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
113 */
114
115 int
116 lfs_vflush(vp)
117 struct vnode *vp;
118 {
119 struct inode *ip;
120 struct lfs *fs;
121 struct segment *sp;
122
123 fs = VFSTOUFS(vp->v_mount)->um_lfs;
124 if (fs->lfs_nactive > MAX_ACTIVE)
125 return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
126 lfs_seglock(fs, SEGM_SYNC);
127 sp = fs->lfs_sp;
128
129
130 ip = VTOI(vp);
131 if (vp->v_dirtyblkhd.lh_first == NULL)
132 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
133
134 do {
135 do {
136 if (vp->v_dirtyblkhd.lh_first != NULL)
137 lfs_writefile(fs, sp, vp);
138 } while (lfs_writeinode(fs, sp, ip));
139
140 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
141
142 #ifdef DOSTATS
143 ++lfs_stats.nwrites;
144 if (sp->seg_flags & SEGM_SYNC)
145 ++lfs_stats.nsync_writes;
146 if (sp->seg_flags & SEGM_CKP)
147 ++lfs_stats.ncheckpoints;
148 #endif
149 lfs_segunlock(fs);
150 return (0);
151 }
152
153 void
154 lfs_writevnodes(fs, mp, sp, op)
155 struct lfs *fs;
156 struct mount *mp;
157 struct segment *sp;
158 int op;
159 {
160 struct inode *ip;
161 struct vnode *vp;
162
163 loop:
164 for (vp = mp->mnt_vnodelist.lh_first;
165 vp != NULL;
166 vp = vp->v_mntvnodes.le_next) {
167 /*
168 * If the vnode that we are about to sync is no longer
169 * associated with this mount point, start over.
170 */
171 if (vp->v_mount != mp)
172 goto loop;
173
174 /* XXX ignore dirops for now
175 if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
176 op != VN_DIROP && (vp->v_flag & VDIROP))
177 continue;
178 */
179
180 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
181 continue;
182
183 if (vp->v_type == VNON)
184 continue;
185
186 if (lfs_vref(vp))
187 continue;
188
189 /*
190 * Write the inode/file if dirty and it's not the
191 * the IFILE.
192 */
193 ip = VTOI(vp);
194 if ((ip->i_flag &
195 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
196 vp->v_dirtyblkhd.lh_first != NULL) &&
197 ip->i_number != LFS_IFILE_INUM) {
198 if (vp->v_dirtyblkhd.lh_first != NULL)
199 lfs_writefile(fs, sp, vp);
200 (void) lfs_writeinode(fs, sp, ip);
201 }
202 vp->v_flag &= ~VDIROP;
203 lfs_vunref(vp);
204 }
205 }
206
207 int
208 lfs_segwrite(mp, flags)
209 struct mount *mp;
210 int flags; /* Do a checkpoint. */
211 {
212 struct buf *bp;
213 struct inode *ip;
214 struct lfs *fs;
215 struct segment *sp;
216 struct vnode *vp;
217 SEGUSE *segusep;
218 daddr_t ibno;
219 CLEANERINFO *cip;
220 int clean, do_ckp, error, i;
221
222 fs = VFSTOUFS(mp)->um_lfs;
223
224 /*
225 * If we have fewer than 2 clean segments, wait until cleaner
226 * writes.
227 */
228 do {
229 LFS_CLEANERINFO(cip, fs, bp);
230 clean = cip->clean;
231 brelse(bp);
232 if (clean <= 2) {
233 printf ("segs clean: %d\n", clean);
234 wakeup(&lfs_allclean_wakeup);
235 if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
236 "lfs writer", 0))
237 return (error);
238 }
239 } while (clean <= 2 );
240
241 /*
242 * Allocate a segment structure and enough space to hold pointers to
243 * the maximum possible number of buffers which can be described in a
244 * single summary block.
245 */
246 do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
247 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
248 sp = fs->lfs_sp;
249
250 lfs_writevnodes(fs, mp, sp, VN_REG);
251
252 /* XXX ignore ordering of dirops for now */
253 /* XXX
254 fs->lfs_writer = 1;
255 if (fs->lfs_dirops && (error =
256 tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
257 free(sp->bpp, M_SEGMENT);
258 free(sp, M_SEGMENT);
259 fs->lfs_writer = 0;
260 return (error);
261 }
262
263 lfs_writevnodes(fs, mp, sp, VN_DIROP);
264 */
265
266 /*
267 * If we are doing a checkpoint, mark everything since the
268 * last checkpoint as no longer ACTIVE.
269 */
270 if (do_ckp)
271 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
272 --ibno >= fs->lfs_cleansz; ) {
273 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
274 NOCRED, &bp))
275
276 panic("lfs: ifile read");
277 segusep = (SEGUSE *)bp->b_data;
278 for (i = fs->lfs_sepb; i--; segusep++)
279 segusep->su_flags &= ~SEGUSE_ACTIVE;
280
281 error = VOP_BWRITE(bp);
282 }
283
284 if (do_ckp || fs->lfs_doifile) {
285 redo:
286 vp = fs->lfs_ivnode;
287 while (vget(vp, 1));
288 ip = VTOI(vp);
289 if (vp->v_dirtyblkhd.lh_first != NULL)
290 lfs_writefile(fs, sp, vp);
291 (void)lfs_writeinode(fs, sp, ip);
292 vput(vp);
293 if (lfs_writeseg(fs, sp) && do_ckp)
294 goto redo;
295 } else
296 (void) lfs_writeseg(fs, sp);
297
298 /*
299 * If the I/O count is non-zero, sleep until it reaches zero. At the
300 * moment, the user's process hangs around so we can sleep.
301 */
302 /* XXX ignore dirops for now
303 fs->lfs_writer = 0;
304 fs->lfs_doifile = 0;
305 wakeup(&fs->lfs_dirops);
306 */
307
308 #ifdef DOSTATS
309 ++lfs_stats.nwrites;
310 if (sp->seg_flags & SEGM_SYNC)
311 ++lfs_stats.nsync_writes;
312 if (sp->seg_flags & SEGM_CKP)
313 ++lfs_stats.ncheckpoints;
314 #endif
315 lfs_segunlock(fs);
316 return (0);
317 }
318
319 /*
320 * Write the dirty blocks associated with a vnode.
321 */
322 void
323 lfs_writefile(fs, sp, vp)
324 struct lfs *fs;
325 struct segment *sp;
326 struct vnode *vp;
327 {
328 struct buf *bp;
329 struct finfo *fip;
330 IFILE *ifp;
331
332 if (sp->seg_bytes_left < fs->lfs_bsize ||
333 sp->sum_bytes_left < sizeof(struct finfo))
334 (void) lfs_writeseg(fs, sp);
335
336 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
337 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
338
339 fip = sp->fip;
340 fip->fi_nblocks = 0;
341 fip->fi_ino = VTOI(vp)->i_number;
342 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
343 fip->fi_version = ifp->if_version;
344 brelse(bp);
345
346 /*
347 * It may not be necessary to write the meta-data blocks at this point,
348 * as the roll-forward recovery code should be able to reconstruct the
349 * list.
350 */
351 lfs_gather(fs, sp, vp, lfs_match_data);
352 lfs_gather(fs, sp, vp, lfs_match_indir);
353 lfs_gather(fs, sp, vp, lfs_match_dindir);
354 #ifdef TRIPLE
355 lfs_gather(fs, sp, vp, lfs_match_tindir);
356 #endif
357
358 fip = sp->fip;
359 if (fip->fi_nblocks != 0) {
360 sp->fip =
361 (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
362 sizeof(daddr_t) * (fip->fi_nblocks - 1));
363 sp->start_lbp = &sp->fip->fi_blocks[0];
364 } else {
365 sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
366 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
367 }
368 }
369
370 int
371 lfs_writeinode(fs, sp, ip)
372 struct lfs *fs;
373 struct segment *sp;
374 struct inode *ip;
375 {
376 struct buf *bp, *ibp;
377 IFILE *ifp;
378 SEGUSE *sup;
379 daddr_t daddr;
380 ino_t ino;
381 int error, i, ndx;
382 int redo_ifile = 0;
383
384 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
385 return(0);
386
387 /* Allocate a new inode block if necessary. */
388 if (sp->ibp == NULL) {
389 /* Allocate a new segment if necessary. */
390 if (sp->seg_bytes_left < fs->lfs_bsize ||
391 sp->sum_bytes_left < sizeof(daddr_t))
392 (void) lfs_writeseg(fs, sp);
393
394 /* Get next inode block. */
395 daddr = fs->lfs_offset;
396 fs->lfs_offset += fsbtodb(fs, 1);
397 sp->ibp = *sp->cbpp++ =
398 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
399 fs->lfs_bsize);
400 /* Zero out inode numbers */
401 for (i = 0; i < INOPB(fs); ++i)
402 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
403 ++sp->start_bpp;
404 fs->lfs_avail -= fsbtodb(fs, 1);
405 /* Set remaining space counters. */
406 sp->seg_bytes_left -= fs->lfs_bsize;
407 sp->sum_bytes_left -= sizeof(daddr_t);
408 ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
409 sp->ninodes / INOPB(fs) - 1;
410 ((daddr_t *)(sp->segsum))[ndx] = daddr;
411 }
412
413 /* Update the inode times and copy the inode onto the inode page. */
414 if (ip->i_flag & IN_MODIFIED)
415 --fs->lfs_uinodes;
416 ITIMES(ip, &time, &time);
417 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
418 bp = sp->ibp;
419 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
420 /* Increment inode count in segment summary block. */
421 ++((SEGSUM *)(sp->segsum))->ss_ninos;
422
423 /* If this page is full, set flag to allocate a new page. */
424 if (++sp->ninodes % INOPB(fs) == 0)
425 sp->ibp = NULL;
426
427 /*
428 * If updating the ifile, update the super-block. Update the disk
429 * address and access times for this inode in the ifile.
430 */
431 ino = ip->i_number;
432 if (ino == LFS_IFILE_INUM) {
433 daddr = fs->lfs_idaddr;
434 fs->lfs_idaddr = bp->b_blkno;
435 } else {
436 LFS_IENTRY(ifp, fs, ino, ibp);
437 daddr = ifp->if_daddr;
438 ifp->if_daddr = bp->b_blkno;
439 error = VOP_BWRITE(ibp);
440 }
441
442 /*
443 * No need to update segment usage if there was no former inode address
444 * or if the last inode address is in the current partial segment.
445 */
446 if (daddr != LFS_UNUSED_DADDR &&
447 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
448 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
449 #ifdef DIAGNOSTIC
450 if (sup->su_nbytes < sizeof(struct dinode)) {
451 /* XXX -- Change to a panic. */
452 printf("lfs: negative bytes (segment %d)\n",
453 datosn(fs, daddr));
454 panic("negative bytes");
455 }
456 #endif
457 sup->su_nbytes -= sizeof(struct dinode);
458 redo_ifile =
459 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
460 error = VOP_BWRITE(bp);
461 }
462 return (redo_ifile);
463 }
464
465 int
466 lfs_gatherblock(sp, bp, sptr)
467 struct segment *sp;
468 struct buf *bp;
469 int *sptr;
470 {
471 struct lfs *fs;
472 int version;
473
474 /*
475 * If full, finish this segment. We may be doing I/O, so
476 * release and reacquire the splbio().
477 */
478 #ifdef DIAGNOSTIC
479 if (sp->vp == NULL)
480 panic ("lfs_gatherblock: Null vp in segment");
481 #endif
482 fs = sp->fs;
483 if (sp->sum_bytes_left < sizeof(daddr_t) ||
484 sp->seg_bytes_left < fs->lfs_bsize) {
485 if (sptr)
486 splx(*sptr);
487 lfs_updatemeta(sp);
488
489 version = sp->fip->fi_version;
490 (void) lfs_writeseg(fs, sp);
491
492 sp->fip->fi_version = version;
493 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
494 /* Add the current file to the segment summary. */
495 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
496 sp->sum_bytes_left -=
497 sizeof(struct finfo) - sizeof(daddr_t);
498
499 if (sptr)
500 *sptr = splbio();
501 return(1);
502 }
503
504 /* Insert into the buffer list, update the FINFO block. */
505 bp->b_flags |= B_GATHERED;
506 *sp->cbpp++ = bp;
507 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
508
509 sp->sum_bytes_left -= sizeof(daddr_t);
510 sp->seg_bytes_left -= fs->lfs_bsize;
511 return(0);
512 }
513
514 void
515 lfs_gather(fs, sp, vp, match)
516 struct lfs *fs;
517 struct segment *sp;
518 struct vnode *vp;
519 int (*match) __P((struct lfs *, struct buf *));
520 {
521 struct buf *bp;
522 int s;
523
524 sp->vp = vp;
525 s = splbio();
526 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
527 if (bp->b_flags & B_BUSY || !match(fs, bp) ||
528 bp->b_flags & B_GATHERED)
529 continue;
530 #ifdef DIAGNOSTIC
531 if (!(bp->b_flags & B_DELWRI))
532 panic("lfs_gather: bp not B_DELWRI");
533 if (!(bp->b_flags & B_LOCKED))
534 panic("lfs_gather: bp not B_LOCKED");
535 #endif
536 if (lfs_gatherblock(sp, bp, &s))
537 goto loop;
538 }
539 splx(s);
540 lfs_updatemeta(sp);
541 sp->vp = NULL;
542 }
543
544
545 /*
546 * Update the metadata that points to the blocks listed in the FINFO
547 * array.
548 */
549 void
550 lfs_updatemeta(sp)
551 struct segment *sp;
552 {
553 SEGUSE *sup;
554 struct buf *bp;
555 struct lfs *fs;
556 struct vnode *vp;
557 struct indir a[NIADDR + 2], *ap;
558 struct inode *ip;
559 daddr_t daddr, lbn, off;
560 int db_per_fsb, error, i, nblocks, num;
561
562 vp = sp->vp;
563 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
564 if (vp == NULL || nblocks == 0)
565 return;
566
567 /* Sort the blocks. */
568 if (!(sp->seg_flags & SEGM_CLEAN))
569 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
570
571 /*
572 * Assign disk addresses, and update references to the logical
573 * block and the segment usage information.
574 */
575 fs = sp->fs;
576 db_per_fsb = fsbtodb(fs, 1);
577 for (i = nblocks; i--; ++sp->start_bpp) {
578 lbn = *sp->start_lbp++;
579 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
580 fs->lfs_offset += db_per_fsb;
581
582 if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
583 panic("lfs_updatemeta: ufs_bmaparray %d", error);
584 ip = VTOI(vp);
585 switch (num) {
586 case 0:
587 ip->i_db[lbn] = off;
588 break;
589 case 1:
590 ip->i_ib[a[0].in_off] = off;
591 break;
592 default:
593 ap = &a[num - 1];
594 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
595 panic("lfs_updatemeta: bread bno %d",
596 ap->in_lbn);
597 /*
598 * Bread may create a new indirect block which needs
599 * to get counted for the inode.
600 */
601 if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
602 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
603 ip->i_blocks += btodb(fs->lfs_bsize);
604 fs->lfs_bfree -= btodb(fs->lfs_bsize);
605 }
606 ((daddr_t *)bp->b_data)[ap->in_off] = off;
607 VOP_BWRITE(bp);
608 }
609
610 /* Update segment usage information. */
611 if (daddr != UNASSIGNED &&
612 !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
613 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
614 #ifdef DIAGNOSTIC
615 if (sup->su_nbytes < fs->lfs_bsize) {
616 /* XXX -- Change to a panic. */
617 printf("lfs: negative bytes (segment %d)\n",
618 datosn(fs, daddr));
619 panic ("Negative Bytes");
620 }
621 #endif
622 sup->su_nbytes -= fs->lfs_bsize;
623 error = VOP_BWRITE(bp);
624 }
625 }
626 }
627
628 /*
629 * Start a new segment.
630 */
631 int
632 lfs_initseg(fs)
633 struct lfs *fs;
634 {
635 struct segment *sp;
636 SEGUSE *sup;
637 SEGSUM *ssp;
638 struct buf *bp;
639 int repeat;
640
641 sp = fs->lfs_sp;
642
643 repeat = 0;
644 /* Advance to the next segment. */
645 if (!LFS_PARTIAL_FITS(fs)) {
646 /* Wake up any cleaning procs waiting on this file system. */
647 wakeup(&lfs_allclean_wakeup);
648
649 lfs_newseg(fs);
650 repeat = 1;
651 fs->lfs_offset = fs->lfs_curseg;
652 sp->seg_number = datosn(fs, fs->lfs_curseg);
653 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
654
655 /*
656 * If the segment contains a superblock, update the offset
657 * and summary address to skip over it.
658 */
659 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
660 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
661 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
662 sp->seg_bytes_left -= LFS_SBPAD;
663 }
664 brelse(bp);
665 } else {
666 sp->seg_number = datosn(fs, fs->lfs_curseg);
667 sp->seg_bytes_left = (fs->lfs_dbpseg -
668 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
669 }
670 fs->lfs_lastpseg = fs->lfs_offset;
671
672 sp->fs = fs;
673 sp->ibp = NULL;
674 sp->ninodes = 0;
675
676 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
677 sp->cbpp = sp->bpp;
678 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
679 LFS_SUMMARY_SIZE);
680 sp->segsum = (*sp->cbpp)->b_data;
681 bzero(sp->segsum, LFS_SUMMARY_SIZE);
682 sp->start_bpp = ++sp->cbpp;
683 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
684
685 /* Set point to SEGSUM, initialize it. */
686 ssp = sp->segsum;
687 ssp->ss_next = fs->lfs_nextseg;
688 ssp->ss_nfinfo = ssp->ss_ninos = 0;
689
690 /* Set pointer to first FINFO, initialize it. */
691 sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
692 sp->fip->fi_nblocks = 0;
693 sp->start_lbp = &sp->fip->fi_blocks[0];
694
695 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
696 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
697
698 return(repeat);
699 }
700
701 /*
702 * Return the next segment to write.
703 */
704 void
705 lfs_newseg(fs)
706 struct lfs *fs;
707 {
708 CLEANERINFO *cip;
709 SEGUSE *sup;
710 struct buf *bp;
711 int curseg, isdirty, sn;
712
713 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
714 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
715 sup->su_nbytes = 0;
716 sup->su_nsums = 0;
717 sup->su_ninos = 0;
718 (void) VOP_BWRITE(bp);
719
720 LFS_CLEANERINFO(cip, fs, bp);
721 --cip->clean;
722 ++cip->dirty;
723 (void) VOP_BWRITE(bp);
724
725 fs->lfs_lastseg = fs->lfs_curseg;
726 fs->lfs_curseg = fs->lfs_nextseg;
727 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
728 sn = (sn + 1) % fs->lfs_nseg;
729 if (sn == curseg)
730 panic("lfs_nextseg: no clean segments");
731 LFS_SEGENTRY(sup, fs, sn, bp);
732 isdirty = sup->su_flags & SEGUSE_DIRTY;
733 brelse(bp);
734 if (!isdirty)
735 break;
736 }
737
738 ++fs->lfs_nactive;
739 fs->lfs_nextseg = sntoda(fs, sn);
740 #ifdef DOSTATS
741 ++lfs_stats.segsused;
742 #endif
743 }
744
745 int
746 lfs_writeseg(fs, sp)
747 struct lfs *fs;
748 struct segment *sp;
749 {
750 extern int locked_queue_count;
751 struct buf **bpp, *bp, *cbp;
752 SEGUSE *sup;
753 SEGSUM *ssp;
754 dev_t i_dev;
755 size_t size;
756 u_long *datap, *dp;
757 int ch_per_blk, do_again, i, nblocks, num, s;
758 int (*strategy)__P((struct vop_strategy_args *));
759 struct vop_strategy_args vop_strategy_a;
760 u_short ninos;
761 char *p;
762
763 /*
764 * If there are no buffers other than the segment summary to write
765 * and it is not a checkpoint, don't do anything. On a checkpoint,
766 * even if there aren't any buffers, you need to write the superblock.
767 */
768 if ((nblocks = sp->cbpp - sp->bpp) == 1)
769 return (0);
770
771 ssp = (SEGSUM *)sp->segsum;
772
773 /* Update the segment usage information. */
774 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
775 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
776 sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
777 sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
778 sup->su_nbytes += LFS_SUMMARY_SIZE;
779 sup->su_lastmod = time.tv_sec;
780 sup->su_ninos += ninos;
781 ++sup->su_nsums;
782 do_again = !(bp->b_flags & B_GATHERED);
783 (void)VOP_BWRITE(bp);
784 /*
785 * Compute checksum across data and then across summary; the first
786 * block (the summary block) is skipped. Set the create time here
787 * so that it's guaranteed to be later than the inode mod times.
788 *
789 * XXX
790 * Fix this to do it inline, instead of malloc/copy.
791 */
792 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
793 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
794 if ((*++bpp)->b_flags & B_INVAL) {
795 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
796 panic("lfs_writeseg: copyin failed");
797 } else
798 *dp++ = ((u_long *)(*bpp)->b_data)[0];
799 }
800 ssp->ss_create = time.tv_sec;
801 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
802 ssp->ss_sumsum =
803 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
804 free(datap, M_SEGMENT);
805 #ifdef DIAGNOSTIC
806 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
807 panic("lfs_writeseg: No diskspace for summary");
808 #endif
809 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
810
811 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
812 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
813
814 /*
815 * When we simply write the blocks we lose a rotation for every block
816 * written. To avoid this problem, we allocate memory in chunks, copy
817 * the buffers into the chunk and write the chunk. MAXPHYS is the
818 * largest size I/O devices can handle.
819 * When the data is copied to the chunk, turn off the the B_LOCKED bit
820 * and brelse the buffer (which will move them to the LRU list). Add
821 * the B_CALL flag to the buffer header so we can count I/O's for the
822 * checkpoints and so we can release the allocated memory.
823 *
824 * XXX
825 * This should be removed if the new virtual memory system allows us to
826 * easily make the buffers contiguous in kernel memory and if that's
827 * fast enough.
828 */
829 ch_per_blk = MAXPHYS / fs->lfs_bsize;
830 for (bpp = sp->bpp, i = nblocks; i;) {
831 num = ch_per_blk;
832 if (num > i)
833 num = i;
834 i -= num;
835 size = num * fs->lfs_bsize;
836
837 cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
838 (*bpp)->b_blkno, size);
839 cbp->b_dev = i_dev;
840 cbp->b_flags |= B_ASYNC | B_BUSY;
841
842 s = splbio();
843 ++fs->lfs_iocount;
844 for (p = cbp->b_data; num--;) {
845 bp = *bpp++;
846 /*
847 * Fake buffers from the cleaner are marked as B_INVAL.
848 * We need to copy the data from user space rather than
849 * from the buffer indicated.
850 * XXX == what do I do on an error?
851 */
852 if (bp->b_flags & B_INVAL) {
853 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
854 panic("lfs_writeseg: copyin failed");
855 } else
856 bcopy(bp->b_data, p, bp->b_bcount);
857 p += bp->b_bcount;
858 if (bp->b_flags & B_LOCKED)
859 --locked_queue_count;
860 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
861 B_LOCKED | B_GATHERED);
862 if (bp->b_flags & B_CALL) {
863 /* if B_CALL, it was created with newbuf */
864 brelvp(bp);
865 if (!(bp->b_flags & B_INVAL))
866 free(bp->b_data, M_SEGMENT);
867 free(bp, M_SEGMENT);
868 } else {
869 bremfree(bp);
870 bp->b_flags |= B_DONE;
871 reassignbuf(bp, bp->b_vp);
872 brelse(bp);
873 }
874 }
875 ++cbp->b_vp->v_numoutput;
876 splx(s);
877 cbp->b_bcount = p - (char *)cbp->b_data;
878 /*
879 * XXXX This is a gross and disgusting hack. Since these
880 * buffers are physically addressed, they hang off the
881 * device vnode (devvp). As a result, they have no way
882 * of getting to the LFS superblock or lfs structure to
883 * keep track of the number of I/O's pending. So, I am
884 * going to stuff the fs into the saveaddr field of
885 * the buffer (yuk).
886 */
887 cbp->b_saveaddr = (caddr_t)fs;
888 vop_strategy_a.a_desc = VDESC(vop_strategy);
889 vop_strategy_a.a_bp = cbp;
890 (strategy)(&vop_strategy_a);
891 }
892 /*
893 * XXX
894 * Vinvalbuf can move locked buffers off the locked queue
895 * and we have no way of knowing about this. So, after
896 * doing a big write, we recalculate how many bufers are
897 * really still left on the locked queue.
898 */
899 locked_queue_count = count_lock_queue();
900 wakeup(&locked_queue_count);
901 #ifdef DOSTATS
902 ++lfs_stats.psegwrites;
903 lfs_stats.blocktot += nblocks - 1;
904 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
905 ++lfs_stats.psyncwrites;
906 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
907 ++lfs_stats.pcleanwrites;
908 lfs_stats.cleanblocks += nblocks - 1;
909 }
910 #endif
911 return (lfs_initseg(fs) || do_again);
912 }
913
914 void
915 lfs_writesuper(fs)
916 struct lfs *fs;
917 {
918 struct buf *bp;
919 dev_t i_dev;
920 int (*strategy) __P((struct vop_strategy_args *));
921 int s;
922 struct vop_strategy_args vop_strategy_a;
923
924 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
925 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
926
927 /* Checksum the superblock and copy it into a buffer. */
928 fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
929 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
930 LFS_SBPAD);
931 *(struct lfs *)bp->b_data = *fs;
932
933 /* XXX Toggle between first two superblocks; for now just write first */
934 bp->b_dev = i_dev;
935 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
936 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
937 bp->b_iodone = lfs_supercallback;
938 vop_strategy_a.a_desc = VDESC(vop_strategy);
939 vop_strategy_a.a_bp = bp;
940 s = splbio();
941 ++bp->b_vp->v_numoutput;
942 splx(s);
943 (strategy)(&vop_strategy_a);
944 }
945
946 /*
947 * Logical block number match routines used when traversing the dirty block
948 * chain.
949 */
950 int
951 lfs_match_data(fs, bp)
952 struct lfs *fs;
953 struct buf *bp;
954 {
955 return (bp->b_lblkno >= 0);
956 }
957
958 int
959 lfs_match_indir(fs, bp)
960 struct lfs *fs;
961 struct buf *bp;
962 {
963 int lbn;
964
965 lbn = bp->b_lblkno;
966 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
967 }
968
969 int
970 lfs_match_dindir(fs, bp)
971 struct lfs *fs;
972 struct buf *bp;
973 {
974 int lbn;
975
976 lbn = bp->b_lblkno;
977 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
978 }
979
980 int
981 lfs_match_tindir(fs, bp)
982 struct lfs *fs;
983 struct buf *bp;
984 {
985 int lbn;
986
987 lbn = bp->b_lblkno;
988 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
989 }
990
991 /*
992 * Allocate a new buffer header.
993 */
994 struct buf *
995 lfs_newbuf(vp, daddr, size)
996 struct vnode *vp;
997 daddr_t daddr;
998 size_t size;
999 {
1000 struct buf *bp;
1001 size_t nbytes;
1002
1003 nbytes = roundup(size, DEV_BSIZE);
1004 bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
1005 bzero(bp, sizeof(struct buf));
1006 if (nbytes)
1007 bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
1008 bgetvp(vp, bp);
1009 bp->b_bufsize = size;
1010 bp->b_bcount = size;
1011 bp->b_lblkno = daddr;
1012 bp->b_blkno = daddr;
1013 bp->b_error = 0;
1014 bp->b_resid = 0;
1015 bp->b_iodone = lfs_callback;
1016 bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
1017 return (bp);
1018 }
1019
1020 void
1021 lfs_callback(bp)
1022 struct buf *bp;
1023 {
1024 struct lfs *fs;
1025
1026 fs = (struct lfs *)bp->b_saveaddr;
1027 #ifdef DIAGNOSTIC
1028 if (fs->lfs_iocount == 0)
1029 panic("lfs_callback: zero iocount\n");
1030 #endif
1031 if (--fs->lfs_iocount == 0)
1032 wakeup(&fs->lfs_iocount);
1033
1034 brelvp(bp);
1035 free(bp->b_data, M_SEGMENT);
1036 free(bp, M_SEGMENT);
1037 }
1038
1039 void
1040 lfs_supercallback(bp)
1041 struct buf *bp;
1042 {
1043 brelvp(bp);
1044 free(bp->b_data, M_SEGMENT);
1045 free(bp, M_SEGMENT);
1046 }
1047
1048 /*
1049 * Shellsort (diminishing increment sort) from Data Structures and
1050 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1051 * see also Knuth Vol. 3, page 84. The increments are selected from
1052 * formula (8), page 95. Roughly O(N^3/2).
1053 */
1054 /*
1055 * This is our own private copy of shellsort because we want to sort
1056 * two parallel arrays (the array of buffer pointers and the array of
1057 * logical block numbers) simultaneously. Note that we cast the array
1058 * of logical block numbers to a unsigned in this routine so that the
1059 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1060 */
1061 void
1062 lfs_shellsort(bp_array, lb_array, nmemb)
1063 struct buf **bp_array;
1064 daddr_t *lb_array;
1065 register int nmemb;
1066 {
1067 static int __rsshell_increments[] = { 4, 1, 0 };
1068 register int incr, *incrp, t1, t2;
1069 struct buf *bp_temp;
1070 u_long lb_temp;
1071
1072 for (incrp = __rsshell_increments; incr = *incrp++;)
1073 for (t1 = incr; t1 < nmemb; ++t1)
1074 for (t2 = t1 - incr; t2 >= 0;)
1075 if (lb_array[t2] > lb_array[t2 + incr]) {
1076 lb_temp = lb_array[t2];
1077 lb_array[t2] = lb_array[t2 + incr];
1078 lb_array[t2 + incr] = lb_temp;
1079 bp_temp = bp_array[t2];
1080 bp_array[t2] = bp_array[t2 + incr];
1081 bp_array[t2 + incr] = bp_temp;
1082 t2 -= incr;
1083 } else
1084 break;
1085 }
1086
1087 /*
1088 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1089 */
1090 lfs_vref(vp)
1091 register struct vnode *vp;
1092 {
1093
1094 if (vp->v_flag & VXLOCK)
1095 return(1);
1096 return (vget(vp, 0));
1097 }
1098
1099 void
1100 lfs_vunref(vp)
1101 register struct vnode *vp;
1102 {
1103 extern int lfs_no_inactive;
1104
1105 /*
1106 * This is vrele except that we do not want to VOP_INACTIVE
1107 * this vnode. Rather than inline vrele here, we use a global
1108 * flag to tell lfs_inactive not to run. Yes, its gross.
1109 */
1110 lfs_no_inactive = 1;
1111 vrele(vp);
1112 lfs_no_inactive = 0;
1113 }
1114