Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.2
      1 /*	$NetBSD: lfs_segment.c,v 1.2 1994/06/29 06:46:58 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/namei.h>
     41 #include <sys/kernel.h>
     42 #include <sys/resourcevar.h>
     43 #include <sys/file.h>
     44 #include <sys/stat.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/conf.h>
     48 #include <sys/vnode.h>
     49 #include <sys/malloc.h>
     50 #include <sys/mount.h>
     51 
     52 #include <miscfs/specfs/specdev.h>
     53 #include <miscfs/fifofs/fifo.h>
     54 
     55 #include <ufs/ufs/quota.h>
     56 #include <ufs/ufs/inode.h>
     57 #include <ufs/ufs/dir.h>
     58 #include <ufs/ufs/ufsmount.h>
     59 #include <ufs/ufs/ufs_extern.h>
     60 
     61 #include <ufs/lfs/lfs.h>
     62 #include <ufs/lfs/lfs_extern.h>
     63 
     64 extern int count_lock_queue __P((void));
     65 
     66 #define MAX_ACTIVE	10
     67 /*
     68  * Determine if it's OK to start a partial in this segment, or if we need
     69  * to go on to a new segment.
     70  */
     71 #define	LFS_PARTIAL_FITS(fs) \
     72 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     73 	1 << (fs)->lfs_fsbtodb)
     74 
     75 void	 lfs_callback __P((struct buf *));
     76 void	 lfs_gather __P((struct lfs *, struct segment *,
     77 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     78 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     79 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
     80 int	 lfs_match_data __P((struct lfs *, struct buf *));
     81 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     82 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     83 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     84 void	 lfs_newseg __P((struct lfs *));
     85 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
     86 void	 lfs_supercallback __P((struct buf *));
     87 void	 lfs_updatemeta __P((struct segment *));
     88 int	 lfs_vref __P((struct vnode *));
     89 void	 lfs_vunref __P((struct vnode *));
     90 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     91 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     92 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     93 void	 lfs_writesuper __P((struct lfs *));
     94 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     95 	    struct segment *sp, int dirops));
     96 
     97 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
     98 
     99 /* Statistics Counters */
    100 #define DOSTATS
    101 struct lfs_stats lfs_stats;
    102 
    103 /* op values to lfs_writevnodes */
    104 #define	VN_REG	0
    105 #define	VN_DIROP	1
    106 #define	VN_EMPTY	2
    107 
    108 /*
    109  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    110  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    111  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    112  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    113  */
    114 
    115 int
    116 lfs_vflush(vp)
    117 	struct vnode *vp;
    118 {
    119 	struct inode *ip;
    120 	struct lfs *fs;
    121 	struct segment *sp;
    122 
    123 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    124 	if (fs->lfs_nactive > MAX_ACTIVE)
    125 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    126 	lfs_seglock(fs, SEGM_SYNC);
    127 	sp = fs->lfs_sp;
    128 
    129 
    130 	ip = VTOI(vp);
    131 	if (vp->v_dirtyblkhd.lh_first == NULL)
    132 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    133 
    134 	do {
    135 		do {
    136 			if (vp->v_dirtyblkhd.lh_first != NULL)
    137 				lfs_writefile(fs, sp, vp);
    138 		} while (lfs_writeinode(fs, sp, ip));
    139 
    140 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    141 
    142 #ifdef DOSTATS
    143 	++lfs_stats.nwrites;
    144 	if (sp->seg_flags & SEGM_SYNC)
    145 		++lfs_stats.nsync_writes;
    146 	if (sp->seg_flags & SEGM_CKP)
    147 		++lfs_stats.ncheckpoints;
    148 #endif
    149 	lfs_segunlock(fs);
    150 	return (0);
    151 }
    152 
    153 void
    154 lfs_writevnodes(fs, mp, sp, op)
    155 	struct lfs *fs;
    156 	struct mount *mp;
    157 	struct segment *sp;
    158 	int op;
    159 {
    160 	struct inode *ip;
    161 	struct vnode *vp;
    162 
    163 loop:
    164 	for (vp = mp->mnt_vnodelist.lh_first;
    165 	     vp != NULL;
    166 	     vp = vp->v_mntvnodes.le_next) {
    167 		/*
    168 		 * If the vnode that we are about to sync is no longer
    169 		 * associated with this mount point, start over.
    170 		 */
    171 		if (vp->v_mount != mp)
    172 			goto loop;
    173 
    174 		/* XXX ignore dirops for now
    175 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    176 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    177 			continue;
    178 		*/
    179 
    180 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    181 			continue;
    182 
    183 		if (vp->v_type == VNON)
    184 			continue;
    185 
    186 		if (lfs_vref(vp))
    187 			continue;
    188 
    189 		/*
    190 		 * Write the inode/file if dirty and it's not the
    191 		 * the IFILE.
    192 		 */
    193 		ip = VTOI(vp);
    194 		if ((ip->i_flag &
    195 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    196 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    197 		    ip->i_number != LFS_IFILE_INUM) {
    198 			if (vp->v_dirtyblkhd.lh_first != NULL)
    199 				lfs_writefile(fs, sp, vp);
    200 			(void) lfs_writeinode(fs, sp, ip);
    201 		}
    202 		vp->v_flag &= ~VDIROP;
    203 		lfs_vunref(vp);
    204 	}
    205 }
    206 
    207 int
    208 lfs_segwrite(mp, flags)
    209 	struct mount *mp;
    210 	int flags;			/* Do a checkpoint. */
    211 {
    212 	struct buf *bp;
    213 	struct inode *ip;
    214 	struct lfs *fs;
    215 	struct segment *sp;
    216 	struct vnode *vp;
    217 	SEGUSE *segusep;
    218 	daddr_t ibno;
    219 	CLEANERINFO *cip;
    220 	int clean, do_ckp, error, i;
    221 
    222 	fs = VFSTOUFS(mp)->um_lfs;
    223 
    224  	/*
    225  	 * If we have fewer than 2 clean segments, wait until cleaner
    226 	 * writes.
    227  	 */
    228 	do {
    229 		LFS_CLEANERINFO(cip, fs, bp);
    230 		clean = cip->clean;
    231 		brelse(bp);
    232 		if (clean <= 2) {
    233 			printf ("segs clean: %d\n", clean);
    234 			wakeup(&lfs_allclean_wakeup);
    235 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    236 			    "lfs writer", 0))
    237 				return (error);
    238 		}
    239 	} while (clean <= 2 );
    240 
    241 	/*
    242 	 * Allocate a segment structure and enough space to hold pointers to
    243 	 * the maximum possible number of buffers which can be described in a
    244 	 * single summary block.
    245 	 */
    246 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    247 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    248 	sp = fs->lfs_sp;
    249 
    250 	lfs_writevnodes(fs, mp, sp, VN_REG);
    251 
    252 	/* XXX ignore ordering of dirops for now */
    253 	/* XXX
    254 	fs->lfs_writer = 1;
    255 	if (fs->lfs_dirops && (error =
    256 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    257 		free(sp->bpp, M_SEGMENT);
    258 		free(sp, M_SEGMENT);
    259 		fs->lfs_writer = 0;
    260 		return (error);
    261 	}
    262 
    263 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    264 	*/
    265 
    266 	/*
    267 	 * If we are doing a checkpoint, mark everything since the
    268 	 * last checkpoint as no longer ACTIVE.
    269 	 */
    270 	if (do_ckp)
    271 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    272 		     --ibno >= fs->lfs_cleansz; ) {
    273 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    274 			    NOCRED, &bp))
    275 
    276 				panic("lfs: ifile read");
    277 			segusep = (SEGUSE *)bp->b_data;
    278 			for (i = fs->lfs_sepb; i--; segusep++)
    279 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    280 
    281 			error = VOP_BWRITE(bp);
    282 		}
    283 
    284 	if (do_ckp || fs->lfs_doifile) {
    285 redo:
    286 		vp = fs->lfs_ivnode;
    287 		while (vget(vp, 1));
    288 		ip = VTOI(vp);
    289 		if (vp->v_dirtyblkhd.lh_first != NULL)
    290 			lfs_writefile(fs, sp, vp);
    291 		(void)lfs_writeinode(fs, sp, ip);
    292 		vput(vp);
    293 		if (lfs_writeseg(fs, sp) && do_ckp)
    294 			goto redo;
    295 	} else
    296 		(void) lfs_writeseg(fs, sp);
    297 
    298 	/*
    299 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    300 	 * moment, the user's process hangs around so we can sleep.
    301 	 */
    302 	/* XXX ignore dirops for now
    303 	fs->lfs_writer = 0;
    304 	fs->lfs_doifile = 0;
    305 	wakeup(&fs->lfs_dirops);
    306 	*/
    307 
    308 #ifdef DOSTATS
    309 	++lfs_stats.nwrites;
    310 	if (sp->seg_flags & SEGM_SYNC)
    311 		++lfs_stats.nsync_writes;
    312 	if (sp->seg_flags & SEGM_CKP)
    313 		++lfs_stats.ncheckpoints;
    314 #endif
    315 	lfs_segunlock(fs);
    316 	return (0);
    317 }
    318 
    319 /*
    320  * Write the dirty blocks associated with a vnode.
    321  */
    322 void
    323 lfs_writefile(fs, sp, vp)
    324 	struct lfs *fs;
    325 	struct segment *sp;
    326 	struct vnode *vp;
    327 {
    328 	struct buf *bp;
    329 	struct finfo *fip;
    330 	IFILE *ifp;
    331 
    332 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    333 	    sp->sum_bytes_left < sizeof(struct finfo))
    334 		(void) lfs_writeseg(fs, sp);
    335 
    336 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
    337 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    338 
    339 	fip = sp->fip;
    340 	fip->fi_nblocks = 0;
    341 	fip->fi_ino = VTOI(vp)->i_number;
    342 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    343 	fip->fi_version = ifp->if_version;
    344 	brelse(bp);
    345 
    346 	/*
    347 	 * It may not be necessary to write the meta-data blocks at this point,
    348 	 * as the roll-forward recovery code should be able to reconstruct the
    349 	 * list.
    350 	 */
    351 	lfs_gather(fs, sp, vp, lfs_match_data);
    352 	lfs_gather(fs, sp, vp, lfs_match_indir);
    353 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    354 #ifdef TRIPLE
    355 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    356 #endif
    357 
    358 	fip = sp->fip;
    359 	if (fip->fi_nblocks != 0) {
    360 		sp->fip =
    361 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    362 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
    363 		sp->start_lbp = &sp->fip->fi_blocks[0];
    364 	} else {
    365 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
    366 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    367 	}
    368 }
    369 
    370 int
    371 lfs_writeinode(fs, sp, ip)
    372 	struct lfs *fs;
    373 	struct segment *sp;
    374 	struct inode *ip;
    375 {
    376 	struct buf *bp, *ibp;
    377 	IFILE *ifp;
    378 	SEGUSE *sup;
    379 	daddr_t daddr;
    380 	ino_t ino;
    381 	int error, i, ndx;
    382 	int redo_ifile = 0;
    383 
    384 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    385 		return(0);
    386 
    387 	/* Allocate a new inode block if necessary. */
    388 	if (sp->ibp == NULL) {
    389 		/* Allocate a new segment if necessary. */
    390 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    391 		    sp->sum_bytes_left < sizeof(daddr_t))
    392 			(void) lfs_writeseg(fs, sp);
    393 
    394 		/* Get next inode block. */
    395 		daddr = fs->lfs_offset;
    396 		fs->lfs_offset += fsbtodb(fs, 1);
    397 		sp->ibp = *sp->cbpp++ =
    398 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    399 		    fs->lfs_bsize);
    400 		/* Zero out inode numbers */
    401 		for (i = 0; i < INOPB(fs); ++i)
    402 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    403 		++sp->start_bpp;
    404 		fs->lfs_avail -= fsbtodb(fs, 1);
    405 		/* Set remaining space counters. */
    406 		sp->seg_bytes_left -= fs->lfs_bsize;
    407 		sp->sum_bytes_left -= sizeof(daddr_t);
    408 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
    409 		    sp->ninodes / INOPB(fs) - 1;
    410 		((daddr_t *)(sp->segsum))[ndx] = daddr;
    411 	}
    412 
    413 	/* Update the inode times and copy the inode onto the inode page. */
    414 	if (ip->i_flag & IN_MODIFIED)
    415 		--fs->lfs_uinodes;
    416 	ITIMES(ip, &time, &time);
    417 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    418 	bp = sp->ibp;
    419 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
    420 	/* Increment inode count in segment summary block. */
    421 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    422 
    423 	/* If this page is full, set flag to allocate a new page. */
    424 	if (++sp->ninodes % INOPB(fs) == 0)
    425 		sp->ibp = NULL;
    426 
    427 	/*
    428 	 * If updating the ifile, update the super-block.  Update the disk
    429 	 * address and access times for this inode in the ifile.
    430 	 */
    431 	ino = ip->i_number;
    432 	if (ino == LFS_IFILE_INUM) {
    433 		daddr = fs->lfs_idaddr;
    434 		fs->lfs_idaddr = bp->b_blkno;
    435 	} else {
    436 		LFS_IENTRY(ifp, fs, ino, ibp);
    437 		daddr = ifp->if_daddr;
    438 		ifp->if_daddr = bp->b_blkno;
    439 		error = VOP_BWRITE(ibp);
    440 	}
    441 
    442 	/*
    443 	 * No need to update segment usage if there was no former inode address
    444 	 * or if the last inode address is in the current partial segment.
    445 	 */
    446 	if (daddr != LFS_UNUSED_DADDR &&
    447 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    448 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    449 #ifdef DIAGNOSTIC
    450 		if (sup->su_nbytes < sizeof(struct dinode)) {
    451 			/* XXX -- Change to a panic. */
    452 			printf("lfs: negative bytes (segment %d)\n",
    453 			    datosn(fs, daddr));
    454 			panic("negative bytes");
    455 		}
    456 #endif
    457 		sup->su_nbytes -= sizeof(struct dinode);
    458 		redo_ifile =
    459 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    460 		error = VOP_BWRITE(bp);
    461 	}
    462 	return (redo_ifile);
    463 }
    464 
    465 int
    466 lfs_gatherblock(sp, bp, sptr)
    467 	struct segment *sp;
    468 	struct buf *bp;
    469 	int *sptr;
    470 {
    471 	struct lfs *fs;
    472 	int version;
    473 
    474 	/*
    475 	 * If full, finish this segment.  We may be doing I/O, so
    476 	 * release and reacquire the splbio().
    477 	 */
    478 #ifdef DIAGNOSTIC
    479 	if (sp->vp == NULL)
    480 		panic ("lfs_gatherblock: Null vp in segment");
    481 #endif
    482 	fs = sp->fs;
    483 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
    484 	    sp->seg_bytes_left < fs->lfs_bsize) {
    485 		if (sptr)
    486 			splx(*sptr);
    487 		lfs_updatemeta(sp);
    488 
    489 		version = sp->fip->fi_version;
    490 		(void) lfs_writeseg(fs, sp);
    491 
    492 		sp->fip->fi_version = version;
    493 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    494 		/* Add the current file to the segment summary. */
    495 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    496 		sp->sum_bytes_left -=
    497 		    sizeof(struct finfo) - sizeof(daddr_t);
    498 
    499 		if (sptr)
    500 			*sptr = splbio();
    501 		return(1);
    502 	}
    503 
    504 	/* Insert into the buffer list, update the FINFO block. */
    505 	bp->b_flags |= B_GATHERED;
    506 	*sp->cbpp++ = bp;
    507 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    508 
    509 	sp->sum_bytes_left -= sizeof(daddr_t);
    510 	sp->seg_bytes_left -= fs->lfs_bsize;
    511 	return(0);
    512 }
    513 
    514 void
    515 lfs_gather(fs, sp, vp, match)
    516 	struct lfs *fs;
    517 	struct segment *sp;
    518 	struct vnode *vp;
    519 	int (*match) __P((struct lfs *, struct buf *));
    520 {
    521 	struct buf *bp;
    522 	int s;
    523 
    524 	sp->vp = vp;
    525 	s = splbio();
    526 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    527 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    528 		    bp->b_flags & B_GATHERED)
    529 			continue;
    530 #ifdef DIAGNOSTIC
    531 		if (!(bp->b_flags & B_DELWRI))
    532 			panic("lfs_gather: bp not B_DELWRI");
    533 		if (!(bp->b_flags & B_LOCKED))
    534 			panic("lfs_gather: bp not B_LOCKED");
    535 #endif
    536 		if (lfs_gatherblock(sp, bp, &s))
    537 			goto loop;
    538 	}
    539 	splx(s);
    540 	lfs_updatemeta(sp);
    541 	sp->vp = NULL;
    542 }
    543 
    544 
    545 /*
    546  * Update the metadata that points to the blocks listed in the FINFO
    547  * array.
    548  */
    549 void
    550 lfs_updatemeta(sp)
    551 	struct segment *sp;
    552 {
    553 	SEGUSE *sup;
    554 	struct buf *bp;
    555 	struct lfs *fs;
    556 	struct vnode *vp;
    557 	struct indir a[NIADDR + 2], *ap;
    558 	struct inode *ip;
    559 	daddr_t daddr, lbn, off;
    560 	int db_per_fsb, error, i, nblocks, num;
    561 
    562 	vp = sp->vp;
    563 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    564 	if (vp == NULL || nblocks == 0)
    565 		return;
    566 
    567 	/* Sort the blocks. */
    568 	if (!(sp->seg_flags & SEGM_CLEAN))
    569 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    570 
    571 	/*
    572 	 * Assign disk addresses, and update references to the logical
    573 	 * block and the segment usage information.
    574 	 */
    575 	fs = sp->fs;
    576 	db_per_fsb = fsbtodb(fs, 1);
    577 	for (i = nblocks; i--; ++sp->start_bpp) {
    578 		lbn = *sp->start_lbp++;
    579 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    580 		fs->lfs_offset += db_per_fsb;
    581 
    582 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
    583 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    584 		ip = VTOI(vp);
    585 		switch (num) {
    586 		case 0:
    587 			ip->i_db[lbn] = off;
    588 			break;
    589 		case 1:
    590 			ip->i_ib[a[0].in_off] = off;
    591 			break;
    592 		default:
    593 			ap = &a[num - 1];
    594 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    595 				panic("lfs_updatemeta: bread bno %d",
    596 				    ap->in_lbn);
    597 			/*
    598 			 * Bread may create a new indirect block which needs
    599 			 * to get counted for the inode.
    600 			 */
    601 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    602 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
    603 				ip->i_blocks += btodb(fs->lfs_bsize);
    604 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
    605 			}
    606 			((daddr_t *)bp->b_data)[ap->in_off] = off;
    607 			VOP_BWRITE(bp);
    608 		}
    609 
    610 		/* Update segment usage information. */
    611 		if (daddr != UNASSIGNED &&
    612 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    613 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    614 #ifdef DIAGNOSTIC
    615 			if (sup->su_nbytes < fs->lfs_bsize) {
    616 				/* XXX -- Change to a panic. */
    617 				printf("lfs: negative bytes (segment %d)\n",
    618 				    datosn(fs, daddr));
    619 				panic ("Negative Bytes");
    620 			}
    621 #endif
    622 			sup->su_nbytes -= fs->lfs_bsize;
    623 			error = VOP_BWRITE(bp);
    624 		}
    625 	}
    626 }
    627 
    628 /*
    629  * Start a new segment.
    630  */
    631 int
    632 lfs_initseg(fs)
    633 	struct lfs *fs;
    634 {
    635 	struct segment *sp;
    636 	SEGUSE *sup;
    637 	SEGSUM *ssp;
    638 	struct buf *bp;
    639 	int repeat;
    640 
    641 	sp = fs->lfs_sp;
    642 
    643 	repeat = 0;
    644 	/* Advance to the next segment. */
    645 	if (!LFS_PARTIAL_FITS(fs)) {
    646 		/* Wake up any cleaning procs waiting on this file system. */
    647 		wakeup(&lfs_allclean_wakeup);
    648 
    649 		lfs_newseg(fs);
    650 		repeat = 1;
    651 		fs->lfs_offset = fs->lfs_curseg;
    652 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    653 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    654 
    655 		/*
    656 		 * If the segment contains a superblock, update the offset
    657 		 * and summary address to skip over it.
    658 		 */
    659 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    660 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    661 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    662 			sp->seg_bytes_left -= LFS_SBPAD;
    663 		}
    664 		brelse(bp);
    665 	} else {
    666 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    667 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    668 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    669 	}
    670 	fs->lfs_lastpseg = fs->lfs_offset;
    671 
    672 	sp->fs = fs;
    673 	sp->ibp = NULL;
    674 	sp->ninodes = 0;
    675 
    676 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    677 	sp->cbpp = sp->bpp;
    678 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    679 	     LFS_SUMMARY_SIZE);
    680 	sp->segsum = (*sp->cbpp)->b_data;
    681 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    682 	sp->start_bpp = ++sp->cbpp;
    683 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    684 
    685 	/* Set point to SEGSUM, initialize it. */
    686 	ssp = sp->segsum;
    687 	ssp->ss_next = fs->lfs_nextseg;
    688 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    689 
    690 	/* Set pointer to first FINFO, initialize it. */
    691 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
    692 	sp->fip->fi_nblocks = 0;
    693 	sp->start_lbp = &sp->fip->fi_blocks[0];
    694 
    695 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    696 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    697 
    698 	return(repeat);
    699 }
    700 
    701 /*
    702  * Return the next segment to write.
    703  */
    704 void
    705 lfs_newseg(fs)
    706 	struct lfs *fs;
    707 {
    708 	CLEANERINFO *cip;
    709 	SEGUSE *sup;
    710 	struct buf *bp;
    711 	int curseg, isdirty, sn;
    712 
    713         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    714         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    715 	sup->su_nbytes = 0;
    716 	sup->su_nsums = 0;
    717 	sup->su_ninos = 0;
    718         (void) VOP_BWRITE(bp);
    719 
    720 	LFS_CLEANERINFO(cip, fs, bp);
    721 	--cip->clean;
    722 	++cip->dirty;
    723 	(void) VOP_BWRITE(bp);
    724 
    725 	fs->lfs_lastseg = fs->lfs_curseg;
    726 	fs->lfs_curseg = fs->lfs_nextseg;
    727 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    728 		sn = (sn + 1) % fs->lfs_nseg;
    729 		if (sn == curseg)
    730 			panic("lfs_nextseg: no clean segments");
    731 		LFS_SEGENTRY(sup, fs, sn, bp);
    732 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    733 		brelse(bp);
    734 		if (!isdirty)
    735 			break;
    736 	}
    737 
    738 	++fs->lfs_nactive;
    739 	fs->lfs_nextseg = sntoda(fs, sn);
    740 #ifdef DOSTATS
    741 	++lfs_stats.segsused;
    742 #endif
    743 }
    744 
    745 int
    746 lfs_writeseg(fs, sp)
    747 	struct lfs *fs;
    748 	struct segment *sp;
    749 {
    750 	extern int locked_queue_count;
    751 	struct buf **bpp, *bp, *cbp;
    752 	SEGUSE *sup;
    753 	SEGSUM *ssp;
    754 	dev_t i_dev;
    755 	size_t size;
    756 	u_long *datap, *dp;
    757 	int ch_per_blk, do_again, i, nblocks, num, s;
    758 	int (*strategy)__P((struct vop_strategy_args *));
    759 	struct vop_strategy_args vop_strategy_a;
    760 	u_short ninos;
    761 	char *p;
    762 
    763 	/*
    764 	 * If there are no buffers other than the segment summary to write
    765 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    766 	 * even if there aren't any buffers, you need to write the superblock.
    767 	 */
    768 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    769 		return (0);
    770 
    771 	ssp = (SEGSUM *)sp->segsum;
    772 
    773 	/* Update the segment usage information. */
    774 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    775 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    776 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
    777 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    778 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    779 	sup->su_lastmod = time.tv_sec;
    780 	sup->su_ninos += ninos;
    781 	++sup->su_nsums;
    782 	do_again = !(bp->b_flags & B_GATHERED);
    783 	(void)VOP_BWRITE(bp);
    784 	/*
    785 	 * Compute checksum across data and then across summary; the first
    786 	 * block (the summary block) is skipped.  Set the create time here
    787 	 * so that it's guaranteed to be later than the inode mod times.
    788 	 *
    789 	 * XXX
    790 	 * Fix this to do it inline, instead of malloc/copy.
    791 	 */
    792 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    793 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    794 		if ((*++bpp)->b_flags & B_INVAL) {
    795 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    796 				panic("lfs_writeseg: copyin failed");
    797 		} else
    798 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    799 	}
    800 	ssp->ss_create = time.tv_sec;
    801 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    802 	ssp->ss_sumsum =
    803 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    804 	free(datap, M_SEGMENT);
    805 #ifdef DIAGNOSTIC
    806 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    807 		panic("lfs_writeseg: No diskspace for summary");
    808 #endif
    809 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    810 
    811 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    812 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    813 
    814 	/*
    815 	 * When we simply write the blocks we lose a rotation for every block
    816 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    817 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    818 	 * largest size I/O devices can handle.
    819 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    820 	 * and brelse the buffer (which will move them to the LRU list).  Add
    821 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    822 	 * checkpoints and so we can release the allocated memory.
    823 	 *
    824 	 * XXX
    825 	 * This should be removed if the new virtual memory system allows us to
    826 	 * easily make the buffers contiguous in kernel memory and if that's
    827 	 * fast enough.
    828 	 */
    829 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
    830 	for (bpp = sp->bpp, i = nblocks; i;) {
    831 		num = ch_per_blk;
    832 		if (num > i)
    833 			num = i;
    834 		i -= num;
    835 		size = num * fs->lfs_bsize;
    836 
    837 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    838 		    (*bpp)->b_blkno, size);
    839 		cbp->b_dev = i_dev;
    840 		cbp->b_flags |= B_ASYNC | B_BUSY;
    841 
    842 		s = splbio();
    843 		++fs->lfs_iocount;
    844 		for (p = cbp->b_data; num--;) {
    845 			bp = *bpp++;
    846 			/*
    847 			 * Fake buffers from the cleaner are marked as B_INVAL.
    848 			 * We need to copy the data from user space rather than
    849 			 * from the buffer indicated.
    850 			 * XXX == what do I do on an error?
    851 			 */
    852 			if (bp->b_flags & B_INVAL) {
    853 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    854 					panic("lfs_writeseg: copyin failed");
    855 			} else
    856 				bcopy(bp->b_data, p, bp->b_bcount);
    857 			p += bp->b_bcount;
    858 			if (bp->b_flags & B_LOCKED)
    859 				--locked_queue_count;
    860 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    861 			     B_LOCKED | B_GATHERED);
    862 			if (bp->b_flags & B_CALL) {
    863 				/* if B_CALL, it was created with newbuf */
    864 				brelvp(bp);
    865 				if (!(bp->b_flags & B_INVAL))
    866 					free(bp->b_data, M_SEGMENT);
    867 				free(bp, M_SEGMENT);
    868 			} else {
    869 				bremfree(bp);
    870 				bp->b_flags |= B_DONE;
    871 				reassignbuf(bp, bp->b_vp);
    872 				brelse(bp);
    873 			}
    874 		}
    875 		++cbp->b_vp->v_numoutput;
    876 		splx(s);
    877 		cbp->b_bcount = p - (char *)cbp->b_data;
    878 		/*
    879 		 * XXXX This is a gross and disgusting hack.  Since these
    880 		 * buffers are physically addressed, they hang off the
    881 		 * device vnode (devvp).  As a result, they have no way
    882 		 * of getting to the LFS superblock or lfs structure to
    883 		 * keep track of the number of I/O's pending.  So, I am
    884 		 * going to stuff the fs into the saveaddr field of
    885 		 * the buffer (yuk).
    886 		 */
    887 		cbp->b_saveaddr = (caddr_t)fs;
    888 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    889 		vop_strategy_a.a_bp = cbp;
    890 		(strategy)(&vop_strategy_a);
    891 	}
    892 	/*
    893 	 * XXX
    894 	 * Vinvalbuf can move locked buffers off the locked queue
    895 	 * and we have no way of knowing about this.  So, after
    896 	 * doing a big write, we recalculate how many bufers are
    897 	 * really still left on the locked queue.
    898 	 */
    899 	locked_queue_count = count_lock_queue();
    900 	wakeup(&locked_queue_count);
    901 #ifdef DOSTATS
    902 	++lfs_stats.psegwrites;
    903 	lfs_stats.blocktot += nblocks - 1;
    904 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    905 		++lfs_stats.psyncwrites;
    906 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    907 		++lfs_stats.pcleanwrites;
    908 		lfs_stats.cleanblocks += nblocks - 1;
    909 	}
    910 #endif
    911 	return (lfs_initseg(fs) || do_again);
    912 }
    913 
    914 void
    915 lfs_writesuper(fs)
    916 	struct lfs *fs;
    917 {
    918 	struct buf *bp;
    919 	dev_t i_dev;
    920 	int (*strategy) __P((struct vop_strategy_args *));
    921 	int s;
    922 	struct vop_strategy_args vop_strategy_a;
    923 
    924 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    925 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    926 
    927 	/* Checksum the superblock and copy it into a buffer. */
    928 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
    929 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    930 	    LFS_SBPAD);
    931 	*(struct lfs *)bp->b_data = *fs;
    932 
    933 	/* XXX Toggle between first two superblocks; for now just write first */
    934 	bp->b_dev = i_dev;
    935 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    936 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    937 	bp->b_iodone = lfs_supercallback;
    938 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    939 	vop_strategy_a.a_bp = bp;
    940 	s = splbio();
    941 	++bp->b_vp->v_numoutput;
    942 	splx(s);
    943 	(strategy)(&vop_strategy_a);
    944 }
    945 
    946 /*
    947  * Logical block number match routines used when traversing the dirty block
    948  * chain.
    949  */
    950 int
    951 lfs_match_data(fs, bp)
    952 	struct lfs *fs;
    953 	struct buf *bp;
    954 {
    955 	return (bp->b_lblkno >= 0);
    956 }
    957 
    958 int
    959 lfs_match_indir(fs, bp)
    960 	struct lfs *fs;
    961 	struct buf *bp;
    962 {
    963 	int lbn;
    964 
    965 	lbn = bp->b_lblkno;
    966 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    967 }
    968 
    969 int
    970 lfs_match_dindir(fs, bp)
    971 	struct lfs *fs;
    972 	struct buf *bp;
    973 {
    974 	int lbn;
    975 
    976 	lbn = bp->b_lblkno;
    977 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    978 }
    979 
    980 int
    981 lfs_match_tindir(fs, bp)
    982 	struct lfs *fs;
    983 	struct buf *bp;
    984 {
    985 	int lbn;
    986 
    987 	lbn = bp->b_lblkno;
    988 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    989 }
    990 
    991 /*
    992  * Allocate a new buffer header.
    993  */
    994 struct buf *
    995 lfs_newbuf(vp, daddr, size)
    996 	struct vnode *vp;
    997 	daddr_t daddr;
    998 	size_t size;
    999 {
   1000 	struct buf *bp;
   1001 	size_t nbytes;
   1002 
   1003 	nbytes = roundup(size, DEV_BSIZE);
   1004 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1005 	bzero(bp, sizeof(struct buf));
   1006 	if (nbytes)
   1007 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1008 	bgetvp(vp, bp);
   1009 	bp->b_bufsize = size;
   1010 	bp->b_bcount = size;
   1011 	bp->b_lblkno = daddr;
   1012 	bp->b_blkno = daddr;
   1013 	bp->b_error = 0;
   1014 	bp->b_resid = 0;
   1015 	bp->b_iodone = lfs_callback;
   1016 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1017 	return (bp);
   1018 }
   1019 
   1020 void
   1021 lfs_callback(bp)
   1022 	struct buf *bp;
   1023 {
   1024 	struct lfs *fs;
   1025 
   1026 	fs = (struct lfs *)bp->b_saveaddr;
   1027 #ifdef DIAGNOSTIC
   1028 	if (fs->lfs_iocount == 0)
   1029 		panic("lfs_callback: zero iocount\n");
   1030 #endif
   1031 	if (--fs->lfs_iocount == 0)
   1032 		wakeup(&fs->lfs_iocount);
   1033 
   1034 	brelvp(bp);
   1035 	free(bp->b_data, M_SEGMENT);
   1036 	free(bp, M_SEGMENT);
   1037 }
   1038 
   1039 void
   1040 lfs_supercallback(bp)
   1041 	struct buf *bp;
   1042 {
   1043 	brelvp(bp);
   1044 	free(bp->b_data, M_SEGMENT);
   1045 	free(bp, M_SEGMENT);
   1046 }
   1047 
   1048 /*
   1049  * Shellsort (diminishing increment sort) from Data Structures and
   1050  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1051  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1052  * formula (8), page 95.  Roughly O(N^3/2).
   1053  */
   1054 /*
   1055  * This is our own private copy of shellsort because we want to sort
   1056  * two parallel arrays (the array of buffer pointers and the array of
   1057  * logical block numbers) simultaneously.  Note that we cast the array
   1058  * of logical block numbers to a unsigned in this routine so that the
   1059  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1060  */
   1061 void
   1062 lfs_shellsort(bp_array, lb_array, nmemb)
   1063 	struct buf **bp_array;
   1064 	daddr_t *lb_array;
   1065 	register int nmemb;
   1066 {
   1067 	static int __rsshell_increments[] = { 4, 1, 0 };
   1068 	register int incr, *incrp, t1, t2;
   1069 	struct buf *bp_temp;
   1070 	u_long lb_temp;
   1071 
   1072 	for (incrp = __rsshell_increments; incr = *incrp++;)
   1073 		for (t1 = incr; t1 < nmemb; ++t1)
   1074 			for (t2 = t1 - incr; t2 >= 0;)
   1075 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1076 					lb_temp = lb_array[t2];
   1077 					lb_array[t2] = lb_array[t2 + incr];
   1078 					lb_array[t2 + incr] = lb_temp;
   1079 					bp_temp = bp_array[t2];
   1080 					bp_array[t2] = bp_array[t2 + incr];
   1081 					bp_array[t2 + incr] = bp_temp;
   1082 					t2 -= incr;
   1083 				} else
   1084 					break;
   1085 }
   1086 
   1087 /*
   1088  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1089  */
   1090 lfs_vref(vp)
   1091 	register struct vnode *vp;
   1092 {
   1093 
   1094 	if (vp->v_flag & VXLOCK)
   1095 		return(1);
   1096 	return (vget(vp, 0));
   1097 }
   1098 
   1099 void
   1100 lfs_vunref(vp)
   1101 	register struct vnode *vp;
   1102 {
   1103 	extern int lfs_no_inactive;
   1104 
   1105 	/*
   1106 	 * This is vrele except that we do not want to VOP_INACTIVE
   1107 	 * this vnode. Rather than inline vrele here, we use a global
   1108 	 * flag to tell lfs_inactive not to run. Yes, its gross.
   1109 	 */
   1110 	lfs_no_inactive = 1;
   1111 	vrele(vp);
   1112 	lfs_no_inactive = 0;
   1113 }
   1114