lfs_segment.c revision 1.206 1 /* $NetBSD: lfs_segment.c,v 1.206 2007/10/10 20:42:35 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.206 2007/10/10 20:42:35 ad Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern struct simplelock vnode_free_list_slock; /* XXX */
120 extern struct simplelock bqueue_slock; /* XXX */
121
122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 static void lfs_free_aiodone(struct buf *);
124 static void lfs_super_aiodone(struct buf *);
125 static void lfs_cluster_aiodone(struct buf *);
126 static void lfs_cluster_callback(struct buf *);
127
128 /*
129 * Determine if it's OK to start a partial in this segment, or if we need
130 * to go on to a new segment.
131 */
132 #define LFS_PARTIAL_FITS(fs) \
133 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 fragstofsb((fs), (fs)->lfs_frag))
135
136 /*
137 * Figure out whether we should do a checkpoint write or go ahead with
138 * an ordinary write.
139 */
140 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141 ((flags & SEGM_CLEAN) == 0 && \
142 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
143 (flags & SEGM_CKP) || \
144 fs->lfs_nclean < LFS_MAX_ACTIVE)))
145
146 int lfs_match_fake(struct lfs *, struct buf *);
147 void lfs_newseg(struct lfs *);
148 /* XXX ondisk32 */
149 void lfs_shellsort(struct buf **, int32_t *, int, int);
150 void lfs_supercallback(struct buf *);
151 void lfs_updatemeta(struct segment *);
152 void lfs_writesuper(struct lfs *, daddr_t);
153 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 struct segment *sp, int dirops);
155
156 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
157 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
158 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
159 int lfs_dirvcount = 0; /* # active dirops */
160
161 /* Statistics Counters */
162 int lfs_dostats = 1;
163 struct lfs_stats lfs_stats;
164
165 /* op values to lfs_writevnodes */
166 #define VN_REG 0
167 #define VN_DIROP 1
168 #define VN_EMPTY 2
169 #define VN_CLEAN 3
170
171 /*
172 * XXX KS - Set modification time on the Ifile, so the cleaner can
173 * read the fs mod time off of it. We don't set IN_UPDATE here,
174 * since we don't really need this to be flushed to disk (and in any
175 * case that wouldn't happen to the Ifile until we checkpoint).
176 */
177 void
178 lfs_imtime(struct lfs *fs)
179 {
180 struct timespec ts;
181 struct inode *ip;
182
183 ASSERT_MAYBE_SEGLOCK(fs);
184 vfs_timestamp(&ts);
185 ip = VTOI(fs->lfs_ivnode);
186 ip->i_ffs1_mtime = ts.tv_sec;
187 ip->i_ffs1_mtimensec = ts.tv_nsec;
188 }
189
190 /*
191 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
193 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
194 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
195 */
196
197 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
198
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 struct inode *ip;
203 struct lfs *fs;
204 struct segment *sp;
205 struct buf *bp, *nbp, *tbp, *tnbp;
206 int error, s;
207 int flushed;
208 int relock;
209 int loopcount;
210
211 ip = VTOI(vp);
212 fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 relock = 0;
214
215 top:
216 ASSERT_NO_SEGLOCK(fs);
217 if (ip->i_flag & IN_CLEANING) {
218 ivndebug(vp,"vflush/in_cleaning");
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221
222 /*
223 * Toss any cleaning buffers that have real counterparts
224 * to avoid losing new data.
225 */
226 s = splbio();
227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 nbp = LIST_NEXT(bp, b_vnbufs);
229 if (!LFS_IS_MALLOC_BUF(bp))
230 continue;
231 /*
232 * Look for pages matching the range covered
233 * by cleaning blocks. It's okay if more dirty
234 * pages appear, so long as none disappear out
235 * from under us.
236 */
237 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 vp != fs->lfs_ivnode) {
239 struct vm_page *pg;
240 voff_t off;
241
242 simple_lock(&vp->v_interlock);
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 lfs_freebuf(fs, bp);
255 bp = NULL;
256 simple_unlock(&vp->v_interlock);
257 goto nextbp;
258 }
259 }
260 simple_unlock(&vp->v_interlock);
261 }
262 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 tbp = tnbp)
264 {
265 tnbp = LIST_NEXT(tbp, b_vnbufs);
266 if (tbp->b_vp == bp->b_vp
267 && tbp->b_lblkno == bp->b_lblkno
268 && tbp != bp)
269 {
270 fs->lfs_avail += btofsb(fs,
271 bp->b_bcount);
272 wakeup(&fs->lfs_avail);
273 lfs_freebuf(fs, bp);
274 bp = NULL;
275 break;
276 }
277 }
278 nextbp:
279 ;
280 }
281 splx(s);
282 }
283
284 /* If the node is being written, wait until that is done */
285 simple_lock(&vp->v_interlock);
286 s = splbio();
287 if (WRITEINPROG(vp)) {
288 ivndebug(vp,"vflush/writeinprog");
289 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
290 }
291 splx(s);
292 simple_unlock(&vp->v_interlock);
293
294 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
295 lfs_seglock(fs, SEGM_SYNC);
296
297 /* If we're supposed to flush a freed inode, just toss it */
298 if (ip->i_lfs_iflags & LFSI_DELETED) {
299 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
300 ip->i_number));
301 s = splbio();
302 /* Drain v_numoutput */
303 simple_lock(&global_v_numoutput_slock);
304 while (vp->v_numoutput > 0) {
305 vp->v_iflag |= VI_BWAIT;
306 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
307 &global_v_numoutput_slock);
308 }
309 simple_unlock(&global_v_numoutput_slock);
310 KASSERT(vp->v_numoutput == 0);
311
312 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 nbp = LIST_NEXT(bp, b_vnbufs);
314
315 KASSERT((bp->b_flags & B_GATHERED) == 0);
316 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 wakeup(&fs->lfs_avail);
319 }
320 /* Copied from lfs_writeseg */
321 if (bp->b_flags & B_CALL) {
322 biodone(bp);
323 } else {
324 bremfree(bp);
325 LFS_UNLOCK_BUF(bp);
326 bp->b_flags &=
327 ~(B_READ | B_DELWRI | B_GATHERED);
328 bp->b_flags |= B_DONE;
329 bp->b_error = 0;
330 reassignbuf(bp, vp);
331 brelse(bp, 0);
332 }
333 }
334 splx(s);
335 LFS_CLR_UINO(ip, IN_CLEANING);
336 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
337 ip->i_flag &= ~IN_ALLMOD;
338 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
339 ip->i_number));
340 lfs_segunlock(fs);
341
342 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
343
344 return 0;
345 }
346
347 fs->lfs_flushvp = vp;
348 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
349 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
350 fs->lfs_flushvp = NULL;
351 KASSERT(fs->lfs_flushvp_fakevref == 0);
352 lfs_segunlock(fs);
353
354 /* Make sure that any pending buffers get written */
355 s = splbio();
356 simple_lock(&global_v_numoutput_slock);
357 while (vp->v_numoutput > 0) {
358 vp->v_iflag |= VI_BWAIT;
359 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
360 &global_v_numoutput_slock);
361 }
362 simple_unlock(&global_v_numoutput_slock);
363 splx(s);
364
365 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
366 KASSERT(vp->v_numoutput == 0);
367
368 return error;
369 }
370 sp = fs->lfs_sp;
371
372 flushed = 0;
373 if (VPISEMPTY(vp)) {
374 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
375 ++flushed;
376 } else if ((ip->i_flag & IN_CLEANING) &&
377 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
378 ivndebug(vp,"vflush/clean");
379 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
380 ++flushed;
381 } else if (lfs_dostats) {
382 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
383 ++lfs_stats.vflush_invoked;
384 ivndebug(vp,"vflush");
385 }
386
387 #ifdef DIAGNOSTIC
388 if (vp->v_uflag & VU_DIROP) {
389 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
390 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
391 }
392 if (vp->v_usecount < 0) {
393 printf("usecount=%ld\n", (long)vp->v_usecount);
394 panic("lfs_vflush: usecount<0");
395 }
396 #endif
397
398 do {
399 loopcount = 0;
400 do {
401 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
402 relock = lfs_writefile(fs, sp, vp);
403 if (relock) {
404 /*
405 * Might have to wait for the
406 * cleaner to run; but we're
407 * still not done with this vnode.
408 */
409 KDASSERT(ip->i_number != LFS_IFILE_INUM);
410 lfs_writeinode(fs, sp, ip);
411 LFS_SET_UINO(ip, IN_MODIFIED);
412 lfs_writeseg(fs, sp);
413 lfs_segunlock(fs);
414 lfs_segunlock_relock(fs);
415 goto top;
416 }
417 }
418 /*
419 * If we begin a new segment in the middle of writing
420 * the Ifile, it creates an inconsistent checkpoint,
421 * since the Ifile information for the new segment
422 * is not up-to-date. Take care of this here by
423 * sending the Ifile through again in case there
424 * are newly dirtied blocks. But wait, there's more!
425 * This second Ifile write could *also* cross a segment
426 * boundary, if the first one was large. The second
427 * one is guaranteed to be no more than 8 blocks,
428 * though (two segment blocks and supporting indirects)
429 * so the third write *will not* cross the boundary.
430 */
431 if (vp == fs->lfs_ivnode) {
432 lfs_writefile(fs, sp, vp);
433 lfs_writefile(fs, sp, vp);
434 }
435 #ifdef DEBUG
436 if (++loopcount > 2)
437 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
438 #endif
439 } while (lfs_writeinode(fs, sp, ip));
440 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
441
442 if (lfs_dostats) {
443 ++lfs_stats.nwrites;
444 if (sp->seg_flags & SEGM_SYNC)
445 ++lfs_stats.nsync_writes;
446 if (sp->seg_flags & SEGM_CKP)
447 ++lfs_stats.ncheckpoints;
448 }
449 /*
450 * If we were called from somewhere that has already held the seglock
451 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
452 * the write to complete because we are still locked.
453 * Since lfs_vflush() must return the vnode with no dirty buffers,
454 * we must explicitly wait, if that is the case.
455 *
456 * We compare the iocount against 1, not 0, because it is
457 * artificially incremented by lfs_seglock().
458 */
459 simple_lock(&fs->lfs_interlock);
460 if (fs->lfs_seglock > 1) {
461 while (fs->lfs_iocount > 1)
462 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
463 "lfs_vflush", 0, &fs->lfs_interlock);
464 }
465 simple_unlock(&fs->lfs_interlock);
466
467 lfs_segunlock(fs);
468
469 /* Wait for these buffers to be recovered by aiodoned */
470 s = splbio();
471 simple_lock(&global_v_numoutput_slock);
472 while (vp->v_numoutput > 0) {
473 vp->v_iflag |= VI_BWAIT;
474 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
475 &global_v_numoutput_slock);
476 }
477 simple_unlock(&global_v_numoutput_slock);
478 splx(s);
479
480 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
481 KASSERT(vp->v_numoutput == 0);
482
483 fs->lfs_flushvp = NULL;
484 KASSERT(fs->lfs_flushvp_fakevref == 0);
485
486 return (0);
487 }
488
489 int
490 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
491 {
492 struct inode *ip;
493 struct vnode *vp;
494 int inodes_written = 0, only_cleaning;
495 int error = 0;
496
497 ASSERT_SEGLOCK(fs);
498 loop:
499 /* start at last (newest) vnode. */
500 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
501 /*
502 * If the vnode that we are about to sync is no longer
503 * associated with this mount point, start over.
504 */
505 if (vp->v_mount != mp) {
506 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
507 /*
508 * After this, pages might be busy
509 * due to our own previous putpages.
510 * Start actual segment write here to avoid deadlock.
511 */
512 (void)lfs_writeseg(fs, sp);
513 goto loop;
514 }
515
516 if (vp->v_type == VNON) {
517 continue;
518 }
519
520 ip = VTOI(vp);
521 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
522 (op != VN_DIROP && op != VN_CLEAN &&
523 (vp->v_uflag & VU_DIROP))) {
524 vndebug(vp,"dirop");
525 continue;
526 }
527
528 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
529 vndebug(vp,"empty");
530 continue;
531 }
532
533 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
534 && vp != fs->lfs_flushvp
535 && !(ip->i_flag & IN_CLEANING)) {
536 vndebug(vp,"cleaning");
537 continue;
538 }
539
540 if (lfs_vref(vp)) {
541 vndebug(vp,"vref");
542 continue;
543 }
544
545 only_cleaning = 0;
546 /*
547 * Write the inode/file if dirty and it's not the IFILE.
548 */
549 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
550 only_cleaning =
551 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
552
553 if (ip->i_number != LFS_IFILE_INUM) {
554 error = lfs_writefile(fs, sp, vp);
555 if (error) {
556 lfs_vunref(vp);
557 if (error == EAGAIN) {
558 /*
559 * This error from lfs_putpages
560 * indicates we need to drop
561 * the segment lock and start
562 * over after the cleaner has
563 * had a chance to run.
564 */
565 lfs_writeinode(fs, sp, ip);
566 lfs_writeseg(fs, sp);
567 if (!VPISEMPTY(vp) &&
568 !WRITEINPROG(vp) &&
569 !(ip->i_flag & IN_ALLMOD))
570 LFS_SET_UINO(ip, IN_MODIFIED);
571 break;
572 }
573 error = 0; /* XXX not quite right */
574 continue;
575 }
576
577 if (!VPISEMPTY(vp)) {
578 if (WRITEINPROG(vp)) {
579 ivndebug(vp,"writevnodes/write2");
580 } else if (!(ip->i_flag & IN_ALLMOD)) {
581 LFS_SET_UINO(ip, IN_MODIFIED);
582 }
583 }
584 (void) lfs_writeinode(fs, sp, ip);
585 inodes_written++;
586 }
587 }
588
589 if (lfs_clean_vnhead && only_cleaning)
590 lfs_vunref_head(vp);
591 else
592 lfs_vunref(vp);
593 }
594 return error;
595 }
596
597 /*
598 * Do a checkpoint.
599 */
600 int
601 lfs_segwrite(struct mount *mp, int flags)
602 {
603 struct buf *bp;
604 struct inode *ip;
605 struct lfs *fs;
606 struct segment *sp;
607 struct vnode *vp;
608 SEGUSE *segusep;
609 int do_ckp, did_ckp, error, s;
610 unsigned n, segleft, maxseg, sn, i, curseg;
611 int writer_set = 0;
612 int dirty;
613 int redo;
614 int um_error;
615 int loopcount;
616
617 fs = VFSTOUFS(mp)->um_lfs;
618 ASSERT_MAYBE_SEGLOCK(fs);
619
620 if (fs->lfs_ronly)
621 return EROFS;
622
623 lfs_imtime(fs);
624
625 /*
626 * Allocate a segment structure and enough space to hold pointers to
627 * the maximum possible number of buffers which can be described in a
628 * single summary block.
629 */
630 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
631
632 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
633 sp = fs->lfs_sp;
634 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
635 do_ckp = 1;
636
637 /*
638 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
639 * in which case we have to flush *all* buffers off of this vnode.
640 * We don't care about other nodes, but write any non-dirop nodes
641 * anyway in anticipation of another getnewvnode().
642 *
643 * If we're cleaning we only write cleaning and ifile blocks, and
644 * no dirops, since otherwise we'd risk corruption in a crash.
645 */
646 if (sp->seg_flags & SEGM_CLEAN)
647 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
648 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
649 do {
650 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
651
652 if (do_ckp || fs->lfs_dirops == 0) {
653 if (!writer_set) {
654 lfs_writer_enter(fs, "lfs writer");
655 writer_set = 1;
656 }
657 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
658 if (um_error == 0)
659 um_error = error;
660 /* In case writevnodes errored out */
661 lfs_flush_dirops(fs);
662 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
663 lfs_finalize_fs_seguse(fs);
664 }
665 if (do_ckp && um_error) {
666 lfs_segunlock_relock(fs);
667 sp = fs->lfs_sp;
668 }
669 } while (do_ckp && um_error != 0);
670 }
671
672 /*
673 * If we are doing a checkpoint, mark everything since the
674 * last checkpoint as no longer ACTIVE.
675 */
676 if (do_ckp || fs->lfs_doifile) {
677 segleft = fs->lfs_nseg;
678 curseg = 0;
679 for (n = 0; n < fs->lfs_segtabsz; n++) {
680 dirty = 0;
681 if (bread(fs->lfs_ivnode,
682 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
683 panic("lfs_segwrite: ifile read");
684 segusep = (SEGUSE *)bp->b_data;
685 maxseg = min(segleft, fs->lfs_sepb);
686 for (i = 0; i < maxseg; i++) {
687 sn = curseg + i;
688 if (sn != dtosn(fs, fs->lfs_curseg) &&
689 segusep->su_flags & SEGUSE_ACTIVE) {
690 segusep->su_flags &= ~SEGUSE_ACTIVE;
691 --fs->lfs_nactive;
692 ++dirty;
693 }
694 fs->lfs_suflags[fs->lfs_activesb][sn] =
695 segusep->su_flags;
696 if (fs->lfs_version > 1)
697 ++segusep;
698 else
699 segusep = (SEGUSE *)
700 ((SEGUSE_V1 *)segusep + 1);
701 }
702
703 if (dirty)
704 error = LFS_BWRITE_LOG(bp); /* Ifile */
705 else
706 brelse(bp, 0);
707 segleft -= fs->lfs_sepb;
708 curseg += fs->lfs_sepb;
709 }
710 }
711
712 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
713
714 did_ckp = 0;
715 if (do_ckp || fs->lfs_doifile) {
716 vp = fs->lfs_ivnode;
717 vn_lock(vp, LK_EXCLUSIVE);
718 loopcount = 0;
719 do {
720 #ifdef DEBUG
721 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
722 #endif
723 simple_lock(&fs->lfs_interlock);
724 fs->lfs_flags &= ~LFS_IFDIRTY;
725 simple_unlock(&fs->lfs_interlock);
726
727 ip = VTOI(vp);
728
729 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
730 /*
731 * Ifile has no pages, so we don't need
732 * to check error return here.
733 */
734 lfs_writefile(fs, sp, vp);
735 /*
736 * Ensure the Ifile takes the current segment
737 * into account. See comment in lfs_vflush.
738 */
739 lfs_writefile(fs, sp, vp);
740 lfs_writefile(fs, sp, vp);
741 }
742
743 if (ip->i_flag & IN_ALLMOD)
744 ++did_ckp;
745 #if 0
746 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
747 #else
748 redo = lfs_writeinode(fs, sp, ip);
749 #endif
750 redo += lfs_writeseg(fs, sp);
751 simple_lock(&fs->lfs_interlock);
752 redo += (fs->lfs_flags & LFS_IFDIRTY);
753 simple_unlock(&fs->lfs_interlock);
754 #ifdef DEBUG
755 if (++loopcount > 2)
756 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
757 loopcount);
758 #endif
759 } while (redo && do_ckp);
760
761 /*
762 * Unless we are unmounting, the Ifile may continue to have
763 * dirty blocks even after a checkpoint, due to changes to
764 * inodes' atime. If we're checkpointing, it's "impossible"
765 * for other parts of the Ifile to be dirty after the loop
766 * above, since we hold the segment lock.
767 */
768 s = splbio();
769 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
770 LFS_CLR_UINO(ip, IN_ALLMOD);
771 }
772 #ifdef DIAGNOSTIC
773 else if (do_ckp) {
774 int do_panic = 0;
775 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
776 if (bp->b_lblkno < fs->lfs_cleansz +
777 fs->lfs_segtabsz &&
778 !(bp->b_flags & B_GATHERED)) {
779 printf("ifile lbn %ld still dirty (flags %lx)\n",
780 (long)bp->b_lblkno,
781 (long)bp->b_flags);
782 ++do_panic;
783 }
784 }
785 if (do_panic)
786 panic("dirty blocks");
787 }
788 #endif
789 splx(s);
790 VOP_UNLOCK(vp, 0);
791 } else {
792 (void) lfs_writeseg(fs, sp);
793 }
794
795 /* Note Ifile no longer needs to be written */
796 fs->lfs_doifile = 0;
797 if (writer_set)
798 lfs_writer_leave(fs);
799
800 /*
801 * If we didn't write the Ifile, we didn't really do anything.
802 * That means that (1) there is a checkpoint on disk and (2)
803 * nothing has changed since it was written.
804 *
805 * Take the flags off of the segment so that lfs_segunlock
806 * doesn't have to write the superblock either.
807 */
808 if (do_ckp && !did_ckp) {
809 sp->seg_flags &= ~SEGM_CKP;
810 }
811
812 if (lfs_dostats) {
813 ++lfs_stats.nwrites;
814 if (sp->seg_flags & SEGM_SYNC)
815 ++lfs_stats.nsync_writes;
816 if (sp->seg_flags & SEGM_CKP)
817 ++lfs_stats.ncheckpoints;
818 }
819 lfs_segunlock(fs);
820 return (0);
821 }
822
823 /*
824 * Write the dirty blocks associated with a vnode.
825 */
826 int
827 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
828 {
829 struct finfo *fip;
830 struct inode *ip;
831 int i, frag;
832 int error;
833
834 ASSERT_SEGLOCK(fs);
835 error = 0;
836 ip = VTOI(vp);
837
838 fip = sp->fip;
839 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
840
841 if (vp->v_uflag & VU_DIROP)
842 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
843
844 if (sp->seg_flags & SEGM_CLEAN) {
845 lfs_gather(fs, sp, vp, lfs_match_fake);
846 /*
847 * For a file being flushed, we need to write *all* blocks.
848 * This means writing the cleaning blocks first, and then
849 * immediately following with any non-cleaning blocks.
850 * The same is true of the Ifile since checkpoints assume
851 * that all valid Ifile blocks are written.
852 */
853 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
854 lfs_gather(fs, sp, vp, lfs_match_data);
855 /*
856 * Don't call VOP_PUTPAGES: if we're flushing,
857 * we've already done it, and the Ifile doesn't
858 * use the page cache.
859 */
860 }
861 } else {
862 lfs_gather(fs, sp, vp, lfs_match_data);
863 /*
864 * If we're flushing, we've already called VOP_PUTPAGES
865 * so don't do it again. Otherwise, we want to write
866 * everything we've got.
867 */
868 if (!IS_FLUSHING(fs, vp)) {
869 simple_lock(&vp->v_interlock);
870 error = VOP_PUTPAGES(vp, 0, 0,
871 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
872 }
873 }
874
875 /*
876 * It may not be necessary to write the meta-data blocks at this point,
877 * as the roll-forward recovery code should be able to reconstruct the
878 * list.
879 *
880 * We have to write them anyway, though, under two conditions: (1) the
881 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
882 * checkpointing.
883 *
884 * BUT if we are cleaning, we might have indirect blocks that refer to
885 * new blocks not being written yet, in addition to fragments being
886 * moved out of a cleaned segment. If that is the case, don't
887 * write the indirect blocks, or the finfo will have a small block
888 * in the middle of it!
889 * XXX in this case isn't the inode size wrong too?
890 */
891 frag = 0;
892 if (sp->seg_flags & SEGM_CLEAN) {
893 for (i = 0; i < NDADDR; i++)
894 if (ip->i_lfs_fragsize[i] > 0 &&
895 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
896 ++frag;
897 }
898 #ifdef DIAGNOSTIC
899 if (frag > 1)
900 panic("lfs_writefile: more than one fragment!");
901 #endif
902 if (IS_FLUSHING(fs, vp) ||
903 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
904 lfs_gather(fs, sp, vp, lfs_match_indir);
905 lfs_gather(fs, sp, vp, lfs_match_dindir);
906 lfs_gather(fs, sp, vp, lfs_match_tindir);
907 }
908 fip = sp->fip;
909 lfs_release_finfo(fs);
910
911 return error;
912 }
913
914 /*
915 * Update segment accounting to reflect this inode's change of address.
916 */
917 static int
918 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
919 {
920 struct buf *bp;
921 daddr_t daddr;
922 IFILE *ifp;
923 SEGUSE *sup;
924 ino_t ino;
925 int redo_ifile, error;
926 u_int32_t sn;
927
928 redo_ifile = 0;
929
930 /*
931 * If updating the ifile, update the super-block. Update the disk
932 * address and access times for this inode in the ifile.
933 */
934 ino = ip->i_number;
935 if (ino == LFS_IFILE_INUM) {
936 daddr = fs->lfs_idaddr;
937 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
938 } else {
939 LFS_IENTRY(ifp, fs, ino, bp);
940 daddr = ifp->if_daddr;
941 ifp->if_daddr = dbtofsb(fs, ndaddr);
942 error = LFS_BWRITE_LOG(bp); /* Ifile */
943 }
944
945 /*
946 * If this is the Ifile and lfs_offset is set to the first block
947 * in the segment, dirty the new segment's accounting block
948 * (XXX should already be dirty?) and tell the caller to do it again.
949 */
950 if (ip->i_number == LFS_IFILE_INUM) {
951 sn = dtosn(fs, fs->lfs_offset);
952 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
953 fs->lfs_offset) {
954 LFS_SEGENTRY(sup, fs, sn, bp);
955 KASSERT(bp->b_flags & B_DELWRI);
956 LFS_WRITESEGENTRY(sup, fs, sn, bp);
957 /* fs->lfs_flags |= LFS_IFDIRTY; */
958 redo_ifile |= 1;
959 }
960 }
961
962 /*
963 * The inode's last address should not be in the current partial
964 * segment, except under exceptional circumstances (lfs_writevnodes
965 * had to start over, and in the meantime more blocks were written
966 * to a vnode). Both inodes will be accounted to this segment
967 * in lfs_writeseg so we need to subtract the earlier version
968 * here anyway. The segment count can temporarily dip below
969 * zero here; keep track of how many duplicates we have in
970 * "dupino" so we don't panic below.
971 */
972 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
973 ++sp->ndupino;
974 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
975 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
976 (long long)daddr, sp->ndupino));
977 }
978 /*
979 * Account the inode: it no longer belongs to its former segment,
980 * though it will not belong to the new segment until that segment
981 * is actually written.
982 */
983 if (daddr != LFS_UNUSED_DADDR) {
984 u_int32_t oldsn = dtosn(fs, daddr);
985 #ifdef DIAGNOSTIC
986 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
987 #endif
988 LFS_SEGENTRY(sup, fs, oldsn, bp);
989 #ifdef DIAGNOSTIC
990 if (sup->su_nbytes +
991 sizeof (struct ufs1_dinode) * ndupino
992 < sizeof (struct ufs1_dinode)) {
993 printf("lfs_writeinode: negative bytes "
994 "(segment %" PRIu32 " short by %d, "
995 "oldsn=%" PRIu32 ", cursn=%" PRIu32
996 ", daddr=%" PRId64 ", su_nbytes=%u, "
997 "ndupino=%d)\n",
998 dtosn(fs, daddr),
999 (int)sizeof (struct ufs1_dinode) *
1000 (1 - sp->ndupino) - sup->su_nbytes,
1001 oldsn, sp->seg_number, daddr,
1002 (unsigned int)sup->su_nbytes,
1003 sp->ndupino);
1004 panic("lfs_writeinode: negative bytes");
1005 sup->su_nbytes = sizeof (struct ufs1_dinode);
1006 }
1007 #endif
1008 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1009 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1010 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1011 redo_ifile |=
1012 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1013 if (redo_ifile) {
1014 simple_lock(&fs->lfs_interlock);
1015 fs->lfs_flags |= LFS_IFDIRTY;
1016 simple_unlock(&fs->lfs_interlock);
1017 /* Don't double-account */
1018 fs->lfs_idaddr = 0x0;
1019 }
1020 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1021 }
1022
1023 return redo_ifile;
1024 }
1025
1026 int
1027 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1028 {
1029 struct buf *bp;
1030 struct ufs1_dinode *cdp;
1031 daddr_t daddr;
1032 int32_t *daddrp; /* XXX ondisk32 */
1033 int i, ndx;
1034 int redo_ifile = 0;
1035 int gotblk = 0;
1036 int count;
1037
1038 ASSERT_SEGLOCK(fs);
1039 if (!(ip->i_flag & IN_ALLMOD))
1040 return (0);
1041
1042 /* Can't write ifile when writer is not set */
1043 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1044 (sp->seg_flags & SEGM_CLEAN));
1045
1046 /*
1047 * If this is the Ifile, see if writing it here will generate a
1048 * temporary misaccounting. If it will, do the accounting and write
1049 * the blocks, postponing the inode write until the accounting is
1050 * solid.
1051 */
1052 count = 0;
1053 while (ip->i_number == LFS_IFILE_INUM) {
1054 int redo = 0;
1055
1056 if (sp->idp == NULL && sp->ibp == NULL &&
1057 (sp->seg_bytes_left < fs->lfs_ibsize ||
1058 sp->sum_bytes_left < sizeof(int32_t))) {
1059 (void) lfs_writeseg(fs, sp);
1060 continue;
1061 }
1062
1063 /* Look for dirty Ifile blocks */
1064 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1065 if (!(bp->b_flags & B_GATHERED)) {
1066 redo = 1;
1067 break;
1068 }
1069 }
1070
1071 if (redo == 0)
1072 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1073 if (redo == 0)
1074 break;
1075
1076 if (sp->idp) {
1077 sp->idp->di_inumber = 0;
1078 sp->idp = NULL;
1079 }
1080 ++count;
1081 if (count > 2)
1082 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1083 lfs_writefile(fs, sp, fs->lfs_ivnode);
1084 }
1085
1086 /* Allocate a new inode block if necessary. */
1087 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1088 sp->ibp == NULL) {
1089 /* Allocate a new segment if necessary. */
1090 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1091 sp->sum_bytes_left < sizeof(int32_t))
1092 (void) lfs_writeseg(fs, sp);
1093
1094 /* Get next inode block. */
1095 daddr = fs->lfs_offset;
1096 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1097 sp->ibp = *sp->cbpp++ =
1098 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1099 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1100 gotblk++;
1101
1102 /* Zero out inode numbers */
1103 for (i = 0; i < INOPB(fs); ++i)
1104 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1105 0;
1106
1107 ++sp->start_bpp;
1108 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1109 /* Set remaining space counters. */
1110 sp->seg_bytes_left -= fs->lfs_ibsize;
1111 sp->sum_bytes_left -= sizeof(int32_t);
1112 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1113 sp->ninodes / INOPB(fs) - 1;
1114 ((int32_t *)(sp->segsum))[ndx] = daddr;
1115 }
1116
1117 /* Check VU_DIROP in case there is a new file with no data blocks */
1118 if (ITOV(ip)->v_uflag & VU_DIROP)
1119 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1120
1121 /* Update the inode times and copy the inode onto the inode page. */
1122 /* XXX kludge --- don't redirty the ifile just to put times on it */
1123 if (ip->i_number != LFS_IFILE_INUM)
1124 LFS_ITIMES(ip, NULL, NULL, NULL);
1125
1126 /*
1127 * If this is the Ifile, and we've already written the Ifile in this
1128 * partial segment, just overwrite it (it's not on disk yet) and
1129 * continue.
1130 *
1131 * XXX we know that the bp that we get the second time around has
1132 * already been gathered.
1133 */
1134 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1135 *(sp->idp) = *ip->i_din.ffs1_din;
1136 ip->i_lfs_osize = ip->i_size;
1137 return 0;
1138 }
1139
1140 bp = sp->ibp;
1141 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1142 *cdp = *ip->i_din.ffs1_din;
1143
1144 /*
1145 * If cleaning, link counts and directory file sizes cannot change,
1146 * since those would be directory operations---even if the file
1147 * we are writing is marked VU_DIROP we should write the old values.
1148 * If we're not cleaning, of course, update the values so we get
1149 * current values the next time we clean.
1150 */
1151 if (sp->seg_flags & SEGM_CLEAN) {
1152 if (ITOV(ip)->v_uflag & VU_DIROP) {
1153 cdp->di_nlink = ip->i_lfs_odnlink;
1154 /* if (ITOV(ip)->v_type == VDIR) */
1155 cdp->di_size = ip->i_lfs_osize;
1156 }
1157 } else {
1158 ip->i_lfs_odnlink = cdp->di_nlink;
1159 ip->i_lfs_osize = ip->i_size;
1160 }
1161
1162
1163 /* We can finish the segment accounting for truncations now */
1164 lfs_finalize_ino_seguse(fs, ip);
1165
1166 /*
1167 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1168 * addresses to disk; possibly change the on-disk record of
1169 * the inode size, either by reverting to the previous size
1170 * (in the case of cleaning) or by verifying the inode's block
1171 * holdings (in the case of files being allocated as they are being
1172 * written).
1173 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1174 * XXX count on disk wrong by the same amount. We should be
1175 * XXX able to "borrow" from lfs_avail and return it after the
1176 * XXX Ifile is written. See also in lfs_writeseg.
1177 */
1178
1179 /* Check file size based on highest allocated block */
1180 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1181 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1182 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1183 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1184 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1185 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1186 }
1187 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1188 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1189 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1190 ip->i_ffs1_blocks, fs->lfs_offset));
1191 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1192 daddrp++) {
1193 if (*daddrp == UNWRITTEN) {
1194 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1195 *daddrp = 0;
1196 }
1197 }
1198 }
1199
1200 #ifdef DIAGNOSTIC
1201 /*
1202 * Check dinode held blocks against dinode size.
1203 * This should be identical to the check in lfs_vget().
1204 */
1205 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1206 i < NDADDR; i++) {
1207 KASSERT(i >= 0);
1208 if ((cdp->di_mode & IFMT) == IFLNK)
1209 continue;
1210 if (((cdp->di_mode & IFMT) == IFBLK ||
1211 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1212 continue;
1213 if (cdp->di_db[i] != 0) {
1214 # ifdef DEBUG
1215 lfs_dump_dinode(cdp);
1216 # endif
1217 panic("writing inconsistent inode");
1218 }
1219 }
1220 #endif /* DIAGNOSTIC */
1221
1222 if (ip->i_flag & IN_CLEANING)
1223 LFS_CLR_UINO(ip, IN_CLEANING);
1224 else {
1225 /* XXX IN_ALLMOD */
1226 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1227 IN_UPDATE | IN_MODIFY);
1228 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1229 LFS_CLR_UINO(ip, IN_MODIFIED);
1230 else {
1231 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1232 "blks=%d, eff=%d\n", ip->i_number,
1233 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1234 }
1235 }
1236
1237 if (ip->i_number == LFS_IFILE_INUM) {
1238 /* We know sp->idp == NULL */
1239 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1240 (sp->ninodes % INOPB(fs));
1241
1242 /* Not dirty any more */
1243 simple_lock(&fs->lfs_interlock);
1244 fs->lfs_flags &= ~LFS_IFDIRTY;
1245 simple_unlock(&fs->lfs_interlock);
1246 }
1247
1248 if (gotblk) {
1249 LFS_LOCK_BUF(bp);
1250 brelse(bp, 0);
1251 }
1252
1253 /* Increment inode count in segment summary block. */
1254 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1255
1256 /* If this page is full, set flag to allocate a new page. */
1257 if (++sp->ninodes % INOPB(fs) == 0)
1258 sp->ibp = NULL;
1259
1260 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1261
1262 KASSERT(redo_ifile == 0);
1263 return (redo_ifile);
1264 }
1265
1266 int
1267 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1268 {
1269 struct lfs *fs;
1270 int vers;
1271 int j, blksinblk;
1272
1273 ASSERT_SEGLOCK(sp->fs);
1274 /*
1275 * If full, finish this segment. We may be doing I/O, so
1276 * release and reacquire the splbio().
1277 */
1278 #ifdef DIAGNOSTIC
1279 if (sp->vp == NULL)
1280 panic ("lfs_gatherblock: Null vp in segment");
1281 #endif
1282 fs = sp->fs;
1283 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1284 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1285 sp->seg_bytes_left < bp->b_bcount) {
1286 if (sptr)
1287 splx(*sptr);
1288 lfs_updatemeta(sp);
1289
1290 vers = sp->fip->fi_version;
1291 (void) lfs_writeseg(fs, sp);
1292
1293 /* Add the current file to the segment summary. */
1294 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1295
1296 if (sptr)
1297 *sptr = splbio();
1298 return (1);
1299 }
1300
1301 if (bp->b_flags & B_GATHERED) {
1302 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1303 " lbn %" PRId64 "\n",
1304 sp->fip->fi_ino, bp->b_lblkno));
1305 return (0);
1306 }
1307
1308 /* Insert into the buffer list, update the FINFO block. */
1309 bp->b_flags |= B_GATHERED;
1310
1311 *sp->cbpp++ = bp;
1312 for (j = 0; j < blksinblk; j++) {
1313 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1314 /* This block's accounting moves from lfs_favail to lfs_avail */
1315 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1316 }
1317
1318 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1319 sp->seg_bytes_left -= bp->b_bcount;
1320 return (0);
1321 }
1322
1323 int
1324 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1325 int (*match)(struct lfs *, struct buf *))
1326 {
1327 struct buf *bp, *nbp;
1328 int s, count = 0;
1329
1330 ASSERT_SEGLOCK(fs);
1331 if (vp->v_type == VBLK)
1332 return 0;
1333 KASSERT(sp->vp == NULL);
1334 sp->vp = vp;
1335 s = splbio();
1336
1337 #ifndef LFS_NO_BACKBUF_HACK
1338 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1339 # define BUF_OFFSET \
1340 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1341 # define BACK_BUF(BP) \
1342 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1343 # define BEG_OF_LIST \
1344 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1345
1346 loop:
1347 /* Find last buffer. */
1348 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1349 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1350 bp = LIST_NEXT(bp, b_vnbufs))
1351 /* nothing */;
1352 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1353 nbp = BACK_BUF(bp);
1354 #else /* LFS_NO_BACKBUF_HACK */
1355 loop:
1356 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1357 nbp = LIST_NEXT(bp, b_vnbufs);
1358 #endif /* LFS_NO_BACKBUF_HACK */
1359 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1360 #ifdef DEBUG
1361 if (vp == fs->lfs_ivnode &&
1362 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1363 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1364 PRId64 " busy (%x) at 0x%x",
1365 bp->b_lblkno, bp->b_flags,
1366 (unsigned)fs->lfs_offset);
1367 #endif
1368 continue;
1369 }
1370 #ifdef DIAGNOSTIC
1371 # ifdef LFS_USE_B_INVAL
1372 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1373 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1374 " is B_INVAL\n", bp->b_lblkno));
1375 VOP_PRINT(bp->b_vp);
1376 }
1377 # endif /* LFS_USE_B_INVAL */
1378 if (!(bp->b_flags & B_DELWRI))
1379 panic("lfs_gather: bp not B_DELWRI");
1380 if (!(bp->b_flags & B_LOCKED)) {
1381 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1382 " blk %" PRId64 " not B_LOCKED\n",
1383 bp->b_lblkno,
1384 dbtofsb(fs, bp->b_blkno)));
1385 VOP_PRINT(bp->b_vp);
1386 panic("lfs_gather: bp not B_LOCKED");
1387 }
1388 #endif
1389 if (lfs_gatherblock(sp, bp, &s)) {
1390 goto loop;
1391 }
1392 count++;
1393 }
1394 splx(s);
1395 lfs_updatemeta(sp);
1396 KASSERT(sp->vp == vp);
1397 sp->vp = NULL;
1398 return count;
1399 }
1400
1401 #if DEBUG
1402 # define DEBUG_OOFF(n) do { \
1403 if (ooff == 0) { \
1404 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1405 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1406 ", was 0x0 (or %" PRId64 ")\n", \
1407 (n), ip->i_number, lbn, ndaddr, daddr)); \
1408 } \
1409 } while (0)
1410 #else
1411 # define DEBUG_OOFF(n)
1412 #endif
1413
1414 /*
1415 * Change the given block's address to ndaddr, finding its previous
1416 * location using ufs_bmaparray().
1417 *
1418 * Account for this change in the segment table.
1419 *
1420 * called with sp == NULL by roll-forwarding code.
1421 */
1422 void
1423 lfs_update_single(struct lfs *fs, struct segment *sp,
1424 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1425 {
1426 SEGUSE *sup;
1427 struct buf *bp;
1428 struct indir a[NIADDR + 2], *ap;
1429 struct inode *ip;
1430 daddr_t daddr, ooff;
1431 int num, error;
1432 int bb, osize, obb;
1433
1434 ASSERT_SEGLOCK(fs);
1435 KASSERT(sp == NULL || sp->vp == vp);
1436 ip = VTOI(vp);
1437
1438 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1439 if (error)
1440 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1441
1442 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1443 KASSERT(daddr <= LFS_MAX_DADDR);
1444 if (daddr > 0)
1445 daddr = dbtofsb(fs, daddr);
1446
1447 bb = fragstofsb(fs, numfrags(fs, size));
1448 switch (num) {
1449 case 0:
1450 ooff = ip->i_ffs1_db[lbn];
1451 DEBUG_OOFF(0);
1452 if (ooff == UNWRITTEN)
1453 ip->i_ffs1_blocks += bb;
1454 else {
1455 /* possible fragment truncation or extension */
1456 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1457 ip->i_ffs1_blocks += (bb - obb);
1458 }
1459 ip->i_ffs1_db[lbn] = ndaddr;
1460 break;
1461 case 1:
1462 ooff = ip->i_ffs1_ib[a[0].in_off];
1463 DEBUG_OOFF(1);
1464 if (ooff == UNWRITTEN)
1465 ip->i_ffs1_blocks += bb;
1466 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1467 break;
1468 default:
1469 ap = &a[num - 1];
1470 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1471 panic("lfs_updatemeta: bread bno %" PRId64,
1472 ap->in_lbn);
1473
1474 /* XXX ondisk32 */
1475 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1476 DEBUG_OOFF(num);
1477 if (ooff == UNWRITTEN)
1478 ip->i_ffs1_blocks += bb;
1479 /* XXX ondisk32 */
1480 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1481 (void) VOP_BWRITE(bp);
1482 }
1483
1484 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1485
1486 /* Update hiblk when extending the file */
1487 if (lbn > ip->i_lfs_hiblk)
1488 ip->i_lfs_hiblk = lbn;
1489
1490 /*
1491 * Though we'd rather it couldn't, this *can* happen right now
1492 * if cleaning blocks and regular blocks coexist.
1493 */
1494 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1495
1496 /*
1497 * Update segment usage information, based on old size
1498 * and location.
1499 */
1500 if (daddr > 0) {
1501 u_int32_t oldsn = dtosn(fs, daddr);
1502 #ifdef DIAGNOSTIC
1503 int ndupino;
1504
1505 if (sp && sp->seg_number == oldsn) {
1506 ndupino = sp->ndupino;
1507 } else {
1508 ndupino = 0;
1509 }
1510 #endif
1511 KASSERT(oldsn < fs->lfs_nseg);
1512 if (lbn >= 0 && lbn < NDADDR)
1513 osize = ip->i_lfs_fragsize[lbn];
1514 else
1515 osize = fs->lfs_bsize;
1516 LFS_SEGENTRY(sup, fs, oldsn, bp);
1517 #ifdef DIAGNOSTIC
1518 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1519 < osize) {
1520 printf("lfs_updatemeta: negative bytes "
1521 "(segment %" PRIu32 " short by %" PRId64
1522 ")\n", dtosn(fs, daddr),
1523 (int64_t)osize -
1524 (sizeof (struct ufs1_dinode) * ndupino +
1525 sup->su_nbytes));
1526 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1527 ", addr = 0x%" PRIx64 "\n",
1528 (unsigned long long)ip->i_number, lbn, daddr);
1529 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1530 panic("lfs_updatemeta: negative bytes");
1531 sup->su_nbytes = osize -
1532 sizeof (struct ufs1_dinode) * ndupino;
1533 }
1534 #endif
1535 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1536 " db 0x%" PRIx64 "\n",
1537 dtosn(fs, daddr), osize,
1538 ip->i_number, lbn, daddr));
1539 sup->su_nbytes -= osize;
1540 if (!(bp->b_flags & B_GATHERED)) {
1541 simple_lock(&fs->lfs_interlock);
1542 fs->lfs_flags |= LFS_IFDIRTY;
1543 simple_unlock(&fs->lfs_interlock);
1544 }
1545 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1546 }
1547 /*
1548 * Now that this block has a new address, and its old
1549 * segment no longer owns it, we can forget about its
1550 * old size.
1551 */
1552 if (lbn >= 0 && lbn < NDADDR)
1553 ip->i_lfs_fragsize[lbn] = size;
1554 }
1555
1556 /*
1557 * Update the metadata that points to the blocks listed in the FINFO
1558 * array.
1559 */
1560 void
1561 lfs_updatemeta(struct segment *sp)
1562 {
1563 struct buf *sbp;
1564 struct lfs *fs;
1565 struct vnode *vp;
1566 daddr_t lbn;
1567 int i, nblocks, num;
1568 int bb;
1569 int bytesleft, size;
1570
1571 ASSERT_SEGLOCK(sp->fs);
1572 vp = sp->vp;
1573 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1574 KASSERT(nblocks >= 0);
1575 KASSERT(vp != NULL);
1576 if (nblocks == 0)
1577 return;
1578
1579 /*
1580 * This count may be high due to oversize blocks from lfs_gop_write.
1581 * Correct for this. (XXX we should be able to keep track of these.)
1582 */
1583 fs = sp->fs;
1584 for (i = 0; i < nblocks; i++) {
1585 if (sp->start_bpp[i] == NULL) {
1586 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1587 nblocks = i;
1588 break;
1589 }
1590 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1591 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1592 nblocks -= num - 1;
1593 }
1594
1595 KASSERT(vp->v_type == VREG ||
1596 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1597 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1598
1599 /*
1600 * Sort the blocks.
1601 *
1602 * We have to sort even if the blocks come from the
1603 * cleaner, because there might be other pending blocks on the
1604 * same inode...and if we don't sort, and there are fragments
1605 * present, blocks may be written in the wrong place.
1606 */
1607 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1608
1609 /*
1610 * Record the length of the last block in case it's a fragment.
1611 * If there are indirect blocks present, they sort last. An
1612 * indirect block will be lfs_bsize and its presence indicates
1613 * that you cannot have fragments.
1614 *
1615 * XXX This last is a lie. A cleaned fragment can coexist with
1616 * XXX a later indirect block. This will continue to be
1617 * XXX true until lfs_markv is fixed to do everything with
1618 * XXX fake blocks (including fake inodes and fake indirect blocks).
1619 */
1620 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1621 fs->lfs_bmask) + 1;
1622
1623 /*
1624 * Assign disk addresses, and update references to the logical
1625 * block and the segment usage information.
1626 */
1627 for (i = nblocks; i--; ++sp->start_bpp) {
1628 sbp = *sp->start_bpp;
1629 lbn = *sp->start_lbp;
1630 KASSERT(sbp->b_lblkno == lbn);
1631
1632 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1633
1634 /*
1635 * If we write a frag in the wrong place, the cleaner won't
1636 * be able to correctly identify its size later, and the
1637 * segment will be uncleanable. (Even worse, it will assume
1638 * that the indirect block that actually ends the list
1639 * is of a smaller size!)
1640 */
1641 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1642 panic("lfs_updatemeta: fragment is not last block");
1643
1644 /*
1645 * For each subblock in this possibly oversized block,
1646 * update its address on disk.
1647 */
1648 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1649 KASSERT(vp == sbp->b_vp);
1650 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1651 bytesleft -= fs->lfs_bsize) {
1652 size = MIN(bytesleft, fs->lfs_bsize);
1653 bb = fragstofsb(fs, numfrags(fs, size));
1654 lbn = *sp->start_lbp++;
1655 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1656 size);
1657 fs->lfs_offset += bb;
1658 }
1659
1660 }
1661
1662 /* This inode has been modified */
1663 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1664 }
1665
1666 /*
1667 * Move lfs_offset to a segment earlier than sn.
1668 */
1669 int
1670 lfs_rewind(struct lfs *fs, int newsn)
1671 {
1672 int sn, osn, isdirty;
1673 struct buf *bp;
1674 SEGUSE *sup;
1675
1676 ASSERT_SEGLOCK(fs);
1677
1678 osn = dtosn(fs, fs->lfs_offset);
1679 if (osn < newsn)
1680 return 0;
1681
1682 /* lfs_avail eats the remaining space in this segment */
1683 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1684
1685 /* Find a low-numbered segment */
1686 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1687 LFS_SEGENTRY(sup, fs, sn, bp);
1688 isdirty = sup->su_flags & SEGUSE_DIRTY;
1689 brelse(bp, 0);
1690
1691 if (!isdirty)
1692 break;
1693 }
1694 if (sn == fs->lfs_nseg)
1695 panic("lfs_rewind: no clean segments");
1696 if (newsn >= 0 && sn >= newsn)
1697 return ENOENT;
1698 fs->lfs_nextseg = sn;
1699 lfs_newseg(fs);
1700 fs->lfs_offset = fs->lfs_curseg;
1701
1702 return 0;
1703 }
1704
1705 /*
1706 * Start a new partial segment.
1707 *
1708 * Return 1 when we entered to a new segment.
1709 * Otherwise, return 0.
1710 */
1711 int
1712 lfs_initseg(struct lfs *fs)
1713 {
1714 struct segment *sp = fs->lfs_sp;
1715 SEGSUM *ssp;
1716 struct buf *sbp; /* buffer for SEGSUM */
1717 int repeat = 0; /* return value */
1718
1719 ASSERT_SEGLOCK(fs);
1720 /* Advance to the next segment. */
1721 if (!LFS_PARTIAL_FITS(fs)) {
1722 SEGUSE *sup;
1723 struct buf *bp;
1724
1725 /* lfs_avail eats the remaining space */
1726 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1727 fs->lfs_curseg);
1728 /* Wake up any cleaning procs waiting on this file system. */
1729 lfs_wakeup_cleaner(fs);
1730 lfs_newseg(fs);
1731 repeat = 1;
1732 fs->lfs_offset = fs->lfs_curseg;
1733
1734 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1735 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1736
1737 /*
1738 * If the segment contains a superblock, update the offset
1739 * and summary address to skip over it.
1740 */
1741 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1742 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1743 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1744 sp->seg_bytes_left -= LFS_SBPAD;
1745 }
1746 brelse(bp, 0);
1747 /* Segment zero could also contain the labelpad */
1748 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1749 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1750 fs->lfs_offset +=
1751 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1752 sp->seg_bytes_left -=
1753 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1754 }
1755 } else {
1756 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1757 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1758 (fs->lfs_offset - fs->lfs_curseg));
1759 }
1760 fs->lfs_lastpseg = fs->lfs_offset;
1761
1762 /* Record first address of this partial segment */
1763 if (sp->seg_flags & SEGM_CLEAN) {
1764 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1765 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1766 /* "1" is the artificial inc in lfs_seglock */
1767 simple_lock(&fs->lfs_interlock);
1768 while (fs->lfs_iocount > 1) {
1769 ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1770 "lfs_initseg", 0, &fs->lfs_interlock);
1771 }
1772 simple_unlock(&fs->lfs_interlock);
1773 fs->lfs_cleanind = 0;
1774 }
1775 }
1776
1777 sp->fs = fs;
1778 sp->ibp = NULL;
1779 sp->idp = NULL;
1780 sp->ninodes = 0;
1781 sp->ndupino = 0;
1782
1783 sp->cbpp = sp->bpp;
1784
1785 /* Get a new buffer for SEGSUM */
1786 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1787 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1788
1789 /* ... and enter it into the buffer list. */
1790 *sp->cbpp = sbp;
1791 sp->cbpp++;
1792 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1793
1794 sp->start_bpp = sp->cbpp;
1795
1796 /* Set point to SEGSUM, initialize it. */
1797 ssp = sp->segsum = sbp->b_data;
1798 memset(ssp, 0, fs->lfs_sumsize);
1799 ssp->ss_next = fs->lfs_nextseg;
1800 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1801 ssp->ss_magic = SS_MAGIC;
1802
1803 /* Set pointer to first FINFO, initialize it. */
1804 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1805 sp->fip->fi_nblocks = 0;
1806 sp->start_lbp = &sp->fip->fi_blocks[0];
1807 sp->fip->fi_lastlength = 0;
1808
1809 sp->seg_bytes_left -= fs->lfs_sumsize;
1810 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1811
1812 return (repeat);
1813 }
1814
1815 /*
1816 * Remove SEGUSE_INVAL from all segments.
1817 */
1818 void
1819 lfs_unset_inval_all(struct lfs *fs)
1820 {
1821 SEGUSE *sup;
1822 struct buf *bp;
1823 int i;
1824
1825 for (i = 0; i < fs->lfs_nseg; i++) {
1826 LFS_SEGENTRY(sup, fs, i, bp);
1827 if (sup->su_flags & SEGUSE_INVAL) {
1828 sup->su_flags &= ~SEGUSE_INVAL;
1829 LFS_WRITESEGENTRY(sup, fs, i, bp);
1830 } else
1831 brelse(bp, 0);
1832 }
1833 }
1834
1835 /*
1836 * Return the next segment to write.
1837 */
1838 void
1839 lfs_newseg(struct lfs *fs)
1840 {
1841 CLEANERINFO *cip;
1842 SEGUSE *sup;
1843 struct buf *bp;
1844 int curseg, isdirty, sn, skip_inval;
1845
1846 ASSERT_SEGLOCK(fs);
1847
1848 /* Honor LFCNWRAPSTOP */
1849 simple_lock(&fs->lfs_interlock);
1850 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1851 if (fs->lfs_wrappass) {
1852 log(LOG_NOTICE, "%s: wrappass=%d\n",
1853 fs->lfs_fsmnt, fs->lfs_wrappass);
1854 fs->lfs_wrappass = 0;
1855 break;
1856 }
1857 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1858 wakeup(&fs->lfs_nowrap);
1859 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1860 ltsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1861 &fs->lfs_interlock);
1862 }
1863 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1864 simple_unlock(&fs->lfs_interlock);
1865
1866 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1867 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1868 dtosn(fs, fs->lfs_nextseg)));
1869 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1870 sup->su_nbytes = 0;
1871 sup->su_nsums = 0;
1872 sup->su_ninos = 0;
1873 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1874
1875 LFS_CLEANERINFO(cip, fs, bp);
1876 --cip->clean;
1877 ++cip->dirty;
1878 fs->lfs_nclean = cip->clean;
1879 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1880
1881 fs->lfs_lastseg = fs->lfs_curseg;
1882 fs->lfs_curseg = fs->lfs_nextseg;
1883 skip_inval = 1;
1884 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1885 sn = (sn + 1) % fs->lfs_nseg;
1886
1887 if (sn == curseg) {
1888 if (skip_inval)
1889 skip_inval = 0;
1890 else
1891 panic("lfs_nextseg: no clean segments");
1892 }
1893 LFS_SEGENTRY(sup, fs, sn, bp);
1894 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1895 /* Check SEGUSE_EMPTY as we go along */
1896 if (isdirty && sup->su_nbytes == 0 &&
1897 !(sup->su_flags & SEGUSE_EMPTY))
1898 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1899 else
1900 brelse(bp, 0);
1901
1902 if (!isdirty)
1903 break;
1904 }
1905 if (skip_inval == 0)
1906 lfs_unset_inval_all(fs);
1907
1908 ++fs->lfs_nactive;
1909 fs->lfs_nextseg = sntod(fs, sn);
1910 if (lfs_dostats) {
1911 ++lfs_stats.segsused;
1912 }
1913 }
1914
1915 static struct buf *
1916 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1917 int n)
1918 {
1919 struct lfs_cluster *cl;
1920 struct buf **bpp, *bp;
1921
1922 ASSERT_SEGLOCK(fs);
1923 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1924 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1925 memset(cl, 0, sizeof(*cl));
1926 cl->fs = fs;
1927 cl->bpp = bpp;
1928 cl->bufcount = 0;
1929 cl->bufsize = 0;
1930
1931 /* If this segment is being written synchronously, note that */
1932 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1933 cl->flags |= LFS_CL_SYNC;
1934 cl->seg = fs->lfs_sp;
1935 ++cl->seg->seg_iocount;
1936 }
1937
1938 /* Get an empty buffer header, or maybe one with something on it */
1939 bp = getiobuf();
1940 bp->b_flags = B_BUSY | B_CALL;
1941 bp->b_dev = NODEV;
1942 bp->b_blkno = bp->b_lblkno = addr;
1943 bp->b_iodone = lfs_cluster_callback;
1944 bp->b_private = cl;
1945 bp->b_vp = vp;
1946
1947 return bp;
1948 }
1949
1950 int
1951 lfs_writeseg(struct lfs *fs, struct segment *sp)
1952 {
1953 struct buf **bpp, *bp, *cbp, *newbp;
1954 SEGUSE *sup;
1955 SEGSUM *ssp;
1956 int i, s;
1957 int do_again, nblocks, byteoffset;
1958 size_t el_size;
1959 struct lfs_cluster *cl;
1960 u_short ninos;
1961 struct vnode *devvp;
1962 char *p = NULL;
1963 struct vnode *vp;
1964 int32_t *daddrp; /* XXX ondisk32 */
1965 int changed;
1966 u_int32_t sum;
1967 #ifdef DEBUG
1968 FINFO *fip;
1969 int findex;
1970 #endif
1971
1972 ASSERT_SEGLOCK(fs);
1973
1974 ssp = (SEGSUM *)sp->segsum;
1975
1976 /*
1977 * If there are no buffers other than the segment summary to write,
1978 * don't do anything. If we are the end of a dirop sequence, however,
1979 * write the empty segment summary anyway, to help out the
1980 * roll-forward agent.
1981 */
1982 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1983 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1984 return 0;
1985 }
1986
1987 /* Note if partial segment is being written by the cleaner */
1988 if (sp->seg_flags & SEGM_CLEAN)
1989 ssp->ss_flags |= SS_CLEAN;
1990
1991 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1992
1993 /* Update the segment usage information. */
1994 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1995
1996 /* Loop through all blocks, except the segment summary. */
1997 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1998 if ((*bpp)->b_vp != devvp) {
1999 sup->su_nbytes += (*bpp)->b_bcount;
2000 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2001 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2002 sp->seg_number, (*bpp)->b_bcount,
2003 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2004 (*bpp)->b_blkno));
2005 }
2006 }
2007
2008 #ifdef DEBUG
2009 /* Check for zero-length and zero-version FINFO entries. */
2010 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2011 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2012 KDASSERT(fip->fi_nblocks > 0);
2013 KDASSERT(fip->fi_version > 0);
2014 fip = (FINFO *)((char *)fip + FINFOSIZE +
2015 sizeof(int32_t) * fip->fi_nblocks);
2016 }
2017 #endif /* DEBUG */
2018
2019 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2020 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2021 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2022 ssp->ss_ninos));
2023 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2024 /* sup->su_nbytes += fs->lfs_sumsize; */
2025 if (fs->lfs_version == 1)
2026 sup->su_olastmod = time_second;
2027 else
2028 sup->su_lastmod = time_second;
2029 sup->su_ninos += ninos;
2030 ++sup->su_nsums;
2031 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2032
2033 do_again = !(bp->b_flags & B_GATHERED);
2034 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2035
2036 /*
2037 * Mark blocks B_BUSY, to prevent then from being changed between
2038 * the checksum computation and the actual write.
2039 *
2040 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2041 * there are any, replace them with copies that have UNASSIGNED
2042 * instead.
2043 */
2044 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2045 ++bpp;
2046 bp = *bpp;
2047 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2048 bp->b_flags |= B_BUSY;
2049 continue;
2050 }
2051
2052 simple_lock(&bp->b_interlock);
2053 s = splbio();
2054 while (bp->b_flags & B_BUSY) {
2055 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2056 " data summary corruption for ino %d, lbn %"
2057 PRId64 "\n",
2058 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2059 bp->b_flags |= B_WANTED;
2060 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2061 &bp->b_interlock);
2062 splx(s);
2063 s = splbio();
2064 }
2065 bp->b_flags |= B_BUSY;
2066 splx(s);
2067 simple_unlock(&bp->b_interlock);
2068
2069 /*
2070 * Check and replace indirect block UNWRITTEN bogosity.
2071 * XXX See comment in lfs_writefile.
2072 */
2073 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2074 VTOI(bp->b_vp)->i_ffs1_blocks !=
2075 VTOI(bp->b_vp)->i_lfs_effnblks) {
2076 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2077 VTOI(bp->b_vp)->i_number,
2078 VTOI(bp->b_vp)->i_lfs_effnblks,
2079 VTOI(bp->b_vp)->i_ffs1_blocks));
2080 /* Make a copy we'll make changes to */
2081 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2082 bp->b_bcount, LFS_NB_IBLOCK);
2083 newbp->b_blkno = bp->b_blkno;
2084 memcpy(newbp->b_data, bp->b_data,
2085 newbp->b_bcount);
2086
2087 changed = 0;
2088 /* XXX ondisk32 */
2089 for (daddrp = (int32_t *)(newbp->b_data);
2090 daddrp < (int32_t *)((char *)newbp->b_data +
2091 newbp->b_bcount); daddrp++) {
2092 if (*daddrp == UNWRITTEN) {
2093 ++changed;
2094 *daddrp = 0;
2095 }
2096 }
2097 /*
2098 * Get rid of the old buffer. Don't mark it clean,
2099 * though, if it still has dirty data on it.
2100 */
2101 if (changed) {
2102 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2103 " bp = %p newbp = %p\n", changed, bp,
2104 newbp));
2105 *bpp = newbp;
2106 bp->b_flags &= ~B_GATHERED;
2107 bp->b_error = 0;
2108 if (bp->b_flags & B_CALL) {
2109 DLOG((DLOG_SEG, "lfs_writeseg: "
2110 "indir bp should not be B_CALL\n"));
2111 s = splbio();
2112 biodone(bp);
2113 splx(s);
2114 bp = NULL;
2115 } else {
2116 /* Still on free list, leave it there */
2117 s = splbio();
2118 bp->b_flags &= ~B_BUSY;
2119 if (bp->b_flags & B_WANTED)
2120 wakeup(bp);
2121 splx(s);
2122 /*
2123 * We have to re-decrement lfs_avail
2124 * since this block is going to come
2125 * back around to us in the next
2126 * segment.
2127 */
2128 fs->lfs_avail -=
2129 btofsb(fs, bp->b_bcount);
2130 }
2131 } else {
2132 lfs_freebuf(fs, newbp);
2133 }
2134 }
2135 }
2136 /*
2137 * Compute checksum across data and then across summary; the first
2138 * block (the summary block) is skipped. Set the create time here
2139 * so that it's guaranteed to be later than the inode mod times.
2140 */
2141 sum = 0;
2142 if (fs->lfs_version == 1)
2143 el_size = sizeof(u_long);
2144 else
2145 el_size = sizeof(u_int32_t);
2146 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2147 ++bpp;
2148 /* Loop through gop_write cluster blocks */
2149 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2150 byteoffset += fs->lfs_bsize) {
2151 #ifdef LFS_USE_B_INVAL
2152 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2153 (B_CALL | B_INVAL)) {
2154 if (copyin((void *)(*bpp)->b_saveaddr +
2155 byteoffset, dp, el_size)) {
2156 panic("lfs_writeseg: copyin failed [1]:"
2157 " ino %d blk %" PRId64,
2158 VTOI((*bpp)->b_vp)->i_number,
2159 (*bpp)->b_lblkno);
2160 }
2161 } else
2162 #endif /* LFS_USE_B_INVAL */
2163 {
2164 sum = lfs_cksum_part((char *)
2165 (*bpp)->b_data + byteoffset, el_size, sum);
2166 }
2167 }
2168 }
2169 if (fs->lfs_version == 1)
2170 ssp->ss_ocreate = time_second;
2171 else {
2172 ssp->ss_create = time_second;
2173 ssp->ss_serial = ++fs->lfs_serial;
2174 ssp->ss_ident = fs->lfs_ident;
2175 }
2176 ssp->ss_datasum = lfs_cksum_fold(sum);
2177 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2178 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2179
2180 simple_lock(&fs->lfs_interlock);
2181 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2182 btofsb(fs, fs->lfs_sumsize));
2183 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2184 btofsb(fs, fs->lfs_sumsize));
2185 simple_unlock(&fs->lfs_interlock);
2186
2187 /*
2188 * When we simply write the blocks we lose a rotation for every block
2189 * written. To avoid this problem, we cluster the buffers into a
2190 * chunk and write the chunk. MAXPHYS is the largest size I/O
2191 * devices can handle, use that for the size of the chunks.
2192 *
2193 * Blocks that are already clusters (from GOP_WRITE), however, we
2194 * don't bother to copy into other clusters.
2195 */
2196
2197 #define CHUNKSIZE MAXPHYS
2198
2199 if (devvp == NULL)
2200 panic("devvp is NULL");
2201 for (bpp = sp->bpp, i = nblocks; i;) {
2202 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2203 cl = cbp->b_private;
2204
2205 cbp->b_flags |= B_ASYNC | B_BUSY;
2206 cbp->b_bcount = 0;
2207
2208 #if defined(DEBUG) && defined(DIAGNOSTIC)
2209 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2210 / sizeof(int32_t)) {
2211 panic("lfs_writeseg: real bpp overwrite");
2212 }
2213 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2214 panic("lfs_writeseg: theoretical bpp overwrite");
2215 }
2216 #endif
2217
2218 /*
2219 * Construct the cluster.
2220 */
2221 simple_lock(&fs->lfs_interlock);
2222 ++fs->lfs_iocount;
2223 simple_unlock(&fs->lfs_interlock);
2224 while (i && cbp->b_bcount < CHUNKSIZE) {
2225 bp = *bpp;
2226
2227 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2228 break;
2229 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2230 break;
2231
2232 /* Clusters from GOP_WRITE are expedited */
2233 if (bp->b_bcount > fs->lfs_bsize) {
2234 if (cbp->b_bcount > 0)
2235 /* Put in its own buffer */
2236 break;
2237 else {
2238 cbp->b_data = bp->b_data;
2239 }
2240 } else if (cbp->b_bcount == 0) {
2241 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2242 LFS_NB_CLUSTER);
2243 cl->flags |= LFS_CL_MALLOC;
2244 }
2245 #ifdef DIAGNOSTIC
2246 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2247 btodb(bp->b_bcount - 1))) !=
2248 sp->seg_number) {
2249 printf("blk size %d daddr %" PRIx64
2250 " not in seg %d\n",
2251 bp->b_bcount, bp->b_blkno,
2252 sp->seg_number);
2253 panic("segment overwrite");
2254 }
2255 #endif
2256
2257 #ifdef LFS_USE_B_INVAL
2258 /*
2259 * Fake buffers from the cleaner are marked as B_INVAL.
2260 * We need to copy the data from user space rather than
2261 * from the buffer indicated.
2262 * XXX == what do I do on an error?
2263 */
2264 if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2265 (B_CALL|B_INVAL)) {
2266 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2267 panic("lfs_writeseg: "
2268 "copyin failed [2]");
2269 } else
2270 #endif /* LFS_USE_B_INVAL */
2271 if (cl->flags & LFS_CL_MALLOC) {
2272 /* copy data into our cluster. */
2273 memcpy(p, bp->b_data, bp->b_bcount);
2274 p += bp->b_bcount;
2275 }
2276
2277 cbp->b_bcount += bp->b_bcount;
2278 cl->bufsize += bp->b_bcount;
2279
2280 bp->b_flags &= ~(B_READ | B_DELWRI | B_DONE);
2281 bp->b_error = 0;
2282 cl->bpp[cl->bufcount++] = bp;
2283 vp = bp->b_vp;
2284 s = splbio();
2285 reassignbuf(bp, vp);
2286 V_INCR_NUMOUTPUT(vp);
2287 splx(s);
2288
2289 bpp++;
2290 i--;
2291 }
2292 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2293 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2294 else
2295 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2296 s = splbio();
2297 V_INCR_NUMOUTPUT(devvp);
2298 splx(s);
2299 VOP_STRATEGY(devvp, cbp);
2300 curproc->p_stats->p_ru.ru_oublock++;
2301 }
2302
2303 if (lfs_dostats) {
2304 ++lfs_stats.psegwrites;
2305 lfs_stats.blocktot += nblocks - 1;
2306 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2307 ++lfs_stats.psyncwrites;
2308 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2309 ++lfs_stats.pcleanwrites;
2310 lfs_stats.cleanblocks += nblocks - 1;
2311 }
2312 }
2313
2314 return (lfs_initseg(fs) || do_again);
2315 }
2316
2317 void
2318 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2319 {
2320 struct buf *bp;
2321 int s;
2322 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2323
2324 ASSERT_MAYBE_SEGLOCK(fs);
2325 #ifdef DIAGNOSTIC
2326 KASSERT(fs->lfs_magic == LFS_MAGIC);
2327 #endif
2328 /*
2329 * If we can write one superblock while another is in
2330 * progress, we risk not having a complete checkpoint if we crash.
2331 * So, block here if a superblock write is in progress.
2332 */
2333 simple_lock(&fs->lfs_interlock);
2334 s = splbio();
2335 while (fs->lfs_sbactive) {
2336 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2337 &fs->lfs_interlock);
2338 }
2339 fs->lfs_sbactive = daddr;
2340 splx(s);
2341 simple_unlock(&fs->lfs_interlock);
2342
2343 /* Set timestamp of this version of the superblock */
2344 if (fs->lfs_version == 1)
2345 fs->lfs_otstamp = time_second;
2346 fs->lfs_tstamp = time_second;
2347
2348 /* Checksum the superblock and copy it into a buffer. */
2349 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2350 bp = lfs_newbuf(fs, devvp,
2351 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2352 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2353 LFS_SBPAD - sizeof(struct dlfs));
2354 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2355
2356 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2357 bp->b_flags &= ~(B_DONE | B_READ | B_DELWRI);
2358 bp->b_error = 0;
2359 bp->b_iodone = lfs_supercallback;
2360
2361 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2362 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2363 else
2364 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2365 curproc->p_stats->p_ru.ru_oublock++;
2366 s = splbio();
2367 V_INCR_NUMOUTPUT(bp->b_vp);
2368 splx(s);
2369 simple_lock(&fs->lfs_interlock);
2370 ++fs->lfs_iocount;
2371 simple_unlock(&fs->lfs_interlock);
2372 VOP_STRATEGY(devvp, bp);
2373 }
2374
2375 /*
2376 * Logical block number match routines used when traversing the dirty block
2377 * chain.
2378 */
2379 int
2380 lfs_match_fake(struct lfs *fs, struct buf *bp)
2381 {
2382
2383 ASSERT_SEGLOCK(fs);
2384 return LFS_IS_MALLOC_BUF(bp);
2385 }
2386
2387 #if 0
2388 int
2389 lfs_match_real(struct lfs *fs, struct buf *bp)
2390 {
2391
2392 ASSERT_SEGLOCK(fs);
2393 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2394 }
2395 #endif
2396
2397 int
2398 lfs_match_data(struct lfs *fs, struct buf *bp)
2399 {
2400
2401 ASSERT_SEGLOCK(fs);
2402 return (bp->b_lblkno >= 0);
2403 }
2404
2405 int
2406 lfs_match_indir(struct lfs *fs, struct buf *bp)
2407 {
2408 daddr_t lbn;
2409
2410 ASSERT_SEGLOCK(fs);
2411 lbn = bp->b_lblkno;
2412 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2413 }
2414
2415 int
2416 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2417 {
2418 daddr_t lbn;
2419
2420 ASSERT_SEGLOCK(fs);
2421 lbn = bp->b_lblkno;
2422 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2423 }
2424
2425 int
2426 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2427 {
2428 daddr_t lbn;
2429
2430 ASSERT_SEGLOCK(fs);
2431 lbn = bp->b_lblkno;
2432 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2433 }
2434
2435 static void
2436 lfs_free_aiodone(struct buf *bp)
2437 {
2438 struct lfs *fs;
2439
2440 fs = bp->b_private;
2441 ASSERT_NO_SEGLOCK(fs);
2442 lfs_freebuf(fs, bp);
2443 }
2444
2445 static void
2446 lfs_super_aiodone(struct buf *bp)
2447 {
2448 struct lfs *fs;
2449
2450 fs = bp->b_private;
2451 ASSERT_NO_SEGLOCK(fs);
2452 simple_lock(&fs->lfs_interlock);
2453 fs->lfs_sbactive = 0;
2454 if (--fs->lfs_iocount <= 1)
2455 wakeup(&fs->lfs_iocount);
2456 simple_unlock(&fs->lfs_interlock);
2457 wakeup(&fs->lfs_sbactive);
2458 lfs_freebuf(fs, bp);
2459 }
2460
2461 static void
2462 lfs_cluster_aiodone(struct buf *bp)
2463 {
2464 struct lfs_cluster *cl;
2465 struct lfs *fs;
2466 struct buf *tbp, *fbp;
2467 struct vnode *vp, *devvp;
2468 struct inode *ip;
2469 int s, error;
2470
2471 error = bp->b_error;
2472 cl = bp->b_private;
2473 fs = cl->fs;
2474 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2475 ASSERT_NO_SEGLOCK(fs);
2476
2477 /* Put the pages back, and release the buffer */
2478 while (cl->bufcount--) {
2479 tbp = cl->bpp[cl->bufcount];
2480 KASSERT(tbp->b_flags & B_BUSY);
2481 if (error) {
2482 tbp->b_error = error;
2483 }
2484
2485 /*
2486 * We're done with tbp. If it has not been re-dirtied since
2487 * the cluster was written, free it. Otherwise, keep it on
2488 * the locked list to be written again.
2489 */
2490 vp = tbp->b_vp;
2491
2492 tbp->b_flags &= ~B_GATHERED;
2493
2494 LFS_BCLEAN_LOG(fs, tbp);
2495
2496 if (!(tbp->b_flags & B_CALL)) {
2497 KASSERT(tbp->b_flags & B_LOCKED);
2498 s = splbio();
2499 simple_lock(&bqueue_slock);
2500 bremfree(tbp);
2501 simple_unlock(&bqueue_slock);
2502 if (vp)
2503 reassignbuf(tbp, vp);
2504 splx(s);
2505 tbp->b_flags |= B_ASYNC; /* for biodone */
2506 }
2507
2508 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2509 LFS_UNLOCK_BUF(tbp);
2510
2511 if (tbp->b_flags & B_DONE) {
2512 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2513 cl->bufcount, (long)tbp->b_flags));
2514 }
2515
2516 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2517 /*
2518 * A buffer from the page daemon.
2519 * We use the same iodone as it does,
2520 * so we must manually disassociate its
2521 * buffers from the vp.
2522 */
2523 if (tbp->b_vp) {
2524 /* This is just silly */
2525 s = splbio();
2526 brelvp(tbp);
2527 tbp->b_vp = vp;
2528 splx(s);
2529 }
2530 /* Put it back the way it was */
2531 tbp->b_flags |= B_ASYNC;
2532 /* Master buffers have B_AGE */
2533 if (tbp->b_private == tbp)
2534 tbp->b_flags |= B_AGE;
2535 }
2536 s = splbio();
2537 biodone(tbp);
2538
2539 /*
2540 * If this is the last block for this vnode, but
2541 * there are other blocks on its dirty list,
2542 * set IN_MODIFIED/IN_CLEANING depending on what
2543 * sort of block. Only do this for our mount point,
2544 * not for, e.g., inode blocks that are attached to
2545 * the devvp.
2546 * XXX KS - Shouldn't we set *both* if both types
2547 * of blocks are present (traverse the dirty list?)
2548 */
2549 simple_lock(&global_v_numoutput_slock);
2550 if (vp != devvp && vp->v_numoutput == 0 &&
2551 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2552 ip = VTOI(vp);
2553 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2554 ip->i_number));
2555 if (LFS_IS_MALLOC_BUF(fbp))
2556 LFS_SET_UINO(ip, IN_CLEANING);
2557 else
2558 LFS_SET_UINO(ip, IN_MODIFIED);
2559 }
2560 simple_unlock(&global_v_numoutput_slock);
2561 splx(s);
2562 wakeup(vp);
2563 }
2564
2565 /* Fix up the cluster buffer, and release it */
2566 if (cl->flags & LFS_CL_MALLOC)
2567 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2568 putiobuf(bp);
2569
2570 /* Note i/o done */
2571 if (cl->flags & LFS_CL_SYNC) {
2572 if (--cl->seg->seg_iocount == 0)
2573 wakeup(&cl->seg->seg_iocount);
2574 }
2575 simple_lock(&fs->lfs_interlock);
2576 #ifdef DIAGNOSTIC
2577 if (fs->lfs_iocount == 0)
2578 panic("lfs_cluster_aiodone: zero iocount");
2579 #endif
2580 if (--fs->lfs_iocount <= 1)
2581 wakeup(&fs->lfs_iocount);
2582 simple_unlock(&fs->lfs_interlock);
2583
2584 pool_put(&fs->lfs_bpppool, cl->bpp);
2585 cl->bpp = NULL;
2586 pool_put(&fs->lfs_clpool, cl);
2587 }
2588
2589 static void
2590 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2591 {
2592 /* reset b_iodone for when this is a single-buf i/o. */
2593 bp->b_iodone = aiodone;
2594
2595 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2596 }
2597
2598 static void
2599 lfs_cluster_callback(struct buf *bp)
2600 {
2601
2602 lfs_generic_callback(bp, lfs_cluster_aiodone);
2603 }
2604
2605 void
2606 lfs_supercallback(struct buf *bp)
2607 {
2608
2609 lfs_generic_callback(bp, lfs_super_aiodone);
2610 }
2611
2612 /*
2613 * The only buffers that are going to hit these functions are the
2614 * segment write blocks, or the segment summaries, or the superblocks.
2615 *
2616 * All of the above are created by lfs_newbuf, and so do not need to be
2617 * released via brelse.
2618 */
2619 void
2620 lfs_callback(struct buf *bp)
2621 {
2622
2623 lfs_generic_callback(bp, lfs_free_aiodone);
2624 }
2625
2626 /*
2627 * Shellsort (diminishing increment sort) from Data Structures and
2628 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2629 * see also Knuth Vol. 3, page 84. The increments are selected from
2630 * formula (8), page 95. Roughly O(N^3/2).
2631 */
2632 /*
2633 * This is our own private copy of shellsort because we want to sort
2634 * two parallel arrays (the array of buffer pointers and the array of
2635 * logical block numbers) simultaneously. Note that we cast the array
2636 * of logical block numbers to a unsigned in this routine so that the
2637 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2638 */
2639
2640 void
2641 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2642 {
2643 static int __rsshell_increments[] = { 4, 1, 0 };
2644 int incr, *incrp, t1, t2;
2645 struct buf *bp_temp;
2646
2647 #ifdef DEBUG
2648 incr = 0;
2649 for (t1 = 0; t1 < nmemb; t1++) {
2650 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2651 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2652 /* dump before panic */
2653 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2654 nmemb, size);
2655 incr = 0;
2656 for (t1 = 0; t1 < nmemb; t1++) {
2657 const struct buf *bp = bp_array[t1];
2658
2659 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2660 PRIu64 "\n", t1,
2661 (uint64_t)bp->b_bcount,
2662 (uint64_t)bp->b_lblkno);
2663 printf("lbns:");
2664 for (t2 = 0; t2 * size < bp->b_bcount;
2665 t2++) {
2666 printf(" %" PRId32,
2667 lb_array[incr++]);
2668 }
2669 printf("\n");
2670 }
2671 panic("lfs_shellsort: inconsistent input");
2672 }
2673 }
2674 }
2675 #endif
2676
2677 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2678 for (t1 = incr; t1 < nmemb; ++t1)
2679 for (t2 = t1 - incr; t2 >= 0;)
2680 if ((u_int32_t)bp_array[t2]->b_lblkno >
2681 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2682 bp_temp = bp_array[t2];
2683 bp_array[t2] = bp_array[t2 + incr];
2684 bp_array[t2 + incr] = bp_temp;
2685 t2 -= incr;
2686 } else
2687 break;
2688
2689 /* Reform the list of logical blocks */
2690 incr = 0;
2691 for (t1 = 0; t1 < nmemb; t1++) {
2692 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2693 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2694 }
2695 }
2696 }
2697
2698 /*
2699 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK/VI_FREEING,
2700 * however, we must press on. Just fake success in that case.
2701 */
2702 int
2703 lfs_vref(struct vnode *vp)
2704 {
2705 int error;
2706 struct lfs *fs;
2707
2708 fs = VTOI(vp)->i_lfs;
2709
2710 ASSERT_MAYBE_SEGLOCK(fs);
2711
2712 /*
2713 * If we return 1 here during a flush, we risk vinvalbuf() not
2714 * being able to flush all of the pages from this vnode, which
2715 * will cause it to panic. So, return 0 if a flush is in progress.
2716 */
2717 error = vget(vp, LK_NOWAIT);
2718 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2719 ++fs->lfs_flushvp_fakevref;
2720 return 0;
2721 }
2722 return error;
2723 }
2724
2725 /*
2726 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2727 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2728 */
2729 void
2730 lfs_vunref(struct vnode *vp)
2731 {
2732 struct lfs *fs;
2733
2734 fs = VTOI(vp)->i_lfs;
2735 ASSERT_MAYBE_SEGLOCK(fs);
2736
2737 /*
2738 * Analogous to lfs_vref, if the node is flushing, fake it.
2739 */
2740 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2741 --fs->lfs_flushvp_fakevref;
2742 return;
2743 }
2744
2745 /* does not call inactive */
2746 vrele2(vp, 0);
2747 }
2748
2749 /*
2750 * We use this when we have vnodes that were loaded in solely for cleaning.
2751 * There is no reason to believe that these vnodes will be referenced again
2752 * soon, since the cleaning process is unrelated to normal filesystem
2753 * activity. Putting cleaned vnodes at the tail of the list has the effect
2754 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2755 * cleaning at the head of the list, instead.
2756 */
2757 void
2758 lfs_vunref_head(struct vnode *vp)
2759 {
2760
2761 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2762
2763 /* does not call inactive, inserts non-held vnode at head of freelist */
2764 vrele2(vp, 1);
2765 }
2766
2767
2768 /*
2769 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2770 * point at uninitialized space.
2771 */
2772 void
2773 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2774 {
2775 struct segment *sp = fs->lfs_sp;
2776
2777 KASSERT(vers > 0);
2778
2779 if (sp->seg_bytes_left < fs->lfs_bsize ||
2780 sp->sum_bytes_left < sizeof(struct finfo))
2781 (void) lfs_writeseg(fs, fs->lfs_sp);
2782
2783 sp->sum_bytes_left -= FINFOSIZE;
2784 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2785 sp->fip->fi_nblocks = 0;
2786 sp->fip->fi_ino = ino;
2787 sp->fip->fi_version = vers;
2788 }
2789
2790 /*
2791 * Release the FINFO entry, either clearing out an unused entry or
2792 * advancing us to the next available entry.
2793 */
2794 void
2795 lfs_release_finfo(struct lfs *fs)
2796 {
2797 struct segment *sp = fs->lfs_sp;
2798
2799 if (sp->fip->fi_nblocks != 0) {
2800 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2801 sizeof(int32_t) * sp->fip->fi_nblocks);
2802 sp->start_lbp = &sp->fip->fi_blocks[0];
2803 } else {
2804 sp->sum_bytes_left += FINFOSIZE;
2805 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2806 }
2807 }
2808