lfs_segment.c revision 1.206.6.2 1 /* $NetBSD: lfs_segment.c,v 1.206.6.2 2007/12/19 00:02:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.206.6.2 2007/12/19 00:02:01 ad Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern kmutex_t vnode_free_list_lock; /* XXX */
120
121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
122 static void lfs_free_aiodone(struct buf *);
123 static void lfs_super_aiodone(struct buf *);
124 static void lfs_cluster_aiodone(struct buf *);
125 static void lfs_cluster_callback(struct buf *);
126
127 /*
128 * Determine if it's OK to start a partial in this segment, or if we need
129 * to go on to a new segment.
130 */
131 #define LFS_PARTIAL_FITS(fs) \
132 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
133 fragstofsb((fs), (fs)->lfs_frag))
134
135 /*
136 * Figure out whether we should do a checkpoint write or go ahead with
137 * an ordinary write.
138 */
139 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
140 ((flags & SEGM_CLEAN) == 0 && \
141 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
142 (flags & SEGM_CKP) || \
143 fs->lfs_nclean < LFS_MAX_ACTIVE)))
144
145 int lfs_match_fake(struct lfs *, struct buf *);
146 void lfs_newseg(struct lfs *);
147 /* XXX ondisk32 */
148 void lfs_shellsort(struct buf **, int32_t *, int, int);
149 void lfs_supercallback(struct buf *);
150 void lfs_updatemeta(struct segment *);
151 void lfs_writesuper(struct lfs *, daddr_t);
152 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
153 struct segment *sp, int dirops);
154
155 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
156 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
157 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
158 int lfs_dirvcount = 0; /* # active dirops */
159
160 /* Statistics Counters */
161 int lfs_dostats = 1;
162 struct lfs_stats lfs_stats;
163
164 /* op values to lfs_writevnodes */
165 #define VN_REG 0
166 #define VN_DIROP 1
167 #define VN_EMPTY 2
168 #define VN_CLEAN 3
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 ASSERT_MAYBE_SEGLOCK(fs);
183 vfs_timestamp(&ts);
184 ip = VTOI(fs->lfs_ivnode);
185 ip->i_ffs1_mtime = ts.tv_sec;
186 ip->i_ffs1_mtimensec = ts.tv_nsec;
187 }
188
189 /*
190 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
191 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
192 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
193 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
194 */
195
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 struct inode *ip;
202 struct lfs *fs;
203 struct segment *sp;
204 struct buf *bp, *nbp, *tbp, *tnbp;
205 int error;
206 int flushed;
207 int relock;
208 int loopcount;
209
210 ip = VTOI(vp);
211 fs = VFSTOUFS(vp->v_mount)->um_lfs;
212 relock = 0;
213
214 top:
215 ASSERT_NO_SEGLOCK(fs);
216 if (ip->i_flag & IN_CLEANING) {
217 ivndebug(vp,"vflush/in_cleaning");
218 mutex_enter(&fs->lfs_interlock);
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221 mutex_exit(&fs->lfs_interlock);
222
223 /*
224 * Toss any cleaning buffers that have real counterparts
225 * to avoid losing new data.
226 */
227 mutex_enter(&vp->v_interlock);
228 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
229 nbp = LIST_NEXT(bp, b_vnbufs);
230 if (!LFS_IS_MALLOC_BUF(bp))
231 continue;
232 /*
233 * Look for pages matching the range covered
234 * by cleaning blocks. It's okay if more dirty
235 * pages appear, so long as none disappear out
236 * from under us.
237 */
238 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
239 vp != fs->lfs_ivnode) {
240 struct vm_page *pg;
241 voff_t off;
242
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 mutex_exit(&vp->v_interlock);
255 lfs_freebuf(fs, bp);
256 mutex_enter(&vp->v_interlock);
257 bp = NULL;
258 break;
259 }
260 }
261 }
262 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 tbp = tnbp)
264 {
265 tnbp = LIST_NEXT(tbp, b_vnbufs);
266 if (tbp->b_vp == bp->b_vp
267 && tbp->b_lblkno == bp->b_lblkno
268 && tbp != bp)
269 {
270 fs->lfs_avail += btofsb(fs,
271 bp->b_bcount);
272 wakeup(&fs->lfs_avail);
273 mutex_exit(&vp->v_interlock);
274 lfs_freebuf(fs, bp);
275 mutex_enter(&vp->v_interlock);
276 bp = NULL;
277 break;
278 }
279 }
280 }
281 } else {
282 mutex_enter(&vp->v_interlock);
283 }
284
285 /* If the node is being written, wait until that is done */
286 while (WRITEINPROG(vp)) {
287 ivndebug(vp,"vflush/writeinprog");
288 cv_wait(&vp->v_cv, &vp->v_interlock);
289 }
290 mutex_exit(&vp->v_interlock);
291
292 /* Protect against VXLOCK deadlock in vinvalbuf() */
293 lfs_seglock(fs, SEGM_SYNC);
294
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip->i_lfs_iflags & LFSI_DELETED) {
297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 ip->i_number));
299 /* Drain v_numoutput */
300 mutex_enter(&vp->v_interlock);
301 while (vp->v_numoutput > 0) {
302 cv_wait(&vp->v_cv, &vp->v_interlock);
303 }
304 KASSERT(vp->v_numoutput == 0);
305 mutex_exit(&vp->v_interlock);
306
307 mutex_enter(&bufcache_lock);
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 fs->lfs_avail += btofsb(fs, bp->b_bcount);
314 wakeup(&fs->lfs_avail);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_iodone != NULL) {
318 mutex_exit(&bufcache_lock);
319 biodone(bp);
320 mutex_enter(&bufcache_lock);
321 } else {
322 bremfree(bp);
323 LFS_UNLOCK_BUF(bp);
324 mutex_enter(&vp->v_interlock);
325 bp->b_flags &= ~(B_READ | B_GATHERED);
326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 bp->b_error = 0;
328 reassignbuf(bp, vp);
329 mutex_exit(&vp->v_interlock);
330 brelse(bp, 0);
331 }
332 }
333 mutex_exit(&bufcache_lock);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_flag &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 mutex_enter(&vp->v_interlock);
355 while (vp->v_numoutput > 0) {
356 cv_wait(&vp->v_cv, &vp->v_interlock);
357 }
358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 KASSERT(vp->v_numoutput == 0);
360 mutex_exit(&vp->v_interlock);
361
362 return error;
363 }
364 sp = fs->lfs_sp;
365
366 flushed = 0;
367 if (VPISEMPTY(vp)) {
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 ++flushed;
370 } else if ((ip->i_flag & IN_CLEANING) &&
371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 ivndebug(vp,"vflush/clean");
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 ++flushed;
375 } else if (lfs_dostats) {
376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
377 ++lfs_stats.vflush_invoked;
378 ivndebug(vp,"vflush");
379 }
380
381 #ifdef DIAGNOSTIC
382 if (vp->v_uflag & VU_DIROP) {
383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
384 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
385 }
386 if (vp->v_usecount < 0) {
387 printf("usecount=%ld\n", (long)vp->v_usecount);
388 panic("lfs_vflush: usecount<0");
389 }
390 #endif
391
392 do {
393 loopcount = 0;
394 do {
395 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
396 relock = lfs_writefile(fs, sp, vp);
397 if (relock) {
398 /*
399 * Might have to wait for the
400 * cleaner to run; but we're
401 * still not done with this vnode.
402 */
403 KDASSERT(ip->i_number != LFS_IFILE_INUM);
404 lfs_writeinode(fs, sp, ip);
405 mutex_enter(&fs->lfs_interlock);
406 LFS_SET_UINO(ip, IN_MODIFIED);
407 mutex_exit(&fs->lfs_interlock);
408 lfs_writeseg(fs, sp);
409 lfs_segunlock(fs);
410 lfs_segunlock_relock(fs);
411 goto top;
412 }
413 }
414 /*
415 * If we begin a new segment in the middle of writing
416 * the Ifile, it creates an inconsistent checkpoint,
417 * since the Ifile information for the new segment
418 * is not up-to-date. Take care of this here by
419 * sending the Ifile through again in case there
420 * are newly dirtied blocks. But wait, there's more!
421 * This second Ifile write could *also* cross a segment
422 * boundary, if the first one was large. The second
423 * one is guaranteed to be no more than 8 blocks,
424 * though (two segment blocks and supporting indirects)
425 * so the third write *will not* cross the boundary.
426 */
427 if (vp == fs->lfs_ivnode) {
428 lfs_writefile(fs, sp, vp);
429 lfs_writefile(fs, sp, vp);
430 }
431 #ifdef DEBUG
432 if (++loopcount > 2)
433 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
434 #endif
435 } while (lfs_writeinode(fs, sp, ip));
436 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
437
438 if (lfs_dostats) {
439 ++lfs_stats.nwrites;
440 if (sp->seg_flags & SEGM_SYNC)
441 ++lfs_stats.nsync_writes;
442 if (sp->seg_flags & SEGM_CKP)
443 ++lfs_stats.ncheckpoints;
444 }
445 /*
446 * If we were called from somewhere that has already held the seglock
447 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
448 * the write to complete because we are still locked.
449 * Since lfs_vflush() must return the vnode with no dirty buffers,
450 * we must explicitly wait, if that is the case.
451 *
452 * We compare the iocount against 1, not 0, because it is
453 * artificially incremented by lfs_seglock().
454 */
455 mutex_enter(&fs->lfs_interlock);
456 if (fs->lfs_seglock > 1) {
457 while (fs->lfs_iocount > 1)
458 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
459 "lfs_vflush", 0, &fs->lfs_interlock);
460 }
461 mutex_exit(&fs->lfs_interlock);
462
463 lfs_segunlock(fs);
464
465 /* Wait for these buffers to be recovered by aiodoned */
466 mutex_enter(&vp->v_interlock);
467 while (vp->v_numoutput > 0) {
468 cv_wait(&vp->v_cv, &vp->v_interlock);
469 }
470 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
471 KASSERT(vp->v_numoutput == 0);
472 mutex_exit(&vp->v_interlock);
473
474 fs->lfs_flushvp = NULL;
475 KASSERT(fs->lfs_flushvp_fakevref == 0);
476
477 return (0);
478 }
479
480 int
481 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
482 {
483 struct inode *ip;
484 struct vnode *vp;
485 int inodes_written = 0, only_cleaning;
486 int error = 0;
487
488 ASSERT_SEGLOCK(fs);
489 loop:
490 /* start at last (newest) vnode. */
491 mutex_enter(&mntvnode_lock);
492 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
493 /*
494 * If the vnode that we are about to sync is no longer
495 * associated with this mount point, start over.
496 */
497 if (vp->v_mount != mp) {
498 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
499 /*
500 * After this, pages might be busy
501 * due to our own previous putpages.
502 * Start actual segment write here to avoid deadlock.
503 */
504 mutex_exit(&mntvnode_lock);
505 (void)lfs_writeseg(fs, sp);
506 goto loop;
507 }
508
509 mutex_enter(&vp->v_interlock);
510 if (vp->v_type == VNON || vismarker(vp) ||
511 (vp->v_iflag & VI_CLEAN) != 0) {
512 mutex_exit(&vp->v_interlock);
513 continue;
514 }
515
516 ip = VTOI(vp);
517 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
518 (op != VN_DIROP && op != VN_CLEAN &&
519 (vp->v_uflag & VU_DIROP))) {
520 mutex_exit(&vp->v_interlock);
521 vndebug(vp,"dirop");
522 continue;
523 }
524
525 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 mutex_exit(&vp->v_interlock);
527 vndebug(vp,"empty");
528 continue;
529 }
530
531 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
532 && vp != fs->lfs_flushvp
533 && !(ip->i_flag & IN_CLEANING)) {
534 mutex_exit(&vp->v_interlock);
535 vndebug(vp,"cleaning");
536 continue;
537 }
538
539 mutex_exit(&mntvnode_lock);
540 if (lfs_vref(vp)) {
541 vndebug(vp,"vref");
542 mutex_enter(&mntvnode_lock);
543 continue;
544 }
545
546 only_cleaning = 0;
547 /*
548 * Write the inode/file if dirty and it's not the IFILE.
549 */
550 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
551 only_cleaning =
552 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
553
554 if (ip->i_number != LFS_IFILE_INUM) {
555 error = lfs_writefile(fs, sp, vp);
556 if (error) {
557 lfs_vunref(vp);
558 if (error == EAGAIN) {
559 /*
560 * This error from lfs_putpages
561 * indicates we need to drop
562 * the segment lock and start
563 * over after the cleaner has
564 * had a chance to run.
565 */
566 lfs_writeinode(fs, sp, ip);
567 lfs_writeseg(fs, sp);
568 if (!VPISEMPTY(vp) &&
569 !WRITEINPROG(vp) &&
570 !(ip->i_flag & IN_ALLMOD)) {
571 mutex_enter(&fs->lfs_interlock);
572 LFS_SET_UINO(ip, IN_MODIFIED);
573 mutex_exit(&fs->lfs_interlock);
574 }
575 break;
576 }
577 error = 0; /* XXX not quite right */
578 mutex_enter(&mntvnode_lock);
579 continue;
580 }
581
582 if (!VPISEMPTY(vp)) {
583 if (WRITEINPROG(vp)) {
584 ivndebug(vp,"writevnodes/write2");
585 } else if (!(ip->i_flag & IN_ALLMOD)) {
586 mutex_enter(&fs->lfs_interlock);
587 LFS_SET_UINO(ip, IN_MODIFIED);
588 mutex_exit(&fs->lfs_interlock);
589 }
590 }
591 (void) lfs_writeinode(fs, sp, ip);
592 inodes_written++;
593 }
594 }
595
596 if (lfs_clean_vnhead && only_cleaning)
597 lfs_vunref_head(vp);
598 else
599 lfs_vunref(vp);
600
601 mutex_enter(&mntvnode_lock);
602 }
603 mutex_exit(&mntvnode_lock);
604 return error;
605 }
606
607 /*
608 * Do a checkpoint.
609 */
610 int
611 lfs_segwrite(struct mount *mp, int flags)
612 {
613 struct buf *bp;
614 struct inode *ip;
615 struct lfs *fs;
616 struct segment *sp;
617 struct vnode *vp;
618 SEGUSE *segusep;
619 int do_ckp, did_ckp, error;
620 unsigned n, segleft, maxseg, sn, i, curseg;
621 int writer_set = 0;
622 int dirty;
623 int redo;
624 int um_error;
625 int loopcount;
626
627 fs = VFSTOUFS(mp)->um_lfs;
628 ASSERT_MAYBE_SEGLOCK(fs);
629
630 if (fs->lfs_ronly)
631 return EROFS;
632
633 lfs_imtime(fs);
634
635 /*
636 * Allocate a segment structure and enough space to hold pointers to
637 * the maximum possible number of buffers which can be described in a
638 * single summary block.
639 */
640 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
641
642 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
643 sp = fs->lfs_sp;
644 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
645 do_ckp = 1;
646
647 /*
648 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
649 * in which case we have to flush *all* buffers off of this vnode.
650 * We don't care about other nodes, but write any non-dirop nodes
651 * anyway in anticipation of another getnewvnode().
652 *
653 * If we're cleaning we only write cleaning and ifile blocks, and
654 * no dirops, since otherwise we'd risk corruption in a crash.
655 */
656 if (sp->seg_flags & SEGM_CLEAN)
657 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
658 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
659 do {
660 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
661
662 if (do_ckp || fs->lfs_dirops == 0) {
663 if (!writer_set) {
664 lfs_writer_enter(fs, "lfs writer");
665 writer_set = 1;
666 }
667 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
668 if (um_error == 0)
669 um_error = error;
670 /* In case writevnodes errored out */
671 lfs_flush_dirops(fs);
672 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
673 lfs_finalize_fs_seguse(fs);
674 }
675 if (do_ckp && um_error) {
676 lfs_segunlock_relock(fs);
677 sp = fs->lfs_sp;
678 }
679 } while (do_ckp && um_error != 0);
680 }
681
682 /*
683 * If we are doing a checkpoint, mark everything since the
684 * last checkpoint as no longer ACTIVE.
685 */
686 if (do_ckp || fs->lfs_doifile) {
687 segleft = fs->lfs_nseg;
688 curseg = 0;
689 for (n = 0; n < fs->lfs_segtabsz; n++) {
690 dirty = 0;
691 if (bread(fs->lfs_ivnode,
692 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
693 panic("lfs_segwrite: ifile read");
694 segusep = (SEGUSE *)bp->b_data;
695 maxseg = min(segleft, fs->lfs_sepb);
696 for (i = 0; i < maxseg; i++) {
697 sn = curseg + i;
698 if (sn != dtosn(fs, fs->lfs_curseg) &&
699 segusep->su_flags & SEGUSE_ACTIVE) {
700 segusep->su_flags &= ~SEGUSE_ACTIVE;
701 --fs->lfs_nactive;
702 ++dirty;
703 }
704 fs->lfs_suflags[fs->lfs_activesb][sn] =
705 segusep->su_flags;
706 if (fs->lfs_version > 1)
707 ++segusep;
708 else
709 segusep = (SEGUSE *)
710 ((SEGUSE_V1 *)segusep + 1);
711 }
712
713 if (dirty)
714 error = LFS_BWRITE_LOG(bp); /* Ifile */
715 else
716 brelse(bp, 0);
717 segleft -= fs->lfs_sepb;
718 curseg += fs->lfs_sepb;
719 }
720 }
721
722 KASSERT(LFS_SEGLOCK_HELD(fs));
723
724 did_ckp = 0;
725 if (do_ckp || fs->lfs_doifile) {
726 vp = fs->lfs_ivnode;
727 vn_lock(vp, LK_EXCLUSIVE);
728 loopcount = 0;
729 do {
730 #ifdef DEBUG
731 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
732 #endif
733 mutex_enter(&fs->lfs_interlock);
734 fs->lfs_flags &= ~LFS_IFDIRTY;
735 mutex_exit(&fs->lfs_interlock);
736
737 ip = VTOI(vp);
738
739 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
740 /*
741 * Ifile has no pages, so we don't need
742 * to check error return here.
743 */
744 lfs_writefile(fs, sp, vp);
745 /*
746 * Ensure the Ifile takes the current segment
747 * into account. See comment in lfs_vflush.
748 */
749 lfs_writefile(fs, sp, vp);
750 lfs_writefile(fs, sp, vp);
751 }
752
753 if (ip->i_flag & IN_ALLMOD)
754 ++did_ckp;
755 #if 0
756 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
757 #else
758 redo = lfs_writeinode(fs, sp, ip);
759 #endif
760 redo += lfs_writeseg(fs, sp);
761 mutex_enter(&fs->lfs_interlock);
762 redo += (fs->lfs_flags & LFS_IFDIRTY);
763 mutex_exit(&fs->lfs_interlock);
764 #ifdef DEBUG
765 if (++loopcount > 2)
766 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
767 loopcount);
768 #endif
769 } while (redo && do_ckp);
770
771 /*
772 * Unless we are unmounting, the Ifile may continue to have
773 * dirty blocks even after a checkpoint, due to changes to
774 * inodes' atime. If we're checkpointing, it's "impossible"
775 * for other parts of the Ifile to be dirty after the loop
776 * above, since we hold the segment lock.
777 */
778 mutex_enter(&vp->v_interlock);
779 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
780 LFS_CLR_UINO(ip, IN_ALLMOD);
781 }
782 #ifdef DIAGNOSTIC
783 else if (do_ckp) {
784 int do_panic = 0;
785 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
786 if (bp->b_lblkno < fs->lfs_cleansz +
787 fs->lfs_segtabsz &&
788 !(bp->b_flags & B_GATHERED)) {
789 printf("ifile lbn %ld still dirty (flags %lx)\n",
790 (long)bp->b_lblkno,
791 (long)bp->b_flags);
792 ++do_panic;
793 }
794 }
795 if (do_panic)
796 panic("dirty blocks");
797 }
798 #endif
799 mutex_exit(&vp->v_interlock);
800 VOP_UNLOCK(vp, 0);
801 } else {
802 (void) lfs_writeseg(fs, sp);
803 }
804
805 /* Note Ifile no longer needs to be written */
806 fs->lfs_doifile = 0;
807 if (writer_set)
808 lfs_writer_leave(fs);
809
810 /*
811 * If we didn't write the Ifile, we didn't really do anything.
812 * That means that (1) there is a checkpoint on disk and (2)
813 * nothing has changed since it was written.
814 *
815 * Take the flags off of the segment so that lfs_segunlock
816 * doesn't have to write the superblock either.
817 */
818 if (do_ckp && !did_ckp) {
819 sp->seg_flags &= ~SEGM_CKP;
820 }
821
822 if (lfs_dostats) {
823 ++lfs_stats.nwrites;
824 if (sp->seg_flags & SEGM_SYNC)
825 ++lfs_stats.nsync_writes;
826 if (sp->seg_flags & SEGM_CKP)
827 ++lfs_stats.ncheckpoints;
828 }
829 lfs_segunlock(fs);
830 return (0);
831 }
832
833 /*
834 * Write the dirty blocks associated with a vnode.
835 */
836 int
837 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
838 {
839 struct finfo *fip;
840 struct inode *ip;
841 int i, frag;
842 int error;
843
844 ASSERT_SEGLOCK(fs);
845 error = 0;
846 ip = VTOI(vp);
847
848 fip = sp->fip;
849 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
850
851 if (vp->v_uflag & VU_DIROP)
852 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
853
854 if (sp->seg_flags & SEGM_CLEAN) {
855 lfs_gather(fs, sp, vp, lfs_match_fake);
856 /*
857 * For a file being flushed, we need to write *all* blocks.
858 * This means writing the cleaning blocks first, and then
859 * immediately following with any non-cleaning blocks.
860 * The same is true of the Ifile since checkpoints assume
861 * that all valid Ifile blocks are written.
862 */
863 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
864 lfs_gather(fs, sp, vp, lfs_match_data);
865 /*
866 * Don't call VOP_PUTPAGES: if we're flushing,
867 * we've already done it, and the Ifile doesn't
868 * use the page cache.
869 */
870 }
871 } else {
872 lfs_gather(fs, sp, vp, lfs_match_data);
873 /*
874 * If we're flushing, we've already called VOP_PUTPAGES
875 * so don't do it again. Otherwise, we want to write
876 * everything we've got.
877 */
878 if (!IS_FLUSHING(fs, vp)) {
879 mutex_enter(&vp->v_interlock);
880 error = VOP_PUTPAGES(vp, 0, 0,
881 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
882 }
883 }
884
885 /*
886 * It may not be necessary to write the meta-data blocks at this point,
887 * as the roll-forward recovery code should be able to reconstruct the
888 * list.
889 *
890 * We have to write them anyway, though, under two conditions: (1) the
891 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
892 * checkpointing.
893 *
894 * BUT if we are cleaning, we might have indirect blocks that refer to
895 * new blocks not being written yet, in addition to fragments being
896 * moved out of a cleaned segment. If that is the case, don't
897 * write the indirect blocks, or the finfo will have a small block
898 * in the middle of it!
899 * XXX in this case isn't the inode size wrong too?
900 */
901 frag = 0;
902 if (sp->seg_flags & SEGM_CLEAN) {
903 for (i = 0; i < NDADDR; i++)
904 if (ip->i_lfs_fragsize[i] > 0 &&
905 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
906 ++frag;
907 }
908 #ifdef DIAGNOSTIC
909 if (frag > 1)
910 panic("lfs_writefile: more than one fragment!");
911 #endif
912 if (IS_FLUSHING(fs, vp) ||
913 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
914 lfs_gather(fs, sp, vp, lfs_match_indir);
915 lfs_gather(fs, sp, vp, lfs_match_dindir);
916 lfs_gather(fs, sp, vp, lfs_match_tindir);
917 }
918 fip = sp->fip;
919 lfs_release_finfo(fs);
920
921 return error;
922 }
923
924 /*
925 * Update segment accounting to reflect this inode's change of address.
926 */
927 static int
928 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
929 {
930 struct buf *bp;
931 daddr_t daddr;
932 IFILE *ifp;
933 SEGUSE *sup;
934 ino_t ino;
935 int redo_ifile, error;
936 u_int32_t sn;
937
938 redo_ifile = 0;
939
940 /*
941 * If updating the ifile, update the super-block. Update the disk
942 * address and access times for this inode in the ifile.
943 */
944 ino = ip->i_number;
945 if (ino == LFS_IFILE_INUM) {
946 daddr = fs->lfs_idaddr;
947 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
948 } else {
949 LFS_IENTRY(ifp, fs, ino, bp);
950 daddr = ifp->if_daddr;
951 ifp->if_daddr = dbtofsb(fs, ndaddr);
952 error = LFS_BWRITE_LOG(bp); /* Ifile */
953 }
954
955 /*
956 * If this is the Ifile and lfs_offset is set to the first block
957 * in the segment, dirty the new segment's accounting block
958 * (XXX should already be dirty?) and tell the caller to do it again.
959 */
960 if (ip->i_number == LFS_IFILE_INUM) {
961 sn = dtosn(fs, fs->lfs_offset);
962 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
963 fs->lfs_offset) {
964 LFS_SEGENTRY(sup, fs, sn, bp);
965 KASSERT(bp->b_oflags & BO_DELWRI);
966 LFS_WRITESEGENTRY(sup, fs, sn, bp);
967 /* fs->lfs_flags |= LFS_IFDIRTY; */
968 redo_ifile |= 1;
969 }
970 }
971
972 /*
973 * The inode's last address should not be in the current partial
974 * segment, except under exceptional circumstances (lfs_writevnodes
975 * had to start over, and in the meantime more blocks were written
976 * to a vnode). Both inodes will be accounted to this segment
977 * in lfs_writeseg so we need to subtract the earlier version
978 * here anyway. The segment count can temporarily dip below
979 * zero here; keep track of how many duplicates we have in
980 * "dupino" so we don't panic below.
981 */
982 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
983 ++sp->ndupino;
984 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
985 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
986 (long long)daddr, sp->ndupino));
987 }
988 /*
989 * Account the inode: it no longer belongs to its former segment,
990 * though it will not belong to the new segment until that segment
991 * is actually written.
992 */
993 if (daddr != LFS_UNUSED_DADDR) {
994 u_int32_t oldsn = dtosn(fs, daddr);
995 #ifdef DIAGNOSTIC
996 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
997 #endif
998 LFS_SEGENTRY(sup, fs, oldsn, bp);
999 #ifdef DIAGNOSTIC
1000 if (sup->su_nbytes +
1001 sizeof (struct ufs1_dinode) * ndupino
1002 < sizeof (struct ufs1_dinode)) {
1003 printf("lfs_writeinode: negative bytes "
1004 "(segment %" PRIu32 " short by %d, "
1005 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1006 ", daddr=%" PRId64 ", su_nbytes=%u, "
1007 "ndupino=%d)\n",
1008 dtosn(fs, daddr),
1009 (int)sizeof (struct ufs1_dinode) *
1010 (1 - sp->ndupino) - sup->su_nbytes,
1011 oldsn, sp->seg_number, daddr,
1012 (unsigned int)sup->su_nbytes,
1013 sp->ndupino);
1014 panic("lfs_writeinode: negative bytes");
1015 sup->su_nbytes = sizeof (struct ufs1_dinode);
1016 }
1017 #endif
1018 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1019 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1020 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1021 redo_ifile |=
1022 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1023 if (redo_ifile) {
1024 mutex_enter(&fs->lfs_interlock);
1025 fs->lfs_flags |= LFS_IFDIRTY;
1026 mutex_exit(&fs->lfs_interlock);
1027 /* Don't double-account */
1028 fs->lfs_idaddr = 0x0;
1029 }
1030 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1031 }
1032
1033 return redo_ifile;
1034 }
1035
1036 int
1037 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1038 {
1039 struct buf *bp;
1040 struct ufs1_dinode *cdp;
1041 daddr_t daddr;
1042 int32_t *daddrp; /* XXX ondisk32 */
1043 int i, ndx;
1044 int redo_ifile = 0;
1045 int gotblk = 0;
1046 int count;
1047
1048 ASSERT_SEGLOCK(fs);
1049 if (!(ip->i_flag & IN_ALLMOD))
1050 return (0);
1051
1052 /* Can't write ifile when writer is not set */
1053 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1054 (sp->seg_flags & SEGM_CLEAN));
1055
1056 /*
1057 * If this is the Ifile, see if writing it here will generate a
1058 * temporary misaccounting. If it will, do the accounting and write
1059 * the blocks, postponing the inode write until the accounting is
1060 * solid.
1061 */
1062 count = 0;
1063 while (ip->i_number == LFS_IFILE_INUM) {
1064 int redo = 0;
1065
1066 if (sp->idp == NULL && sp->ibp == NULL &&
1067 (sp->seg_bytes_left < fs->lfs_ibsize ||
1068 sp->sum_bytes_left < sizeof(int32_t))) {
1069 (void) lfs_writeseg(fs, sp);
1070 continue;
1071 }
1072
1073 /* Look for dirty Ifile blocks */
1074 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1075 if (!(bp->b_flags & B_GATHERED)) {
1076 redo = 1;
1077 break;
1078 }
1079 }
1080
1081 if (redo == 0)
1082 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1083 if (redo == 0)
1084 break;
1085
1086 if (sp->idp) {
1087 sp->idp->di_inumber = 0;
1088 sp->idp = NULL;
1089 }
1090 ++count;
1091 if (count > 2)
1092 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1093 lfs_writefile(fs, sp, fs->lfs_ivnode);
1094 }
1095
1096 /* Allocate a new inode block if necessary. */
1097 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1098 sp->ibp == NULL) {
1099 /* Allocate a new segment if necessary. */
1100 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1101 sp->sum_bytes_left < sizeof(int32_t))
1102 (void) lfs_writeseg(fs, sp);
1103
1104 /* Get next inode block. */
1105 daddr = fs->lfs_offset;
1106 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1107 sp->ibp = *sp->cbpp++ =
1108 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1109 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1110 gotblk++;
1111
1112 /* Zero out inode numbers */
1113 for (i = 0; i < INOPB(fs); ++i)
1114 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1115 0;
1116
1117 ++sp->start_bpp;
1118 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1119 /* Set remaining space counters. */
1120 sp->seg_bytes_left -= fs->lfs_ibsize;
1121 sp->sum_bytes_left -= sizeof(int32_t);
1122 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1123 sp->ninodes / INOPB(fs) - 1;
1124 ((int32_t *)(sp->segsum))[ndx] = daddr;
1125 }
1126
1127 /* Check VDIROP in case there is a new file with no data blocks */
1128 if (ITOV(ip)->v_uflag & VU_DIROP)
1129 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1130
1131 /* Update the inode times and copy the inode onto the inode page. */
1132 /* XXX kludge --- don't redirty the ifile just to put times on it */
1133 if (ip->i_number != LFS_IFILE_INUM)
1134 LFS_ITIMES(ip, NULL, NULL, NULL);
1135
1136 /*
1137 * If this is the Ifile, and we've already written the Ifile in this
1138 * partial segment, just overwrite it (it's not on disk yet) and
1139 * continue.
1140 *
1141 * XXX we know that the bp that we get the second time around has
1142 * already been gathered.
1143 */
1144 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1145 *(sp->idp) = *ip->i_din.ffs1_din;
1146 ip->i_lfs_osize = ip->i_size;
1147 return 0;
1148 }
1149
1150 bp = sp->ibp;
1151 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1152 *cdp = *ip->i_din.ffs1_din;
1153
1154 /*
1155 * If cleaning, link counts and directory file sizes cannot change,
1156 * since those would be directory operations---even if the file
1157 * we are writing is marked VDIROP we should write the old values.
1158 * If we're not cleaning, of course, update the values so we get
1159 * current values the next time we clean.
1160 */
1161 if (sp->seg_flags & SEGM_CLEAN) {
1162 if (ITOV(ip)->v_uflag & VU_DIROP) {
1163 cdp->di_nlink = ip->i_lfs_odnlink;
1164 /* if (ITOV(ip)->v_type == VDIR) */
1165 cdp->di_size = ip->i_lfs_osize;
1166 }
1167 } else {
1168 ip->i_lfs_odnlink = cdp->di_nlink;
1169 ip->i_lfs_osize = ip->i_size;
1170 }
1171
1172
1173 /* We can finish the segment accounting for truncations now */
1174 lfs_finalize_ino_seguse(fs, ip);
1175
1176 /*
1177 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1178 * addresses to disk; possibly change the on-disk record of
1179 * the inode size, either by reverting to the previous size
1180 * (in the case of cleaning) or by verifying the inode's block
1181 * holdings (in the case of files being allocated as they are being
1182 * written).
1183 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1184 * XXX count on disk wrong by the same amount. We should be
1185 * XXX able to "borrow" from lfs_avail and return it after the
1186 * XXX Ifile is written. See also in lfs_writeseg.
1187 */
1188
1189 /* Check file size based on highest allocated block */
1190 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1191 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1192 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1193 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1194 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1195 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1196 }
1197 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1198 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1199 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1200 ip->i_ffs1_blocks, fs->lfs_offset));
1201 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1202 daddrp++) {
1203 if (*daddrp == UNWRITTEN) {
1204 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1205 *daddrp = 0;
1206 }
1207 }
1208 }
1209
1210 #ifdef DIAGNOSTIC
1211 /*
1212 * Check dinode held blocks against dinode size.
1213 * This should be identical to the check in lfs_vget().
1214 */
1215 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1216 i < NDADDR; i++) {
1217 KASSERT(i >= 0);
1218 if ((cdp->di_mode & IFMT) == IFLNK)
1219 continue;
1220 if (((cdp->di_mode & IFMT) == IFBLK ||
1221 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1222 continue;
1223 if (cdp->di_db[i] != 0) {
1224 # ifdef DEBUG
1225 lfs_dump_dinode(cdp);
1226 # endif
1227 panic("writing inconsistent inode");
1228 }
1229 }
1230 #endif /* DIAGNOSTIC */
1231
1232 if (ip->i_flag & IN_CLEANING)
1233 LFS_CLR_UINO(ip, IN_CLEANING);
1234 else {
1235 /* XXX IN_ALLMOD */
1236 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1237 IN_UPDATE | IN_MODIFY);
1238 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1239 LFS_CLR_UINO(ip, IN_MODIFIED);
1240 else {
1241 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1242 "blks=%d, eff=%d\n", ip->i_number,
1243 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1244 }
1245 }
1246
1247 if (ip->i_number == LFS_IFILE_INUM) {
1248 /* We know sp->idp == NULL */
1249 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1250 (sp->ninodes % INOPB(fs));
1251
1252 /* Not dirty any more */
1253 mutex_enter(&fs->lfs_interlock);
1254 fs->lfs_flags &= ~LFS_IFDIRTY;
1255 mutex_exit(&fs->lfs_interlock);
1256 }
1257
1258 if (gotblk) {
1259 mutex_enter(&bufcache_lock);
1260 LFS_LOCK_BUF(bp);
1261 brelsel(bp, 0);
1262 mutex_exit(&bufcache_lock);
1263 }
1264
1265 /* Increment inode count in segment summary block. */
1266 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1267
1268 /* If this page is full, set flag to allocate a new page. */
1269 if (++sp->ninodes % INOPB(fs) == 0)
1270 sp->ibp = NULL;
1271
1272 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1273
1274 KASSERT(redo_ifile == 0);
1275 return (redo_ifile);
1276 }
1277
1278 int
1279 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1280 {
1281 struct lfs *fs;
1282 int vers;
1283 int j, blksinblk;
1284
1285 ASSERT_SEGLOCK(sp->fs);
1286 /*
1287 * If full, finish this segment. We may be doing I/O, so
1288 * release and reacquire the splbio().
1289 */
1290 #ifdef DIAGNOSTIC
1291 if (sp->vp == NULL)
1292 panic ("lfs_gatherblock: Null vp in segment");
1293 #endif
1294 fs = sp->fs;
1295 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1296 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1297 sp->seg_bytes_left < bp->b_bcount) {
1298 if (mptr)
1299 mutex_exit(mptr);
1300 lfs_updatemeta(sp);
1301
1302 vers = sp->fip->fi_version;
1303 (void) lfs_writeseg(fs, sp);
1304
1305 /* Add the current file to the segment summary. */
1306 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1307
1308 if (mptr)
1309 mutex_enter(mptr);
1310 return (1);
1311 }
1312
1313 if (bp->b_flags & B_GATHERED) {
1314 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1315 " lbn %" PRId64 "\n",
1316 sp->fip->fi_ino, bp->b_lblkno));
1317 return (0);
1318 }
1319
1320 /* Insert into the buffer list, update the FINFO block. */
1321 bp->b_flags |= B_GATHERED;
1322
1323 *sp->cbpp++ = bp;
1324 for (j = 0; j < blksinblk; j++) {
1325 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1326 /* This block's accounting moves from lfs_favail to lfs_avail */
1327 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1328 }
1329
1330 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1331 sp->seg_bytes_left -= bp->b_bcount;
1332 return (0);
1333 }
1334
1335 int
1336 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1337 int (*match)(struct lfs *, struct buf *))
1338 {
1339 struct buf *bp, *nbp;
1340 int count = 0;
1341
1342 ASSERT_SEGLOCK(fs);
1343 if (vp->v_type == VBLK)
1344 return 0;
1345 KASSERT(sp->vp == NULL);
1346 sp->vp = vp;
1347 mutex_enter(&vp->v_interlock);
1348
1349 #ifndef LFS_NO_BACKBUF_HACK
1350 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1351 # define BUF_OFFSET \
1352 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1353 # define BACK_BUF(BP) \
1354 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1355 # define BEG_OF_LIST \
1356 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1357
1358 loop:
1359 /* Find last buffer. */
1360 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1361 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1362 bp = LIST_NEXT(bp, b_vnbufs))
1363 /* nothing */;
1364 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1365 nbp = BACK_BUF(bp);
1366 #else /* LFS_NO_BACKBUF_HACK */
1367 loop:
1368 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1369 nbp = LIST_NEXT(bp, b_vnbufs);
1370 #endif /* LFS_NO_BACKBUF_HACK */
1371 if ((bp->b_cflags & BC_BUSY) != 0 ||
1372 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1373 #ifdef DEBUG
1374 if (vp == fs->lfs_ivnode &&
1375 (bp->b_cflags & BC_BUSY) != 0 &&
1376 (bp->b_flags & B_GATHERED) == 0)
1377 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1378 PRId64 " busy (%x) at 0x%x",
1379 bp->b_lblkno, bp->b_flags,
1380 (unsigned)fs->lfs_offset);
1381 #endif
1382 continue;
1383 }
1384 #ifdef DIAGNOSTIC
1385 # ifdef LFS_USE_B_INVAL
1386 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1387 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1388 " is BC_INVAL\n", bp->b_lblkno));
1389 VOP_PRINT(bp->b_vp);
1390 }
1391 # endif /* LFS_USE_B_INVAL */
1392 if (!(bp->b_oflags & BO_DELWRI))
1393 panic("lfs_gather: bp not BO_DELWRI");
1394 if (!(bp->b_cflags & BC_LOCKED)) {
1395 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1396 " blk %" PRId64 " not BC_LOCKED\n",
1397 bp->b_lblkno,
1398 dbtofsb(fs, bp->b_blkno)));
1399 VOP_PRINT(bp->b_vp);
1400 panic("lfs_gather: bp not BC_LOCKED");
1401 }
1402 #endif
1403 if (lfs_gatherblock(sp, bp, &vp->v_interlock)) {
1404 goto loop;
1405 }
1406 count++;
1407 }
1408 mutex_exit(&vp->v_interlock);
1409 lfs_updatemeta(sp);
1410 KASSERT(sp->vp == vp);
1411 sp->vp = NULL;
1412 return count;
1413 }
1414
1415 #if DEBUG
1416 # define DEBUG_OOFF(n) do { \
1417 if (ooff == 0) { \
1418 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1419 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1420 ", was 0x0 (or %" PRId64 ")\n", \
1421 (n), ip->i_number, lbn, ndaddr, daddr)); \
1422 } \
1423 } while (0)
1424 #else
1425 # define DEBUG_OOFF(n)
1426 #endif
1427
1428 /*
1429 * Change the given block's address to ndaddr, finding its previous
1430 * location using ufs_bmaparray().
1431 *
1432 * Account for this change in the segment table.
1433 *
1434 * called with sp == NULL by roll-forwarding code.
1435 */
1436 void
1437 lfs_update_single(struct lfs *fs, struct segment *sp,
1438 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1439 {
1440 SEGUSE *sup;
1441 struct buf *bp;
1442 struct indir a[NIADDR + 2], *ap;
1443 struct inode *ip;
1444 daddr_t daddr, ooff;
1445 int num, error;
1446 int bb, osize, obb;
1447
1448 ASSERT_SEGLOCK(fs);
1449 KASSERT(sp == NULL || sp->vp == vp);
1450 ip = VTOI(vp);
1451
1452 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1453 if (error)
1454 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1455
1456 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1457 KASSERT(daddr <= LFS_MAX_DADDR);
1458 if (daddr > 0)
1459 daddr = dbtofsb(fs, daddr);
1460
1461 bb = fragstofsb(fs, numfrags(fs, size));
1462 switch (num) {
1463 case 0:
1464 ooff = ip->i_ffs1_db[lbn];
1465 DEBUG_OOFF(0);
1466 if (ooff == UNWRITTEN)
1467 ip->i_ffs1_blocks += bb;
1468 else {
1469 /* possible fragment truncation or extension */
1470 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1471 ip->i_ffs1_blocks += (bb - obb);
1472 }
1473 ip->i_ffs1_db[lbn] = ndaddr;
1474 break;
1475 case 1:
1476 ooff = ip->i_ffs1_ib[a[0].in_off];
1477 DEBUG_OOFF(1);
1478 if (ooff == UNWRITTEN)
1479 ip->i_ffs1_blocks += bb;
1480 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1481 break;
1482 default:
1483 ap = &a[num - 1];
1484 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1485 panic("lfs_updatemeta: bread bno %" PRId64,
1486 ap->in_lbn);
1487
1488 /* XXX ondisk32 */
1489 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1490 DEBUG_OOFF(num);
1491 if (ooff == UNWRITTEN)
1492 ip->i_ffs1_blocks += bb;
1493 /* XXX ondisk32 */
1494 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1495 (void) VOP_BWRITE(bp);
1496 }
1497
1498 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1499
1500 /* Update hiblk when extending the file */
1501 if (lbn > ip->i_lfs_hiblk)
1502 ip->i_lfs_hiblk = lbn;
1503
1504 /*
1505 * Though we'd rather it couldn't, this *can* happen right now
1506 * if cleaning blocks and regular blocks coexist.
1507 */
1508 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1509
1510 /*
1511 * Update segment usage information, based on old size
1512 * and location.
1513 */
1514 if (daddr > 0) {
1515 u_int32_t oldsn = dtosn(fs, daddr);
1516 #ifdef DIAGNOSTIC
1517 int ndupino;
1518
1519 if (sp && sp->seg_number == oldsn) {
1520 ndupino = sp->ndupino;
1521 } else {
1522 ndupino = 0;
1523 }
1524 #endif
1525 KASSERT(oldsn < fs->lfs_nseg);
1526 if (lbn >= 0 && lbn < NDADDR)
1527 osize = ip->i_lfs_fragsize[lbn];
1528 else
1529 osize = fs->lfs_bsize;
1530 LFS_SEGENTRY(sup, fs, oldsn, bp);
1531 #ifdef DIAGNOSTIC
1532 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1533 < osize) {
1534 printf("lfs_updatemeta: negative bytes "
1535 "(segment %" PRIu32 " short by %" PRId64
1536 ")\n", dtosn(fs, daddr),
1537 (int64_t)osize -
1538 (sizeof (struct ufs1_dinode) * ndupino +
1539 sup->su_nbytes));
1540 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1541 ", addr = 0x%" PRIx64 "\n",
1542 (unsigned long long)ip->i_number, lbn, daddr);
1543 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1544 panic("lfs_updatemeta: negative bytes");
1545 sup->su_nbytes = osize -
1546 sizeof (struct ufs1_dinode) * ndupino;
1547 }
1548 #endif
1549 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1550 " db 0x%" PRIx64 "\n",
1551 dtosn(fs, daddr), osize,
1552 ip->i_number, lbn, daddr));
1553 sup->su_nbytes -= osize;
1554 if (!(bp->b_flags & B_GATHERED)) {
1555 mutex_enter(&fs->lfs_interlock);
1556 fs->lfs_flags |= LFS_IFDIRTY;
1557 mutex_exit(&fs->lfs_interlock);
1558 }
1559 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1560 }
1561 /*
1562 * Now that this block has a new address, and its old
1563 * segment no longer owns it, we can forget about its
1564 * old size.
1565 */
1566 if (lbn >= 0 && lbn < NDADDR)
1567 ip->i_lfs_fragsize[lbn] = size;
1568 }
1569
1570 /*
1571 * Update the metadata that points to the blocks listed in the FINFO
1572 * array.
1573 */
1574 void
1575 lfs_updatemeta(struct segment *sp)
1576 {
1577 struct buf *sbp;
1578 struct lfs *fs;
1579 struct vnode *vp;
1580 daddr_t lbn;
1581 int i, nblocks, num;
1582 int bb;
1583 int bytesleft, size;
1584
1585 ASSERT_SEGLOCK(sp->fs);
1586 vp = sp->vp;
1587 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1588 KASSERT(nblocks >= 0);
1589 KASSERT(vp != NULL);
1590 if (nblocks == 0)
1591 return;
1592
1593 /*
1594 * This count may be high due to oversize blocks from lfs_gop_write.
1595 * Correct for this. (XXX we should be able to keep track of these.)
1596 */
1597 fs = sp->fs;
1598 for (i = 0; i < nblocks; i++) {
1599 if (sp->start_bpp[i] == NULL) {
1600 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1601 nblocks = i;
1602 break;
1603 }
1604 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1605 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1606 nblocks -= num - 1;
1607 }
1608
1609 KASSERT(vp->v_type == VREG ||
1610 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1611 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1612
1613 /*
1614 * Sort the blocks.
1615 *
1616 * We have to sort even if the blocks come from the
1617 * cleaner, because there might be other pending blocks on the
1618 * same inode...and if we don't sort, and there are fragments
1619 * present, blocks may be written in the wrong place.
1620 */
1621 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1622
1623 /*
1624 * Record the length of the last block in case it's a fragment.
1625 * If there are indirect blocks present, they sort last. An
1626 * indirect block will be lfs_bsize and its presence indicates
1627 * that you cannot have fragments.
1628 *
1629 * XXX This last is a lie. A cleaned fragment can coexist with
1630 * XXX a later indirect block. This will continue to be
1631 * XXX true until lfs_markv is fixed to do everything with
1632 * XXX fake blocks (including fake inodes and fake indirect blocks).
1633 */
1634 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1635 fs->lfs_bmask) + 1;
1636
1637 /*
1638 * Assign disk addresses, and update references to the logical
1639 * block and the segment usage information.
1640 */
1641 for (i = nblocks; i--; ++sp->start_bpp) {
1642 sbp = *sp->start_bpp;
1643 lbn = *sp->start_lbp;
1644 KASSERT(sbp->b_lblkno == lbn);
1645
1646 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1647
1648 /*
1649 * If we write a frag in the wrong place, the cleaner won't
1650 * be able to correctly identify its size later, and the
1651 * segment will be uncleanable. (Even worse, it will assume
1652 * that the indirect block that actually ends the list
1653 * is of a smaller size!)
1654 */
1655 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1656 panic("lfs_updatemeta: fragment is not last block");
1657
1658 /*
1659 * For each subblock in this possibly oversized block,
1660 * update its address on disk.
1661 */
1662 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1663 KASSERT(vp == sbp->b_vp);
1664 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1665 bytesleft -= fs->lfs_bsize) {
1666 size = MIN(bytesleft, fs->lfs_bsize);
1667 bb = fragstofsb(fs, numfrags(fs, size));
1668 lbn = *sp->start_lbp++;
1669 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1670 size);
1671 fs->lfs_offset += bb;
1672 }
1673
1674 }
1675
1676 /* This inode has been modified */
1677 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1678 }
1679
1680 /*
1681 * Move lfs_offset to a segment earlier than sn.
1682 */
1683 int
1684 lfs_rewind(struct lfs *fs, int newsn)
1685 {
1686 int sn, osn, isdirty;
1687 struct buf *bp;
1688 SEGUSE *sup;
1689
1690 ASSERT_SEGLOCK(fs);
1691
1692 osn = dtosn(fs, fs->lfs_offset);
1693 if (osn < newsn)
1694 return 0;
1695
1696 /* lfs_avail eats the remaining space in this segment */
1697 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1698
1699 /* Find a low-numbered segment */
1700 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1701 LFS_SEGENTRY(sup, fs, sn, bp);
1702 isdirty = sup->su_flags & SEGUSE_DIRTY;
1703 brelse(bp, 0);
1704
1705 if (!isdirty)
1706 break;
1707 }
1708 if (sn == fs->lfs_nseg)
1709 panic("lfs_rewind: no clean segments");
1710 if (newsn >= 0 && sn >= newsn)
1711 return ENOENT;
1712 fs->lfs_nextseg = sn;
1713 lfs_newseg(fs);
1714 fs->lfs_offset = fs->lfs_curseg;
1715
1716 return 0;
1717 }
1718
1719 /*
1720 * Start a new partial segment.
1721 *
1722 * Return 1 when we entered to a new segment.
1723 * Otherwise, return 0.
1724 */
1725 int
1726 lfs_initseg(struct lfs *fs)
1727 {
1728 struct segment *sp = fs->lfs_sp;
1729 SEGSUM *ssp;
1730 struct buf *sbp; /* buffer for SEGSUM */
1731 int repeat = 0; /* return value */
1732
1733 ASSERT_SEGLOCK(fs);
1734 /* Advance to the next segment. */
1735 if (!LFS_PARTIAL_FITS(fs)) {
1736 SEGUSE *sup;
1737 struct buf *bp;
1738
1739 /* lfs_avail eats the remaining space */
1740 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1741 fs->lfs_curseg);
1742 /* Wake up any cleaning procs waiting on this file system. */
1743 lfs_wakeup_cleaner(fs);
1744 lfs_newseg(fs);
1745 repeat = 1;
1746 fs->lfs_offset = fs->lfs_curseg;
1747
1748 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1749 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1750
1751 /*
1752 * If the segment contains a superblock, update the offset
1753 * and summary address to skip over it.
1754 */
1755 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1756 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1757 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1758 sp->seg_bytes_left -= LFS_SBPAD;
1759 }
1760 brelse(bp, 0);
1761 /* Segment zero could also contain the labelpad */
1762 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1763 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1764 fs->lfs_offset +=
1765 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1766 sp->seg_bytes_left -=
1767 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1768 }
1769 } else {
1770 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1771 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1772 (fs->lfs_offset - fs->lfs_curseg));
1773 }
1774 fs->lfs_lastpseg = fs->lfs_offset;
1775
1776 /* Record first address of this partial segment */
1777 if (sp->seg_flags & SEGM_CLEAN) {
1778 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1779 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1780 /* "1" is the artificial inc in lfs_seglock */
1781 mutex_enter(&fs->lfs_interlock);
1782 while (fs->lfs_iocount > 1) {
1783 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1784 "lfs_initseg", 0, &fs->lfs_interlock);
1785 }
1786 mutex_exit(&fs->lfs_interlock);
1787 fs->lfs_cleanind = 0;
1788 }
1789 }
1790
1791 sp->fs = fs;
1792 sp->ibp = NULL;
1793 sp->idp = NULL;
1794 sp->ninodes = 0;
1795 sp->ndupino = 0;
1796
1797 sp->cbpp = sp->bpp;
1798
1799 /* Get a new buffer for SEGSUM */
1800 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1801 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1802
1803 /* ... and enter it into the buffer list. */
1804 *sp->cbpp = sbp;
1805 sp->cbpp++;
1806 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1807
1808 sp->start_bpp = sp->cbpp;
1809
1810 /* Set point to SEGSUM, initialize it. */
1811 ssp = sp->segsum = sbp->b_data;
1812 memset(ssp, 0, fs->lfs_sumsize);
1813 ssp->ss_next = fs->lfs_nextseg;
1814 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1815 ssp->ss_magic = SS_MAGIC;
1816
1817 /* Set pointer to first FINFO, initialize it. */
1818 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1819 sp->fip->fi_nblocks = 0;
1820 sp->start_lbp = &sp->fip->fi_blocks[0];
1821 sp->fip->fi_lastlength = 0;
1822
1823 sp->seg_bytes_left -= fs->lfs_sumsize;
1824 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1825
1826 return (repeat);
1827 }
1828
1829 /*
1830 * Remove SEGUSE_INVAL from all segments.
1831 */
1832 void
1833 lfs_unset_inval_all(struct lfs *fs)
1834 {
1835 SEGUSE *sup;
1836 struct buf *bp;
1837 int i;
1838
1839 for (i = 0; i < fs->lfs_nseg; i++) {
1840 LFS_SEGENTRY(sup, fs, i, bp);
1841 if (sup->su_flags & SEGUSE_INVAL) {
1842 sup->su_flags &= ~SEGUSE_INVAL;
1843 LFS_WRITESEGENTRY(sup, fs, i, bp);
1844 } else
1845 brelse(bp, 0);
1846 }
1847 }
1848
1849 /*
1850 * Return the next segment to write.
1851 */
1852 void
1853 lfs_newseg(struct lfs *fs)
1854 {
1855 CLEANERINFO *cip;
1856 SEGUSE *sup;
1857 struct buf *bp;
1858 int curseg, isdirty, sn, skip_inval;
1859
1860 ASSERT_SEGLOCK(fs);
1861
1862 /* Honor LFCNWRAPSTOP */
1863 mutex_enter(&fs->lfs_interlock);
1864 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1865 if (fs->lfs_wrappass) {
1866 log(LOG_NOTICE, "%s: wrappass=%d\n",
1867 fs->lfs_fsmnt, fs->lfs_wrappass);
1868 fs->lfs_wrappass = 0;
1869 break;
1870 }
1871 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1872 wakeup(&fs->lfs_nowrap);
1873 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1874 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1875 &fs->lfs_interlock);
1876 }
1877 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1878 mutex_exit(&fs->lfs_interlock);
1879
1880 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1881 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1882 dtosn(fs, fs->lfs_nextseg)));
1883 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1884 sup->su_nbytes = 0;
1885 sup->su_nsums = 0;
1886 sup->su_ninos = 0;
1887 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1888
1889 LFS_CLEANERINFO(cip, fs, bp);
1890 --cip->clean;
1891 ++cip->dirty;
1892 fs->lfs_nclean = cip->clean;
1893 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1894
1895 fs->lfs_lastseg = fs->lfs_curseg;
1896 fs->lfs_curseg = fs->lfs_nextseg;
1897 skip_inval = 1;
1898 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1899 sn = (sn + 1) % fs->lfs_nseg;
1900
1901 if (sn == curseg) {
1902 if (skip_inval)
1903 skip_inval = 0;
1904 else
1905 panic("lfs_nextseg: no clean segments");
1906 }
1907 LFS_SEGENTRY(sup, fs, sn, bp);
1908 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1909 /* Check SEGUSE_EMPTY as we go along */
1910 if (isdirty && sup->su_nbytes == 0 &&
1911 !(sup->su_flags & SEGUSE_EMPTY))
1912 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1913 else
1914 brelse(bp, 0);
1915
1916 if (!isdirty)
1917 break;
1918 }
1919 if (skip_inval == 0)
1920 lfs_unset_inval_all(fs);
1921
1922 ++fs->lfs_nactive;
1923 fs->lfs_nextseg = sntod(fs, sn);
1924 if (lfs_dostats) {
1925 ++lfs_stats.segsused;
1926 }
1927 }
1928
1929 static struct buf *
1930 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1931 int n)
1932 {
1933 struct lfs_cluster *cl;
1934 struct buf **bpp, *bp;
1935
1936 ASSERT_SEGLOCK(fs);
1937 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1938 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1939 memset(cl, 0, sizeof(*cl));
1940 cl->fs = fs;
1941 cl->bpp = bpp;
1942 cl->bufcount = 0;
1943 cl->bufsize = 0;
1944
1945 /* If this segment is being written synchronously, note that */
1946 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1947 cl->flags |= LFS_CL_SYNC;
1948 cl->seg = fs->lfs_sp;
1949 ++cl->seg->seg_iocount;
1950 }
1951
1952 /* Get an empty buffer header, or maybe one with something on it */
1953 bp = getiobuf(vp, true);
1954 bp->b_dev = NODEV;
1955 bp->b_blkno = bp->b_lblkno = addr;
1956 bp->b_iodone = lfs_cluster_callback;
1957 bp->b_private = cl;
1958
1959 return bp;
1960 }
1961
1962 int
1963 lfs_writeseg(struct lfs *fs, struct segment *sp)
1964 {
1965 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1966 SEGUSE *sup;
1967 SEGSUM *ssp;
1968 int i;
1969 int do_again, nblocks, byteoffset;
1970 size_t el_size;
1971 struct lfs_cluster *cl;
1972 u_short ninos;
1973 struct vnode *devvp;
1974 char *p = NULL;
1975 struct vnode *vp;
1976 int32_t *daddrp; /* XXX ondisk32 */
1977 int changed;
1978 u_int32_t sum;
1979 #ifdef DEBUG
1980 FINFO *fip;
1981 int findex;
1982 #endif
1983
1984 ASSERT_SEGLOCK(fs);
1985
1986 ssp = (SEGSUM *)sp->segsum;
1987
1988 /*
1989 * If there are no buffers other than the segment summary to write,
1990 * don't do anything. If we are the end of a dirop sequence, however,
1991 * write the empty segment summary anyway, to help out the
1992 * roll-forward agent.
1993 */
1994 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1995 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1996 return 0;
1997 }
1998
1999 /* Note if partial segment is being written by the cleaner */
2000 if (sp->seg_flags & SEGM_CLEAN)
2001 ssp->ss_flags |= SS_CLEAN;
2002
2003 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2004
2005 /* Update the segment usage information. */
2006 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2007
2008 /* Loop through all blocks, except the segment summary. */
2009 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2010 if ((*bpp)->b_vp != devvp) {
2011 sup->su_nbytes += (*bpp)->b_bcount;
2012 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2013 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2014 sp->seg_number, (*bpp)->b_bcount,
2015 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2016 (*bpp)->b_blkno));
2017 }
2018 }
2019
2020 #ifdef DEBUG
2021 /* Check for zero-length and zero-version FINFO entries. */
2022 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2023 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2024 KDASSERT(fip->fi_nblocks > 0);
2025 KDASSERT(fip->fi_version > 0);
2026 fip = (FINFO *)((char *)fip + FINFOSIZE +
2027 sizeof(int32_t) * fip->fi_nblocks);
2028 }
2029 #endif /* DEBUG */
2030
2031 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2032 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2033 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2034 ssp->ss_ninos));
2035 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2036 /* sup->su_nbytes += fs->lfs_sumsize; */
2037 if (fs->lfs_version == 1)
2038 sup->su_olastmod = time_second;
2039 else
2040 sup->su_lastmod = time_second;
2041 sup->su_ninos += ninos;
2042 ++sup->su_nsums;
2043 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2044
2045 do_again = !(bp->b_flags & B_GATHERED);
2046 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2047
2048 /*
2049 * Mark blocks B_BUSY, to prevent then from being changed between
2050 * the checksum computation and the actual write.
2051 *
2052 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2053 * there are any, replace them with copies that have UNASSIGNED
2054 * instead.
2055 */
2056 mutex_enter(&bufcache_lock);
2057 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2058 ++bpp;
2059 bp = *bpp;
2060 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2061 bp->b_cflags |= BC_BUSY;
2062 continue;
2063 }
2064
2065 while (bp->b_cflags & BC_BUSY) {
2066 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2067 " data summary corruption for ino %d, lbn %"
2068 PRId64 "\n",
2069 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2070 bp->b_cflags |= BC_WANTED;
2071 cv_wait(&bp->b_busy, &bufcache_lock);
2072 }
2073 bp->b_cflags |= BC_BUSY;
2074 mutex_exit(&bufcache_lock);
2075 unbusybp = NULL;
2076
2077 /*
2078 * Check and replace indirect block UNWRITTEN bogosity.
2079 * XXX See comment in lfs_writefile.
2080 */
2081 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2082 VTOI(bp->b_vp)->i_ffs1_blocks !=
2083 VTOI(bp->b_vp)->i_lfs_effnblks) {
2084 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2085 VTOI(bp->b_vp)->i_number,
2086 VTOI(bp->b_vp)->i_lfs_effnblks,
2087 VTOI(bp->b_vp)->i_ffs1_blocks));
2088 /* Make a copy we'll make changes to */
2089 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2090 bp->b_bcount, LFS_NB_IBLOCK);
2091 newbp->b_blkno = bp->b_blkno;
2092 memcpy(newbp->b_data, bp->b_data,
2093 newbp->b_bcount);
2094
2095 changed = 0;
2096 /* XXX ondisk32 */
2097 for (daddrp = (int32_t *)(newbp->b_data);
2098 daddrp < (int32_t *)((char *)newbp->b_data +
2099 newbp->b_bcount); daddrp++) {
2100 if (*daddrp == UNWRITTEN) {
2101 ++changed;
2102 *daddrp = 0;
2103 }
2104 }
2105 /*
2106 * Get rid of the old buffer. Don't mark it clean,
2107 * though, if it still has dirty data on it.
2108 */
2109 if (changed) {
2110 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2111 " bp = %p newbp = %p\n", changed, bp,
2112 newbp));
2113 *bpp = newbp;
2114 bp->b_flags &= ~B_GATHERED;
2115 bp->b_error = 0;
2116 if (bp->b_iodone != NULL) {
2117 DLOG((DLOG_SEG, "lfs_writeseg: "
2118 "indir bp should not be B_CALL\n"));
2119 biodone(bp);
2120 bp = NULL;
2121 } else {
2122 /* Still on free list, leave it there */
2123 unbusybp = bp;
2124 /*
2125 * We have to re-decrement lfs_avail
2126 * since this block is going to come
2127 * back around to us in the next
2128 * segment.
2129 */
2130 fs->lfs_avail -=
2131 btofsb(fs, bp->b_bcount);
2132 }
2133 } else {
2134 lfs_freebuf(fs, newbp);
2135 }
2136 }
2137 mutex_enter(&bufcache_lock);
2138 if (unbusybp != NULL) {
2139 unbusybp->b_cflags &= ~BC_BUSY;
2140 if (unbusybp->b_cflags & BC_WANTED)
2141 cv_broadcast(&bp->b_busy);
2142 }
2143 }
2144 mutex_exit(&bufcache_lock);
2145
2146 /*
2147 * Compute checksum across data and then across summary; the first
2148 * block (the summary block) is skipped. Set the create time here
2149 * so that it's guaranteed to be later than the inode mod times.
2150 */
2151 sum = 0;
2152 if (fs->lfs_version == 1)
2153 el_size = sizeof(u_long);
2154 else
2155 el_size = sizeof(u_int32_t);
2156 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2157 ++bpp;
2158 /* Loop through gop_write cluster blocks */
2159 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2160 byteoffset += fs->lfs_bsize) {
2161 #ifdef LFS_USE_B_INVAL
2162 if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2163 (*bpp)->b_iodone != NULL) {
2164 if (copyin((void *)(*bpp)->b_saveaddr +
2165 byteoffset, dp, el_size)) {
2166 panic("lfs_writeseg: copyin failed [1]:"
2167 " ino %d blk %" PRId64,
2168 VTOI((*bpp)->b_vp)->i_number,
2169 (*bpp)->b_lblkno);
2170 }
2171 } else
2172 #endif /* LFS_USE_B_INVAL */
2173 {
2174 sum = lfs_cksum_part((char *)
2175 (*bpp)->b_data + byteoffset, el_size, sum);
2176 }
2177 }
2178 }
2179 if (fs->lfs_version == 1)
2180 ssp->ss_ocreate = time_second;
2181 else {
2182 ssp->ss_create = time_second;
2183 ssp->ss_serial = ++fs->lfs_serial;
2184 ssp->ss_ident = fs->lfs_ident;
2185 }
2186 ssp->ss_datasum = lfs_cksum_fold(sum);
2187 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2188 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2189
2190 mutex_enter(&fs->lfs_interlock);
2191 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2192 btofsb(fs, fs->lfs_sumsize));
2193 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2194 btofsb(fs, fs->lfs_sumsize));
2195 mutex_exit(&fs->lfs_interlock);
2196
2197 /*
2198 * When we simply write the blocks we lose a rotation for every block
2199 * written. To avoid this problem, we cluster the buffers into a
2200 * chunk and write the chunk. MAXPHYS is the largest size I/O
2201 * devices can handle, use that for the size of the chunks.
2202 *
2203 * Blocks that are already clusters (from GOP_WRITE), however, we
2204 * don't bother to copy into other clusters.
2205 */
2206
2207 #define CHUNKSIZE MAXPHYS
2208
2209 if (devvp == NULL)
2210 panic("devvp is NULL");
2211 for (bpp = sp->bpp, i = nblocks; i;) {
2212 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2213 cl = cbp->b_private;
2214
2215 cbp->b_flags |= B_ASYNC;
2216 cbp->b_cflags |= BC_BUSY;
2217 cbp->b_bcount = 0;
2218
2219 #if defined(DEBUG) && defined(DIAGNOSTIC)
2220 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2221 / sizeof(int32_t)) {
2222 panic("lfs_writeseg: real bpp overwrite");
2223 }
2224 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2225 panic("lfs_writeseg: theoretical bpp overwrite");
2226 }
2227 #endif
2228
2229 /*
2230 * Construct the cluster.
2231 */
2232 mutex_enter(&fs->lfs_interlock);
2233 ++fs->lfs_iocount;
2234 mutex_exit(&fs->lfs_interlock);
2235 while (i && cbp->b_bcount < CHUNKSIZE) {
2236 bp = *bpp;
2237
2238 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2239 break;
2240 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2241 break;
2242
2243 /* Clusters from GOP_WRITE are expedited */
2244 if (bp->b_bcount > fs->lfs_bsize) {
2245 if (cbp->b_bcount > 0)
2246 /* Put in its own buffer */
2247 break;
2248 else {
2249 cbp->b_data = bp->b_data;
2250 }
2251 } else if (cbp->b_bcount == 0) {
2252 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2253 LFS_NB_CLUSTER);
2254 cl->flags |= LFS_CL_MALLOC;
2255 }
2256 #ifdef DIAGNOSTIC
2257 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2258 btodb(bp->b_bcount - 1))) !=
2259 sp->seg_number) {
2260 printf("blk size %d daddr %" PRIx64
2261 " not in seg %d\n",
2262 bp->b_bcount, bp->b_blkno,
2263 sp->seg_number);
2264 panic("segment overwrite");
2265 }
2266 #endif
2267
2268 #ifdef LFS_USE_B_INVAL
2269 /*
2270 * Fake buffers from the cleaner are marked as B_INVAL.
2271 * We need to copy the data from user space rather than
2272 * from the buffer indicated.
2273 * XXX == what do I do on an error?
2274 */
2275 if ((bp->b_cflags & BC_INVAL) != 0 &&
2276 bp->b_iodone != NULL) {
2277 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2278 panic("lfs_writeseg: "
2279 "copyin failed [2]");
2280 } else
2281 #endif /* LFS_USE_B_INVAL */
2282 if (cl->flags & LFS_CL_MALLOC) {
2283 /* copy data into our cluster. */
2284 memcpy(p, bp->b_data, bp->b_bcount);
2285 p += bp->b_bcount;
2286 }
2287
2288 cbp->b_bcount += bp->b_bcount;
2289 cl->bufsize += bp->b_bcount;
2290
2291 bp->b_flags &= ~B_READ;
2292 bp->b_error = 0;
2293 cl->bpp[cl->bufcount++] = bp;
2294
2295 vp = bp->b_vp;
2296 mutex_enter(&bufcache_lock);
2297 mutex_enter(&vp->v_interlock);
2298 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2299 reassignbuf(bp, vp);
2300 vp->v_numoutput++;
2301 mutex_exit(&vp->v_interlock);
2302 mutex_exit(&bufcache_lock);
2303
2304 bpp++;
2305 i--;
2306 }
2307 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2308 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2309 else
2310 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2311 mutex_enter(&devvp->v_interlock);
2312 devvp->v_numoutput++;
2313 mutex_exit(&devvp->v_interlock);
2314 VOP_STRATEGY(devvp, cbp);
2315 curproc->p_stats->p_ru.ru_oublock++;
2316 }
2317
2318 if (lfs_dostats) {
2319 ++lfs_stats.psegwrites;
2320 lfs_stats.blocktot += nblocks - 1;
2321 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2322 ++lfs_stats.psyncwrites;
2323 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2324 ++lfs_stats.pcleanwrites;
2325 lfs_stats.cleanblocks += nblocks - 1;
2326 }
2327 }
2328
2329 return (lfs_initseg(fs) || do_again);
2330 }
2331
2332 void
2333 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2334 {
2335 struct buf *bp;
2336 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2337 int s;
2338
2339 ASSERT_MAYBE_SEGLOCK(fs);
2340 #ifdef DIAGNOSTIC
2341 KASSERT(fs->lfs_magic == LFS_MAGIC);
2342 #endif
2343 /*
2344 * If we can write one superblock while another is in
2345 * progress, we risk not having a complete checkpoint if we crash.
2346 * So, block here if a superblock write is in progress.
2347 */
2348 mutex_enter(&fs->lfs_interlock);
2349 s = splbio();
2350 while (fs->lfs_sbactive) {
2351 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2352 &fs->lfs_interlock);
2353 }
2354 fs->lfs_sbactive = daddr;
2355 splx(s);
2356 mutex_exit(&fs->lfs_interlock);
2357
2358 /* Set timestamp of this version of the superblock */
2359 if (fs->lfs_version == 1)
2360 fs->lfs_otstamp = time_second;
2361 fs->lfs_tstamp = time_second;
2362
2363 /* Checksum the superblock and copy it into a buffer. */
2364 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2365 bp = lfs_newbuf(fs, devvp,
2366 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2367 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2368 LFS_SBPAD - sizeof(struct dlfs));
2369 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2370
2371 bp->b_cflags |= BC_BUSY;
2372 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2373 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2374 bp->b_error = 0;
2375 bp->b_iodone = lfs_supercallback;
2376
2377 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2378 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2379 else
2380 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2381 curproc->p_stats->p_ru.ru_oublock++;
2382
2383 mutex_enter(&devvp->v_interlock);
2384 devvp->v_numoutput++;
2385 mutex_exit(&devvp->v_interlock);
2386
2387 mutex_enter(&fs->lfs_interlock);
2388 ++fs->lfs_iocount;
2389 mutex_exit(&fs->lfs_interlock);
2390 VOP_STRATEGY(devvp, bp);
2391 }
2392
2393 /*
2394 * Logical block number match routines used when traversing the dirty block
2395 * chain.
2396 */
2397 int
2398 lfs_match_fake(struct lfs *fs, struct buf *bp)
2399 {
2400
2401 ASSERT_SEGLOCK(fs);
2402 return LFS_IS_MALLOC_BUF(bp);
2403 }
2404
2405 #if 0
2406 int
2407 lfs_match_real(struct lfs *fs, struct buf *bp)
2408 {
2409
2410 ASSERT_SEGLOCK(fs);
2411 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2412 }
2413 #endif
2414
2415 int
2416 lfs_match_data(struct lfs *fs, struct buf *bp)
2417 {
2418
2419 ASSERT_SEGLOCK(fs);
2420 return (bp->b_lblkno >= 0);
2421 }
2422
2423 int
2424 lfs_match_indir(struct lfs *fs, struct buf *bp)
2425 {
2426 daddr_t lbn;
2427
2428 ASSERT_SEGLOCK(fs);
2429 lbn = bp->b_lblkno;
2430 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2431 }
2432
2433 int
2434 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2435 {
2436 daddr_t lbn;
2437
2438 ASSERT_SEGLOCK(fs);
2439 lbn = bp->b_lblkno;
2440 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2441 }
2442
2443 int
2444 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2445 {
2446 daddr_t lbn;
2447
2448 ASSERT_SEGLOCK(fs);
2449 lbn = bp->b_lblkno;
2450 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2451 }
2452
2453 static void
2454 lfs_free_aiodone(struct buf *bp)
2455 {
2456 struct lfs *fs;
2457
2458 KERNEL_LOCK(1, curlwp);
2459 fs = bp->b_private;
2460 ASSERT_NO_SEGLOCK(fs);
2461 lfs_freebuf(fs, bp);
2462 KERNEL_UNLOCK_LAST(curlwp);
2463 }
2464
2465 static void
2466 lfs_super_aiodone(struct buf *bp)
2467 {
2468 struct lfs *fs;
2469
2470 KERNEL_LOCK(1, curlwp);
2471 fs = bp->b_private;
2472 ASSERT_NO_SEGLOCK(fs);
2473 mutex_enter(&fs->lfs_interlock);
2474 fs->lfs_sbactive = 0;
2475 if (--fs->lfs_iocount <= 1)
2476 wakeup(&fs->lfs_iocount);
2477 mutex_exit(&fs->lfs_interlock);
2478 wakeup(&fs->lfs_sbactive);
2479 lfs_freebuf(fs, bp);
2480 KERNEL_UNLOCK_LAST(curlwp);
2481 }
2482
2483 static void
2484 lfs_cluster_aiodone(struct buf *bp)
2485 {
2486 struct lfs_cluster *cl;
2487 struct lfs *fs;
2488 struct buf *tbp, *fbp;
2489 struct vnode *vp, *devvp, *ovp;
2490 struct inode *ip;
2491 int error;
2492
2493 KERNEL_LOCK(1, curlwp);
2494
2495 error = bp->b_error;
2496 cl = bp->b_private;
2497 fs = cl->fs;
2498 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2499 ASSERT_NO_SEGLOCK(fs);
2500
2501 /* Put the pages back, and release the buffer */
2502 while (cl->bufcount--) {
2503 tbp = cl->bpp[cl->bufcount];
2504 KASSERT(tbp->b_cflags & BC_BUSY);
2505 if (error) {
2506 tbp->b_error = error;
2507 }
2508
2509 /*
2510 * We're done with tbp. If it has not been re-dirtied since
2511 * the cluster was written, free it. Otherwise, keep it on
2512 * the locked list to be written again.
2513 */
2514 vp = tbp->b_vp;
2515
2516 tbp->b_flags &= ~B_GATHERED;
2517
2518 LFS_BCLEAN_LOG(fs, tbp);
2519
2520 mutex_enter(&bufcache_lock);
2521 if (tbp->b_iodone == NULL) {
2522 KASSERT(tbp->b_cflags & BC_LOCKED);
2523 bremfree(tbp);
2524 if (vp) {
2525 mutex_enter(&vp->v_interlock);
2526 reassignbuf(tbp, vp);
2527 mutex_exit(&vp->v_interlock);
2528 }
2529 tbp->b_flags |= B_ASYNC; /* for biodone */
2530 }
2531
2532 if (((tbp->b_cflags | tbp->b_oflags) &
2533 (BC_LOCKED | BO_DELWRI)) == BC_LOCKED)
2534 LFS_UNLOCK_BUF(tbp);
2535
2536 if (tbp->b_oflags & BO_DONE) {
2537 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2538 cl->bufcount, (long)tbp->b_flags));
2539 }
2540
2541 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2542 /*
2543 * A buffer from the page daemon.
2544 * We use the same iodone as it does,
2545 * so we must manually disassociate its
2546 * buffers from the vp.
2547 */
2548 if ((ovp = tbp->b_vp) != NULL) {
2549 /* This is just silly */
2550 mutex_enter(&ovp->v_interlock);
2551 brelvp(tbp);
2552 mutex_exit(&ovp->v_interlock);
2553 tbp->b_vp = vp;
2554 tbp->b_objlock = &vp->v_interlock;
2555 }
2556 /* Put it back the way it was */
2557 tbp->b_flags |= B_ASYNC;
2558 /* Master buffers have BC_AGE */
2559 if (tbp->b_private == tbp)
2560 tbp->b_flags |= BC_AGE;
2561 }
2562 mutex_exit(&bufcache_lock);
2563
2564 biodone(tbp);
2565
2566 /*
2567 * If this is the last block for this vnode, but
2568 * there are other blocks on its dirty list,
2569 * set IN_MODIFIED/IN_CLEANING depending on what
2570 * sort of block. Only do this for our mount point,
2571 * not for, e.g., inode blocks that are attached to
2572 * the devvp.
2573 * XXX KS - Shouldn't we set *both* if both types
2574 * of blocks are present (traverse the dirty list?)
2575 */
2576 mutex_enter(&fs->lfs_interlock);
2577 mutex_enter(&vp->v_interlock);
2578 if (vp != devvp && vp->v_numoutput == 0 &&
2579 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2580 ip = VTOI(vp);
2581 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2582 ip->i_number));
2583 if (LFS_IS_MALLOC_BUF(fbp))
2584 LFS_SET_UINO(ip, IN_CLEANING);
2585 else
2586 LFS_SET_UINO(ip, IN_MODIFIED);
2587 }
2588 cv_broadcast(&vp->v_cv);
2589 mutex_exit(&vp->v_interlock);
2590 mutex_exit(&fs->lfs_interlock);
2591 }
2592
2593 /* Fix up the cluster buffer, and release it */
2594 if (cl->flags & LFS_CL_MALLOC)
2595 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2596 putiobuf(bp);
2597
2598 /* Note i/o done */
2599 if (cl->flags & LFS_CL_SYNC) {
2600 if (--cl->seg->seg_iocount == 0)
2601 wakeup(&cl->seg->seg_iocount);
2602 }
2603 mutex_enter(&fs->lfs_interlock);
2604 #ifdef DIAGNOSTIC
2605 if (fs->lfs_iocount == 0)
2606 panic("lfs_cluster_aiodone: zero iocount");
2607 #endif
2608 if (--fs->lfs_iocount <= 1)
2609 wakeup(&fs->lfs_iocount);
2610 mutex_exit(&fs->lfs_interlock);
2611
2612 KERNEL_UNLOCK_LAST(curlwp);
2613
2614 pool_put(&fs->lfs_bpppool, cl->bpp);
2615 cl->bpp = NULL;
2616 pool_put(&fs->lfs_clpool, cl);
2617 }
2618
2619 static void
2620 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2621 {
2622 /* reset b_iodone for when this is a single-buf i/o. */
2623 bp->b_iodone = aiodone;
2624
2625 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2626 }
2627
2628 static void
2629 lfs_cluster_callback(struct buf *bp)
2630 {
2631
2632 lfs_generic_callback(bp, lfs_cluster_aiodone);
2633 }
2634
2635 void
2636 lfs_supercallback(struct buf *bp)
2637 {
2638
2639 lfs_generic_callback(bp, lfs_super_aiodone);
2640 }
2641
2642 /*
2643 * The only buffers that are going to hit these functions are the
2644 * segment write blocks, or the segment summaries, or the superblocks.
2645 *
2646 * All of the above are created by lfs_newbuf, and so do not need to be
2647 * released via brelse.
2648 */
2649 void
2650 lfs_callback(struct buf *bp)
2651 {
2652
2653 lfs_generic_callback(bp, lfs_free_aiodone);
2654 }
2655
2656 /*
2657 * Shellsort (diminishing increment sort) from Data Structures and
2658 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2659 * see also Knuth Vol. 3, page 84. The increments are selected from
2660 * formula (8), page 95. Roughly O(N^3/2).
2661 */
2662 /*
2663 * This is our own private copy of shellsort because we want to sort
2664 * two parallel arrays (the array of buffer pointers and the array of
2665 * logical block numbers) simultaneously. Note that we cast the array
2666 * of logical block numbers to a unsigned in this routine so that the
2667 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2668 */
2669
2670 void
2671 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2672 {
2673 static int __rsshell_increments[] = { 4, 1, 0 };
2674 int incr, *incrp, t1, t2;
2675 struct buf *bp_temp;
2676
2677 #ifdef DEBUG
2678 incr = 0;
2679 for (t1 = 0; t1 < nmemb; t1++) {
2680 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2681 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2682 /* dump before panic */
2683 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2684 nmemb, size);
2685 incr = 0;
2686 for (t1 = 0; t1 < nmemb; t1++) {
2687 const struct buf *bp = bp_array[t1];
2688
2689 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2690 PRIu64 "\n", t1,
2691 (uint64_t)bp->b_bcount,
2692 (uint64_t)bp->b_lblkno);
2693 printf("lbns:");
2694 for (t2 = 0; t2 * size < bp->b_bcount;
2695 t2++) {
2696 printf(" %" PRId32,
2697 lb_array[incr++]);
2698 }
2699 printf("\n");
2700 }
2701 panic("lfs_shellsort: inconsistent input");
2702 }
2703 }
2704 }
2705 #endif
2706
2707 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2708 for (t1 = incr; t1 < nmemb; ++t1)
2709 for (t2 = t1 - incr; t2 >= 0;)
2710 if ((u_int32_t)bp_array[t2]->b_lblkno >
2711 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2712 bp_temp = bp_array[t2];
2713 bp_array[t2] = bp_array[t2 + incr];
2714 bp_array[t2 + incr] = bp_temp;
2715 t2 -= incr;
2716 } else
2717 break;
2718
2719 /* Reform the list of logical blocks */
2720 incr = 0;
2721 for (t1 = 0; t1 < nmemb; t1++) {
2722 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2723 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2724 }
2725 }
2726 }
2727
2728 /*
2729 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING,
2730 * however, we must press on. Just fake success in that case.
2731 */
2732 int
2733 lfs_vref(struct vnode *vp)
2734 {
2735 int error;
2736 struct lfs *fs;
2737
2738 KASSERT(mutex_owned(&vp->v_interlock));
2739
2740 fs = VTOI(vp)->i_lfs;
2741
2742 ASSERT_MAYBE_SEGLOCK(fs);
2743
2744 /*
2745 * If we return 1 here during a flush, we risk vinvalbuf() not
2746 * being able to flush all of the pages from this vnode, which
2747 * will cause it to panic. So, return 0 if a flush is in progress.
2748 */
2749 error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
2750 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2751 ++fs->lfs_flushvp_fakevref;
2752 return 0;
2753 }
2754 return error;
2755 }
2756
2757 /*
2758 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2759 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2760 */
2761 void
2762 lfs_vunref(struct vnode *vp)
2763 {
2764 struct lfs *fs;
2765
2766 fs = VTOI(vp)->i_lfs;
2767 ASSERT_MAYBE_SEGLOCK(fs);
2768
2769 /*
2770 * Analogous to lfs_vref, if the node is flushing, fake it.
2771 */
2772 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2773 --fs->lfs_flushvp_fakevref;
2774 return;
2775 }
2776
2777 /* does not call inactive */
2778 vrele(vp); /* XXXAD fix later */
2779 }
2780
2781 /*
2782 * We use this when we have vnodes that were loaded in solely for cleaning.
2783 * There is no reason to believe that these vnodes will be referenced again
2784 * soon, since the cleaning process is unrelated to normal filesystem
2785 * activity. Putting cleaned vnodes at the tail of the list has the effect
2786 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2787 * cleaning at the head of the list, instead.
2788 */
2789 void
2790 lfs_vunref_head(struct vnode *vp)
2791 {
2792
2793 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2794
2795 /* does not call inactive, inserts non-held vnode at head of freelist */
2796 vrele(vp); /* XXXAD fix later */
2797 }
2798
2799
2800 /*
2801 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2802 * point at uninitialized space.
2803 */
2804 void
2805 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2806 {
2807 struct segment *sp = fs->lfs_sp;
2808
2809 KASSERT(vers > 0);
2810
2811 if (sp->seg_bytes_left < fs->lfs_bsize ||
2812 sp->sum_bytes_left < sizeof(struct finfo))
2813 (void) lfs_writeseg(fs, fs->lfs_sp);
2814
2815 sp->sum_bytes_left -= FINFOSIZE;
2816 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2817 sp->fip->fi_nblocks = 0;
2818 sp->fip->fi_ino = ino;
2819 sp->fip->fi_version = vers;
2820 }
2821
2822 /*
2823 * Release the FINFO entry, either clearing out an unused entry or
2824 * advancing us to the next available entry.
2825 */
2826 void
2827 lfs_release_finfo(struct lfs *fs)
2828 {
2829 struct segment *sp = fs->lfs_sp;
2830
2831 if (sp->fip->fi_nblocks != 0) {
2832 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2833 sizeof(int32_t) * sp->fip->fi_nblocks);
2834 sp->start_lbp = &sp->fip->fi_blocks[0];
2835 } else {
2836 sp->sum_bytes_left += FINFOSIZE;
2837 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2838 }
2839 }
2840