lfs_segment.c revision 1.208 1 /* $NetBSD: lfs_segment.c,v 1.208 2008/01/27 22:47:31 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.208 2008/01/27 22:47:31 pooka Exp $");
71
72 #ifdef DEBUG
73 # define vndebug(vp, str) do { \
74 if (VTOI(vp)->i_flag & IN_CLEANING) \
75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 VTOI(vp)->i_number, (str), op)); \
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115
116 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117
118 extern int count_lock_queue(void);
119 extern kmutex_t vnode_free_list_lock; /* XXX */
120
121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
122 static void lfs_free_aiodone(struct buf *);
123 static void lfs_super_aiodone(struct buf *);
124 static void lfs_cluster_aiodone(struct buf *);
125 static void lfs_cluster_callback(struct buf *);
126
127 /*
128 * Determine if it's OK to start a partial in this segment, or if we need
129 * to go on to a new segment.
130 */
131 #define LFS_PARTIAL_FITS(fs) \
132 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
133 fragstofsb((fs), (fs)->lfs_frag))
134
135 /*
136 * Figure out whether we should do a checkpoint write or go ahead with
137 * an ordinary write.
138 */
139 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
140 ((flags & SEGM_CLEAN) == 0 && \
141 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
142 (flags & SEGM_CKP) || \
143 fs->lfs_nclean < LFS_MAX_ACTIVE)))
144
145 int lfs_match_fake(struct lfs *, struct buf *);
146 void lfs_newseg(struct lfs *);
147 /* XXX ondisk32 */
148 void lfs_shellsort(struct buf **, int32_t *, int, int);
149 void lfs_supercallback(struct buf *);
150 void lfs_updatemeta(struct segment *);
151 void lfs_writesuper(struct lfs *, daddr_t);
152 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
153 struct segment *sp, int dirops);
154
155 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
156 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
157 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
158 int lfs_dirvcount = 0; /* # active dirops */
159
160 /* Statistics Counters */
161 int lfs_dostats = 1;
162 struct lfs_stats lfs_stats;
163
164 /* op values to lfs_writevnodes */
165 #define VN_REG 0
166 #define VN_DIROP 1
167 #define VN_EMPTY 2
168 #define VN_CLEAN 3
169
170 /*
171 * XXX KS - Set modification time on the Ifile, so the cleaner can
172 * read the fs mod time off of it. We don't set IN_UPDATE here,
173 * since we don't really need this to be flushed to disk (and in any
174 * case that wouldn't happen to the Ifile until we checkpoint).
175 */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 struct timespec ts;
180 struct inode *ip;
181
182 ASSERT_MAYBE_SEGLOCK(fs);
183 vfs_timestamp(&ts);
184 ip = VTOI(fs->lfs_ivnode);
185 ip->i_ffs1_mtime = ts.tv_sec;
186 ip->i_ffs1_mtimensec = ts.tv_nsec;
187 }
188
189 /*
190 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
191 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
192 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
193 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
194 */
195
196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
197
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 struct inode *ip;
202 struct lfs *fs;
203 struct segment *sp;
204 struct buf *bp, *nbp, *tbp, *tnbp;
205 int error;
206 int flushed;
207 int relock;
208 int loopcount;
209
210 ip = VTOI(vp);
211 fs = VFSTOUFS(vp->v_mount)->um_lfs;
212 relock = 0;
213
214 top:
215 ASSERT_NO_SEGLOCK(fs);
216 if (ip->i_flag & IN_CLEANING) {
217 ivndebug(vp,"vflush/in_cleaning");
218 mutex_enter(&lfs_lock);
219 LFS_CLR_UINO(ip, IN_CLEANING);
220 LFS_SET_UINO(ip, IN_MODIFIED);
221 mutex_exit(&lfs_lock);
222
223 /*
224 * Toss any cleaning buffers that have real counterparts
225 * to avoid losing new data.
226 */
227 mutex_enter(&vp->v_interlock);
228 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
229 nbp = LIST_NEXT(bp, b_vnbufs);
230 if (!LFS_IS_MALLOC_BUF(bp))
231 continue;
232 /*
233 * Look for pages matching the range covered
234 * by cleaning blocks. It's okay if more dirty
235 * pages appear, so long as none disappear out
236 * from under us.
237 */
238 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
239 vp != fs->lfs_ivnode) {
240 struct vm_page *pg;
241 voff_t off;
242
243 for (off = lblktosize(fs, bp->b_lblkno);
244 off < lblktosize(fs, bp->b_lblkno + 1);
245 off += PAGE_SIZE) {
246 pg = uvm_pagelookup(&vp->v_uobj, off);
247 if (pg == NULL)
248 continue;
249 if ((pg->flags & PG_CLEAN) == 0 ||
250 pmap_is_modified(pg)) {
251 fs->lfs_avail += btofsb(fs,
252 bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 mutex_exit(&vp->v_interlock);
255 lfs_freebuf(fs, bp);
256 mutex_enter(&vp->v_interlock);
257 bp = NULL;
258 break;
259 }
260 }
261 }
262 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 tbp = tnbp)
264 {
265 tnbp = LIST_NEXT(tbp, b_vnbufs);
266 if (tbp->b_vp == bp->b_vp
267 && tbp->b_lblkno == bp->b_lblkno
268 && tbp != bp)
269 {
270 fs->lfs_avail += btofsb(fs,
271 bp->b_bcount);
272 wakeup(&fs->lfs_avail);
273 mutex_exit(&vp->v_interlock);
274 lfs_freebuf(fs, bp);
275 mutex_enter(&vp->v_interlock);
276 bp = NULL;
277 break;
278 }
279 }
280 }
281 } else {
282 mutex_enter(&vp->v_interlock);
283 }
284
285 /* If the node is being written, wait until that is done */
286 while (WRITEINPROG(vp)) {
287 ivndebug(vp,"vflush/writeinprog");
288 cv_wait(&vp->v_cv, &vp->v_interlock);
289 }
290 mutex_exit(&vp->v_interlock);
291
292 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
293 lfs_seglock(fs, SEGM_SYNC);
294
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip->i_lfs_iflags & LFSI_DELETED) {
297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 ip->i_number));
299 /* Drain v_numoutput */
300 mutex_enter(&vp->v_interlock);
301 while (vp->v_numoutput > 0) {
302 cv_wait(&vp->v_cv, &vp->v_interlock);
303 }
304 KASSERT(vp->v_numoutput == 0);
305 mutex_exit(&vp->v_interlock);
306
307 mutex_enter(&bufcache_lock);
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 fs->lfs_avail += btofsb(fs, bp->b_bcount);
314 wakeup(&fs->lfs_avail);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_iodone != NULL) {
318 mutex_exit(&bufcache_lock);
319 biodone(bp);
320 mutex_enter(&bufcache_lock);
321 } else {
322 bremfree(bp);
323 LFS_UNLOCK_BUF(bp);
324 mutex_enter(&vp->v_interlock);
325 bp->b_flags &= ~(B_READ | B_GATHERED);
326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 bp->b_error = 0;
328 reassignbuf(bp, vp);
329 mutex_exit(&vp->v_interlock);
330 brelse(bp, 0);
331 }
332 }
333 mutex_exit(&bufcache_lock);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_flag &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 mutex_enter(&vp->v_interlock);
355 while (vp->v_numoutput > 0) {
356 cv_wait(&vp->v_cv, &vp->v_interlock);
357 }
358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 KASSERT(vp->v_numoutput == 0);
360 mutex_exit(&vp->v_interlock);
361
362 return error;
363 }
364 sp = fs->lfs_sp;
365
366 flushed = 0;
367 if (VPISEMPTY(vp)) {
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 ++flushed;
370 } else if ((ip->i_flag & IN_CLEANING) &&
371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 ivndebug(vp,"vflush/clean");
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 ++flushed;
375 } else if (lfs_dostats) {
376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
377 ++lfs_stats.vflush_invoked;
378 ivndebug(vp,"vflush");
379 }
380
381 #ifdef DIAGNOSTIC
382 if (vp->v_uflag & VU_DIROP) {
383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 }
386 if (vp->v_usecount < 0) {
387 printf("usecount=%ld\n", (long)vp->v_usecount);
388 panic("lfs_vflush: usecount<0");
389 }
390 #endif
391
392 do {
393 loopcount = 0;
394 do {
395 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
396 relock = lfs_writefile(fs, sp, vp);
397 if (relock) {
398 /*
399 * Might have to wait for the
400 * cleaner to run; but we're
401 * still not done with this vnode.
402 */
403 KDASSERT(ip->i_number != LFS_IFILE_INUM);
404 lfs_writeinode(fs, sp, ip);
405 mutex_enter(&lfs_lock);
406 LFS_SET_UINO(ip, IN_MODIFIED);
407 mutex_exit(&lfs_lock);
408 lfs_writeseg(fs, sp);
409 lfs_segunlock(fs);
410 lfs_segunlock_relock(fs);
411 goto top;
412 }
413 }
414 /*
415 * If we begin a new segment in the middle of writing
416 * the Ifile, it creates an inconsistent checkpoint,
417 * since the Ifile information for the new segment
418 * is not up-to-date. Take care of this here by
419 * sending the Ifile through again in case there
420 * are newly dirtied blocks. But wait, there's more!
421 * This second Ifile write could *also* cross a segment
422 * boundary, if the first one was large. The second
423 * one is guaranteed to be no more than 8 blocks,
424 * though (two segment blocks and supporting indirects)
425 * so the third write *will not* cross the boundary.
426 */
427 if (vp == fs->lfs_ivnode) {
428 lfs_writefile(fs, sp, vp);
429 lfs_writefile(fs, sp, vp);
430 }
431 #ifdef DEBUG
432 if (++loopcount > 2)
433 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
434 #endif
435 } while (lfs_writeinode(fs, sp, ip));
436 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
437
438 if (lfs_dostats) {
439 ++lfs_stats.nwrites;
440 if (sp->seg_flags & SEGM_SYNC)
441 ++lfs_stats.nsync_writes;
442 if (sp->seg_flags & SEGM_CKP)
443 ++lfs_stats.ncheckpoints;
444 }
445 /*
446 * If we were called from somewhere that has already held the seglock
447 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
448 * the write to complete because we are still locked.
449 * Since lfs_vflush() must return the vnode with no dirty buffers,
450 * we must explicitly wait, if that is the case.
451 *
452 * We compare the iocount against 1, not 0, because it is
453 * artificially incremented by lfs_seglock().
454 */
455 mutex_enter(&lfs_lock);
456 if (fs->lfs_seglock > 1) {
457 while (fs->lfs_iocount > 1)
458 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
459 "lfs_vflush", 0, &lfs_lock);
460 }
461 mutex_exit(&lfs_lock);
462
463 lfs_segunlock(fs);
464
465 /* Wait for these buffers to be recovered by aiodoned */
466 mutex_enter(&vp->v_interlock);
467 while (vp->v_numoutput > 0) {
468 cv_wait(&vp->v_cv, &vp->v_interlock);
469 }
470 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
471 KASSERT(vp->v_numoutput == 0);
472 mutex_exit(&vp->v_interlock);
473
474 fs->lfs_flushvp = NULL;
475 KASSERT(fs->lfs_flushvp_fakevref == 0);
476
477 return (0);
478 }
479
480 int
481 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
482 {
483 struct inode *ip;
484 struct vnode *vp;
485 int inodes_written = 0, only_cleaning;
486 int error = 0;
487
488 ASSERT_SEGLOCK(fs);
489 loop:
490 /* start at last (newest) vnode. */
491 mutex_enter(&mntvnode_lock);
492 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
493 /*
494 * If the vnode that we are about to sync is no longer
495 * associated with this mount point, start over.
496 */
497 if (vp->v_mount != mp) {
498 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
499 /*
500 * After this, pages might be busy
501 * due to our own previous putpages.
502 * Start actual segment write here to avoid deadlock.
503 */
504 mutex_exit(&mntvnode_lock);
505 (void)lfs_writeseg(fs, sp);
506 goto loop;
507 }
508
509 mutex_enter(&vp->v_interlock);
510 if (vp->v_type == VNON || vismarker(vp) ||
511 (vp->v_iflag & VI_CLEAN) != 0) {
512 mutex_exit(&vp->v_interlock);
513 continue;
514 }
515
516 ip = VTOI(vp);
517 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
518 (op != VN_DIROP && op != VN_CLEAN &&
519 (vp->v_uflag & VU_DIROP))) {
520 mutex_exit(&vp->v_interlock);
521 vndebug(vp,"dirop");
522 continue;
523 }
524
525 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 mutex_exit(&vp->v_interlock);
527 vndebug(vp,"empty");
528 continue;
529 }
530
531 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
532 && vp != fs->lfs_flushvp
533 && !(ip->i_flag & IN_CLEANING)) {
534 mutex_exit(&vp->v_interlock);
535 vndebug(vp,"cleaning");
536 continue;
537 }
538
539 mutex_exit(&mntvnode_lock);
540 if (lfs_vref(vp)) {
541 vndebug(vp,"vref");
542 mutex_enter(&mntvnode_lock);
543 continue;
544 }
545
546 only_cleaning = 0;
547 /*
548 * Write the inode/file if dirty and it's not the IFILE.
549 */
550 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
551 only_cleaning =
552 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
553
554 if (ip->i_number != LFS_IFILE_INUM) {
555 error = lfs_writefile(fs, sp, vp);
556 if (error) {
557 lfs_vunref(vp);
558 if (error == EAGAIN) {
559 /*
560 * This error from lfs_putpages
561 * indicates we need to drop
562 * the segment lock and start
563 * over after the cleaner has
564 * had a chance to run.
565 */
566 lfs_writeinode(fs, sp, ip);
567 lfs_writeseg(fs, sp);
568 if (!VPISEMPTY(vp) &&
569 !WRITEINPROG(vp) &&
570 !(ip->i_flag & IN_ALLMOD)) {
571 mutex_enter(&lfs_lock);
572 LFS_SET_UINO(ip, IN_MODIFIED);
573 mutex_exit(&lfs_lock);
574 }
575 mutex_enter(&mntvnode_lock);
576 break;
577 }
578 error = 0; /* XXX not quite right */
579 mutex_enter(&mntvnode_lock);
580 continue;
581 }
582
583 if (!VPISEMPTY(vp)) {
584 if (WRITEINPROG(vp)) {
585 ivndebug(vp,"writevnodes/write2");
586 } else if (!(ip->i_flag & IN_ALLMOD)) {
587 mutex_enter(&lfs_lock);
588 LFS_SET_UINO(ip, IN_MODIFIED);
589 mutex_exit(&lfs_lock);
590 }
591 }
592 (void) lfs_writeinode(fs, sp, ip);
593 inodes_written++;
594 }
595 }
596
597 if (lfs_clean_vnhead && only_cleaning)
598 lfs_vunref_head(vp);
599 else
600 lfs_vunref(vp);
601
602 mutex_enter(&mntvnode_lock);
603 }
604 mutex_exit(&mntvnode_lock);
605 return error;
606 }
607
608 /*
609 * Do a checkpoint.
610 */
611 int
612 lfs_segwrite(struct mount *mp, int flags)
613 {
614 struct buf *bp;
615 struct inode *ip;
616 struct lfs *fs;
617 struct segment *sp;
618 struct vnode *vp;
619 SEGUSE *segusep;
620 int do_ckp, did_ckp, error;
621 unsigned n, segleft, maxseg, sn, i, curseg;
622 int writer_set = 0;
623 int dirty;
624 int redo;
625 int um_error;
626 int loopcount;
627
628 fs = VFSTOUFS(mp)->um_lfs;
629 ASSERT_MAYBE_SEGLOCK(fs);
630
631 if (fs->lfs_ronly)
632 return EROFS;
633
634 lfs_imtime(fs);
635
636 /*
637 * Allocate a segment structure and enough space to hold pointers to
638 * the maximum possible number of buffers which can be described in a
639 * single summary block.
640 */
641 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
642
643 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
644 sp = fs->lfs_sp;
645 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
646 do_ckp = 1;
647
648 /*
649 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
650 * in which case we have to flush *all* buffers off of this vnode.
651 * We don't care about other nodes, but write any non-dirop nodes
652 * anyway in anticipation of another getnewvnode().
653 *
654 * If we're cleaning we only write cleaning and ifile blocks, and
655 * no dirops, since otherwise we'd risk corruption in a crash.
656 */
657 if (sp->seg_flags & SEGM_CLEAN)
658 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
659 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
660 do {
661 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
662
663 if (do_ckp || fs->lfs_dirops == 0) {
664 if (!writer_set) {
665 lfs_writer_enter(fs, "lfs writer");
666 writer_set = 1;
667 }
668 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
669 if (um_error == 0)
670 um_error = error;
671 /* In case writevnodes errored out */
672 lfs_flush_dirops(fs);
673 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
674 lfs_finalize_fs_seguse(fs);
675 }
676 if (do_ckp && um_error) {
677 lfs_segunlock_relock(fs);
678 sp = fs->lfs_sp;
679 }
680 } while (do_ckp && um_error != 0);
681 }
682
683 /*
684 * If we are doing a checkpoint, mark everything since the
685 * last checkpoint as no longer ACTIVE.
686 */
687 if (do_ckp || fs->lfs_doifile) {
688 segleft = fs->lfs_nseg;
689 curseg = 0;
690 for (n = 0; n < fs->lfs_segtabsz; n++) {
691 dirty = 0;
692 if (bread(fs->lfs_ivnode,
693 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
694 panic("lfs_segwrite: ifile read");
695 segusep = (SEGUSE *)bp->b_data;
696 maxseg = min(segleft, fs->lfs_sepb);
697 for (i = 0; i < maxseg; i++) {
698 sn = curseg + i;
699 if (sn != dtosn(fs, fs->lfs_curseg) &&
700 segusep->su_flags & SEGUSE_ACTIVE) {
701 segusep->su_flags &= ~SEGUSE_ACTIVE;
702 --fs->lfs_nactive;
703 ++dirty;
704 }
705 fs->lfs_suflags[fs->lfs_activesb][sn] =
706 segusep->su_flags;
707 if (fs->lfs_version > 1)
708 ++segusep;
709 else
710 segusep = (SEGUSE *)
711 ((SEGUSE_V1 *)segusep + 1);
712 }
713
714 if (dirty)
715 error = LFS_BWRITE_LOG(bp); /* Ifile */
716 else
717 brelse(bp, 0);
718 segleft -= fs->lfs_sepb;
719 curseg += fs->lfs_sepb;
720 }
721 }
722
723 KASSERT(LFS_SEGLOCK_HELD(fs));
724
725 did_ckp = 0;
726 if (do_ckp || fs->lfs_doifile) {
727 vp = fs->lfs_ivnode;
728 vn_lock(vp, LK_EXCLUSIVE);
729 loopcount = 0;
730 do {
731 #ifdef DEBUG
732 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
733 #endif
734 mutex_enter(&lfs_lock);
735 fs->lfs_flags &= ~LFS_IFDIRTY;
736 mutex_exit(&lfs_lock);
737
738 ip = VTOI(vp);
739
740 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
741 /*
742 * Ifile has no pages, so we don't need
743 * to check error return here.
744 */
745 lfs_writefile(fs, sp, vp);
746 /*
747 * Ensure the Ifile takes the current segment
748 * into account. See comment in lfs_vflush.
749 */
750 lfs_writefile(fs, sp, vp);
751 lfs_writefile(fs, sp, vp);
752 }
753
754 if (ip->i_flag & IN_ALLMOD)
755 ++did_ckp;
756 #if 0
757 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
758 #else
759 redo = lfs_writeinode(fs, sp, ip);
760 #endif
761 redo += lfs_writeseg(fs, sp);
762 mutex_enter(&lfs_lock);
763 redo += (fs->lfs_flags & LFS_IFDIRTY);
764 mutex_exit(&lfs_lock);
765 #ifdef DEBUG
766 if (++loopcount > 2)
767 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
768 loopcount);
769 #endif
770 } while (redo && do_ckp);
771
772 /*
773 * Unless we are unmounting, the Ifile may continue to have
774 * dirty blocks even after a checkpoint, due to changes to
775 * inodes' atime. If we're checkpointing, it's "impossible"
776 * for other parts of the Ifile to be dirty after the loop
777 * above, since we hold the segment lock.
778 */
779 mutex_enter(&vp->v_interlock);
780 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
781 LFS_CLR_UINO(ip, IN_ALLMOD);
782 }
783 #ifdef DIAGNOSTIC
784 else if (do_ckp) {
785 int do_panic = 0;
786 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
787 if (bp->b_lblkno < fs->lfs_cleansz +
788 fs->lfs_segtabsz &&
789 !(bp->b_flags & B_GATHERED)) {
790 printf("ifile lbn %ld still dirty (flags %lx)\n",
791 (long)bp->b_lblkno,
792 (long)bp->b_flags);
793 ++do_panic;
794 }
795 }
796 if (do_panic)
797 panic("dirty blocks");
798 }
799 #endif
800 mutex_exit(&vp->v_interlock);
801 VOP_UNLOCK(vp, 0);
802 } else {
803 (void) lfs_writeseg(fs, sp);
804 }
805
806 /* Note Ifile no longer needs to be written */
807 fs->lfs_doifile = 0;
808 if (writer_set)
809 lfs_writer_leave(fs);
810
811 /*
812 * If we didn't write the Ifile, we didn't really do anything.
813 * That means that (1) there is a checkpoint on disk and (2)
814 * nothing has changed since it was written.
815 *
816 * Take the flags off of the segment so that lfs_segunlock
817 * doesn't have to write the superblock either.
818 */
819 if (do_ckp && !did_ckp) {
820 sp->seg_flags &= ~SEGM_CKP;
821 }
822
823 if (lfs_dostats) {
824 ++lfs_stats.nwrites;
825 if (sp->seg_flags & SEGM_SYNC)
826 ++lfs_stats.nsync_writes;
827 if (sp->seg_flags & SEGM_CKP)
828 ++lfs_stats.ncheckpoints;
829 }
830 lfs_segunlock(fs);
831 return (0);
832 }
833
834 /*
835 * Write the dirty blocks associated with a vnode.
836 */
837 int
838 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
839 {
840 struct finfo *fip;
841 struct inode *ip;
842 int i, frag;
843 int error;
844
845 ASSERT_SEGLOCK(fs);
846 error = 0;
847 ip = VTOI(vp);
848
849 fip = sp->fip;
850 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
851
852 if (vp->v_uflag & VU_DIROP)
853 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
854
855 if (sp->seg_flags & SEGM_CLEAN) {
856 lfs_gather(fs, sp, vp, lfs_match_fake);
857 /*
858 * For a file being flushed, we need to write *all* blocks.
859 * This means writing the cleaning blocks first, and then
860 * immediately following with any non-cleaning blocks.
861 * The same is true of the Ifile since checkpoints assume
862 * that all valid Ifile blocks are written.
863 */
864 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
865 lfs_gather(fs, sp, vp, lfs_match_data);
866 /*
867 * Don't call VOP_PUTPAGES: if we're flushing,
868 * we've already done it, and the Ifile doesn't
869 * use the page cache.
870 */
871 }
872 } else {
873 lfs_gather(fs, sp, vp, lfs_match_data);
874 /*
875 * If we're flushing, we've already called VOP_PUTPAGES
876 * so don't do it again. Otherwise, we want to write
877 * everything we've got.
878 */
879 if (!IS_FLUSHING(fs, vp)) {
880 mutex_enter(&vp->v_interlock);
881 error = VOP_PUTPAGES(vp, 0, 0,
882 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
883 }
884 }
885
886 /*
887 * It may not be necessary to write the meta-data blocks at this point,
888 * as the roll-forward recovery code should be able to reconstruct the
889 * list.
890 *
891 * We have to write them anyway, though, under two conditions: (1) the
892 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
893 * checkpointing.
894 *
895 * BUT if we are cleaning, we might have indirect blocks that refer to
896 * new blocks not being written yet, in addition to fragments being
897 * moved out of a cleaned segment. If that is the case, don't
898 * write the indirect blocks, or the finfo will have a small block
899 * in the middle of it!
900 * XXX in this case isn't the inode size wrong too?
901 */
902 frag = 0;
903 if (sp->seg_flags & SEGM_CLEAN) {
904 for (i = 0; i < NDADDR; i++)
905 if (ip->i_lfs_fragsize[i] > 0 &&
906 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
907 ++frag;
908 }
909 #ifdef DIAGNOSTIC
910 if (frag > 1)
911 panic("lfs_writefile: more than one fragment!");
912 #endif
913 if (IS_FLUSHING(fs, vp) ||
914 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
915 lfs_gather(fs, sp, vp, lfs_match_indir);
916 lfs_gather(fs, sp, vp, lfs_match_dindir);
917 lfs_gather(fs, sp, vp, lfs_match_tindir);
918 }
919 fip = sp->fip;
920 lfs_release_finfo(fs);
921
922 return error;
923 }
924
925 /*
926 * Update segment accounting to reflect this inode's change of address.
927 */
928 static int
929 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
930 {
931 struct buf *bp;
932 daddr_t daddr;
933 IFILE *ifp;
934 SEGUSE *sup;
935 ino_t ino;
936 int redo_ifile, error;
937 u_int32_t sn;
938
939 redo_ifile = 0;
940
941 /*
942 * If updating the ifile, update the super-block. Update the disk
943 * address and access times for this inode in the ifile.
944 */
945 ino = ip->i_number;
946 if (ino == LFS_IFILE_INUM) {
947 daddr = fs->lfs_idaddr;
948 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
949 } else {
950 LFS_IENTRY(ifp, fs, ino, bp);
951 daddr = ifp->if_daddr;
952 ifp->if_daddr = dbtofsb(fs, ndaddr);
953 error = LFS_BWRITE_LOG(bp); /* Ifile */
954 }
955
956 /*
957 * If this is the Ifile and lfs_offset is set to the first block
958 * in the segment, dirty the new segment's accounting block
959 * (XXX should already be dirty?) and tell the caller to do it again.
960 */
961 if (ip->i_number == LFS_IFILE_INUM) {
962 sn = dtosn(fs, fs->lfs_offset);
963 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
964 fs->lfs_offset) {
965 LFS_SEGENTRY(sup, fs, sn, bp);
966 KASSERT(bp->b_oflags & BO_DELWRI);
967 LFS_WRITESEGENTRY(sup, fs, sn, bp);
968 /* fs->lfs_flags |= LFS_IFDIRTY; */
969 redo_ifile |= 1;
970 }
971 }
972
973 /*
974 * The inode's last address should not be in the current partial
975 * segment, except under exceptional circumstances (lfs_writevnodes
976 * had to start over, and in the meantime more blocks were written
977 * to a vnode). Both inodes will be accounted to this segment
978 * in lfs_writeseg so we need to subtract the earlier version
979 * here anyway. The segment count can temporarily dip below
980 * zero here; keep track of how many duplicates we have in
981 * "dupino" so we don't panic below.
982 */
983 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
984 ++sp->ndupino;
985 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
986 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
987 (long long)daddr, sp->ndupino));
988 }
989 /*
990 * Account the inode: it no longer belongs to its former segment,
991 * though it will not belong to the new segment until that segment
992 * is actually written.
993 */
994 if (daddr != LFS_UNUSED_DADDR) {
995 u_int32_t oldsn = dtosn(fs, daddr);
996 #ifdef DIAGNOSTIC
997 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
998 #endif
999 LFS_SEGENTRY(sup, fs, oldsn, bp);
1000 #ifdef DIAGNOSTIC
1001 if (sup->su_nbytes +
1002 sizeof (struct ufs1_dinode) * ndupino
1003 < sizeof (struct ufs1_dinode)) {
1004 printf("lfs_writeinode: negative bytes "
1005 "(segment %" PRIu32 " short by %d, "
1006 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1007 ", daddr=%" PRId64 ", su_nbytes=%u, "
1008 "ndupino=%d)\n",
1009 dtosn(fs, daddr),
1010 (int)sizeof (struct ufs1_dinode) *
1011 (1 - sp->ndupino) - sup->su_nbytes,
1012 oldsn, sp->seg_number, daddr,
1013 (unsigned int)sup->su_nbytes,
1014 sp->ndupino);
1015 panic("lfs_writeinode: negative bytes");
1016 sup->su_nbytes = sizeof (struct ufs1_dinode);
1017 }
1018 #endif
1019 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1020 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1021 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1022 redo_ifile |=
1023 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1024 if (redo_ifile) {
1025 mutex_enter(&lfs_lock);
1026 fs->lfs_flags |= LFS_IFDIRTY;
1027 mutex_exit(&lfs_lock);
1028 /* Don't double-account */
1029 fs->lfs_idaddr = 0x0;
1030 }
1031 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1032 }
1033
1034 return redo_ifile;
1035 }
1036
1037 int
1038 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1039 {
1040 struct buf *bp;
1041 struct ufs1_dinode *cdp;
1042 daddr_t daddr;
1043 int32_t *daddrp; /* XXX ondisk32 */
1044 int i, ndx;
1045 int redo_ifile = 0;
1046 int gotblk = 0;
1047 int count;
1048
1049 ASSERT_SEGLOCK(fs);
1050 if (!(ip->i_flag & IN_ALLMOD))
1051 return (0);
1052
1053 /* Can't write ifile when writer is not set */
1054 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1055 (sp->seg_flags & SEGM_CLEAN));
1056
1057 /*
1058 * If this is the Ifile, see if writing it here will generate a
1059 * temporary misaccounting. If it will, do the accounting and write
1060 * the blocks, postponing the inode write until the accounting is
1061 * solid.
1062 */
1063 count = 0;
1064 while (ip->i_number == LFS_IFILE_INUM) {
1065 int redo = 0;
1066
1067 if (sp->idp == NULL && sp->ibp == NULL &&
1068 (sp->seg_bytes_left < fs->lfs_ibsize ||
1069 sp->sum_bytes_left < sizeof(int32_t))) {
1070 (void) lfs_writeseg(fs, sp);
1071 continue;
1072 }
1073
1074 /* Look for dirty Ifile blocks */
1075 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1076 if (!(bp->b_flags & B_GATHERED)) {
1077 redo = 1;
1078 break;
1079 }
1080 }
1081
1082 if (redo == 0)
1083 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1084 if (redo == 0)
1085 break;
1086
1087 if (sp->idp) {
1088 sp->idp->di_inumber = 0;
1089 sp->idp = NULL;
1090 }
1091 ++count;
1092 if (count > 2)
1093 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1094 lfs_writefile(fs, sp, fs->lfs_ivnode);
1095 }
1096
1097 /* Allocate a new inode block if necessary. */
1098 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1099 sp->ibp == NULL) {
1100 /* Allocate a new segment if necessary. */
1101 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1102 sp->sum_bytes_left < sizeof(int32_t))
1103 (void) lfs_writeseg(fs, sp);
1104
1105 /* Get next inode block. */
1106 daddr = fs->lfs_offset;
1107 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1108 sp->ibp = *sp->cbpp++ =
1109 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1110 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1111 gotblk++;
1112
1113 /* Zero out inode numbers */
1114 for (i = 0; i < INOPB(fs); ++i)
1115 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1116 0;
1117
1118 ++sp->start_bpp;
1119 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1120 /* Set remaining space counters. */
1121 sp->seg_bytes_left -= fs->lfs_ibsize;
1122 sp->sum_bytes_left -= sizeof(int32_t);
1123 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1124 sp->ninodes / INOPB(fs) - 1;
1125 ((int32_t *)(sp->segsum))[ndx] = daddr;
1126 }
1127
1128 /* Check VU_DIROP in case there is a new file with no data blocks */
1129 if (ITOV(ip)->v_uflag & VU_DIROP)
1130 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1131
1132 /* Update the inode times and copy the inode onto the inode page. */
1133 /* XXX kludge --- don't redirty the ifile just to put times on it */
1134 if (ip->i_number != LFS_IFILE_INUM)
1135 LFS_ITIMES(ip, NULL, NULL, NULL);
1136
1137 /*
1138 * If this is the Ifile, and we've already written the Ifile in this
1139 * partial segment, just overwrite it (it's not on disk yet) and
1140 * continue.
1141 *
1142 * XXX we know that the bp that we get the second time around has
1143 * already been gathered.
1144 */
1145 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1146 *(sp->idp) = *ip->i_din.ffs1_din;
1147 ip->i_lfs_osize = ip->i_size;
1148 return 0;
1149 }
1150
1151 bp = sp->ibp;
1152 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1153 *cdp = *ip->i_din.ffs1_din;
1154
1155 /*
1156 * If cleaning, link counts and directory file sizes cannot change,
1157 * since those would be directory operations---even if the file
1158 * we are writing is marked VU_DIROP we should write the old values.
1159 * If we're not cleaning, of course, update the values so we get
1160 * current values the next time we clean.
1161 */
1162 if (sp->seg_flags & SEGM_CLEAN) {
1163 if (ITOV(ip)->v_uflag & VU_DIROP) {
1164 cdp->di_nlink = ip->i_lfs_odnlink;
1165 /* if (ITOV(ip)->v_type == VDIR) */
1166 cdp->di_size = ip->i_lfs_osize;
1167 }
1168 } else {
1169 ip->i_lfs_odnlink = cdp->di_nlink;
1170 ip->i_lfs_osize = ip->i_size;
1171 }
1172
1173
1174 /* We can finish the segment accounting for truncations now */
1175 lfs_finalize_ino_seguse(fs, ip);
1176
1177 /*
1178 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1179 * addresses to disk; possibly change the on-disk record of
1180 * the inode size, either by reverting to the previous size
1181 * (in the case of cleaning) or by verifying the inode's block
1182 * holdings (in the case of files being allocated as they are being
1183 * written).
1184 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1185 * XXX count on disk wrong by the same amount. We should be
1186 * XXX able to "borrow" from lfs_avail and return it after the
1187 * XXX Ifile is written. See also in lfs_writeseg.
1188 */
1189
1190 /* Check file size based on highest allocated block */
1191 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1192 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1193 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1194 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1195 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1196 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1197 }
1198 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1199 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1200 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1201 ip->i_ffs1_blocks, fs->lfs_offset));
1202 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1203 daddrp++) {
1204 if (*daddrp == UNWRITTEN) {
1205 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1206 *daddrp = 0;
1207 }
1208 }
1209 }
1210
1211 #ifdef DIAGNOSTIC
1212 /*
1213 * Check dinode held blocks against dinode size.
1214 * This should be identical to the check in lfs_vget().
1215 */
1216 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1217 i < NDADDR; i++) {
1218 KASSERT(i >= 0);
1219 if ((cdp->di_mode & IFMT) == IFLNK)
1220 continue;
1221 if (((cdp->di_mode & IFMT) == IFBLK ||
1222 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1223 continue;
1224 if (cdp->di_db[i] != 0) {
1225 # ifdef DEBUG
1226 lfs_dump_dinode(cdp);
1227 # endif
1228 panic("writing inconsistent inode");
1229 }
1230 }
1231 #endif /* DIAGNOSTIC */
1232
1233 if (ip->i_flag & IN_CLEANING)
1234 LFS_CLR_UINO(ip, IN_CLEANING);
1235 else {
1236 /* XXX IN_ALLMOD */
1237 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1238 IN_UPDATE | IN_MODIFY);
1239 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1240 LFS_CLR_UINO(ip, IN_MODIFIED);
1241 else {
1242 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1243 "blks=%d, eff=%d\n", ip->i_number,
1244 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1245 }
1246 }
1247
1248 if (ip->i_number == LFS_IFILE_INUM) {
1249 /* We know sp->idp == NULL */
1250 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1251 (sp->ninodes % INOPB(fs));
1252
1253 /* Not dirty any more */
1254 mutex_enter(&lfs_lock);
1255 fs->lfs_flags &= ~LFS_IFDIRTY;
1256 mutex_exit(&lfs_lock);
1257 }
1258
1259 if (gotblk) {
1260 mutex_enter(&bufcache_lock);
1261 LFS_LOCK_BUF(bp);
1262 brelsel(bp, 0);
1263 mutex_exit(&bufcache_lock);
1264 }
1265
1266 /* Increment inode count in segment summary block. */
1267 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1268
1269 /* If this page is full, set flag to allocate a new page. */
1270 if (++sp->ninodes % INOPB(fs) == 0)
1271 sp->ibp = NULL;
1272
1273 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1274
1275 KASSERT(redo_ifile == 0);
1276 return (redo_ifile);
1277 }
1278
1279 int
1280 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1281 {
1282 struct lfs *fs;
1283 int vers;
1284 int j, blksinblk;
1285
1286 ASSERT_SEGLOCK(sp->fs);
1287 /*
1288 * If full, finish this segment. We may be doing I/O, so
1289 * release and reacquire the splbio().
1290 */
1291 #ifdef DIAGNOSTIC
1292 if (sp->vp == NULL)
1293 panic ("lfs_gatherblock: Null vp in segment");
1294 #endif
1295 fs = sp->fs;
1296 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1297 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1298 sp->seg_bytes_left < bp->b_bcount) {
1299 if (mptr)
1300 mutex_exit(mptr);
1301 lfs_updatemeta(sp);
1302
1303 vers = sp->fip->fi_version;
1304 (void) lfs_writeseg(fs, sp);
1305
1306 /* Add the current file to the segment summary. */
1307 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1308
1309 if (mptr)
1310 mutex_enter(mptr);
1311 return (1);
1312 }
1313
1314 if (bp->b_flags & B_GATHERED) {
1315 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1316 " lbn %" PRId64 "\n",
1317 sp->fip->fi_ino, bp->b_lblkno));
1318 return (0);
1319 }
1320
1321 /* Insert into the buffer list, update the FINFO block. */
1322 bp->b_flags |= B_GATHERED;
1323
1324 *sp->cbpp++ = bp;
1325 for (j = 0; j < blksinblk; j++) {
1326 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1327 /* This block's accounting moves from lfs_favail to lfs_avail */
1328 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1329 }
1330
1331 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1332 sp->seg_bytes_left -= bp->b_bcount;
1333 return (0);
1334 }
1335
1336 int
1337 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1338 int (*match)(struct lfs *, struct buf *))
1339 {
1340 struct buf *bp, *nbp;
1341 int count = 0;
1342
1343 ASSERT_SEGLOCK(fs);
1344 if (vp->v_type == VBLK)
1345 return 0;
1346 KASSERT(sp->vp == NULL);
1347 sp->vp = vp;
1348 mutex_enter(&bufcache_lock);
1349
1350 #ifndef LFS_NO_BACKBUF_HACK
1351 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1352 # define BUF_OFFSET \
1353 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1354 # define BACK_BUF(BP) \
1355 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1356 # define BEG_OF_LIST \
1357 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1358
1359 loop:
1360 /* Find last buffer. */
1361 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1362 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1363 bp = LIST_NEXT(bp, b_vnbufs))
1364 /* nothing */;
1365 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1366 nbp = BACK_BUF(bp);
1367 #else /* LFS_NO_BACKBUF_HACK */
1368 loop:
1369 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1370 nbp = LIST_NEXT(bp, b_vnbufs);
1371 #endif /* LFS_NO_BACKBUF_HACK */
1372 if ((bp->b_cflags & BC_BUSY) != 0 ||
1373 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1374 #ifdef DEBUG
1375 if (vp == fs->lfs_ivnode &&
1376 (bp->b_cflags & BC_BUSY) != 0 &&
1377 (bp->b_flags & B_GATHERED) == 0)
1378 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1379 PRId64 " busy (%x) at 0x%x",
1380 bp->b_lblkno, bp->b_flags,
1381 (unsigned)fs->lfs_offset);
1382 #endif
1383 continue;
1384 }
1385 #ifdef DIAGNOSTIC
1386 # ifdef LFS_USE_B_INVAL
1387 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1388 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1389 " is BC_INVAL\n", bp->b_lblkno));
1390 VOP_PRINT(bp->b_vp);
1391 }
1392 # endif /* LFS_USE_B_INVAL */
1393 if (!(bp->b_oflags & BO_DELWRI))
1394 panic("lfs_gather: bp not BO_DELWRI");
1395 if (!(bp->b_cflags & BC_LOCKED)) {
1396 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1397 " blk %" PRId64 " not BC_LOCKED\n",
1398 bp->b_lblkno,
1399 dbtofsb(fs, bp->b_blkno)));
1400 VOP_PRINT(bp->b_vp);
1401 panic("lfs_gather: bp not BC_LOCKED");
1402 }
1403 #endif
1404 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1405 goto loop;
1406 }
1407 count++;
1408 }
1409 mutex_exit(&bufcache_lock);
1410 lfs_updatemeta(sp);
1411 KASSERT(sp->vp == vp);
1412 sp->vp = NULL;
1413 return count;
1414 }
1415
1416 #if DEBUG
1417 # define DEBUG_OOFF(n) do { \
1418 if (ooff == 0) { \
1419 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1420 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1421 ", was 0x0 (or %" PRId64 ")\n", \
1422 (n), ip->i_number, lbn, ndaddr, daddr)); \
1423 } \
1424 } while (0)
1425 #else
1426 # define DEBUG_OOFF(n)
1427 #endif
1428
1429 /*
1430 * Change the given block's address to ndaddr, finding its previous
1431 * location using ufs_bmaparray().
1432 *
1433 * Account for this change in the segment table.
1434 *
1435 * called with sp == NULL by roll-forwarding code.
1436 */
1437 void
1438 lfs_update_single(struct lfs *fs, struct segment *sp,
1439 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1440 {
1441 SEGUSE *sup;
1442 struct buf *bp;
1443 struct indir a[NIADDR + 2], *ap;
1444 struct inode *ip;
1445 daddr_t daddr, ooff;
1446 int num, error;
1447 int bb, osize, obb;
1448
1449 ASSERT_SEGLOCK(fs);
1450 KASSERT(sp == NULL || sp->vp == vp);
1451 ip = VTOI(vp);
1452
1453 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1454 if (error)
1455 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1456
1457 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1458 KASSERT(daddr <= LFS_MAX_DADDR);
1459 if (daddr > 0)
1460 daddr = dbtofsb(fs, daddr);
1461
1462 bb = fragstofsb(fs, numfrags(fs, size));
1463 switch (num) {
1464 case 0:
1465 ooff = ip->i_ffs1_db[lbn];
1466 DEBUG_OOFF(0);
1467 if (ooff == UNWRITTEN)
1468 ip->i_ffs1_blocks += bb;
1469 else {
1470 /* possible fragment truncation or extension */
1471 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1472 ip->i_ffs1_blocks += (bb - obb);
1473 }
1474 ip->i_ffs1_db[lbn] = ndaddr;
1475 break;
1476 case 1:
1477 ooff = ip->i_ffs1_ib[a[0].in_off];
1478 DEBUG_OOFF(1);
1479 if (ooff == UNWRITTEN)
1480 ip->i_ffs1_blocks += bb;
1481 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1482 break;
1483 default:
1484 ap = &a[num - 1];
1485 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1486 panic("lfs_updatemeta: bread bno %" PRId64,
1487 ap->in_lbn);
1488
1489 /* XXX ondisk32 */
1490 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1491 DEBUG_OOFF(num);
1492 if (ooff == UNWRITTEN)
1493 ip->i_ffs1_blocks += bb;
1494 /* XXX ondisk32 */
1495 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1496 (void) VOP_BWRITE(bp);
1497 }
1498
1499 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1500
1501 /* Update hiblk when extending the file */
1502 if (lbn > ip->i_lfs_hiblk)
1503 ip->i_lfs_hiblk = lbn;
1504
1505 /*
1506 * Though we'd rather it couldn't, this *can* happen right now
1507 * if cleaning blocks and regular blocks coexist.
1508 */
1509 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1510
1511 /*
1512 * Update segment usage information, based on old size
1513 * and location.
1514 */
1515 if (daddr > 0) {
1516 u_int32_t oldsn = dtosn(fs, daddr);
1517 #ifdef DIAGNOSTIC
1518 int ndupino;
1519
1520 if (sp && sp->seg_number == oldsn) {
1521 ndupino = sp->ndupino;
1522 } else {
1523 ndupino = 0;
1524 }
1525 #endif
1526 KASSERT(oldsn < fs->lfs_nseg);
1527 if (lbn >= 0 && lbn < NDADDR)
1528 osize = ip->i_lfs_fragsize[lbn];
1529 else
1530 osize = fs->lfs_bsize;
1531 LFS_SEGENTRY(sup, fs, oldsn, bp);
1532 #ifdef DIAGNOSTIC
1533 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1534 < osize) {
1535 printf("lfs_updatemeta: negative bytes "
1536 "(segment %" PRIu32 " short by %" PRId64
1537 ")\n", dtosn(fs, daddr),
1538 (int64_t)osize -
1539 (sizeof (struct ufs1_dinode) * ndupino +
1540 sup->su_nbytes));
1541 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1542 ", addr = 0x%" PRIx64 "\n",
1543 (unsigned long long)ip->i_number, lbn, daddr);
1544 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1545 panic("lfs_updatemeta: negative bytes");
1546 sup->su_nbytes = osize -
1547 sizeof (struct ufs1_dinode) * ndupino;
1548 }
1549 #endif
1550 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1551 " db 0x%" PRIx64 "\n",
1552 dtosn(fs, daddr), osize,
1553 ip->i_number, lbn, daddr));
1554 sup->su_nbytes -= osize;
1555 if (!(bp->b_flags & B_GATHERED)) {
1556 mutex_enter(&lfs_lock);
1557 fs->lfs_flags |= LFS_IFDIRTY;
1558 mutex_exit(&lfs_lock);
1559 }
1560 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1561 }
1562 /*
1563 * Now that this block has a new address, and its old
1564 * segment no longer owns it, we can forget about its
1565 * old size.
1566 */
1567 if (lbn >= 0 && lbn < NDADDR)
1568 ip->i_lfs_fragsize[lbn] = size;
1569 }
1570
1571 /*
1572 * Update the metadata that points to the blocks listed in the FINFO
1573 * array.
1574 */
1575 void
1576 lfs_updatemeta(struct segment *sp)
1577 {
1578 struct buf *sbp;
1579 struct lfs *fs;
1580 struct vnode *vp;
1581 daddr_t lbn;
1582 int i, nblocks, num;
1583 int bb;
1584 int bytesleft, size;
1585
1586 ASSERT_SEGLOCK(sp->fs);
1587 vp = sp->vp;
1588 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1589 KASSERT(nblocks >= 0);
1590 KASSERT(vp != NULL);
1591 if (nblocks == 0)
1592 return;
1593
1594 /*
1595 * This count may be high due to oversize blocks from lfs_gop_write.
1596 * Correct for this. (XXX we should be able to keep track of these.)
1597 */
1598 fs = sp->fs;
1599 for (i = 0; i < nblocks; i++) {
1600 if (sp->start_bpp[i] == NULL) {
1601 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1602 nblocks = i;
1603 break;
1604 }
1605 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1606 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1607 nblocks -= num - 1;
1608 }
1609
1610 KASSERT(vp->v_type == VREG ||
1611 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1612 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1613
1614 /*
1615 * Sort the blocks.
1616 *
1617 * We have to sort even if the blocks come from the
1618 * cleaner, because there might be other pending blocks on the
1619 * same inode...and if we don't sort, and there are fragments
1620 * present, blocks may be written in the wrong place.
1621 */
1622 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1623
1624 /*
1625 * Record the length of the last block in case it's a fragment.
1626 * If there are indirect blocks present, they sort last. An
1627 * indirect block will be lfs_bsize and its presence indicates
1628 * that you cannot have fragments.
1629 *
1630 * XXX This last is a lie. A cleaned fragment can coexist with
1631 * XXX a later indirect block. This will continue to be
1632 * XXX true until lfs_markv is fixed to do everything with
1633 * XXX fake blocks (including fake inodes and fake indirect blocks).
1634 */
1635 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1636 fs->lfs_bmask) + 1;
1637
1638 /*
1639 * Assign disk addresses, and update references to the logical
1640 * block and the segment usage information.
1641 */
1642 for (i = nblocks; i--; ++sp->start_bpp) {
1643 sbp = *sp->start_bpp;
1644 lbn = *sp->start_lbp;
1645 KASSERT(sbp->b_lblkno == lbn);
1646
1647 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1648
1649 /*
1650 * If we write a frag in the wrong place, the cleaner won't
1651 * be able to correctly identify its size later, and the
1652 * segment will be uncleanable. (Even worse, it will assume
1653 * that the indirect block that actually ends the list
1654 * is of a smaller size!)
1655 */
1656 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1657 panic("lfs_updatemeta: fragment is not last block");
1658
1659 /*
1660 * For each subblock in this possibly oversized block,
1661 * update its address on disk.
1662 */
1663 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1664 KASSERT(vp == sbp->b_vp);
1665 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1666 bytesleft -= fs->lfs_bsize) {
1667 size = MIN(bytesleft, fs->lfs_bsize);
1668 bb = fragstofsb(fs, numfrags(fs, size));
1669 lbn = *sp->start_lbp++;
1670 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1671 size);
1672 fs->lfs_offset += bb;
1673 }
1674
1675 }
1676
1677 /* This inode has been modified */
1678 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1679 }
1680
1681 /*
1682 * Move lfs_offset to a segment earlier than sn.
1683 */
1684 int
1685 lfs_rewind(struct lfs *fs, int newsn)
1686 {
1687 int sn, osn, isdirty;
1688 struct buf *bp;
1689 SEGUSE *sup;
1690
1691 ASSERT_SEGLOCK(fs);
1692
1693 osn = dtosn(fs, fs->lfs_offset);
1694 if (osn < newsn)
1695 return 0;
1696
1697 /* lfs_avail eats the remaining space in this segment */
1698 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1699
1700 /* Find a low-numbered segment */
1701 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1702 LFS_SEGENTRY(sup, fs, sn, bp);
1703 isdirty = sup->su_flags & SEGUSE_DIRTY;
1704 brelse(bp, 0);
1705
1706 if (!isdirty)
1707 break;
1708 }
1709 if (sn == fs->lfs_nseg)
1710 panic("lfs_rewind: no clean segments");
1711 if (newsn >= 0 && sn >= newsn)
1712 return ENOENT;
1713 fs->lfs_nextseg = sn;
1714 lfs_newseg(fs);
1715 fs->lfs_offset = fs->lfs_curseg;
1716
1717 return 0;
1718 }
1719
1720 /*
1721 * Start a new partial segment.
1722 *
1723 * Return 1 when we entered to a new segment.
1724 * Otherwise, return 0.
1725 */
1726 int
1727 lfs_initseg(struct lfs *fs)
1728 {
1729 struct segment *sp = fs->lfs_sp;
1730 SEGSUM *ssp;
1731 struct buf *sbp; /* buffer for SEGSUM */
1732 int repeat = 0; /* return value */
1733
1734 ASSERT_SEGLOCK(fs);
1735 /* Advance to the next segment. */
1736 if (!LFS_PARTIAL_FITS(fs)) {
1737 SEGUSE *sup;
1738 struct buf *bp;
1739
1740 /* lfs_avail eats the remaining space */
1741 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1742 fs->lfs_curseg);
1743 /* Wake up any cleaning procs waiting on this file system. */
1744 lfs_wakeup_cleaner(fs);
1745 lfs_newseg(fs);
1746 repeat = 1;
1747 fs->lfs_offset = fs->lfs_curseg;
1748
1749 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1750 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1751
1752 /*
1753 * If the segment contains a superblock, update the offset
1754 * and summary address to skip over it.
1755 */
1756 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1757 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1758 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1759 sp->seg_bytes_left -= LFS_SBPAD;
1760 }
1761 brelse(bp, 0);
1762 /* Segment zero could also contain the labelpad */
1763 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1764 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1765 fs->lfs_offset +=
1766 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1767 sp->seg_bytes_left -=
1768 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1769 }
1770 } else {
1771 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1772 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1773 (fs->lfs_offset - fs->lfs_curseg));
1774 }
1775 fs->lfs_lastpseg = fs->lfs_offset;
1776
1777 /* Record first address of this partial segment */
1778 if (sp->seg_flags & SEGM_CLEAN) {
1779 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1780 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1781 /* "1" is the artificial inc in lfs_seglock */
1782 mutex_enter(&lfs_lock);
1783 while (fs->lfs_iocount > 1) {
1784 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1785 "lfs_initseg", 0, &lfs_lock);
1786 }
1787 mutex_exit(&lfs_lock);
1788 fs->lfs_cleanind = 0;
1789 }
1790 }
1791
1792 sp->fs = fs;
1793 sp->ibp = NULL;
1794 sp->idp = NULL;
1795 sp->ninodes = 0;
1796 sp->ndupino = 0;
1797
1798 sp->cbpp = sp->bpp;
1799
1800 /* Get a new buffer for SEGSUM */
1801 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1802 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1803
1804 /* ... and enter it into the buffer list. */
1805 *sp->cbpp = sbp;
1806 sp->cbpp++;
1807 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1808
1809 sp->start_bpp = sp->cbpp;
1810
1811 /* Set point to SEGSUM, initialize it. */
1812 ssp = sp->segsum = sbp->b_data;
1813 memset(ssp, 0, fs->lfs_sumsize);
1814 ssp->ss_next = fs->lfs_nextseg;
1815 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1816 ssp->ss_magic = SS_MAGIC;
1817
1818 /* Set pointer to first FINFO, initialize it. */
1819 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1820 sp->fip->fi_nblocks = 0;
1821 sp->start_lbp = &sp->fip->fi_blocks[0];
1822 sp->fip->fi_lastlength = 0;
1823
1824 sp->seg_bytes_left -= fs->lfs_sumsize;
1825 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1826
1827 return (repeat);
1828 }
1829
1830 /*
1831 * Remove SEGUSE_INVAL from all segments.
1832 */
1833 void
1834 lfs_unset_inval_all(struct lfs *fs)
1835 {
1836 SEGUSE *sup;
1837 struct buf *bp;
1838 int i;
1839
1840 for (i = 0; i < fs->lfs_nseg; i++) {
1841 LFS_SEGENTRY(sup, fs, i, bp);
1842 if (sup->su_flags & SEGUSE_INVAL) {
1843 sup->su_flags &= ~SEGUSE_INVAL;
1844 LFS_WRITESEGENTRY(sup, fs, i, bp);
1845 } else
1846 brelse(bp, 0);
1847 }
1848 }
1849
1850 /*
1851 * Return the next segment to write.
1852 */
1853 void
1854 lfs_newseg(struct lfs *fs)
1855 {
1856 CLEANERINFO *cip;
1857 SEGUSE *sup;
1858 struct buf *bp;
1859 int curseg, isdirty, sn, skip_inval;
1860
1861 ASSERT_SEGLOCK(fs);
1862
1863 /* Honor LFCNWRAPSTOP */
1864 mutex_enter(&lfs_lock);
1865 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1866 if (fs->lfs_wrappass) {
1867 log(LOG_NOTICE, "%s: wrappass=%d\n",
1868 fs->lfs_fsmnt, fs->lfs_wrappass);
1869 fs->lfs_wrappass = 0;
1870 break;
1871 }
1872 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1873 wakeup(&fs->lfs_nowrap);
1874 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1875 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1876 &lfs_lock);
1877 }
1878 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1879 mutex_exit(&lfs_lock);
1880
1881 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1882 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1883 dtosn(fs, fs->lfs_nextseg)));
1884 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1885 sup->su_nbytes = 0;
1886 sup->su_nsums = 0;
1887 sup->su_ninos = 0;
1888 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1889
1890 LFS_CLEANERINFO(cip, fs, bp);
1891 --cip->clean;
1892 ++cip->dirty;
1893 fs->lfs_nclean = cip->clean;
1894 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1895
1896 fs->lfs_lastseg = fs->lfs_curseg;
1897 fs->lfs_curseg = fs->lfs_nextseg;
1898 skip_inval = 1;
1899 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1900 sn = (sn + 1) % fs->lfs_nseg;
1901
1902 if (sn == curseg) {
1903 if (skip_inval)
1904 skip_inval = 0;
1905 else
1906 panic("lfs_nextseg: no clean segments");
1907 }
1908 LFS_SEGENTRY(sup, fs, sn, bp);
1909 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1910 /* Check SEGUSE_EMPTY as we go along */
1911 if (isdirty && sup->su_nbytes == 0 &&
1912 !(sup->su_flags & SEGUSE_EMPTY))
1913 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1914 else
1915 brelse(bp, 0);
1916
1917 if (!isdirty)
1918 break;
1919 }
1920 if (skip_inval == 0)
1921 lfs_unset_inval_all(fs);
1922
1923 ++fs->lfs_nactive;
1924 fs->lfs_nextseg = sntod(fs, sn);
1925 if (lfs_dostats) {
1926 ++lfs_stats.segsused;
1927 }
1928 }
1929
1930 static struct buf *
1931 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1932 int n)
1933 {
1934 struct lfs_cluster *cl;
1935 struct buf **bpp, *bp;
1936
1937 ASSERT_SEGLOCK(fs);
1938 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1939 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1940 memset(cl, 0, sizeof(*cl));
1941 cl->fs = fs;
1942 cl->bpp = bpp;
1943 cl->bufcount = 0;
1944 cl->bufsize = 0;
1945
1946 /* If this segment is being written synchronously, note that */
1947 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1948 cl->flags |= LFS_CL_SYNC;
1949 cl->seg = fs->lfs_sp;
1950 ++cl->seg->seg_iocount;
1951 }
1952
1953 /* Get an empty buffer header, or maybe one with something on it */
1954 bp = getiobuf(vp, true);
1955 bp->b_dev = NODEV;
1956 bp->b_blkno = bp->b_lblkno = addr;
1957 bp->b_iodone = lfs_cluster_callback;
1958 bp->b_private = cl;
1959
1960 return bp;
1961 }
1962
1963 int
1964 lfs_writeseg(struct lfs *fs, struct segment *sp)
1965 {
1966 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1967 SEGUSE *sup;
1968 SEGSUM *ssp;
1969 int i;
1970 int do_again, nblocks, byteoffset;
1971 size_t el_size;
1972 struct lfs_cluster *cl;
1973 u_short ninos;
1974 struct vnode *devvp;
1975 char *p = NULL;
1976 struct vnode *vp;
1977 int32_t *daddrp; /* XXX ondisk32 */
1978 int changed;
1979 u_int32_t sum;
1980 #ifdef DEBUG
1981 FINFO *fip;
1982 int findex;
1983 #endif
1984
1985 ASSERT_SEGLOCK(fs);
1986
1987 ssp = (SEGSUM *)sp->segsum;
1988
1989 /*
1990 * If there are no buffers other than the segment summary to write,
1991 * don't do anything. If we are the end of a dirop sequence, however,
1992 * write the empty segment summary anyway, to help out the
1993 * roll-forward agent.
1994 */
1995 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1996 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1997 return 0;
1998 }
1999
2000 /* Note if partial segment is being written by the cleaner */
2001 if (sp->seg_flags & SEGM_CLEAN)
2002 ssp->ss_flags |= SS_CLEAN;
2003
2004 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2005
2006 /* Update the segment usage information. */
2007 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2008
2009 /* Loop through all blocks, except the segment summary. */
2010 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2011 if ((*bpp)->b_vp != devvp) {
2012 sup->su_nbytes += (*bpp)->b_bcount;
2013 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2014 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2015 sp->seg_number, (*bpp)->b_bcount,
2016 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2017 (*bpp)->b_blkno));
2018 }
2019 }
2020
2021 #ifdef DEBUG
2022 /* Check for zero-length and zero-version FINFO entries. */
2023 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2024 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2025 KDASSERT(fip->fi_nblocks > 0);
2026 KDASSERT(fip->fi_version > 0);
2027 fip = (FINFO *)((char *)fip + FINFOSIZE +
2028 sizeof(int32_t) * fip->fi_nblocks);
2029 }
2030 #endif /* DEBUG */
2031
2032 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2033 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2034 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2035 ssp->ss_ninos));
2036 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2037 /* sup->su_nbytes += fs->lfs_sumsize; */
2038 if (fs->lfs_version == 1)
2039 sup->su_olastmod = time_second;
2040 else
2041 sup->su_lastmod = time_second;
2042 sup->su_ninos += ninos;
2043 ++sup->su_nsums;
2044 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2045
2046 do_again = !(bp->b_flags & B_GATHERED);
2047 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2048
2049 /*
2050 * Mark blocks B_BUSY, to prevent then from being changed between
2051 * the checksum computation and the actual write.
2052 *
2053 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2054 * there are any, replace them with copies that have UNASSIGNED
2055 * instead.
2056 */
2057 mutex_enter(&bufcache_lock);
2058 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2059 ++bpp;
2060 bp = *bpp;
2061 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2062 bp->b_cflags |= BC_BUSY;
2063 continue;
2064 }
2065
2066 while (bp->b_cflags & BC_BUSY) {
2067 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2068 " data summary corruption for ino %d, lbn %"
2069 PRId64 "\n",
2070 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2071 bp->b_cflags |= BC_WANTED;
2072 cv_wait(&bp->b_busy, &bufcache_lock);
2073 }
2074 bp->b_cflags |= BC_BUSY;
2075 mutex_exit(&bufcache_lock);
2076 unbusybp = NULL;
2077
2078 /*
2079 * Check and replace indirect block UNWRITTEN bogosity.
2080 * XXX See comment in lfs_writefile.
2081 */
2082 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2083 VTOI(bp->b_vp)->i_ffs1_blocks !=
2084 VTOI(bp->b_vp)->i_lfs_effnblks) {
2085 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2086 VTOI(bp->b_vp)->i_number,
2087 VTOI(bp->b_vp)->i_lfs_effnblks,
2088 VTOI(bp->b_vp)->i_ffs1_blocks));
2089 /* Make a copy we'll make changes to */
2090 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2091 bp->b_bcount, LFS_NB_IBLOCK);
2092 newbp->b_blkno = bp->b_blkno;
2093 memcpy(newbp->b_data, bp->b_data,
2094 newbp->b_bcount);
2095
2096 changed = 0;
2097 /* XXX ondisk32 */
2098 for (daddrp = (int32_t *)(newbp->b_data);
2099 daddrp < (int32_t *)((char *)newbp->b_data +
2100 newbp->b_bcount); daddrp++) {
2101 if (*daddrp == UNWRITTEN) {
2102 ++changed;
2103 *daddrp = 0;
2104 }
2105 }
2106 /*
2107 * Get rid of the old buffer. Don't mark it clean,
2108 * though, if it still has dirty data on it.
2109 */
2110 if (changed) {
2111 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2112 " bp = %p newbp = %p\n", changed, bp,
2113 newbp));
2114 *bpp = newbp;
2115 bp->b_flags &= ~B_GATHERED;
2116 bp->b_error = 0;
2117 if (bp->b_iodone != NULL) {
2118 DLOG((DLOG_SEG, "lfs_writeseg: "
2119 "indir bp should not be B_CALL\n"));
2120 biodone(bp);
2121 bp = NULL;
2122 } else {
2123 /* Still on free list, leave it there */
2124 unbusybp = bp;
2125 /*
2126 * We have to re-decrement lfs_avail
2127 * since this block is going to come
2128 * back around to us in the next
2129 * segment.
2130 */
2131 fs->lfs_avail -=
2132 btofsb(fs, bp->b_bcount);
2133 }
2134 } else {
2135 lfs_freebuf(fs, newbp);
2136 }
2137 }
2138 mutex_enter(&bufcache_lock);
2139 if (unbusybp != NULL) {
2140 unbusybp->b_cflags &= ~BC_BUSY;
2141 if (unbusybp->b_cflags & BC_WANTED)
2142 cv_broadcast(&bp->b_busy);
2143 }
2144 }
2145 mutex_exit(&bufcache_lock);
2146
2147 /*
2148 * Compute checksum across data and then across summary; the first
2149 * block (the summary block) is skipped. Set the create time here
2150 * so that it's guaranteed to be later than the inode mod times.
2151 */
2152 sum = 0;
2153 if (fs->lfs_version == 1)
2154 el_size = sizeof(u_long);
2155 else
2156 el_size = sizeof(u_int32_t);
2157 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2158 ++bpp;
2159 /* Loop through gop_write cluster blocks */
2160 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2161 byteoffset += fs->lfs_bsize) {
2162 #ifdef LFS_USE_B_INVAL
2163 if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2164 (*bpp)->b_iodone != NULL) {
2165 if (copyin((void *)(*bpp)->b_saveaddr +
2166 byteoffset, dp, el_size)) {
2167 panic("lfs_writeseg: copyin failed [1]:"
2168 " ino %d blk %" PRId64,
2169 VTOI((*bpp)->b_vp)->i_number,
2170 (*bpp)->b_lblkno);
2171 }
2172 } else
2173 #endif /* LFS_USE_B_INVAL */
2174 {
2175 sum = lfs_cksum_part((char *)
2176 (*bpp)->b_data + byteoffset, el_size, sum);
2177 }
2178 }
2179 }
2180 if (fs->lfs_version == 1)
2181 ssp->ss_ocreate = time_second;
2182 else {
2183 ssp->ss_create = time_second;
2184 ssp->ss_serial = ++fs->lfs_serial;
2185 ssp->ss_ident = fs->lfs_ident;
2186 }
2187 ssp->ss_datasum = lfs_cksum_fold(sum);
2188 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2189 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2190
2191 mutex_enter(&lfs_lock);
2192 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2193 btofsb(fs, fs->lfs_sumsize));
2194 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2195 btofsb(fs, fs->lfs_sumsize));
2196 mutex_exit(&lfs_lock);
2197
2198 /*
2199 * When we simply write the blocks we lose a rotation for every block
2200 * written. To avoid this problem, we cluster the buffers into a
2201 * chunk and write the chunk. MAXPHYS is the largest size I/O
2202 * devices can handle, use that for the size of the chunks.
2203 *
2204 * Blocks that are already clusters (from GOP_WRITE), however, we
2205 * don't bother to copy into other clusters.
2206 */
2207
2208 #define CHUNKSIZE MAXPHYS
2209
2210 if (devvp == NULL)
2211 panic("devvp is NULL");
2212 for (bpp = sp->bpp, i = nblocks; i;) {
2213 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2214 cl = cbp->b_private;
2215
2216 cbp->b_flags |= B_ASYNC;
2217 cbp->b_cflags |= BC_BUSY;
2218 cbp->b_bcount = 0;
2219
2220 #if defined(DEBUG) && defined(DIAGNOSTIC)
2221 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2222 / sizeof(int32_t)) {
2223 panic("lfs_writeseg: real bpp overwrite");
2224 }
2225 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2226 panic("lfs_writeseg: theoretical bpp overwrite");
2227 }
2228 #endif
2229
2230 /*
2231 * Construct the cluster.
2232 */
2233 mutex_enter(&lfs_lock);
2234 ++fs->lfs_iocount;
2235 mutex_exit(&lfs_lock);
2236 while (i && cbp->b_bcount < CHUNKSIZE) {
2237 bp = *bpp;
2238
2239 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2240 break;
2241 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2242 break;
2243
2244 /* Clusters from GOP_WRITE are expedited */
2245 if (bp->b_bcount > fs->lfs_bsize) {
2246 if (cbp->b_bcount > 0)
2247 /* Put in its own buffer */
2248 break;
2249 else {
2250 cbp->b_data = bp->b_data;
2251 }
2252 } else if (cbp->b_bcount == 0) {
2253 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2254 LFS_NB_CLUSTER);
2255 cl->flags |= LFS_CL_MALLOC;
2256 }
2257 #ifdef DIAGNOSTIC
2258 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2259 btodb(bp->b_bcount - 1))) !=
2260 sp->seg_number) {
2261 printf("blk size %d daddr %" PRIx64
2262 " not in seg %d\n",
2263 bp->b_bcount, bp->b_blkno,
2264 sp->seg_number);
2265 panic("segment overwrite");
2266 }
2267 #endif
2268
2269 #ifdef LFS_USE_B_INVAL
2270 /*
2271 * Fake buffers from the cleaner are marked as B_INVAL.
2272 * We need to copy the data from user space rather than
2273 * from the buffer indicated.
2274 * XXX == what do I do on an error?
2275 */
2276 if ((bp->b_cflags & BC_INVAL) != 0 &&
2277 bp->b_iodone != NULL) {
2278 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2279 panic("lfs_writeseg: "
2280 "copyin failed [2]");
2281 } else
2282 #endif /* LFS_USE_B_INVAL */
2283 if (cl->flags & LFS_CL_MALLOC) {
2284 /* copy data into our cluster. */
2285 memcpy(p, bp->b_data, bp->b_bcount);
2286 p += bp->b_bcount;
2287 }
2288
2289 cbp->b_bcount += bp->b_bcount;
2290 cl->bufsize += bp->b_bcount;
2291
2292 bp->b_flags &= ~B_READ;
2293 bp->b_error = 0;
2294 cl->bpp[cl->bufcount++] = bp;
2295
2296 vp = bp->b_vp;
2297 mutex_enter(&bufcache_lock);
2298 mutex_enter(&vp->v_interlock);
2299 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2300 reassignbuf(bp, vp);
2301 vp->v_numoutput++;
2302 mutex_exit(&vp->v_interlock);
2303 mutex_exit(&bufcache_lock);
2304
2305 bpp++;
2306 i--;
2307 }
2308 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2309 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2310 else
2311 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2312 mutex_enter(&devvp->v_interlock);
2313 devvp->v_numoutput++;
2314 mutex_exit(&devvp->v_interlock);
2315 VOP_STRATEGY(devvp, cbp);
2316 curproc->p_stats->p_ru.ru_oublock++;
2317 }
2318
2319 if (lfs_dostats) {
2320 ++lfs_stats.psegwrites;
2321 lfs_stats.blocktot += nblocks - 1;
2322 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2323 ++lfs_stats.psyncwrites;
2324 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2325 ++lfs_stats.pcleanwrites;
2326 lfs_stats.cleanblocks += nblocks - 1;
2327 }
2328 }
2329
2330 return (lfs_initseg(fs) || do_again);
2331 }
2332
2333 void
2334 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2335 {
2336 struct buf *bp;
2337 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2338 int s;
2339
2340 ASSERT_MAYBE_SEGLOCK(fs);
2341 #ifdef DIAGNOSTIC
2342 KASSERT(fs->lfs_magic == LFS_MAGIC);
2343 #endif
2344 /*
2345 * If we can write one superblock while another is in
2346 * progress, we risk not having a complete checkpoint if we crash.
2347 * So, block here if a superblock write is in progress.
2348 */
2349 mutex_enter(&lfs_lock);
2350 s = splbio();
2351 while (fs->lfs_sbactive) {
2352 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2353 &lfs_lock);
2354 }
2355 fs->lfs_sbactive = daddr;
2356 splx(s);
2357 mutex_exit(&lfs_lock);
2358
2359 /* Set timestamp of this version of the superblock */
2360 if (fs->lfs_version == 1)
2361 fs->lfs_otstamp = time_second;
2362 fs->lfs_tstamp = time_second;
2363
2364 /* Checksum the superblock and copy it into a buffer. */
2365 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2366 bp = lfs_newbuf(fs, devvp,
2367 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2368 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2369 LFS_SBPAD - sizeof(struct dlfs));
2370 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2371
2372 bp->b_cflags |= BC_BUSY;
2373 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2374 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2375 bp->b_error = 0;
2376 bp->b_iodone = lfs_supercallback;
2377
2378 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2379 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2380 else
2381 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2382 curproc->p_stats->p_ru.ru_oublock++;
2383
2384 mutex_enter(&devvp->v_interlock);
2385 devvp->v_numoutput++;
2386 mutex_exit(&devvp->v_interlock);
2387
2388 mutex_enter(&lfs_lock);
2389 ++fs->lfs_iocount;
2390 mutex_exit(&lfs_lock);
2391 VOP_STRATEGY(devvp, bp);
2392 }
2393
2394 /*
2395 * Logical block number match routines used when traversing the dirty block
2396 * chain.
2397 */
2398 int
2399 lfs_match_fake(struct lfs *fs, struct buf *bp)
2400 {
2401
2402 ASSERT_SEGLOCK(fs);
2403 return LFS_IS_MALLOC_BUF(bp);
2404 }
2405
2406 #if 0
2407 int
2408 lfs_match_real(struct lfs *fs, struct buf *bp)
2409 {
2410
2411 ASSERT_SEGLOCK(fs);
2412 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2413 }
2414 #endif
2415
2416 int
2417 lfs_match_data(struct lfs *fs, struct buf *bp)
2418 {
2419
2420 ASSERT_SEGLOCK(fs);
2421 return (bp->b_lblkno >= 0);
2422 }
2423
2424 int
2425 lfs_match_indir(struct lfs *fs, struct buf *bp)
2426 {
2427 daddr_t lbn;
2428
2429 ASSERT_SEGLOCK(fs);
2430 lbn = bp->b_lblkno;
2431 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2432 }
2433
2434 int
2435 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2436 {
2437 daddr_t lbn;
2438
2439 ASSERT_SEGLOCK(fs);
2440 lbn = bp->b_lblkno;
2441 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2442 }
2443
2444 int
2445 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2446 {
2447 daddr_t lbn;
2448
2449 ASSERT_SEGLOCK(fs);
2450 lbn = bp->b_lblkno;
2451 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2452 }
2453
2454 static void
2455 lfs_free_aiodone(struct buf *bp)
2456 {
2457 struct lfs *fs;
2458
2459 KERNEL_LOCK(1, curlwp);
2460 fs = bp->b_private;
2461 ASSERT_NO_SEGLOCK(fs);
2462 lfs_freebuf(fs, bp);
2463 KERNEL_UNLOCK_LAST(curlwp);
2464 }
2465
2466 static void
2467 lfs_super_aiodone(struct buf *bp)
2468 {
2469 struct lfs *fs;
2470
2471 KERNEL_LOCK(1, curlwp);
2472 fs = bp->b_private;
2473 ASSERT_NO_SEGLOCK(fs);
2474 mutex_enter(&lfs_lock);
2475 fs->lfs_sbactive = 0;
2476 if (--fs->lfs_iocount <= 1)
2477 wakeup(&fs->lfs_iocount);
2478 wakeup(&fs->lfs_sbactive);
2479 mutex_exit(&lfs_lock);
2480 lfs_freebuf(fs, bp);
2481 KERNEL_UNLOCK_LAST(curlwp);
2482 }
2483
2484 static void
2485 lfs_cluster_aiodone(struct buf *bp)
2486 {
2487 struct lfs_cluster *cl;
2488 struct lfs *fs;
2489 struct buf *tbp, *fbp;
2490 struct vnode *vp, *devvp, *ovp;
2491 struct inode *ip;
2492 int error;
2493
2494 KERNEL_LOCK(1, curlwp);
2495
2496 error = bp->b_error;
2497 cl = bp->b_private;
2498 fs = cl->fs;
2499 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2500 ASSERT_NO_SEGLOCK(fs);
2501
2502 /* Put the pages back, and release the buffer */
2503 while (cl->bufcount--) {
2504 tbp = cl->bpp[cl->bufcount];
2505 KASSERT(tbp->b_cflags & BC_BUSY);
2506 if (error) {
2507 tbp->b_error = error;
2508 }
2509
2510 /*
2511 * We're done with tbp. If it has not been re-dirtied since
2512 * the cluster was written, free it. Otherwise, keep it on
2513 * the locked list to be written again.
2514 */
2515 vp = tbp->b_vp;
2516
2517 tbp->b_flags &= ~B_GATHERED;
2518
2519 LFS_BCLEAN_LOG(fs, tbp);
2520
2521 mutex_enter(&bufcache_lock);
2522 if (tbp->b_iodone == NULL) {
2523 KASSERT(tbp->b_cflags & BC_LOCKED);
2524 bremfree(tbp);
2525 if (vp) {
2526 mutex_enter(&vp->v_interlock);
2527 reassignbuf(tbp, vp);
2528 mutex_exit(&vp->v_interlock);
2529 }
2530 tbp->b_flags |= B_ASYNC; /* for biodone */
2531 }
2532
2533 if (((tbp->b_cflags | tbp->b_oflags) &
2534 (BC_LOCKED | BO_DELWRI)) == BC_LOCKED)
2535 LFS_UNLOCK_BUF(tbp);
2536
2537 if (tbp->b_oflags & BO_DONE) {
2538 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2539 cl->bufcount, (long)tbp->b_flags));
2540 }
2541
2542 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2543 /*
2544 * A buffer from the page daemon.
2545 * We use the same iodone as it does,
2546 * so we must manually disassociate its
2547 * buffers from the vp.
2548 */
2549 if ((ovp = tbp->b_vp) != NULL) {
2550 /* This is just silly */
2551 mutex_enter(&ovp->v_interlock);
2552 brelvp(tbp);
2553 mutex_exit(&ovp->v_interlock);
2554 tbp->b_vp = vp;
2555 tbp->b_objlock = &vp->v_interlock;
2556 }
2557 /* Put it back the way it was */
2558 tbp->b_flags |= B_ASYNC;
2559 /* Master buffers have BC_AGE */
2560 if (tbp->b_private == tbp)
2561 tbp->b_flags |= BC_AGE;
2562 }
2563 mutex_exit(&bufcache_lock);
2564
2565 biodone(tbp);
2566
2567 /*
2568 * If this is the last block for this vnode, but
2569 * there are other blocks on its dirty list,
2570 * set IN_MODIFIED/IN_CLEANING depending on what
2571 * sort of block. Only do this for our mount point,
2572 * not for, e.g., inode blocks that are attached to
2573 * the devvp.
2574 * XXX KS - Shouldn't we set *both* if both types
2575 * of blocks are present (traverse the dirty list?)
2576 */
2577 mutex_enter(&lfs_lock);
2578 mutex_enter(&vp->v_interlock);
2579 if (vp != devvp && vp->v_numoutput == 0 &&
2580 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2581 ip = VTOI(vp);
2582 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2583 ip->i_number));
2584 if (LFS_IS_MALLOC_BUF(fbp))
2585 LFS_SET_UINO(ip, IN_CLEANING);
2586 else
2587 LFS_SET_UINO(ip, IN_MODIFIED);
2588 }
2589 cv_broadcast(&vp->v_cv);
2590 mutex_exit(&vp->v_interlock);
2591 mutex_exit(&lfs_lock);
2592 }
2593
2594 /* Fix up the cluster buffer, and release it */
2595 if (cl->flags & LFS_CL_MALLOC)
2596 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2597 putiobuf(bp);
2598
2599 /* Note i/o done */
2600 if (cl->flags & LFS_CL_SYNC) {
2601 if (--cl->seg->seg_iocount == 0)
2602 wakeup(&cl->seg->seg_iocount);
2603 }
2604 mutex_enter(&lfs_lock);
2605 #ifdef DIAGNOSTIC
2606 if (fs->lfs_iocount == 0)
2607 panic("lfs_cluster_aiodone: zero iocount");
2608 #endif
2609 if (--fs->lfs_iocount <= 1)
2610 wakeup(&fs->lfs_iocount);
2611 mutex_exit(&lfs_lock);
2612
2613 KERNEL_UNLOCK_LAST(curlwp);
2614
2615 pool_put(&fs->lfs_bpppool, cl->bpp);
2616 cl->bpp = NULL;
2617 pool_put(&fs->lfs_clpool, cl);
2618 }
2619
2620 static void
2621 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2622 {
2623 /* reset b_iodone for when this is a single-buf i/o. */
2624 bp->b_iodone = aiodone;
2625
2626 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2627 }
2628
2629 static void
2630 lfs_cluster_callback(struct buf *bp)
2631 {
2632
2633 lfs_generic_callback(bp, lfs_cluster_aiodone);
2634 }
2635
2636 void
2637 lfs_supercallback(struct buf *bp)
2638 {
2639
2640 lfs_generic_callback(bp, lfs_super_aiodone);
2641 }
2642
2643 /*
2644 * The only buffers that are going to hit these functions are the
2645 * segment write blocks, or the segment summaries, or the superblocks.
2646 *
2647 * All of the above are created by lfs_newbuf, and so do not need to be
2648 * released via brelse.
2649 */
2650 void
2651 lfs_callback(struct buf *bp)
2652 {
2653
2654 lfs_generic_callback(bp, lfs_free_aiodone);
2655 }
2656
2657 /*
2658 * Shellsort (diminishing increment sort) from Data Structures and
2659 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2660 * see also Knuth Vol. 3, page 84. The increments are selected from
2661 * formula (8), page 95. Roughly O(N^3/2).
2662 */
2663 /*
2664 * This is our own private copy of shellsort because we want to sort
2665 * two parallel arrays (the array of buffer pointers and the array of
2666 * logical block numbers) simultaneously. Note that we cast the array
2667 * of logical block numbers to a unsigned in this routine so that the
2668 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2669 */
2670
2671 void
2672 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2673 {
2674 static int __rsshell_increments[] = { 4, 1, 0 };
2675 int incr, *incrp, t1, t2;
2676 struct buf *bp_temp;
2677
2678 #ifdef DEBUG
2679 incr = 0;
2680 for (t1 = 0; t1 < nmemb; t1++) {
2681 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2682 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2683 /* dump before panic */
2684 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2685 nmemb, size);
2686 incr = 0;
2687 for (t1 = 0; t1 < nmemb; t1++) {
2688 const struct buf *bp = bp_array[t1];
2689
2690 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2691 PRIu64 "\n", t1,
2692 (uint64_t)bp->b_bcount,
2693 (uint64_t)bp->b_lblkno);
2694 printf("lbns:");
2695 for (t2 = 0; t2 * size < bp->b_bcount;
2696 t2++) {
2697 printf(" %" PRId32,
2698 lb_array[incr++]);
2699 }
2700 printf("\n");
2701 }
2702 panic("lfs_shellsort: inconsistent input");
2703 }
2704 }
2705 }
2706 #endif
2707
2708 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2709 for (t1 = incr; t1 < nmemb; ++t1)
2710 for (t2 = t1 - incr; t2 >= 0;)
2711 if ((u_int32_t)bp_array[t2]->b_lblkno >
2712 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2713 bp_temp = bp_array[t2];
2714 bp_array[t2] = bp_array[t2 + incr];
2715 bp_array[t2 + incr] = bp_temp;
2716 t2 -= incr;
2717 } else
2718 break;
2719
2720 /* Reform the list of logical blocks */
2721 incr = 0;
2722 for (t1 = 0; t1 < nmemb; t1++) {
2723 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2724 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2725 }
2726 }
2727 }
2728
2729 /*
2730 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2731 * however, we must press on. Just fake success in that case.
2732 */
2733 int
2734 lfs_vref(struct vnode *vp)
2735 {
2736 int error;
2737 struct lfs *fs;
2738
2739 KASSERT(mutex_owned(&vp->v_interlock));
2740
2741 fs = VTOI(vp)->i_lfs;
2742
2743 ASSERT_MAYBE_SEGLOCK(fs);
2744
2745 /*
2746 * If we return 1 here during a flush, we risk vinvalbuf() not
2747 * being able to flush all of the pages from this vnode, which
2748 * will cause it to panic. So, return 0 if a flush is in progress.
2749 */
2750 error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
2751 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2752 ++fs->lfs_flushvp_fakevref;
2753 return 0;
2754 }
2755 return error;
2756 }
2757
2758 /*
2759 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2760 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2761 */
2762 void
2763 lfs_vunref(struct vnode *vp)
2764 {
2765 struct lfs *fs;
2766
2767 fs = VTOI(vp)->i_lfs;
2768 ASSERT_MAYBE_SEGLOCK(fs);
2769
2770 /*
2771 * Analogous to lfs_vref, if the node is flushing, fake it.
2772 */
2773 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2774 --fs->lfs_flushvp_fakevref;
2775 return;
2776 }
2777
2778 /* does not call inactive */
2779 mutex_enter(&vp->v_interlock);
2780 vrelel(vp, VRELEL_NOINACTIVE);
2781 }
2782
2783 /*
2784 * We use this when we have vnodes that were loaded in solely for cleaning.
2785 * There is no reason to believe that these vnodes will be referenced again
2786 * soon, since the cleaning process is unrelated to normal filesystem
2787 * activity. Putting cleaned vnodes at the tail of the list has the effect
2788 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2789 * cleaning at the head of the list, instead.
2790 */
2791 void
2792 lfs_vunref_head(struct vnode *vp)
2793 {
2794
2795 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2796
2797 /* does not call inactive, inserts non-held vnode at head of freelist */
2798 mutex_enter(&vp->v_interlock);
2799 vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD);
2800 }
2801
2802
2803 /*
2804 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2805 * point at uninitialized space.
2806 */
2807 void
2808 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2809 {
2810 struct segment *sp = fs->lfs_sp;
2811
2812 KASSERT(vers > 0);
2813
2814 if (sp->seg_bytes_left < fs->lfs_bsize ||
2815 sp->sum_bytes_left < sizeof(struct finfo))
2816 (void) lfs_writeseg(fs, fs->lfs_sp);
2817
2818 sp->sum_bytes_left -= FINFOSIZE;
2819 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2820 sp->fip->fi_nblocks = 0;
2821 sp->fip->fi_ino = ino;
2822 sp->fip->fi_version = vers;
2823 }
2824
2825 /*
2826 * Release the FINFO entry, either clearing out an unused entry or
2827 * advancing us to the next available entry.
2828 */
2829 void
2830 lfs_release_finfo(struct lfs *fs)
2831 {
2832 struct segment *sp = fs->lfs_sp;
2833
2834 if (sp->fip->fi_nblocks != 0) {
2835 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2836 sizeof(int32_t) * sp->fip->fi_nblocks);
2837 sp->start_lbp = &sp->fip->fi_blocks[0];
2838 } else {
2839 sp->sum_bytes_left += FINFOSIZE;
2840 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2841 }
2842 }
2843