Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.21
      1 /*	$NetBSD: lfs_segment.c,v 1.21 1999/03/29 21:51:38 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by the NetBSD
     21  *      Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/namei.h>
     78 #include <sys/kernel.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/file.h>
     81 #include <sys/stat.h>
     82 #include <sys/buf.h>
     83 #include <sys/proc.h>
     84 #include <sys/conf.h>
     85 #include <sys/vnode.h>
     86 #include <sys/malloc.h>
     87 #include <sys/mount.h>
     88 
     89 #include <miscfs/specfs/specdev.h>
     90 #include <miscfs/fifofs/fifo.h>
     91 
     92 #include <ufs/ufs/quota.h>
     93 #include <ufs/ufs/inode.h>
     94 #include <ufs/ufs/dir.h>
     95 #include <ufs/ufs/ufsmount.h>
     96 #include <ufs/ufs/ufs_extern.h>
     97 
     98 #include <ufs/lfs/lfs.h>
     99 #include <ufs/lfs/lfs_extern.h>
    100 
    101 extern int count_lock_queue __P((void));
    102 extern struct simplelock vnode_free_list_slock;		/* XXX */
    103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
    104 
    105 /*
    106  * Determine if it's OK to start a partial in this segment, or if we need
    107  * to go on to a new segment.
    108  */
    109 #define	LFS_PARTIAL_FITS(fs) \
    110 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    111 	1 << (fs)->lfs_fsbtodb)
    112 
    113 void	 lfs_callback __P((struct buf *));
    114 int	 lfs_gather __P((struct lfs *, struct segment *,
    115 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
    116 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
    117 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
    118 int	 lfs_match_fake __P((struct lfs *, struct buf *));
    119 int	 lfs_match_data __P((struct lfs *, struct buf *));
    120 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
    121 int	 lfs_match_indir __P((struct lfs *, struct buf *));
    122 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
    123 void	 lfs_newseg __P((struct lfs *));
    124 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
    125 void	 lfs_supercallback __P((struct buf *));
    126 void	 lfs_updatemeta __P((struct segment *));
    127 int	 lfs_vref __P((struct vnode *));
    128 void	 lfs_vunref __P((struct vnode *));
    129 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
    130 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
    131 int	 lfs_writeseg __P((struct lfs *, struct segment *));
    132 void	 lfs_writesuper __P((struct lfs *, daddr_t));
    133 int	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
    134 	    struct segment *sp, int dirops));
    135 
    136 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    137 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
    138 int	lfs_clean_vnhead = 1;		/* Allow freeing to head of vn list */
    139 
    140 /* Statistics Counters */
    141 int lfs_dostats = 1;
    142 struct lfs_stats lfs_stats;
    143 
    144 /* op values to lfs_writevnodes */
    145 #define	VN_REG	        0
    146 #define	VN_DIROP	1
    147 #define	VN_EMPTY	2
    148 #define VN_CLEAN        3
    149 
    150 #define LFS_MAX_ACTIVE          10
    151 
    152 /*
    153  * XXX KS - Set modification time on the Ifile, so the cleaner can
    154  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    155  * since we don't really need this to be flushed to disk (and in any
    156  * case that wouldn't happen to the Ifile until we checkpoint).
    157  */
    158 void
    159 lfs_imtime(fs)
    160 	struct lfs *fs;
    161 {
    162 	struct timespec ts;
    163 	struct inode *ip;
    164 
    165 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    166 	ip = VTOI(fs->lfs_ivnode);
    167 	ip->i_ffs_mtime = ts.tv_sec;
    168 	ip->i_ffs_mtimensec = ts.tv_nsec;
    169 }
    170 
    171 /*
    172  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    173  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    174  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    175  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    176  */
    177 
    178 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    179 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    180 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    181 
    182 int
    183 lfs_vflush(vp)
    184 	struct vnode *vp;
    185 {
    186 	struct inode *ip;
    187 	struct lfs *fs;
    188 	struct segment *sp;
    189 	int error;
    190 
    191 	if(ip->i_flag & IN_CLEANING) {
    192 #ifdef DEBUG_LFS
    193 		ivndebug(vp,"vflush/in_cleaning");
    194 #endif
    195 		ip->i_flag &= ~IN_CLEANING;
    196 		if(ip->i_flag & IN_MODIFIED) {
    197 			fs->lfs_uinodes--;
    198 		} else
    199 			ip->i_flag |= IN_MODIFIED;
    200 	}
    201 
    202 	/* If the node is being written, wait until that is done */
    203 	if(WRITEINPROG(vp)) {
    204 #ifdef DEBUG_LFS
    205 		ivndebug(vp,"vflush/writeinprog");
    206 #endif
    207 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    208 	}
    209 
    210 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    211 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    212 	lfs_seglock(fs, SEGM_SYNC);
    213 	SET_FLUSHING(fs,vp);
    214 	if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
    215 		error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
    216 		CLR_FLUSHING(fs,vp);
    217 		lfs_segunlock(fs);
    218 		return error;
    219 	}
    220 	sp = fs->lfs_sp;
    221 
    222 	ip = VTOI(vp);
    223 	if (vp->v_dirtyblkhd.lh_first == NULL) {
    224 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    225 	} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    226 #ifdef DEBUG_LFS
    227 		ivndebug(vp,"vflush/clean");
    228 #endif
    229 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    230 	}
    231 	else if(lfs_dostats) {
    232 		if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
    233 			++lfs_stats.vflush_invoked;
    234 #ifdef DEBUG_LFS
    235 		ivndebug(vp,"vflush");
    236 #endif
    237 	}
    238 
    239 #ifdef DIAGNOSTIC
    240 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    241 	if(vp->v_flag & VDIROP) {
    242 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    243 		/* panic("VDIROP being flushed...this can\'t happen"); */
    244 	}
    245 	if(vp->v_usecount<0) {
    246 		printf("usecount=%d\n",vp->v_usecount);
    247 		panic("lfs_vflush: usecount<0");
    248 	}
    249 #endif
    250 
    251 	do {
    252 		do {
    253 			if (vp->v_dirtyblkhd.lh_first != NULL)
    254 				lfs_writefile(fs, sp, vp);
    255 		} while (lfs_writeinode(fs, sp, ip));
    256 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    257 
    258 	if(lfs_dostats) {
    259 		++lfs_stats.nwrites;
    260 		if (sp->seg_flags & SEGM_SYNC)
    261 			++lfs_stats.nsync_writes;
    262 		if (sp->seg_flags & SEGM_CKP)
    263 			++lfs_stats.ncheckpoints;
    264 	}
    265 	lfs_segunlock(fs);
    266 
    267 	CLR_FLUSHING(fs,vp);
    268 	return (0);
    269 }
    270 
    271 #ifdef DEBUG_LFS_VERBOSE
    272 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    273 #else
    274 # define vndebug(vp,str)
    275 #endif
    276 
    277 int
    278 lfs_writevnodes(fs, mp, sp, op)
    279 	struct lfs *fs;
    280 	struct mount *mp;
    281 	struct segment *sp;
    282 	int op;
    283 {
    284 	struct inode *ip;
    285 	struct vnode *vp;
    286 	int inodes_written=0, only_cleaning;
    287 
    288 #ifndef LFS_NO_BACKVP_HACK
    289 	/* BEGIN HACK */
    290 #define	VN_OFFSET	(((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
    291 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    292 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    293 
    294 	/* Find last vnode. */
    295  loop:	for (vp = mp->mnt_vnodelist.lh_first;
    296 	     vp && vp->v_mntvnodes.le_next != NULL;
    297 	     vp = vp->v_mntvnodes.le_next);
    298 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    299 #else
    300 	loop:
    301 	for (vp = mp->mnt_vnodelist.lh_first;
    302 	     vp != NULL;
    303 	     vp = vp->v_mntvnodes.le_next) {
    304 #endif
    305 		/*
    306 		 * If the vnode that we are about to sync is no longer
    307 		 * associated with this mount point, start over.
    308 		 */
    309 		if (vp->v_mount != mp)
    310 			goto loop;
    311 
    312 		ip = VTOI(vp);
    313 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    314 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    315 			vndebug(vp,"dirop");
    316 			continue;
    317 		}
    318 
    319 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
    320 			vndebug(vp,"empty");
    321 			continue;
    322 		}
    323 
    324 		if (vp->v_type == VNON) {
    325 			continue;
    326 		}
    327 
    328 		if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    329 		   && !(ip->i_flag & IN_CLEANING)) {
    330 			vndebug(vp,"cleaning");
    331 			continue;
    332 		}
    333 
    334 		if (lfs_vref(vp)) {
    335 			vndebug(vp,"vref");
    336 			continue;
    337 		}
    338 
    339 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
    340 		if(WRITEINPROG(vp)) {
    341 			lfs_vunref(vp);
    342 #ifdef DEBUG_LFS
    343 			ivndebug(vp,"writevnodes/writeinprog");
    344 #endif
    345 			continue;
    346 		}
    347 #endif
    348 		/*
    349 		 * Write the inode/file if dirty and it's not the
    350 		 * the IFILE.
    351 		 */
    352 		if ((ip->i_flag &
    353 		     (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
    354 		     vp->v_dirtyblkhd.lh_first != NULL))
    355 		{
    356 			only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
    357 
    358 			if(ip->i_number != LFS_IFILE_INUM
    359 			   && vp->v_dirtyblkhd.lh_first != NULL)
    360 			{
    361 				lfs_writefile(fs, sp, vp);
    362 			}
    363 			if(vp->v_dirtyblkhd.lh_first != NULL) {
    364 				if(WRITEINPROG(vp)) {
    365 #ifdef DEBUG_LFS
    366 					ivndebug(vp,"writevnodes/write2");
    367 #endif
    368 				} else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
    369 #ifdef DEBUG_LFS
    370 					printf("<%d>",ip->i_number);
    371 #endif
    372 					ip->i_flag |= IN_MODIFIED;
    373 					++fs->lfs_uinodes;
    374 				}
    375 			}
    376 			(void) lfs_writeinode(fs, sp, ip);
    377 			inodes_written++;
    378 		}
    379 
    380 		if(vp->v_flag & VDIROP) {
    381 			--fs->lfs_dirvcount;
    382 			vp->v_flag &= ~VDIROP;
    383 			wakeup(&fs->lfs_dirvcount);
    384 			lfs_vunref(vp);
    385 		}
    386 
    387 		if(lfs_clean_vnhead && only_cleaning)
    388 			lfs_vunref_head(vp);
    389 		else
    390 			lfs_vunref(vp);
    391 	}
    392 	return inodes_written;
    393 }
    394 
    395 int
    396 lfs_segwrite(mp, flags)
    397 	struct mount *mp;
    398 	int flags;			/* Do a checkpoint. */
    399 {
    400 	struct buf *bp;
    401 	struct inode *ip;
    402 	struct lfs *fs;
    403 	struct segment *sp;
    404 	struct vnode *vp;
    405 	SEGUSE *segusep;
    406 	ufs_daddr_t ibno;
    407 	int do_ckp, error, i;
    408 	int writer_set = 0;
    409 	int need_unlock = 0;
    410 
    411 	fs = VFSTOUFS(mp)->um_lfs;
    412 
    413 	lfs_imtime(fs);
    414 
    415 	/*
    416 	 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
    417 	 * clean segments, wait until cleaner writes.
    418 	 */
    419 	if(!(flags & SEGM_CLEAN)
    420 	   && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    421 	{
    422 		do {
    423 			if (fs->lfs_nclean <= MIN_FREE_SEGS
    424 			    || fs->lfs_avail <= 0)
    425 			{
    426 				wakeup(&lfs_allclean_wakeup);
    427 				wakeup(&fs->lfs_nextseg);
    428 				error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    429 					       "lfs_avail", 0);
    430 				if (error) {
    431 					return (error);
    432 				}
    433 			}
    434 		} while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
    435 	}
    436 
    437 	/*
    438 	 * Allocate a segment structure and enough space to hold pointers to
    439 	 * the maximum possible number of buffers which can be described in a
    440 	 * single summary block.
    441 	 */
    442 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    443 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    444 	sp = fs->lfs_sp;
    445 
    446 	/*
    447 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    448 	 * in which case we have to flush *all* buffers off of this vnode.
    449 	 */
    450 	if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
    451 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    452 	else {
    453 		lfs_writevnodes(fs, mp, sp, VN_REG);
    454 		/*
    455 		 * XXX KS - If we're cleaning, we can't wait for dirops,
    456 		 * because they might be waiting on us.  The downside of this
    457 		 * is that, if we write anything besides cleaning blocks
    458 		 * while cleaning, the checkpoint is not completely
    459 		 * consistent.
    460 		 */
    461 		if(!(sp->seg_flags & SEGM_CLEAN)) {
    462 			while(fs->lfs_dirops)
    463 				if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    464 						"lfs writer", 0)))
    465 				{
    466 					free(sp->bpp, M_SEGMENT);
    467 					free(sp, M_SEGMENT);
    468 					return (error);
    469 				}
    470 			fs->lfs_writer++;
    471 			writer_set=1;
    472 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    473 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * If we are doing a checkpoint, mark everything since the
    479 	 * last checkpoint as no longer ACTIVE.
    480 	 */
    481 	if (do_ckp) {
    482 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    483 		     --ibno >= fs->lfs_cleansz; ) {
    484 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    485 
    486 				panic("lfs_segwrite: ifile read");
    487 			segusep = (SEGUSE *)bp->b_data;
    488 			for (i = fs->lfs_sepb; i--; segusep++)
    489 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    490 
    491 			/* But the current segment is still ACTIVE */
    492 			if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
    493 				((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
    494 			error = VOP_BWRITE(bp);
    495 		}
    496 	}
    497 
    498 	if (do_ckp || fs->lfs_doifile) {
    499 	redo:
    500 		vp = fs->lfs_ivnode;
    501 		/*
    502 		 * Depending on the circumstances of our calling, the ifile
    503 		 * inode might be locked.  If it is, and if it is locked by
    504 		 * us, we should VREF instead of vget here.
    505 		 */
    506 		need_unlock = 0;
    507 		if(VOP_ISLOCKED(vp)
    508 		   && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
    509 			VREF(vp);
    510 		} else {
    511 			while (vget(vp, LK_EXCLUSIVE))
    512 				continue;
    513 			need_unlock = 1;
    514 		}
    515 		ip = VTOI(vp);
    516 		if (vp->v_dirtyblkhd.lh_first != NULL)
    517 			lfs_writefile(fs, sp, vp);
    518 		(void)lfs_writeinode(fs, sp, ip);
    519 
    520 		/* Only vput if we used vget() above. */
    521 		if(need_unlock)
    522 			vput(vp);
    523 		else
    524 			vrele(vp);
    525 
    526 		if (lfs_writeseg(fs, sp) && do_ckp)
    527 			goto redo;
    528 	} else {
    529 		(void) lfs_writeseg(fs, sp);
    530 	}
    531 
    532 	/*
    533 	 * If the I/O count is non-zero, sleep until it reaches zero.
    534 	 * At the moment, the user's process hangs around so we can
    535 	 * sleep.
    536 	 */
    537 	fs->lfs_doifile = 0;
    538 	if(writer_set && --fs->lfs_writer==0)
    539 		wakeup(&fs->lfs_dirops);
    540 
    541 	if(lfs_dostats) {
    542 		++lfs_stats.nwrites;
    543 		if (sp->seg_flags & SEGM_SYNC)
    544 			++lfs_stats.nsync_writes;
    545 		if (sp->seg_flags & SEGM_CKP)
    546 			++lfs_stats.ncheckpoints;
    547 	}
    548 	lfs_segunlock(fs);
    549 	return (0);
    550 }
    551 
    552 /*
    553  * Write the dirty blocks associated with a vnode.
    554  */
    555 void
    556 lfs_writefile(fs, sp, vp)
    557 	struct lfs *fs;
    558 	struct segment *sp;
    559 	struct vnode *vp;
    560 {
    561 	struct buf *bp;
    562 	struct finfo *fip;
    563 	IFILE *ifp;
    564 
    565 
    566 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    567 	    sp->sum_bytes_left < sizeof(struct finfo))
    568 		(void) lfs_writeseg(fs, sp);
    569 
    570 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    571 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    572 
    573 	if(vp->v_flag & VDIROP)
    574 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    575 
    576 	fip = sp->fip;
    577 	fip->fi_nblocks = 0;
    578 	fip->fi_ino = VTOI(vp)->i_number;
    579 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    580 	fip->fi_version = ifp->if_version;
    581 	brelse(bp);
    582 
    583 	/*
    584 	 * It may not be necessary to write the meta-data blocks at this point,
    585 	 * as the roll-forward recovery code should be able to reconstruct the
    586 	 * list.
    587 	 *
    588 	 * We have to write them anyway, though, under two conditions: (1) the
    589 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    590 	 * checkpointing.
    591 	 */
    592 	if((sp->seg_flags & SEGM_CLEAN)
    593 	   && VTOI(vp)->i_number != LFS_IFILE_INUM
    594 	   && !IS_FLUSHING(fs,vp))
    595 	{
    596 		lfs_gather(fs, sp, vp, lfs_match_fake);
    597 	} else
    598 		lfs_gather(fs, sp, vp, lfs_match_data);
    599 
    600 	if(lfs_writeindir
    601 	   || IS_FLUSHING(fs,vp)
    602 	   || (sp->seg_flags & SEGM_CKP))
    603 	{
    604 		lfs_gather(fs, sp, vp, lfs_match_indir);
    605 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    606 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
    607 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    608 /* #endif */
    609 	}
    610 	fip = sp->fip;
    611 	if (fip->fi_nblocks != 0) {
    612 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
    613 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
    614 		sp->start_lbp = &sp->fip->fi_blocks[0];
    615 	} else {
    616 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
    617 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    618 	}
    619 }
    620 
    621 int
    622 lfs_writeinode(fs, sp, ip)
    623 	struct lfs *fs;
    624 	struct segment *sp;
    625 	struct inode *ip;
    626 {
    627 	struct buf *bp, *ibp;
    628 	IFILE *ifp;
    629 	SEGUSE *sup;
    630 	ufs_daddr_t daddr;
    631 	ino_t ino;
    632 	int error, i, ndx;
    633 	int redo_ifile = 0;
    634 	struct timespec ts;
    635 
    636 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
    637 		return(0);
    638 
    639 	/* Allocate a new inode block if necessary. */
    640 	if (sp->ibp == NULL) {
    641 		/* Allocate a new segment if necessary. */
    642 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    643 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    644 			(void) lfs_writeseg(fs, sp);
    645 
    646 		/* Get next inode block. */
    647 		daddr = fs->lfs_offset;
    648 		fs->lfs_offset += fsbtodb(fs, 1);
    649 		sp->ibp = *sp->cbpp++ =
    650 			lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    651 				   fs->lfs_bsize);
    652 		/* Zero out inode numbers */
    653 		for (i = 0; i < INOPB(fs); ++i)
    654 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    655 
    656 		++sp->start_bpp;
    657 		fs->lfs_avail -= fsbtodb(fs, 1);
    658 		/* Set remaining space counters. */
    659 		sp->seg_bytes_left -= fs->lfs_bsize;
    660 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    661 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    662 			sp->ninodes / INOPB(fs) - 1;
    663 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    664 	}
    665 
    666 	/* Update the inode times and copy the inode onto the inode page. */
    667 	if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
    668 		--fs->lfs_uinodes;
    669 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    670 	LFS_ITIMES(ip, &ts, &ts, &ts);
    671 
    672 	if(ip->i_flag & IN_CLEANING)
    673 		ip->i_flag &= ~IN_CLEANING;
    674 	else
    675 		ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
    676 
    677 	bp = sp->ibp;
    678 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
    679 		ip->i_din.ffs_din;
    680 
    681 	/* Increment inode count in segment summary block. */
    682 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    683 
    684 	/* If this page is full, set flag to allocate a new page. */
    685 	if (++sp->ninodes % INOPB(fs) == 0)
    686 		sp->ibp = NULL;
    687 
    688 	/*
    689 	 * If updating the ifile, update the super-block.  Update the disk
    690 	 * address and access times for this inode in the ifile.
    691 	 */
    692 	ino = ip->i_number;
    693 	if (ino == LFS_IFILE_INUM) {
    694 		daddr = fs->lfs_idaddr;
    695 		fs->lfs_idaddr = bp->b_blkno;
    696 	} else {
    697 		LFS_IENTRY(ifp, fs, ino, ibp);
    698 		daddr = ifp->if_daddr;
    699 		ifp->if_daddr = bp->b_blkno;
    700 		error = VOP_BWRITE(ibp);
    701 	}
    702 
    703 	/*
    704 	 * No need to update segment usage if there was no former inode address
    705 	 * or if the last inode address is in the current partial segment.
    706 	 */
    707 	if (daddr != LFS_UNUSED_DADDR &&
    708 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    709 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    710 #ifdef DIAGNOSTIC
    711 		if (sup->su_nbytes < DINODE_SIZE) {
    712 			/* XXX -- Change to a panic. */
    713 			printf("lfs_writeinode: negative bytes (segment %d)\n",
    714 			       datosn(fs, daddr));
    715 			panic("negative bytes");
    716 		}
    717 #endif
    718 		sup->su_nbytes -= DINODE_SIZE;
    719 		redo_ifile =
    720 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    721 		error = VOP_BWRITE(bp);
    722 	}
    723 	return (redo_ifile);
    724 }
    725 
    726 int
    727 lfs_gatherblock(sp, bp, sptr)
    728 	struct segment *sp;
    729 	struct buf *bp;
    730 	int *sptr;
    731 {
    732 	struct lfs *fs;
    733 	int version;
    734 
    735 	/*
    736 	 * If full, finish this segment.  We may be doing I/O, so
    737 	 * release and reacquire the splbio().
    738 	 */
    739 #ifdef DIAGNOSTIC
    740 	if (sp->vp == NULL)
    741 		panic ("lfs_gatherblock: Null vp in segment");
    742 #endif
    743 	fs = sp->fs;
    744 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    745 	    sp->seg_bytes_left < bp->b_bcount) {
    746 		if (sptr)
    747 			splx(*sptr);
    748 		lfs_updatemeta(sp);
    749 
    750 		version = sp->fip->fi_version;
    751 		(void) lfs_writeseg(fs, sp);
    752 
    753 		sp->fip->fi_version = version;
    754 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    755 		/* Add the current file to the segment summary. */
    756 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    757 		sp->sum_bytes_left -=
    758 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
    759 
    760 		if (sptr)
    761 			*sptr = splbio();
    762 		return(1);
    763 	}
    764 
    765 #ifdef DEBUG
    766 	if(bp->b_flags & B_GATHERED) {
    767 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
    768 		       sp->fip->fi_ino, bp->b_lblkno);
    769 		return(0);
    770 	}
    771 #endif
    772 	/* Insert into the buffer list, update the FINFO block. */
    773 	bp->b_flags |= B_GATHERED;
    774 	*sp->cbpp++ = bp;
    775 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    776 
    777 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    778 	sp->seg_bytes_left -= bp->b_bcount;
    779 	return(0);
    780 }
    781 
    782 int
    783 lfs_gather(fs, sp, vp, match)
    784 	struct lfs *fs;
    785 	struct segment *sp;
    786 	struct vnode *vp;
    787 	int (*match) __P((struct lfs *, struct buf *));
    788 {
    789 	struct buf *bp;
    790 	int s, count=0;
    791 
    792 	sp->vp = vp;
    793 	s = splbio();
    794 
    795 #ifndef LFS_NO_BACKBUF_HACK
    796 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    797 #else /* LFS_NO_BACKBUF_HACK */
    798 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    799 # define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
    800 # define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    801 # define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    802 /* Find last buffer. */
    803 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    804 	    bp = bp->b_vnbufs.le_next);
    805 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    806 #endif /* LFS_NO_BACKBUF_HACK */
    807 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
    808 			continue;
    809 #ifdef DIAGNOSTIC
    810 		if (!(bp->b_flags & B_DELWRI))
    811 			panic("lfs_gather: bp not B_DELWRI");
    812 		if (!(bp->b_flags & B_LOCKED))
    813 			panic("lfs_gather: bp not B_LOCKED");
    814 #endif
    815 		count++;
    816 		if (lfs_gatherblock(sp, bp, &s)) {
    817 			goto loop;
    818 		}
    819 	}
    820 	splx(s);
    821 	lfs_updatemeta(sp);
    822 	sp->vp = NULL;
    823 	return count;
    824 }
    825 
    826 /*
    827  * Update the metadata that points to the blocks listed in the FINFO
    828  * array.
    829  */
    830 void
    831 lfs_updatemeta(sp)
    832 	struct segment *sp;
    833 {
    834 	SEGUSE *sup;
    835 	struct buf *bp;
    836 	struct lfs *fs;
    837 	struct vnode *vp;
    838 	struct indir a[NIADDR + 2], *ap;
    839 	struct inode *ip;
    840 	ufs_daddr_t daddr, lbn, off;
    841 	int error, i, nblocks, num;
    842 
    843 	vp = sp->vp;
    844 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    845 	if (nblocks < 0)
    846 		panic("This is a bad thing\n");
    847 	if (vp == NULL || nblocks == 0)
    848 		return;
    849 
    850 	/* Sort the blocks. */
    851 	/*
    852 	 * XXX KS - We have to sort even if the blocks come from the
    853 	 * cleaner, because there might be other pending blocks on the
    854 	 * same inode...and if we don't sort, and there are fragments
    855 	 * present, blocks may be written in the wrong place.
    856 	 */
    857 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
    858 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    859 
    860 	/*
    861 	 * Record the length of the last block in case it's a fragment.
    862 	 * If there are indirect blocks present, they sort last.  An
    863 	 * indirect block will be lfs_bsize and its presence indicates
    864 	 * that you cannot have fragments.
    865 	 */
    866 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    867 
    868 	/*
    869 	 * Assign disk addresses, and update references to the logical
    870 	 * block and the segment usage information.
    871 	 */
    872 	fs = sp->fs;
    873 	for (i = nblocks; i--; ++sp->start_bpp) {
    874 		lbn = *sp->start_lbp++;
    875 
    876 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    877 		if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
    878 			printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
    879 		}
    880 		fs->lfs_offset +=
    881 			fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    882 
    883 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    884 		if (error)
    885 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    886 		ip = VTOI(vp);
    887 		switch (num) {
    888 		case 0:
    889 			ip->i_ffs_db[lbn] = off;
    890 			break;
    891 		case 1:
    892 			ip->i_ffs_ib[a[0].in_off] = off;
    893 			break;
    894 		default:
    895 			ap = &a[num - 1];
    896 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    897 				panic("lfs_updatemeta: bread bno %d",
    898 				      ap->in_lbn);
    899 			/*
    900 			 * Bread may create a new (indirect) block which needs
    901 			 * to get counted for the inode.
    902 			 */
    903 			if (/* bp->b_blkno == -1 && */
    904 			    !(bp->b_flags & (B_DELWRI|B_DONE))) {
    905 				ip->i_ffs_blocks += fsbtodb(fs, 1);
    906 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    907 			}
    908 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    909 			VOP_BWRITE(bp);
    910 		}
    911 		/* Update segment usage information. */
    912 		if (daddr != UNASSIGNED &&
    913 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    914 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    915 #ifdef DIAGNOSTIC
    916 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
    917 				/* XXX -- Change to a panic. */
    918 				printf("lfs_updatemeta: negative bytes (segment %d)\n",
    919 				       datosn(fs, daddr));
    920 				printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
    921 				       bp, bp->b_un.b_addr);
    922 				/* panic ("Negative Bytes"); */
    923 			}
    924 #endif
    925 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
    926 			error = VOP_BWRITE(bp);
    927 		}
    928 	}
    929 }
    930 
    931 /*
    932  * Start a new segment.
    933  */
    934 int
    935 lfs_initseg(fs)
    936 	struct lfs *fs;
    937 {
    938 	struct segment *sp;
    939 	SEGUSE *sup;
    940 	SEGSUM *ssp;
    941 	struct buf *bp;
    942 	int repeat;
    943 
    944 	sp = fs->lfs_sp;
    945 
    946 	repeat = 0;
    947 	/* Advance to the next segment. */
    948 	if (!LFS_PARTIAL_FITS(fs)) {
    949 		/* Wake up any cleaning procs waiting on this file system. */
    950 		wakeup(&lfs_allclean_wakeup);
    951 		wakeup(&fs->lfs_nextseg);
    952 		lfs_newseg(fs);
    953 		repeat = 1;
    954 		fs->lfs_offset = fs->lfs_curseg;
    955 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    956 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    957 		/*
    958 		 * If the segment contains a superblock, update the offset
    959 		 * and summary address to skip over it.
    960 		 */
    961 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    962 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    963 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    964 			sp->seg_bytes_left -= LFS_SBPAD;
    965 		}
    966 		brelse(bp);
    967 	} else {
    968 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    969 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    970 				      (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    971 	}
    972 	fs->lfs_lastpseg = fs->lfs_offset;
    973 
    974 	sp->fs = fs;
    975 	sp->ibp = NULL;
    976 	sp->ninodes = 0;
    977 
    978 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    979 	sp->cbpp = sp->bpp;
    980 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    981 			       fs->lfs_offset, LFS_SUMMARY_SIZE);
    982 	sp->segsum = (*sp->cbpp)->b_data;
    983 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    984 	sp->start_bpp = ++sp->cbpp;
    985 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    986 
    987 	/* Set point to SEGSUM, initialize it. */
    988 	ssp = sp->segsum;
    989 	ssp->ss_next = fs->lfs_nextseg;
    990 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    991 	ssp->ss_magic = SS_MAGIC;
    992 
    993 	/* Set pointer to first FINFO, initialize it. */
    994 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
    995 	sp->fip->fi_nblocks = 0;
    996 	sp->start_lbp = &sp->fip->fi_blocks[0];
    997 	sp->fip->fi_lastlength = 0;
    998 
    999 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
   1000 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
   1001 
   1002 	return(repeat);
   1003 }
   1004 
   1005 /*
   1006  * Return the next segment to write.
   1007  */
   1008 void
   1009 lfs_newseg(fs)
   1010 	struct lfs *fs;
   1011 {
   1012 	CLEANERINFO *cip;
   1013 	SEGUSE *sup;
   1014 	struct buf *bp;
   1015 	int curseg, isdirty, sn;
   1016 
   1017 	LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
   1018 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1019 	sup->su_nbytes = 0;
   1020 	sup->su_nsums = 0;
   1021 	sup->su_ninos = 0;
   1022 	(void) VOP_BWRITE(bp);
   1023 
   1024 	LFS_CLEANERINFO(cip, fs, bp);
   1025 	--cip->clean;
   1026 	++cip->dirty;
   1027 	fs->lfs_nclean = cip->clean;
   1028 	(void) VOP_BWRITE(bp);
   1029 
   1030 	fs->lfs_lastseg = fs->lfs_curseg;
   1031 	fs->lfs_curseg = fs->lfs_nextseg;
   1032 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
   1033 		sn = (sn + 1) % fs->lfs_nseg;
   1034 		if (sn == curseg)
   1035 			panic("lfs_nextseg: no clean segments");
   1036 		LFS_SEGENTRY(sup, fs, sn, bp);
   1037 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1038 		brelse(bp);
   1039 		if (!isdirty)
   1040 			break;
   1041 	}
   1042 
   1043 	++fs->lfs_nactive;
   1044 	fs->lfs_nextseg = sntoda(fs, sn);
   1045 	if(lfs_dostats) {
   1046 		++lfs_stats.segsused;
   1047 	}
   1048 }
   1049 
   1050 int
   1051 lfs_writeseg(fs, sp)
   1052 	struct lfs *fs;
   1053 	struct segment *sp;
   1054 {
   1055 	extern int locked_queue_count;
   1056 	extern long locked_queue_bytes;
   1057 	struct buf **bpp, *bp, *cbp;
   1058 	SEGUSE *sup;
   1059 	SEGSUM *ssp;
   1060 	dev_t i_dev;
   1061 	u_long *datap, *dp;
   1062 	int do_again, i, nblocks, s;
   1063 #ifdef LFS_TRACK_IOS
   1064 	int j;
   1065 #endif
   1066 	int (*strategy)__P((void *));
   1067 	struct vop_strategy_args vop_strategy_a;
   1068 	u_short ninos;
   1069 	struct vnode *devvp;
   1070 	char *p;
   1071 	struct vnode *vn;
   1072 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1073 	static int propeller;
   1074 	char propstring[4] = "-\\|/";
   1075 
   1076 	printf("%c\b",propstring[propeller++]);
   1077 	if(propeller==4)
   1078 		propeller = 0;
   1079 #endif
   1080 
   1081 	/*
   1082 	 * If there are no buffers other than the segment summary to write
   1083 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1084 	 * even if there aren't any buffers, you need to write the superblock.
   1085 	 */
   1086 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1087 		return (0);
   1088 
   1089 #ifdef DEBUG_LFS
   1090 	lfs_check_bpp(fs,sp,__FILE__,__LINE__);
   1091 #endif
   1092 
   1093 	/* Update the segment usage information. */
   1094 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1095 
   1096 	/* Loop through all blocks, except the segment summary. */
   1097 	for (bpp = sp->bpp; ++bpp < sp->cbpp; )
   1098 		sup->su_nbytes += (*bpp)->b_bcount;
   1099 
   1100 	ssp = (SEGSUM *)sp->segsum;
   1101 
   1102 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1103 	/* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
   1104 	sup->su_nbytes += LFS_SUMMARY_SIZE;
   1105 	sup->su_lastmod = time.tv_sec;
   1106 	sup->su_ninos += ninos;
   1107 	++sup->su_nsums;
   1108 
   1109 	do_again = !(bp->b_flags & B_GATHERED);
   1110 	(void)VOP_BWRITE(bp);
   1111 	/*
   1112 	 * Compute checksum across data and then across summary; the first
   1113 	 * block (the summary block) is skipped.  Set the create time here
   1114 	 * so that it's guaranteed to be later than the inode mod times.
   1115 	 *
   1116 	 * XXX
   1117 	 * Fix this to do it inline, instead of malloc/copy.
   1118 	 */
   1119 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
   1120 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1121 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1122 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
   1123 				panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
   1124 		} else {
   1125 			if( !((*bpp)->b_flags & B_CALL) ) {
   1126 				/*
   1127 				 * Before we record data for a checksm,
   1128 				 * make sure the data won't change in between
   1129 				 * the checksum calculation and the write,
   1130 				 * by marking the buffer B_BUSY.  It will
   1131 				 * be freed later by brelse().
   1132 				 */
   1133 			again:
   1134 				s = splbio();
   1135 				if((*bpp)->b_flags & B_BUSY) {
   1136 #ifdef DEBUG
   1137 					printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
   1138 					       VTOI((*bpp)->b_vp)->i_number,
   1139 					       bp->b_lblkno);
   1140 #endif
   1141 					(*bpp)->b_flags |= B_WANTED;
   1142 					tsleep((*bpp), (PRIBIO + 1),
   1143 					       "lfs_writeseg", 0);
   1144 					splx(s);
   1145 					goto again;
   1146 				}
   1147 				(*bpp)->b_flags |= B_BUSY;
   1148 				splx(s);
   1149 			}
   1150 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
   1151 		}
   1152 	}
   1153 	ssp->ss_create = time.tv_sec;
   1154 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
   1155 	ssp->ss_sumsum =
   1156 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
   1157 	free(datap, M_SEGMENT);
   1158 #ifdef DIAGNOSTIC
   1159 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
   1160 		panic("lfs_writeseg: No diskspace for summary");
   1161 #endif
   1162 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
   1163 
   1164 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1165 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1166 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1167 
   1168 	/*
   1169 	 * When we simply write the blocks we lose a rotation for every block
   1170 	 * written.  To avoid this problem, we allocate memory in chunks, copy
   1171 	 * the buffers into the chunk and write the chunk.  CHUNKSIZE is the
   1172 	 * largest size I/O devices can handle.
   1173 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
   1174 	 * and brelse the buffer (which will move them to the LRU list).  Add
   1175 	 * the B_CALL flag to the buffer header so we can count I/O's for the
   1176 	 * checkpoints and so we can release the allocated memory.
   1177 	 *
   1178 	 * XXX
   1179 	 * This should be removed if the new virtual memory system allows us to
   1180 	 * easily make the buffers contiguous in kernel memory and if that's
   1181 	 * fast enough.
   1182 	 */
   1183 
   1184 #define CHUNKSIZE MAXPHYS
   1185 
   1186 	if(devvp==NULL)
   1187 		panic("devvp is NULL");
   1188 	for (bpp = sp->bpp,i = nblocks; i;) {
   1189 		cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
   1190 		cbp->b_dev = i_dev;
   1191 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1192 		cbp->b_bcount = 0;
   1193 
   1194 #ifdef DIAGNOSTIC
   1195 		if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
   1196 			panic("lfs_writeseg: Segment overwrite");
   1197 		}
   1198 #endif
   1199 
   1200 		if(fs->lfs_iocount >= LFS_THROTTLE) {
   1201 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
   1202 		}
   1203 		s = splbio();
   1204 		++fs->lfs_iocount;
   1205 #ifdef LFS_TRACK_IOS
   1206 		for(j=0;j<LFS_THROTTLE;j++) {
   1207 			if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
   1208 				fs->lfs_pending[j] = cbp->b_blkno;
   1209 				break;
   1210 			}
   1211 		}
   1212 #endif /* LFS_TRACK_IOS */
   1213 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
   1214 			bp = *bpp;
   1215 
   1216 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1217 				break;
   1218 
   1219 			/*
   1220 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1221 			 * We need to copy the data from user space rather than
   1222 			 * from the buffer indicated.
   1223 			 * XXX == what do I do on an error?
   1224 			 */
   1225 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1226 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1227 					panic("lfs_writeseg: copyin failed [2]");
   1228 			} else
   1229 				bcopy(bp->b_data, p, bp->b_bcount);
   1230 			p += bp->b_bcount;
   1231 			cbp->b_bcount += bp->b_bcount;
   1232 			if (bp->b_flags & B_LOCKED) {
   1233 				--locked_queue_count;
   1234 				locked_queue_bytes -= bp->b_bufsize;
   1235 			}
   1236 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
   1237 					 B_LOCKED | B_GATHERED);
   1238 			vn = bp->b_vp;
   1239 			if (bp->b_flags & B_CALL) {
   1240 				/* if B_CALL, it was created with newbuf */
   1241 				lfs_freebuf(bp);
   1242 			} else {
   1243 				bremfree(bp);
   1244 				bp->b_flags |= B_DONE;
   1245 				if(vn)
   1246 					reassignbuf(bp, vn);
   1247 				brelse(bp);
   1248 			}
   1249 			if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
   1250 				bp->b_flags &= ~B_NEEDCOMMIT;
   1251 				wakeup(bp);
   1252 			}
   1253 			/* if(vn->v_dirtyblkhd.lh_first == NULL) */
   1254 				wakeup(vn);
   1255 			bpp++;
   1256 		}
   1257 		++cbp->b_vp->v_numoutput;
   1258 		splx(s);
   1259 		/*
   1260 		 * XXXX This is a gross and disgusting hack.  Since these
   1261 		 * buffers are physically addressed, they hang off the
   1262 		 * device vnode (devvp).  As a result, they have no way
   1263 		 * of getting to the LFS superblock or lfs structure to
   1264 		 * keep track of the number of I/O's pending.  So, I am
   1265 		 * going to stuff the fs into the saveaddr field of
   1266 		 * the buffer (yuk).
   1267 		 */
   1268 		cbp->b_saveaddr = (caddr_t)fs;
   1269 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   1270 		vop_strategy_a.a_bp = cbp;
   1271 		(strategy)(&vop_strategy_a);
   1272 	}
   1273 	/*
   1274 	 * XXX
   1275 	 * Vinvalbuf can move locked buffers off the locked queue
   1276 	 * and we have no way of knowing about this.  So, after
   1277 	 * doing a big write, we recalculate how many buffers are
   1278 	 * really still left on the locked queue.
   1279 	 */
   1280 	lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
   1281 	wakeup(&locked_queue_count);
   1282 	if(lfs_dostats) {
   1283 		++lfs_stats.psegwrites;
   1284 		lfs_stats.blocktot += nblocks - 1;
   1285 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1286 			++lfs_stats.psyncwrites;
   1287 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1288 			++lfs_stats.pcleanwrites;
   1289 			lfs_stats.cleanblocks += nblocks - 1;
   1290 		}
   1291 	}
   1292 	return (lfs_initseg(fs) || do_again);
   1293 }
   1294 
   1295 void
   1296 lfs_writesuper(fs, daddr)
   1297 	struct lfs *fs;
   1298 	daddr_t daddr;
   1299 {
   1300 	struct buf *bp;
   1301 	dev_t i_dev;
   1302 	int (*strategy) __P((void *));
   1303 	int s;
   1304 	struct vop_strategy_args vop_strategy_a;
   1305 
   1306 #ifdef LFS_CANNOT_ROLLFW
   1307 	/*
   1308 	 * If we can write one superblock while another is in
   1309 	 * progress, we risk not having a complete checkpoint if we crash.
   1310 	 * So, block here if a superblock write is in progress.
   1311 	 *
   1312 	 * XXX - should be a proper lock, not this hack
   1313 	 */
   1314 	while(fs->lfs_sbactive) {
   1315 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   1316 	}
   1317 	fs->lfs_sbactive = daddr;
   1318 #endif
   1319 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1320 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   1321 
   1322 	/* Set timestamp of this version of the superblock */
   1323 	fs->lfs_tstamp = time.tv_sec;
   1324 
   1325 	/* Checksum the superblock and copy it into a buffer. */
   1326 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1327 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
   1328 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   1329 
   1330 	bp->b_dev = i_dev;
   1331 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   1332 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   1333 	bp->b_iodone = lfs_supercallback;
   1334 	/* XXX KS - same nasty hack as above */
   1335 	bp->b_saveaddr = (caddr_t)fs;
   1336 
   1337 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   1338 	vop_strategy_a.a_bp = bp;
   1339 	s = splbio();
   1340 	++bp->b_vp->v_numoutput;
   1341 	splx(s);
   1342 	(strategy)(&vop_strategy_a);
   1343 }
   1344 
   1345 /*
   1346  * Logical block number match routines used when traversing the dirty block
   1347  * chain.
   1348  */
   1349 int
   1350 lfs_match_fake(fs, bp)
   1351 	struct lfs *fs;
   1352 	struct buf *bp;
   1353 {
   1354 	return (bp->b_flags & B_CALL);
   1355 }
   1356 
   1357 int
   1358 lfs_match_data(fs, bp)
   1359 	struct lfs *fs;
   1360 	struct buf *bp;
   1361 {
   1362 	return (bp->b_lblkno >= 0);
   1363 }
   1364 
   1365 int
   1366 lfs_match_indir(fs, bp)
   1367 	struct lfs *fs;
   1368 	struct buf *bp;
   1369 {
   1370 	int lbn;
   1371 
   1372 	lbn = bp->b_lblkno;
   1373 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1374 }
   1375 
   1376 int
   1377 lfs_match_dindir(fs, bp)
   1378 	struct lfs *fs;
   1379 	struct buf *bp;
   1380 {
   1381 	int lbn;
   1382 
   1383 	lbn = bp->b_lblkno;
   1384 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1385 }
   1386 
   1387 int
   1388 lfs_match_tindir(fs, bp)
   1389 	struct lfs *fs;
   1390 	struct buf *bp;
   1391 {
   1392 	int lbn;
   1393 
   1394 	lbn = bp->b_lblkno;
   1395 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1396 }
   1397 
   1398 /*
   1399  * XXX - The only buffers that are going to hit these functions are the
   1400  * segment write blocks, or the segment summaries, or the superblocks.
   1401  *
   1402  * All of the above are created by lfs_newbuf, and so do not need to be
   1403  * released via brelse.
   1404  */
   1405 void
   1406 lfs_callback(bp)
   1407 	struct buf *bp;
   1408 {
   1409 	struct lfs *fs;
   1410 #ifdef LFS_TRACK_IOS
   1411 	int j;
   1412 #endif
   1413 
   1414 	fs = (struct lfs *)bp->b_saveaddr;
   1415 #ifdef DIAGNOSTIC
   1416 	if (fs->lfs_iocount == 0)
   1417 		panic("lfs_callback: zero iocount\n");
   1418 #endif
   1419 	if (--fs->lfs_iocount < LFS_THROTTLE)
   1420 		wakeup(&fs->lfs_iocount);
   1421 #ifdef LFS_TRACK_IOS
   1422 	for(j=0;j<LFS_THROTTLE;j++) {
   1423 		if(fs->lfs_pending[j]==bp->b_blkno) {
   1424 			fs->lfs_pending[j] = LFS_UNUSED_DADDR;
   1425 			wakeup(&(fs->lfs_pending[j]));
   1426 			break;
   1427 		}
   1428 	}
   1429 #endif /* LFS_TRACK_IOS */
   1430 
   1431 	lfs_freebuf(bp);
   1432 }
   1433 
   1434 void
   1435 lfs_supercallback(bp)
   1436 	struct buf *bp;
   1437 {
   1438 #ifdef LFS_CANNOT_ROLLFW
   1439 	struct lfs *fs;
   1440 
   1441 	fs = (struct lfs *)bp->b_saveaddr;
   1442 	fs->lfs_sbactive=NULL;
   1443 	wakeup(&fs->lfs_sbactive);
   1444 #endif
   1445 	lfs_freebuf(bp);
   1446 }
   1447 
   1448 /*
   1449  * Shellsort (diminishing increment sort) from Data Structures and
   1450  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1451  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1452  * formula (8), page 95.  Roughly O(N^3/2).
   1453  */
   1454 /*
   1455  * This is our own private copy of shellsort because we want to sort
   1456  * two parallel arrays (the array of buffer pointers and the array of
   1457  * logical block numbers) simultaneously.  Note that we cast the array
   1458  * of logical block numbers to a unsigned in this routine so that the
   1459  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1460  */
   1461 
   1462 void
   1463 lfs_shellsort(bp_array, lb_array, nmemb)
   1464 	struct buf **bp_array;
   1465 	ufs_daddr_t *lb_array;
   1466 	register int nmemb;
   1467 {
   1468 	static int __rsshell_increments[] = { 4, 1, 0 };
   1469 	register int incr, *incrp, t1, t2;
   1470 	struct buf *bp_temp;
   1471 	u_long lb_temp;
   1472 
   1473 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1474 		for (t1 = incr; t1 < nmemb; ++t1)
   1475 			for (t2 = t1 - incr; t2 >= 0;)
   1476 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1477 					lb_temp = lb_array[t2];
   1478 					lb_array[t2] = lb_array[t2 + incr];
   1479 					lb_array[t2 + incr] = lb_temp;
   1480 					bp_temp = bp_array[t2];
   1481 					bp_array[t2] = bp_array[t2 + incr];
   1482 					bp_array[t2 + incr] = bp_temp;
   1483 					t2 -= incr;
   1484 				} else
   1485 					break;
   1486 }
   1487 
   1488 /*
   1489  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1490  */
   1491 int
   1492 lfs_vref(vp)
   1493 	register struct vnode *vp;
   1494 {
   1495 	/*
   1496 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   1497 	 * being able to flush all of the pages from this vnode, which
   1498 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   1499 	 */
   1500 	if (vp->v_flag & VXLOCK) {
   1501 		if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1502 			return 0;
   1503 		}
   1504 		return(1);
   1505 	}
   1506 	return (vget(vp, 0));
   1507 }
   1508 
   1509 /*
   1510  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1511  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1512  */
   1513 void
   1514 lfs_vunref(vp)
   1515 	register struct vnode *vp;
   1516 {
   1517 	/*
   1518 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   1519 	 */
   1520 	if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1521 		return;
   1522 	}
   1523 
   1524 	simple_lock(&vp->v_interlock);
   1525 #ifdef DIAGNOSTIC
   1526 	if(vp->v_usecount<=0) {
   1527 		printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
   1528 		printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
   1529 		panic("lfs_vunref: v_usecount<0");
   1530 	}
   1531 #endif
   1532 	vp->v_usecount--;
   1533 	if (vp->v_usecount > 0) {
   1534 		simple_unlock(&vp->v_interlock);
   1535 		return;
   1536 	}
   1537 
   1538 	/*
   1539 	 * insert at tail of LRU list
   1540 	 */
   1541 	simple_lock(&vnode_free_list_slock);
   1542 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1543 	simple_unlock(&vnode_free_list_slock);
   1544 	simple_unlock(&vp->v_interlock);
   1545 }
   1546 
   1547 /*
   1548  * We use this when we have vnodes that were loaded in solely for cleaning.
   1549  * There is no reason to believe that these vnodes will be referenced again
   1550  * soon, since the cleaning process is unrelated to normal filesystem
   1551  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   1552  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   1553  * cleaning at the head of the list, instead.
   1554  */
   1555 void
   1556 lfs_vunref_head(vp)
   1557 	register struct vnode *vp;
   1558 {
   1559 	simple_lock(&vp->v_interlock);
   1560 #ifdef DIAGNOSTIC
   1561 	if(vp->v_usecount==0) {
   1562 		panic("lfs_vunref: v_usecount<0");
   1563 	}
   1564 #endif
   1565 	vp->v_usecount--;
   1566 	if (vp->v_usecount > 0) {
   1567 		simple_unlock(&vp->v_interlock);
   1568 		return;
   1569 	}
   1570 	/*
   1571 	 * insert at head of LRU list
   1572 	 */
   1573 	simple_lock(&vnode_free_list_slock);
   1574 	TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   1575 	simple_unlock(&vnode_free_list_slock);
   1576 	simple_unlock(&vp->v_interlock);
   1577 }
   1578 
   1579