lfs_segment.c revision 1.21 1 /* $NetBSD: lfs_segment.c,v 1.21 1999/03/29 21:51:38 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/namei.h>
78 #include <sys/kernel.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/stat.h>
82 #include <sys/buf.h>
83 #include <sys/proc.h>
84 #include <sys/conf.h>
85 #include <sys/vnode.h>
86 #include <sys/malloc.h>
87 #include <sys/mount.h>
88
89 #include <miscfs/specfs/specdev.h>
90 #include <miscfs/fifofs/fifo.h>
91
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 extern int count_lock_queue __P((void));
102 extern struct simplelock vnode_free_list_slock; /* XXX */
103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 1; /* Allow freeing to head of vn list */
139
140 /* Statistics Counters */
141 int lfs_dostats = 1;
142 struct lfs_stats lfs_stats;
143
144 /* op values to lfs_writevnodes */
145 #define VN_REG 0
146 #define VN_DIROP 1
147 #define VN_EMPTY 2
148 #define VN_CLEAN 3
149
150 #define LFS_MAX_ACTIVE 10
151
152 /*
153 * XXX KS - Set modification time on the Ifile, so the cleaner can
154 * read the fs mod time off of it. We don't set IN_UPDATE here,
155 * since we don't really need this to be flushed to disk (and in any
156 * case that wouldn't happen to the Ifile until we checkpoint).
157 */
158 void
159 lfs_imtime(fs)
160 struct lfs *fs;
161 {
162 struct timespec ts;
163 struct inode *ip;
164
165 TIMEVAL_TO_TIMESPEC(&time, &ts);
166 ip = VTOI(fs->lfs_ivnode);
167 ip->i_ffs_mtime = ts.tv_sec;
168 ip->i_ffs_mtimensec = ts.tv_nsec;
169 }
170
171 /*
172 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
173 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
174 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
175 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
176 */
177
178 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
179 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
180 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
181
182 int
183 lfs_vflush(vp)
184 struct vnode *vp;
185 {
186 struct inode *ip;
187 struct lfs *fs;
188 struct segment *sp;
189 int error;
190
191 if(ip->i_flag & IN_CLEANING) {
192 #ifdef DEBUG_LFS
193 ivndebug(vp,"vflush/in_cleaning");
194 #endif
195 ip->i_flag &= ~IN_CLEANING;
196 if(ip->i_flag & IN_MODIFIED) {
197 fs->lfs_uinodes--;
198 } else
199 ip->i_flag |= IN_MODIFIED;
200 }
201
202 /* If the node is being written, wait until that is done */
203 if(WRITEINPROG(vp)) {
204 #ifdef DEBUG_LFS
205 ivndebug(vp,"vflush/writeinprog");
206 #endif
207 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
208 }
209
210 /* Protect against VXLOCK deadlock in vinvalbuf() */
211 fs = VFSTOUFS(vp->v_mount)->um_lfs;
212 lfs_seglock(fs, SEGM_SYNC);
213 SET_FLUSHING(fs,vp);
214 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
215 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
216 CLR_FLUSHING(fs,vp);
217 lfs_segunlock(fs);
218 return error;
219 }
220 sp = fs->lfs_sp;
221
222 ip = VTOI(vp);
223 if (vp->v_dirtyblkhd.lh_first == NULL) {
224 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
225 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
226 #ifdef DEBUG_LFS
227 ivndebug(vp,"vflush/clean");
228 #endif
229 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
230 }
231 else if(lfs_dostats) {
232 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
233 ++lfs_stats.vflush_invoked;
234 #ifdef DEBUG_LFS
235 ivndebug(vp,"vflush");
236 #endif
237 }
238
239 #ifdef DIAGNOSTIC
240 /* XXX KS This actually can happen right now, though it shouldn't(?) */
241 if(vp->v_flag & VDIROP) {
242 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
243 /* panic("VDIROP being flushed...this can\'t happen"); */
244 }
245 if(vp->v_usecount<0) {
246 printf("usecount=%d\n",vp->v_usecount);
247 panic("lfs_vflush: usecount<0");
248 }
249 #endif
250
251 do {
252 do {
253 if (vp->v_dirtyblkhd.lh_first != NULL)
254 lfs_writefile(fs, sp, vp);
255 } while (lfs_writeinode(fs, sp, ip));
256 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
257
258 if(lfs_dostats) {
259 ++lfs_stats.nwrites;
260 if (sp->seg_flags & SEGM_SYNC)
261 ++lfs_stats.nsync_writes;
262 if (sp->seg_flags & SEGM_CKP)
263 ++lfs_stats.ncheckpoints;
264 }
265 lfs_segunlock(fs);
266
267 CLR_FLUSHING(fs,vp);
268 return (0);
269 }
270
271 #ifdef DEBUG_LFS_VERBOSE
272 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
273 #else
274 # define vndebug(vp,str)
275 #endif
276
277 int
278 lfs_writevnodes(fs, mp, sp, op)
279 struct lfs *fs;
280 struct mount *mp;
281 struct segment *sp;
282 int op;
283 {
284 struct inode *ip;
285 struct vnode *vp;
286 int inodes_written=0, only_cleaning;
287
288 #ifndef LFS_NO_BACKVP_HACK
289 /* BEGIN HACK */
290 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
291 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
292 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
293
294 /* Find last vnode. */
295 loop: for (vp = mp->mnt_vnodelist.lh_first;
296 vp && vp->v_mntvnodes.le_next != NULL;
297 vp = vp->v_mntvnodes.le_next);
298 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
299 #else
300 loop:
301 for (vp = mp->mnt_vnodelist.lh_first;
302 vp != NULL;
303 vp = vp->v_mntvnodes.le_next) {
304 #endif
305 /*
306 * If the vnode that we are about to sync is no longer
307 * associated with this mount point, start over.
308 */
309 if (vp->v_mount != mp)
310 goto loop;
311
312 ip = VTOI(vp);
313 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
314 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
315 vndebug(vp,"dirop");
316 continue;
317 }
318
319 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
320 vndebug(vp,"empty");
321 continue;
322 }
323
324 if (vp->v_type == VNON) {
325 continue;
326 }
327
328 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
329 && !(ip->i_flag & IN_CLEANING)) {
330 vndebug(vp,"cleaning");
331 continue;
332 }
333
334 if (lfs_vref(vp)) {
335 vndebug(vp,"vref");
336 continue;
337 }
338
339 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
340 if(WRITEINPROG(vp)) {
341 lfs_vunref(vp);
342 #ifdef DEBUG_LFS
343 ivndebug(vp,"writevnodes/writeinprog");
344 #endif
345 continue;
346 }
347 #endif
348 /*
349 * Write the inode/file if dirty and it's not the
350 * the IFILE.
351 */
352 if ((ip->i_flag &
353 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
354 vp->v_dirtyblkhd.lh_first != NULL))
355 {
356 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
357
358 if(ip->i_number != LFS_IFILE_INUM
359 && vp->v_dirtyblkhd.lh_first != NULL)
360 {
361 lfs_writefile(fs, sp, vp);
362 }
363 if(vp->v_dirtyblkhd.lh_first != NULL) {
364 if(WRITEINPROG(vp)) {
365 #ifdef DEBUG_LFS
366 ivndebug(vp,"writevnodes/write2");
367 #endif
368 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
369 #ifdef DEBUG_LFS
370 printf("<%d>",ip->i_number);
371 #endif
372 ip->i_flag |= IN_MODIFIED;
373 ++fs->lfs_uinodes;
374 }
375 }
376 (void) lfs_writeinode(fs, sp, ip);
377 inodes_written++;
378 }
379
380 if(vp->v_flag & VDIROP) {
381 --fs->lfs_dirvcount;
382 vp->v_flag &= ~VDIROP;
383 wakeup(&fs->lfs_dirvcount);
384 lfs_vunref(vp);
385 }
386
387 if(lfs_clean_vnhead && only_cleaning)
388 lfs_vunref_head(vp);
389 else
390 lfs_vunref(vp);
391 }
392 return inodes_written;
393 }
394
395 int
396 lfs_segwrite(mp, flags)
397 struct mount *mp;
398 int flags; /* Do a checkpoint. */
399 {
400 struct buf *bp;
401 struct inode *ip;
402 struct lfs *fs;
403 struct segment *sp;
404 struct vnode *vp;
405 SEGUSE *segusep;
406 ufs_daddr_t ibno;
407 int do_ckp, error, i;
408 int writer_set = 0;
409 int need_unlock = 0;
410
411 fs = VFSTOUFS(mp)->um_lfs;
412
413 lfs_imtime(fs);
414
415 /*
416 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
417 * clean segments, wait until cleaner writes.
418 */
419 if(!(flags & SEGM_CLEAN)
420 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
421 {
422 do {
423 if (fs->lfs_nclean <= MIN_FREE_SEGS
424 || fs->lfs_avail <= 0)
425 {
426 wakeup(&lfs_allclean_wakeup);
427 wakeup(&fs->lfs_nextseg);
428 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
429 "lfs_avail", 0);
430 if (error) {
431 return (error);
432 }
433 }
434 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
435 }
436
437 /*
438 * Allocate a segment structure and enough space to hold pointers to
439 * the maximum possible number of buffers which can be described in a
440 * single summary block.
441 */
442 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
443 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
444 sp = fs->lfs_sp;
445
446 /*
447 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
448 * in which case we have to flush *all* buffers off of this vnode.
449 */
450 if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
451 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
452 else {
453 lfs_writevnodes(fs, mp, sp, VN_REG);
454 /*
455 * XXX KS - If we're cleaning, we can't wait for dirops,
456 * because they might be waiting on us. The downside of this
457 * is that, if we write anything besides cleaning blocks
458 * while cleaning, the checkpoint is not completely
459 * consistent.
460 */
461 if(!(sp->seg_flags & SEGM_CLEAN)) {
462 while(fs->lfs_dirops)
463 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
464 "lfs writer", 0)))
465 {
466 free(sp->bpp, M_SEGMENT);
467 free(sp, M_SEGMENT);
468 return (error);
469 }
470 fs->lfs_writer++;
471 writer_set=1;
472 lfs_writevnodes(fs, mp, sp, VN_DIROP);
473 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
474 }
475 }
476
477 /*
478 * If we are doing a checkpoint, mark everything since the
479 * last checkpoint as no longer ACTIVE.
480 */
481 if (do_ckp) {
482 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
483 --ibno >= fs->lfs_cleansz; ) {
484 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
485
486 panic("lfs_segwrite: ifile read");
487 segusep = (SEGUSE *)bp->b_data;
488 for (i = fs->lfs_sepb; i--; segusep++)
489 segusep->su_flags &= ~SEGUSE_ACTIVE;
490
491 /* But the current segment is still ACTIVE */
492 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
493 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
494 error = VOP_BWRITE(bp);
495 }
496 }
497
498 if (do_ckp || fs->lfs_doifile) {
499 redo:
500 vp = fs->lfs_ivnode;
501 /*
502 * Depending on the circumstances of our calling, the ifile
503 * inode might be locked. If it is, and if it is locked by
504 * us, we should VREF instead of vget here.
505 */
506 need_unlock = 0;
507 if(VOP_ISLOCKED(vp)
508 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
509 VREF(vp);
510 } else {
511 while (vget(vp, LK_EXCLUSIVE))
512 continue;
513 need_unlock = 1;
514 }
515 ip = VTOI(vp);
516 if (vp->v_dirtyblkhd.lh_first != NULL)
517 lfs_writefile(fs, sp, vp);
518 (void)lfs_writeinode(fs, sp, ip);
519
520 /* Only vput if we used vget() above. */
521 if(need_unlock)
522 vput(vp);
523 else
524 vrele(vp);
525
526 if (lfs_writeseg(fs, sp) && do_ckp)
527 goto redo;
528 } else {
529 (void) lfs_writeseg(fs, sp);
530 }
531
532 /*
533 * If the I/O count is non-zero, sleep until it reaches zero.
534 * At the moment, the user's process hangs around so we can
535 * sleep.
536 */
537 fs->lfs_doifile = 0;
538 if(writer_set && --fs->lfs_writer==0)
539 wakeup(&fs->lfs_dirops);
540
541 if(lfs_dostats) {
542 ++lfs_stats.nwrites;
543 if (sp->seg_flags & SEGM_SYNC)
544 ++lfs_stats.nsync_writes;
545 if (sp->seg_flags & SEGM_CKP)
546 ++lfs_stats.ncheckpoints;
547 }
548 lfs_segunlock(fs);
549 return (0);
550 }
551
552 /*
553 * Write the dirty blocks associated with a vnode.
554 */
555 void
556 lfs_writefile(fs, sp, vp)
557 struct lfs *fs;
558 struct segment *sp;
559 struct vnode *vp;
560 {
561 struct buf *bp;
562 struct finfo *fip;
563 IFILE *ifp;
564
565
566 if (sp->seg_bytes_left < fs->lfs_bsize ||
567 sp->sum_bytes_left < sizeof(struct finfo))
568 (void) lfs_writeseg(fs, sp);
569
570 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
571 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
572
573 if(vp->v_flag & VDIROP)
574 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
575
576 fip = sp->fip;
577 fip->fi_nblocks = 0;
578 fip->fi_ino = VTOI(vp)->i_number;
579 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
580 fip->fi_version = ifp->if_version;
581 brelse(bp);
582
583 /*
584 * It may not be necessary to write the meta-data blocks at this point,
585 * as the roll-forward recovery code should be able to reconstruct the
586 * list.
587 *
588 * We have to write them anyway, though, under two conditions: (1) the
589 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
590 * checkpointing.
591 */
592 if((sp->seg_flags & SEGM_CLEAN)
593 && VTOI(vp)->i_number != LFS_IFILE_INUM
594 && !IS_FLUSHING(fs,vp))
595 {
596 lfs_gather(fs, sp, vp, lfs_match_fake);
597 } else
598 lfs_gather(fs, sp, vp, lfs_match_data);
599
600 if(lfs_writeindir
601 || IS_FLUSHING(fs,vp)
602 || (sp->seg_flags & SEGM_CKP))
603 {
604 lfs_gather(fs, sp, vp, lfs_match_indir);
605 lfs_gather(fs, sp, vp, lfs_match_dindir);
606 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
607 lfs_gather(fs, sp, vp, lfs_match_tindir);
608 /* #endif */
609 }
610 fip = sp->fip;
611 if (fip->fi_nblocks != 0) {
612 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
613 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
614 sp->start_lbp = &sp->fip->fi_blocks[0];
615 } else {
616 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
617 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
618 }
619 }
620
621 int
622 lfs_writeinode(fs, sp, ip)
623 struct lfs *fs;
624 struct segment *sp;
625 struct inode *ip;
626 {
627 struct buf *bp, *ibp;
628 IFILE *ifp;
629 SEGUSE *sup;
630 ufs_daddr_t daddr;
631 ino_t ino;
632 int error, i, ndx;
633 int redo_ifile = 0;
634 struct timespec ts;
635
636 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
637 return(0);
638
639 /* Allocate a new inode block if necessary. */
640 if (sp->ibp == NULL) {
641 /* Allocate a new segment if necessary. */
642 if (sp->seg_bytes_left < fs->lfs_bsize ||
643 sp->sum_bytes_left < sizeof(ufs_daddr_t))
644 (void) lfs_writeseg(fs, sp);
645
646 /* Get next inode block. */
647 daddr = fs->lfs_offset;
648 fs->lfs_offset += fsbtodb(fs, 1);
649 sp->ibp = *sp->cbpp++ =
650 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
651 fs->lfs_bsize);
652 /* Zero out inode numbers */
653 for (i = 0; i < INOPB(fs); ++i)
654 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
655
656 ++sp->start_bpp;
657 fs->lfs_avail -= fsbtodb(fs, 1);
658 /* Set remaining space counters. */
659 sp->seg_bytes_left -= fs->lfs_bsize;
660 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
661 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
662 sp->ninodes / INOPB(fs) - 1;
663 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
664 }
665
666 /* Update the inode times and copy the inode onto the inode page. */
667 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
668 --fs->lfs_uinodes;
669 TIMEVAL_TO_TIMESPEC(&time, &ts);
670 LFS_ITIMES(ip, &ts, &ts, &ts);
671
672 if(ip->i_flag & IN_CLEANING)
673 ip->i_flag &= ~IN_CLEANING;
674 else
675 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
676
677 bp = sp->ibp;
678 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
679 ip->i_din.ffs_din;
680
681 /* Increment inode count in segment summary block. */
682 ++((SEGSUM *)(sp->segsum))->ss_ninos;
683
684 /* If this page is full, set flag to allocate a new page. */
685 if (++sp->ninodes % INOPB(fs) == 0)
686 sp->ibp = NULL;
687
688 /*
689 * If updating the ifile, update the super-block. Update the disk
690 * address and access times for this inode in the ifile.
691 */
692 ino = ip->i_number;
693 if (ino == LFS_IFILE_INUM) {
694 daddr = fs->lfs_idaddr;
695 fs->lfs_idaddr = bp->b_blkno;
696 } else {
697 LFS_IENTRY(ifp, fs, ino, ibp);
698 daddr = ifp->if_daddr;
699 ifp->if_daddr = bp->b_blkno;
700 error = VOP_BWRITE(ibp);
701 }
702
703 /*
704 * No need to update segment usage if there was no former inode address
705 * or if the last inode address is in the current partial segment.
706 */
707 if (daddr != LFS_UNUSED_DADDR &&
708 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
709 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
710 #ifdef DIAGNOSTIC
711 if (sup->su_nbytes < DINODE_SIZE) {
712 /* XXX -- Change to a panic. */
713 printf("lfs_writeinode: negative bytes (segment %d)\n",
714 datosn(fs, daddr));
715 panic("negative bytes");
716 }
717 #endif
718 sup->su_nbytes -= DINODE_SIZE;
719 redo_ifile =
720 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
721 error = VOP_BWRITE(bp);
722 }
723 return (redo_ifile);
724 }
725
726 int
727 lfs_gatherblock(sp, bp, sptr)
728 struct segment *sp;
729 struct buf *bp;
730 int *sptr;
731 {
732 struct lfs *fs;
733 int version;
734
735 /*
736 * If full, finish this segment. We may be doing I/O, so
737 * release and reacquire the splbio().
738 */
739 #ifdef DIAGNOSTIC
740 if (sp->vp == NULL)
741 panic ("lfs_gatherblock: Null vp in segment");
742 #endif
743 fs = sp->fs;
744 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
745 sp->seg_bytes_left < bp->b_bcount) {
746 if (sptr)
747 splx(*sptr);
748 lfs_updatemeta(sp);
749
750 version = sp->fip->fi_version;
751 (void) lfs_writeseg(fs, sp);
752
753 sp->fip->fi_version = version;
754 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
755 /* Add the current file to the segment summary. */
756 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
757 sp->sum_bytes_left -=
758 sizeof(struct finfo) - sizeof(ufs_daddr_t);
759
760 if (sptr)
761 *sptr = splbio();
762 return(1);
763 }
764
765 #ifdef DEBUG
766 if(bp->b_flags & B_GATHERED) {
767 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
768 sp->fip->fi_ino, bp->b_lblkno);
769 return(0);
770 }
771 #endif
772 /* Insert into the buffer list, update the FINFO block. */
773 bp->b_flags |= B_GATHERED;
774 *sp->cbpp++ = bp;
775 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
776
777 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
778 sp->seg_bytes_left -= bp->b_bcount;
779 return(0);
780 }
781
782 int
783 lfs_gather(fs, sp, vp, match)
784 struct lfs *fs;
785 struct segment *sp;
786 struct vnode *vp;
787 int (*match) __P((struct lfs *, struct buf *));
788 {
789 struct buf *bp;
790 int s, count=0;
791
792 sp->vp = vp;
793 s = splbio();
794
795 #ifndef LFS_NO_BACKBUF_HACK
796 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
797 #else /* LFS_NO_BACKBUF_HACK */
798 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
799 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
800 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
801 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
802 /* Find last buffer. */
803 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
804 bp = bp->b_vnbufs.le_next);
805 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
806 #endif /* LFS_NO_BACKBUF_HACK */
807 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
808 continue;
809 #ifdef DIAGNOSTIC
810 if (!(bp->b_flags & B_DELWRI))
811 panic("lfs_gather: bp not B_DELWRI");
812 if (!(bp->b_flags & B_LOCKED))
813 panic("lfs_gather: bp not B_LOCKED");
814 #endif
815 count++;
816 if (lfs_gatherblock(sp, bp, &s)) {
817 goto loop;
818 }
819 }
820 splx(s);
821 lfs_updatemeta(sp);
822 sp->vp = NULL;
823 return count;
824 }
825
826 /*
827 * Update the metadata that points to the blocks listed in the FINFO
828 * array.
829 */
830 void
831 lfs_updatemeta(sp)
832 struct segment *sp;
833 {
834 SEGUSE *sup;
835 struct buf *bp;
836 struct lfs *fs;
837 struct vnode *vp;
838 struct indir a[NIADDR + 2], *ap;
839 struct inode *ip;
840 ufs_daddr_t daddr, lbn, off;
841 int error, i, nblocks, num;
842
843 vp = sp->vp;
844 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
845 if (nblocks < 0)
846 panic("This is a bad thing\n");
847 if (vp == NULL || nblocks == 0)
848 return;
849
850 /* Sort the blocks. */
851 /*
852 * XXX KS - We have to sort even if the blocks come from the
853 * cleaner, because there might be other pending blocks on the
854 * same inode...and if we don't sort, and there are fragments
855 * present, blocks may be written in the wrong place.
856 */
857 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
858 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
859
860 /*
861 * Record the length of the last block in case it's a fragment.
862 * If there are indirect blocks present, they sort last. An
863 * indirect block will be lfs_bsize and its presence indicates
864 * that you cannot have fragments.
865 */
866 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
867
868 /*
869 * Assign disk addresses, and update references to the logical
870 * block and the segment usage information.
871 */
872 fs = sp->fs;
873 for (i = nblocks; i--; ++sp->start_bpp) {
874 lbn = *sp->start_lbp++;
875
876 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
877 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
878 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
879 }
880 fs->lfs_offset +=
881 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
882
883 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
884 if (error)
885 panic("lfs_updatemeta: ufs_bmaparray %d", error);
886 ip = VTOI(vp);
887 switch (num) {
888 case 0:
889 ip->i_ffs_db[lbn] = off;
890 break;
891 case 1:
892 ip->i_ffs_ib[a[0].in_off] = off;
893 break;
894 default:
895 ap = &a[num - 1];
896 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
897 panic("lfs_updatemeta: bread bno %d",
898 ap->in_lbn);
899 /*
900 * Bread may create a new (indirect) block which needs
901 * to get counted for the inode.
902 */
903 if (/* bp->b_blkno == -1 && */
904 !(bp->b_flags & (B_DELWRI|B_DONE))) {
905 ip->i_ffs_blocks += fsbtodb(fs, 1);
906 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
907 }
908 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
909 VOP_BWRITE(bp);
910 }
911 /* Update segment usage information. */
912 if (daddr != UNASSIGNED &&
913 !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
914 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
915 #ifdef DIAGNOSTIC
916 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
917 /* XXX -- Change to a panic. */
918 printf("lfs_updatemeta: negative bytes (segment %d)\n",
919 datosn(fs, daddr));
920 printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
921 bp, bp->b_un.b_addr);
922 /* panic ("Negative Bytes"); */
923 }
924 #endif
925 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
926 error = VOP_BWRITE(bp);
927 }
928 }
929 }
930
931 /*
932 * Start a new segment.
933 */
934 int
935 lfs_initseg(fs)
936 struct lfs *fs;
937 {
938 struct segment *sp;
939 SEGUSE *sup;
940 SEGSUM *ssp;
941 struct buf *bp;
942 int repeat;
943
944 sp = fs->lfs_sp;
945
946 repeat = 0;
947 /* Advance to the next segment. */
948 if (!LFS_PARTIAL_FITS(fs)) {
949 /* Wake up any cleaning procs waiting on this file system. */
950 wakeup(&lfs_allclean_wakeup);
951 wakeup(&fs->lfs_nextseg);
952 lfs_newseg(fs);
953 repeat = 1;
954 fs->lfs_offset = fs->lfs_curseg;
955 sp->seg_number = datosn(fs, fs->lfs_curseg);
956 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
957 /*
958 * If the segment contains a superblock, update the offset
959 * and summary address to skip over it.
960 */
961 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
962 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
963 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
964 sp->seg_bytes_left -= LFS_SBPAD;
965 }
966 brelse(bp);
967 } else {
968 sp->seg_number = datosn(fs, fs->lfs_curseg);
969 sp->seg_bytes_left = (fs->lfs_dbpseg -
970 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
971 }
972 fs->lfs_lastpseg = fs->lfs_offset;
973
974 sp->fs = fs;
975 sp->ibp = NULL;
976 sp->ninodes = 0;
977
978 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
979 sp->cbpp = sp->bpp;
980 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
981 fs->lfs_offset, LFS_SUMMARY_SIZE);
982 sp->segsum = (*sp->cbpp)->b_data;
983 bzero(sp->segsum, LFS_SUMMARY_SIZE);
984 sp->start_bpp = ++sp->cbpp;
985 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
986
987 /* Set point to SEGSUM, initialize it. */
988 ssp = sp->segsum;
989 ssp->ss_next = fs->lfs_nextseg;
990 ssp->ss_nfinfo = ssp->ss_ninos = 0;
991 ssp->ss_magic = SS_MAGIC;
992
993 /* Set pointer to first FINFO, initialize it. */
994 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
995 sp->fip->fi_nblocks = 0;
996 sp->start_lbp = &sp->fip->fi_blocks[0];
997 sp->fip->fi_lastlength = 0;
998
999 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1000 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1001
1002 return(repeat);
1003 }
1004
1005 /*
1006 * Return the next segment to write.
1007 */
1008 void
1009 lfs_newseg(fs)
1010 struct lfs *fs;
1011 {
1012 CLEANERINFO *cip;
1013 SEGUSE *sup;
1014 struct buf *bp;
1015 int curseg, isdirty, sn;
1016
1017 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1018 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1019 sup->su_nbytes = 0;
1020 sup->su_nsums = 0;
1021 sup->su_ninos = 0;
1022 (void) VOP_BWRITE(bp);
1023
1024 LFS_CLEANERINFO(cip, fs, bp);
1025 --cip->clean;
1026 ++cip->dirty;
1027 fs->lfs_nclean = cip->clean;
1028 (void) VOP_BWRITE(bp);
1029
1030 fs->lfs_lastseg = fs->lfs_curseg;
1031 fs->lfs_curseg = fs->lfs_nextseg;
1032 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1033 sn = (sn + 1) % fs->lfs_nseg;
1034 if (sn == curseg)
1035 panic("lfs_nextseg: no clean segments");
1036 LFS_SEGENTRY(sup, fs, sn, bp);
1037 isdirty = sup->su_flags & SEGUSE_DIRTY;
1038 brelse(bp);
1039 if (!isdirty)
1040 break;
1041 }
1042
1043 ++fs->lfs_nactive;
1044 fs->lfs_nextseg = sntoda(fs, sn);
1045 if(lfs_dostats) {
1046 ++lfs_stats.segsused;
1047 }
1048 }
1049
1050 int
1051 lfs_writeseg(fs, sp)
1052 struct lfs *fs;
1053 struct segment *sp;
1054 {
1055 extern int locked_queue_count;
1056 extern long locked_queue_bytes;
1057 struct buf **bpp, *bp, *cbp;
1058 SEGUSE *sup;
1059 SEGSUM *ssp;
1060 dev_t i_dev;
1061 u_long *datap, *dp;
1062 int do_again, i, nblocks, s;
1063 #ifdef LFS_TRACK_IOS
1064 int j;
1065 #endif
1066 int (*strategy)__P((void *));
1067 struct vop_strategy_args vop_strategy_a;
1068 u_short ninos;
1069 struct vnode *devvp;
1070 char *p;
1071 struct vnode *vn;
1072 #if defined(DEBUG) && defined(LFS_PROPELLER)
1073 static int propeller;
1074 char propstring[4] = "-\\|/";
1075
1076 printf("%c\b",propstring[propeller++]);
1077 if(propeller==4)
1078 propeller = 0;
1079 #endif
1080
1081 /*
1082 * If there are no buffers other than the segment summary to write
1083 * and it is not a checkpoint, don't do anything. On a checkpoint,
1084 * even if there aren't any buffers, you need to write the superblock.
1085 */
1086 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1087 return (0);
1088
1089 #ifdef DEBUG_LFS
1090 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1091 #endif
1092
1093 /* Update the segment usage information. */
1094 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1095
1096 /* Loop through all blocks, except the segment summary. */
1097 for (bpp = sp->bpp; ++bpp < sp->cbpp; )
1098 sup->su_nbytes += (*bpp)->b_bcount;
1099
1100 ssp = (SEGSUM *)sp->segsum;
1101
1102 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1103 /* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
1104 sup->su_nbytes += LFS_SUMMARY_SIZE;
1105 sup->su_lastmod = time.tv_sec;
1106 sup->su_ninos += ninos;
1107 ++sup->su_nsums;
1108
1109 do_again = !(bp->b_flags & B_GATHERED);
1110 (void)VOP_BWRITE(bp);
1111 /*
1112 * Compute checksum across data and then across summary; the first
1113 * block (the summary block) is skipped. Set the create time here
1114 * so that it's guaranteed to be later than the inode mod times.
1115 *
1116 * XXX
1117 * Fix this to do it inline, instead of malloc/copy.
1118 */
1119 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1120 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1121 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1122 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1123 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1124 } else {
1125 if( !((*bpp)->b_flags & B_CALL) ) {
1126 /*
1127 * Before we record data for a checksm,
1128 * make sure the data won't change in between
1129 * the checksum calculation and the write,
1130 * by marking the buffer B_BUSY. It will
1131 * be freed later by brelse().
1132 */
1133 again:
1134 s = splbio();
1135 if((*bpp)->b_flags & B_BUSY) {
1136 #ifdef DEBUG
1137 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1138 VTOI((*bpp)->b_vp)->i_number,
1139 bp->b_lblkno);
1140 #endif
1141 (*bpp)->b_flags |= B_WANTED;
1142 tsleep((*bpp), (PRIBIO + 1),
1143 "lfs_writeseg", 0);
1144 splx(s);
1145 goto again;
1146 }
1147 (*bpp)->b_flags |= B_BUSY;
1148 splx(s);
1149 }
1150 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1151 }
1152 }
1153 ssp->ss_create = time.tv_sec;
1154 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1155 ssp->ss_sumsum =
1156 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1157 free(datap, M_SEGMENT);
1158 #ifdef DIAGNOSTIC
1159 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1160 panic("lfs_writeseg: No diskspace for summary");
1161 #endif
1162 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1163
1164 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1165 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1166 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1167
1168 /*
1169 * When we simply write the blocks we lose a rotation for every block
1170 * written. To avoid this problem, we allocate memory in chunks, copy
1171 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1172 * largest size I/O devices can handle.
1173 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1174 * and brelse the buffer (which will move them to the LRU list). Add
1175 * the B_CALL flag to the buffer header so we can count I/O's for the
1176 * checkpoints and so we can release the allocated memory.
1177 *
1178 * XXX
1179 * This should be removed if the new virtual memory system allows us to
1180 * easily make the buffers contiguous in kernel memory and if that's
1181 * fast enough.
1182 */
1183
1184 #define CHUNKSIZE MAXPHYS
1185
1186 if(devvp==NULL)
1187 panic("devvp is NULL");
1188 for (bpp = sp->bpp,i = nblocks; i;) {
1189 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1190 cbp->b_dev = i_dev;
1191 cbp->b_flags |= B_ASYNC | B_BUSY;
1192 cbp->b_bcount = 0;
1193
1194 #ifdef DIAGNOSTIC
1195 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1196 panic("lfs_writeseg: Segment overwrite");
1197 }
1198 #endif
1199
1200 if(fs->lfs_iocount >= LFS_THROTTLE) {
1201 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1202 }
1203 s = splbio();
1204 ++fs->lfs_iocount;
1205 #ifdef LFS_TRACK_IOS
1206 for(j=0;j<LFS_THROTTLE;j++) {
1207 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1208 fs->lfs_pending[j] = cbp->b_blkno;
1209 break;
1210 }
1211 }
1212 #endif /* LFS_TRACK_IOS */
1213 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1214 bp = *bpp;
1215
1216 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1217 break;
1218
1219 /*
1220 * Fake buffers from the cleaner are marked as B_INVAL.
1221 * We need to copy the data from user space rather than
1222 * from the buffer indicated.
1223 * XXX == what do I do on an error?
1224 */
1225 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1226 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1227 panic("lfs_writeseg: copyin failed [2]");
1228 } else
1229 bcopy(bp->b_data, p, bp->b_bcount);
1230 p += bp->b_bcount;
1231 cbp->b_bcount += bp->b_bcount;
1232 if (bp->b_flags & B_LOCKED) {
1233 --locked_queue_count;
1234 locked_queue_bytes -= bp->b_bufsize;
1235 }
1236 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1237 B_LOCKED | B_GATHERED);
1238 vn = bp->b_vp;
1239 if (bp->b_flags & B_CALL) {
1240 /* if B_CALL, it was created with newbuf */
1241 lfs_freebuf(bp);
1242 } else {
1243 bremfree(bp);
1244 bp->b_flags |= B_DONE;
1245 if(vn)
1246 reassignbuf(bp, vn);
1247 brelse(bp);
1248 }
1249 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1250 bp->b_flags &= ~B_NEEDCOMMIT;
1251 wakeup(bp);
1252 }
1253 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1254 wakeup(vn);
1255 bpp++;
1256 }
1257 ++cbp->b_vp->v_numoutput;
1258 splx(s);
1259 /*
1260 * XXXX This is a gross and disgusting hack. Since these
1261 * buffers are physically addressed, they hang off the
1262 * device vnode (devvp). As a result, they have no way
1263 * of getting to the LFS superblock or lfs structure to
1264 * keep track of the number of I/O's pending. So, I am
1265 * going to stuff the fs into the saveaddr field of
1266 * the buffer (yuk).
1267 */
1268 cbp->b_saveaddr = (caddr_t)fs;
1269 vop_strategy_a.a_desc = VDESC(vop_strategy);
1270 vop_strategy_a.a_bp = cbp;
1271 (strategy)(&vop_strategy_a);
1272 }
1273 /*
1274 * XXX
1275 * Vinvalbuf can move locked buffers off the locked queue
1276 * and we have no way of knowing about this. So, after
1277 * doing a big write, we recalculate how many buffers are
1278 * really still left on the locked queue.
1279 */
1280 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1281 wakeup(&locked_queue_count);
1282 if(lfs_dostats) {
1283 ++lfs_stats.psegwrites;
1284 lfs_stats.blocktot += nblocks - 1;
1285 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1286 ++lfs_stats.psyncwrites;
1287 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1288 ++lfs_stats.pcleanwrites;
1289 lfs_stats.cleanblocks += nblocks - 1;
1290 }
1291 }
1292 return (lfs_initseg(fs) || do_again);
1293 }
1294
1295 void
1296 lfs_writesuper(fs, daddr)
1297 struct lfs *fs;
1298 daddr_t daddr;
1299 {
1300 struct buf *bp;
1301 dev_t i_dev;
1302 int (*strategy) __P((void *));
1303 int s;
1304 struct vop_strategy_args vop_strategy_a;
1305
1306 #ifdef LFS_CANNOT_ROLLFW
1307 /*
1308 * If we can write one superblock while another is in
1309 * progress, we risk not having a complete checkpoint if we crash.
1310 * So, block here if a superblock write is in progress.
1311 *
1312 * XXX - should be a proper lock, not this hack
1313 */
1314 while(fs->lfs_sbactive) {
1315 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1316 }
1317 fs->lfs_sbactive = daddr;
1318 #endif
1319 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1320 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1321
1322 /* Set timestamp of this version of the superblock */
1323 fs->lfs_tstamp = time.tv_sec;
1324
1325 /* Checksum the superblock and copy it into a buffer. */
1326 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1327 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1328 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1329
1330 bp->b_dev = i_dev;
1331 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1332 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1333 bp->b_iodone = lfs_supercallback;
1334 /* XXX KS - same nasty hack as above */
1335 bp->b_saveaddr = (caddr_t)fs;
1336
1337 vop_strategy_a.a_desc = VDESC(vop_strategy);
1338 vop_strategy_a.a_bp = bp;
1339 s = splbio();
1340 ++bp->b_vp->v_numoutput;
1341 splx(s);
1342 (strategy)(&vop_strategy_a);
1343 }
1344
1345 /*
1346 * Logical block number match routines used when traversing the dirty block
1347 * chain.
1348 */
1349 int
1350 lfs_match_fake(fs, bp)
1351 struct lfs *fs;
1352 struct buf *bp;
1353 {
1354 return (bp->b_flags & B_CALL);
1355 }
1356
1357 int
1358 lfs_match_data(fs, bp)
1359 struct lfs *fs;
1360 struct buf *bp;
1361 {
1362 return (bp->b_lblkno >= 0);
1363 }
1364
1365 int
1366 lfs_match_indir(fs, bp)
1367 struct lfs *fs;
1368 struct buf *bp;
1369 {
1370 int lbn;
1371
1372 lbn = bp->b_lblkno;
1373 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1374 }
1375
1376 int
1377 lfs_match_dindir(fs, bp)
1378 struct lfs *fs;
1379 struct buf *bp;
1380 {
1381 int lbn;
1382
1383 lbn = bp->b_lblkno;
1384 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1385 }
1386
1387 int
1388 lfs_match_tindir(fs, bp)
1389 struct lfs *fs;
1390 struct buf *bp;
1391 {
1392 int lbn;
1393
1394 lbn = bp->b_lblkno;
1395 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1396 }
1397
1398 /*
1399 * XXX - The only buffers that are going to hit these functions are the
1400 * segment write blocks, or the segment summaries, or the superblocks.
1401 *
1402 * All of the above are created by lfs_newbuf, and so do not need to be
1403 * released via brelse.
1404 */
1405 void
1406 lfs_callback(bp)
1407 struct buf *bp;
1408 {
1409 struct lfs *fs;
1410 #ifdef LFS_TRACK_IOS
1411 int j;
1412 #endif
1413
1414 fs = (struct lfs *)bp->b_saveaddr;
1415 #ifdef DIAGNOSTIC
1416 if (fs->lfs_iocount == 0)
1417 panic("lfs_callback: zero iocount\n");
1418 #endif
1419 if (--fs->lfs_iocount < LFS_THROTTLE)
1420 wakeup(&fs->lfs_iocount);
1421 #ifdef LFS_TRACK_IOS
1422 for(j=0;j<LFS_THROTTLE;j++) {
1423 if(fs->lfs_pending[j]==bp->b_blkno) {
1424 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1425 wakeup(&(fs->lfs_pending[j]));
1426 break;
1427 }
1428 }
1429 #endif /* LFS_TRACK_IOS */
1430
1431 lfs_freebuf(bp);
1432 }
1433
1434 void
1435 lfs_supercallback(bp)
1436 struct buf *bp;
1437 {
1438 #ifdef LFS_CANNOT_ROLLFW
1439 struct lfs *fs;
1440
1441 fs = (struct lfs *)bp->b_saveaddr;
1442 fs->lfs_sbactive=NULL;
1443 wakeup(&fs->lfs_sbactive);
1444 #endif
1445 lfs_freebuf(bp);
1446 }
1447
1448 /*
1449 * Shellsort (diminishing increment sort) from Data Structures and
1450 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1451 * see also Knuth Vol. 3, page 84. The increments are selected from
1452 * formula (8), page 95. Roughly O(N^3/2).
1453 */
1454 /*
1455 * This is our own private copy of shellsort because we want to sort
1456 * two parallel arrays (the array of buffer pointers and the array of
1457 * logical block numbers) simultaneously. Note that we cast the array
1458 * of logical block numbers to a unsigned in this routine so that the
1459 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1460 */
1461
1462 void
1463 lfs_shellsort(bp_array, lb_array, nmemb)
1464 struct buf **bp_array;
1465 ufs_daddr_t *lb_array;
1466 register int nmemb;
1467 {
1468 static int __rsshell_increments[] = { 4, 1, 0 };
1469 register int incr, *incrp, t1, t2;
1470 struct buf *bp_temp;
1471 u_long lb_temp;
1472
1473 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1474 for (t1 = incr; t1 < nmemb; ++t1)
1475 for (t2 = t1 - incr; t2 >= 0;)
1476 if (lb_array[t2] > lb_array[t2 + incr]) {
1477 lb_temp = lb_array[t2];
1478 lb_array[t2] = lb_array[t2 + incr];
1479 lb_array[t2 + incr] = lb_temp;
1480 bp_temp = bp_array[t2];
1481 bp_array[t2] = bp_array[t2 + incr];
1482 bp_array[t2 + incr] = bp_temp;
1483 t2 -= incr;
1484 } else
1485 break;
1486 }
1487
1488 /*
1489 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1490 */
1491 int
1492 lfs_vref(vp)
1493 register struct vnode *vp;
1494 {
1495 /*
1496 * If we return 1 here during a flush, we risk vinvalbuf() not
1497 * being able to flush all of the pages from this vnode, which
1498 * will cause it to panic. So, return 0 if a flush is in progress.
1499 */
1500 if (vp->v_flag & VXLOCK) {
1501 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1502 return 0;
1503 }
1504 return(1);
1505 }
1506 return (vget(vp, 0));
1507 }
1508
1509 /*
1510 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1511 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1512 */
1513 void
1514 lfs_vunref(vp)
1515 register struct vnode *vp;
1516 {
1517 /*
1518 * Analogous to lfs_vref, if the node is flushing, fake it.
1519 */
1520 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1521 return;
1522 }
1523
1524 simple_lock(&vp->v_interlock);
1525 #ifdef DIAGNOSTIC
1526 if(vp->v_usecount<=0) {
1527 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1528 printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
1529 panic("lfs_vunref: v_usecount<0");
1530 }
1531 #endif
1532 vp->v_usecount--;
1533 if (vp->v_usecount > 0) {
1534 simple_unlock(&vp->v_interlock);
1535 return;
1536 }
1537
1538 /*
1539 * insert at tail of LRU list
1540 */
1541 simple_lock(&vnode_free_list_slock);
1542 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1543 simple_unlock(&vnode_free_list_slock);
1544 simple_unlock(&vp->v_interlock);
1545 }
1546
1547 /*
1548 * We use this when we have vnodes that were loaded in solely for cleaning.
1549 * There is no reason to believe that these vnodes will be referenced again
1550 * soon, since the cleaning process is unrelated to normal filesystem
1551 * activity. Putting cleaned vnodes at the tail of the list has the effect
1552 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1553 * cleaning at the head of the list, instead.
1554 */
1555 void
1556 lfs_vunref_head(vp)
1557 register struct vnode *vp;
1558 {
1559 simple_lock(&vp->v_interlock);
1560 #ifdef DIAGNOSTIC
1561 if(vp->v_usecount==0) {
1562 panic("lfs_vunref: v_usecount<0");
1563 }
1564 #endif
1565 vp->v_usecount--;
1566 if (vp->v_usecount > 0) {
1567 simple_unlock(&vp->v_interlock);
1568 return;
1569 }
1570 /*
1571 * insert at head of LRU list
1572 */
1573 simple_lock(&vnode_free_list_slock);
1574 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1575 simple_unlock(&vnode_free_list_slock);
1576 simple_unlock(&vp->v_interlock);
1577 }
1578
1579