lfs_segment.c revision 1.211 1 /* $NetBSD: lfs_segment.c,v 1.211 2008/04/28 20:24:11 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.211 2008/04/28 20:24:11 martin Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110
111 extern int count_lock_queue(void);
112 extern kmutex_t vnode_free_list_lock; /* XXX */
113
114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 static void lfs_free_aiodone(struct buf *);
116 static void lfs_super_aiodone(struct buf *);
117 static void lfs_cluster_aiodone(struct buf *);
118 static void lfs_cluster_callback(struct buf *);
119
120 /*
121 * Determine if it's OK to start a partial in this segment, or if we need
122 * to go on to a new segment.
123 */
124 #define LFS_PARTIAL_FITS(fs) \
125 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 fragstofsb((fs), (fs)->lfs_frag))
127
128 /*
129 * Figure out whether we should do a checkpoint write or go ahead with
130 * an ordinary write.
131 */
132 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
133 ((flags & SEGM_CLEAN) == 0 && \
134 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
135 (flags & SEGM_CKP) || \
136 fs->lfs_nclean < LFS_MAX_ACTIVE)))
137
138 int lfs_match_fake(struct lfs *, struct buf *);
139 void lfs_newseg(struct lfs *);
140 /* XXX ondisk32 */
141 void lfs_shellsort(struct buf **, int32_t *, int, int);
142 void lfs_supercallback(struct buf *);
143 void lfs_updatemeta(struct segment *);
144 void lfs_writesuper(struct lfs *, daddr_t);
145 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
146 struct segment *sp, int dirops);
147
148 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount = 0; /* # active dirops */
152
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156
157 /* op values to lfs_writevnodes */
158 #define VN_REG 0
159 #define VN_DIROP 1
160 #define VN_EMPTY 2
161 #define VN_CLEAN 3
162
163 /*
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
168 */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 struct timespec ts;
173 struct inode *ip;
174
175 ASSERT_MAYBE_SEGLOCK(fs);
176 vfs_timestamp(&ts);
177 ip = VTOI(fs->lfs_ivnode);
178 ip->i_ffs1_mtime = ts.tv_sec;
179 ip->i_ffs1_mtimensec = ts.tv_nsec;
180 }
181
182 /*
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 */
188
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190
191 int
192 lfs_vflush(struct vnode *vp)
193 {
194 struct inode *ip;
195 struct lfs *fs;
196 struct segment *sp;
197 struct buf *bp, *nbp, *tbp, *tnbp;
198 int error;
199 int flushed;
200 int relock;
201 int loopcount;
202
203 ip = VTOI(vp);
204 fs = VFSTOUFS(vp->v_mount)->um_lfs;
205 relock = 0;
206
207 top:
208 ASSERT_NO_SEGLOCK(fs);
209 if (ip->i_flag & IN_CLEANING) {
210 ivndebug(vp,"vflush/in_cleaning");
211 mutex_enter(&lfs_lock);
212 LFS_CLR_UINO(ip, IN_CLEANING);
213 LFS_SET_UINO(ip, IN_MODIFIED);
214 mutex_exit(&lfs_lock);
215
216 /*
217 * Toss any cleaning buffers that have real counterparts
218 * to avoid losing new data.
219 */
220 mutex_enter(&vp->v_interlock);
221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 nbp = LIST_NEXT(bp, b_vnbufs);
223 if (!LFS_IS_MALLOC_BUF(bp))
224 continue;
225 /*
226 * Look for pages matching the range covered
227 * by cleaning blocks. It's okay if more dirty
228 * pages appear, so long as none disappear out
229 * from under us.
230 */
231 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 vp != fs->lfs_ivnode) {
233 struct vm_page *pg;
234 voff_t off;
235
236 for (off = lblktosize(fs, bp->b_lblkno);
237 off < lblktosize(fs, bp->b_lblkno + 1);
238 off += PAGE_SIZE) {
239 pg = uvm_pagelookup(&vp->v_uobj, off);
240 if (pg == NULL)
241 continue;
242 if ((pg->flags & PG_CLEAN) == 0 ||
243 pmap_is_modified(pg)) {
244 fs->lfs_avail += btofsb(fs,
245 bp->b_bcount);
246 wakeup(&fs->lfs_avail);
247 mutex_exit(&vp->v_interlock);
248 lfs_freebuf(fs, bp);
249 mutex_enter(&vp->v_interlock);
250 bp = NULL;
251 break;
252 }
253 }
254 }
255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 tbp = tnbp)
257 {
258 tnbp = LIST_NEXT(tbp, b_vnbufs);
259 if (tbp->b_vp == bp->b_vp
260 && tbp->b_lblkno == bp->b_lblkno
261 && tbp != bp)
262 {
263 fs->lfs_avail += btofsb(fs,
264 bp->b_bcount);
265 wakeup(&fs->lfs_avail);
266 mutex_exit(&vp->v_interlock);
267 lfs_freebuf(fs, bp);
268 mutex_enter(&vp->v_interlock);
269 bp = NULL;
270 break;
271 }
272 }
273 }
274 } else {
275 mutex_enter(&vp->v_interlock);
276 }
277
278 /* If the node is being written, wait until that is done */
279 while (WRITEINPROG(vp)) {
280 ivndebug(vp,"vflush/writeinprog");
281 cv_wait(&vp->v_cv, &vp->v_interlock);
282 }
283 mutex_exit(&vp->v_interlock);
284
285 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 lfs_seglock(fs, SEGM_SYNC);
287
288 /* If we're supposed to flush a freed inode, just toss it */
289 if (ip->i_lfs_iflags & LFSI_DELETED) {
290 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
291 ip->i_number));
292 /* Drain v_numoutput */
293 mutex_enter(&vp->v_interlock);
294 while (vp->v_numoutput > 0) {
295 cv_wait(&vp->v_cv, &vp->v_interlock);
296 }
297 KASSERT(vp->v_numoutput == 0);
298 mutex_exit(&vp->v_interlock);
299
300 mutex_enter(&bufcache_lock);
301 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
302 nbp = LIST_NEXT(bp, b_vnbufs);
303
304 KASSERT((bp->b_flags & B_GATHERED) == 0);
305 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
306 fs->lfs_avail += btofsb(fs, bp->b_bcount);
307 wakeup(&fs->lfs_avail);
308 }
309 /* Copied from lfs_writeseg */
310 if (bp->b_iodone != NULL) {
311 mutex_exit(&bufcache_lock);
312 biodone(bp);
313 mutex_enter(&bufcache_lock);
314 } else {
315 bremfree(bp);
316 LFS_UNLOCK_BUF(bp);
317 mutex_enter(&vp->v_interlock);
318 bp->b_flags &= ~(B_READ | B_GATHERED);
319 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
320 bp->b_error = 0;
321 reassignbuf(bp, vp);
322 mutex_exit(&vp->v_interlock);
323 brelse(bp, 0);
324 }
325 }
326 mutex_exit(&bufcache_lock);
327 LFS_CLR_UINO(ip, IN_CLEANING);
328 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
329 ip->i_flag &= ~IN_ALLMOD;
330 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
331 ip->i_number));
332 lfs_segunlock(fs);
333
334 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
335
336 return 0;
337 }
338
339 fs->lfs_flushvp = vp;
340 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
341 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
342 fs->lfs_flushvp = NULL;
343 KASSERT(fs->lfs_flushvp_fakevref == 0);
344 lfs_segunlock(fs);
345
346 /* Make sure that any pending buffers get written */
347 mutex_enter(&vp->v_interlock);
348 while (vp->v_numoutput > 0) {
349 cv_wait(&vp->v_cv, &vp->v_interlock);
350 }
351 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
352 KASSERT(vp->v_numoutput == 0);
353 mutex_exit(&vp->v_interlock);
354
355 return error;
356 }
357 sp = fs->lfs_sp;
358
359 flushed = 0;
360 if (VPISEMPTY(vp)) {
361 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
362 ++flushed;
363 } else if ((ip->i_flag & IN_CLEANING) &&
364 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
365 ivndebug(vp,"vflush/clean");
366 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
367 ++flushed;
368 } else if (lfs_dostats) {
369 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
370 ++lfs_stats.vflush_invoked;
371 ivndebug(vp,"vflush");
372 }
373
374 #ifdef DIAGNOSTIC
375 if (vp->v_uflag & VU_DIROP) {
376 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
377 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
378 }
379 if (vp->v_usecount < 0) {
380 printf("usecount=%ld\n", (long)vp->v_usecount);
381 panic("lfs_vflush: usecount<0");
382 }
383 #endif
384
385 do {
386 loopcount = 0;
387 do {
388 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
389 relock = lfs_writefile(fs, sp, vp);
390 if (relock) {
391 /*
392 * Might have to wait for the
393 * cleaner to run; but we're
394 * still not done with this vnode.
395 */
396 KDASSERT(ip->i_number != LFS_IFILE_INUM);
397 lfs_writeinode(fs, sp, ip);
398 mutex_enter(&lfs_lock);
399 LFS_SET_UINO(ip, IN_MODIFIED);
400 mutex_exit(&lfs_lock);
401 lfs_writeseg(fs, sp);
402 lfs_segunlock(fs);
403 lfs_segunlock_relock(fs);
404 goto top;
405 }
406 }
407 /*
408 * If we begin a new segment in the middle of writing
409 * the Ifile, it creates an inconsistent checkpoint,
410 * since the Ifile information for the new segment
411 * is not up-to-date. Take care of this here by
412 * sending the Ifile through again in case there
413 * are newly dirtied blocks. But wait, there's more!
414 * This second Ifile write could *also* cross a segment
415 * boundary, if the first one was large. The second
416 * one is guaranteed to be no more than 8 blocks,
417 * though (two segment blocks and supporting indirects)
418 * so the third write *will not* cross the boundary.
419 */
420 if (vp == fs->lfs_ivnode) {
421 lfs_writefile(fs, sp, vp);
422 lfs_writefile(fs, sp, vp);
423 }
424 #ifdef DEBUG
425 if (++loopcount > 2)
426 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
427 #endif
428 } while (lfs_writeinode(fs, sp, ip));
429 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
430
431 if (lfs_dostats) {
432 ++lfs_stats.nwrites;
433 if (sp->seg_flags & SEGM_SYNC)
434 ++lfs_stats.nsync_writes;
435 if (sp->seg_flags & SEGM_CKP)
436 ++lfs_stats.ncheckpoints;
437 }
438 /*
439 * If we were called from somewhere that has already held the seglock
440 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
441 * the write to complete because we are still locked.
442 * Since lfs_vflush() must return the vnode with no dirty buffers,
443 * we must explicitly wait, if that is the case.
444 *
445 * We compare the iocount against 1, not 0, because it is
446 * artificially incremented by lfs_seglock().
447 */
448 mutex_enter(&lfs_lock);
449 if (fs->lfs_seglock > 1) {
450 while (fs->lfs_iocount > 1)
451 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
452 "lfs_vflush", 0, &lfs_lock);
453 }
454 mutex_exit(&lfs_lock);
455
456 lfs_segunlock(fs);
457
458 /* Wait for these buffers to be recovered by aiodoned */
459 mutex_enter(&vp->v_interlock);
460 while (vp->v_numoutput > 0) {
461 cv_wait(&vp->v_cv, &vp->v_interlock);
462 }
463 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
464 KASSERT(vp->v_numoutput == 0);
465 mutex_exit(&vp->v_interlock);
466
467 fs->lfs_flushvp = NULL;
468 KASSERT(fs->lfs_flushvp_fakevref == 0);
469
470 return (0);
471 }
472
473 int
474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
475 {
476 struct inode *ip;
477 struct vnode *vp;
478 int inodes_written = 0, only_cleaning;
479 int error = 0;
480
481 ASSERT_SEGLOCK(fs);
482 loop:
483 /* start at last (newest) vnode. */
484 mutex_enter(&mntvnode_lock);
485 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
486 /*
487 * If the vnode that we are about to sync is no longer
488 * associated with this mount point, start over.
489 */
490 if (vp->v_mount != mp) {
491 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
492 /*
493 * After this, pages might be busy
494 * due to our own previous putpages.
495 * Start actual segment write here to avoid deadlock.
496 */
497 mutex_exit(&mntvnode_lock);
498 (void)lfs_writeseg(fs, sp);
499 goto loop;
500 }
501
502 mutex_enter(&vp->v_interlock);
503 if (vp->v_type == VNON || vismarker(vp) ||
504 (vp->v_iflag & VI_CLEAN) != 0) {
505 mutex_exit(&vp->v_interlock);
506 continue;
507 }
508
509 ip = VTOI(vp);
510 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
511 (op != VN_DIROP && op != VN_CLEAN &&
512 (vp->v_uflag & VU_DIROP))) {
513 mutex_exit(&vp->v_interlock);
514 vndebug(vp,"dirop");
515 continue;
516 }
517
518 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
519 mutex_exit(&vp->v_interlock);
520 vndebug(vp,"empty");
521 continue;
522 }
523
524 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
525 && vp != fs->lfs_flushvp
526 && !(ip->i_flag & IN_CLEANING)) {
527 mutex_exit(&vp->v_interlock);
528 vndebug(vp,"cleaning");
529 continue;
530 }
531
532 mutex_exit(&mntvnode_lock);
533 if (lfs_vref(vp)) {
534 vndebug(vp,"vref");
535 mutex_enter(&mntvnode_lock);
536 continue;
537 }
538
539 only_cleaning = 0;
540 /*
541 * Write the inode/file if dirty and it's not the IFILE.
542 */
543 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
544 only_cleaning =
545 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
546
547 if (ip->i_number != LFS_IFILE_INUM) {
548 error = lfs_writefile(fs, sp, vp);
549 if (error) {
550 lfs_vunref(vp);
551 if (error == EAGAIN) {
552 /*
553 * This error from lfs_putpages
554 * indicates we need to drop
555 * the segment lock and start
556 * over after the cleaner has
557 * had a chance to run.
558 */
559 lfs_writeinode(fs, sp, ip);
560 lfs_writeseg(fs, sp);
561 if (!VPISEMPTY(vp) &&
562 !WRITEINPROG(vp) &&
563 !(ip->i_flag & IN_ALLMOD)) {
564 mutex_enter(&lfs_lock);
565 LFS_SET_UINO(ip, IN_MODIFIED);
566 mutex_exit(&lfs_lock);
567 }
568 mutex_enter(&mntvnode_lock);
569 break;
570 }
571 error = 0; /* XXX not quite right */
572 mutex_enter(&mntvnode_lock);
573 continue;
574 }
575
576 if (!VPISEMPTY(vp)) {
577 if (WRITEINPROG(vp)) {
578 ivndebug(vp,"writevnodes/write2");
579 } else if (!(ip->i_flag & IN_ALLMOD)) {
580 mutex_enter(&lfs_lock);
581 LFS_SET_UINO(ip, IN_MODIFIED);
582 mutex_exit(&lfs_lock);
583 }
584 }
585 (void) lfs_writeinode(fs, sp, ip);
586 inodes_written++;
587 }
588 }
589
590 if (lfs_clean_vnhead && only_cleaning)
591 lfs_vunref_head(vp);
592 else
593 lfs_vunref(vp);
594
595 mutex_enter(&mntvnode_lock);
596 }
597 mutex_exit(&mntvnode_lock);
598 return error;
599 }
600
601 /*
602 * Do a checkpoint.
603 */
604 int
605 lfs_segwrite(struct mount *mp, int flags)
606 {
607 struct buf *bp;
608 struct inode *ip;
609 struct lfs *fs;
610 struct segment *sp;
611 struct vnode *vp;
612 SEGUSE *segusep;
613 int do_ckp, did_ckp, error;
614 unsigned n, segleft, maxseg, sn, i, curseg;
615 int writer_set = 0;
616 int dirty;
617 int redo;
618 int um_error;
619 int loopcount;
620
621 fs = VFSTOUFS(mp)->um_lfs;
622 ASSERT_MAYBE_SEGLOCK(fs);
623
624 if (fs->lfs_ronly)
625 return EROFS;
626
627 lfs_imtime(fs);
628
629 /*
630 * Allocate a segment structure and enough space to hold pointers to
631 * the maximum possible number of buffers which can be described in a
632 * single summary block.
633 */
634 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
635
636 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
637 sp = fs->lfs_sp;
638 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
639 do_ckp = 1;
640
641 /*
642 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
643 * in which case we have to flush *all* buffers off of this vnode.
644 * We don't care about other nodes, but write any non-dirop nodes
645 * anyway in anticipation of another getnewvnode().
646 *
647 * If we're cleaning we only write cleaning and ifile blocks, and
648 * no dirops, since otherwise we'd risk corruption in a crash.
649 */
650 if (sp->seg_flags & SEGM_CLEAN)
651 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
652 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
653 do {
654 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
655
656 if (do_ckp || fs->lfs_dirops == 0) {
657 if (!writer_set) {
658 lfs_writer_enter(fs, "lfs writer");
659 writer_set = 1;
660 }
661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
662 if (um_error == 0)
663 um_error = error;
664 /* In case writevnodes errored out */
665 lfs_flush_dirops(fs);
666 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
667 lfs_finalize_fs_seguse(fs);
668 }
669 if (do_ckp && um_error) {
670 lfs_segunlock_relock(fs);
671 sp = fs->lfs_sp;
672 }
673 } while (do_ckp && um_error != 0);
674 }
675
676 /*
677 * If we are doing a checkpoint, mark everything since the
678 * last checkpoint as no longer ACTIVE.
679 */
680 if (do_ckp || fs->lfs_doifile) {
681 segleft = fs->lfs_nseg;
682 curseg = 0;
683 for (n = 0; n < fs->lfs_segtabsz; n++) {
684 dirty = 0;
685 if (bread(fs->lfs_ivnode,
686 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
687 panic("lfs_segwrite: ifile read");
688 segusep = (SEGUSE *)bp->b_data;
689 maxseg = min(segleft, fs->lfs_sepb);
690 for (i = 0; i < maxseg; i++) {
691 sn = curseg + i;
692 if (sn != dtosn(fs, fs->lfs_curseg) &&
693 segusep->su_flags & SEGUSE_ACTIVE) {
694 segusep->su_flags &= ~SEGUSE_ACTIVE;
695 --fs->lfs_nactive;
696 ++dirty;
697 }
698 fs->lfs_suflags[fs->lfs_activesb][sn] =
699 segusep->su_flags;
700 if (fs->lfs_version > 1)
701 ++segusep;
702 else
703 segusep = (SEGUSE *)
704 ((SEGUSE_V1 *)segusep + 1);
705 }
706
707 if (dirty)
708 error = LFS_BWRITE_LOG(bp); /* Ifile */
709 else
710 brelse(bp, 0);
711 segleft -= fs->lfs_sepb;
712 curseg += fs->lfs_sepb;
713 }
714 }
715
716 KASSERT(LFS_SEGLOCK_HELD(fs));
717
718 did_ckp = 0;
719 if (do_ckp || fs->lfs_doifile) {
720 vp = fs->lfs_ivnode;
721 vn_lock(vp, LK_EXCLUSIVE);
722 loopcount = 0;
723 do {
724 #ifdef DEBUG
725 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
726 #endif
727 mutex_enter(&lfs_lock);
728 fs->lfs_flags &= ~LFS_IFDIRTY;
729 mutex_exit(&lfs_lock);
730
731 ip = VTOI(vp);
732
733 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
734 /*
735 * Ifile has no pages, so we don't need
736 * to check error return here.
737 */
738 lfs_writefile(fs, sp, vp);
739 /*
740 * Ensure the Ifile takes the current segment
741 * into account. See comment in lfs_vflush.
742 */
743 lfs_writefile(fs, sp, vp);
744 lfs_writefile(fs, sp, vp);
745 }
746
747 if (ip->i_flag & IN_ALLMOD)
748 ++did_ckp;
749 #if 0
750 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
751 #else
752 redo = lfs_writeinode(fs, sp, ip);
753 #endif
754 redo += lfs_writeseg(fs, sp);
755 mutex_enter(&lfs_lock);
756 redo += (fs->lfs_flags & LFS_IFDIRTY);
757 mutex_exit(&lfs_lock);
758 #ifdef DEBUG
759 if (++loopcount > 2)
760 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
761 loopcount);
762 #endif
763 } while (redo && do_ckp);
764
765 /*
766 * Unless we are unmounting, the Ifile may continue to have
767 * dirty blocks even after a checkpoint, due to changes to
768 * inodes' atime. If we're checkpointing, it's "impossible"
769 * for other parts of the Ifile to be dirty after the loop
770 * above, since we hold the segment lock.
771 */
772 mutex_enter(&vp->v_interlock);
773 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
774 LFS_CLR_UINO(ip, IN_ALLMOD);
775 }
776 #ifdef DIAGNOSTIC
777 else if (do_ckp) {
778 int do_panic = 0;
779 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
780 if (bp->b_lblkno < fs->lfs_cleansz +
781 fs->lfs_segtabsz &&
782 !(bp->b_flags & B_GATHERED)) {
783 printf("ifile lbn %ld still dirty (flags %lx)\n",
784 (long)bp->b_lblkno,
785 (long)bp->b_flags);
786 ++do_panic;
787 }
788 }
789 if (do_panic)
790 panic("dirty blocks");
791 }
792 #endif
793 mutex_exit(&vp->v_interlock);
794 VOP_UNLOCK(vp, 0);
795 } else {
796 (void) lfs_writeseg(fs, sp);
797 }
798
799 /* Note Ifile no longer needs to be written */
800 fs->lfs_doifile = 0;
801 if (writer_set)
802 lfs_writer_leave(fs);
803
804 /*
805 * If we didn't write the Ifile, we didn't really do anything.
806 * That means that (1) there is a checkpoint on disk and (2)
807 * nothing has changed since it was written.
808 *
809 * Take the flags off of the segment so that lfs_segunlock
810 * doesn't have to write the superblock either.
811 */
812 if (do_ckp && !did_ckp) {
813 sp->seg_flags &= ~SEGM_CKP;
814 }
815
816 if (lfs_dostats) {
817 ++lfs_stats.nwrites;
818 if (sp->seg_flags & SEGM_SYNC)
819 ++lfs_stats.nsync_writes;
820 if (sp->seg_flags & SEGM_CKP)
821 ++lfs_stats.ncheckpoints;
822 }
823 lfs_segunlock(fs);
824 return (0);
825 }
826
827 /*
828 * Write the dirty blocks associated with a vnode.
829 */
830 int
831 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
832 {
833 struct finfo *fip;
834 struct inode *ip;
835 int i, frag;
836 int error;
837
838 ASSERT_SEGLOCK(fs);
839 error = 0;
840 ip = VTOI(vp);
841
842 fip = sp->fip;
843 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
844
845 if (vp->v_uflag & VU_DIROP)
846 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
847
848 if (sp->seg_flags & SEGM_CLEAN) {
849 lfs_gather(fs, sp, vp, lfs_match_fake);
850 /*
851 * For a file being flushed, we need to write *all* blocks.
852 * This means writing the cleaning blocks first, and then
853 * immediately following with any non-cleaning blocks.
854 * The same is true of the Ifile since checkpoints assume
855 * that all valid Ifile blocks are written.
856 */
857 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
858 lfs_gather(fs, sp, vp, lfs_match_data);
859 /*
860 * Don't call VOP_PUTPAGES: if we're flushing,
861 * we've already done it, and the Ifile doesn't
862 * use the page cache.
863 */
864 }
865 } else {
866 lfs_gather(fs, sp, vp, lfs_match_data);
867 /*
868 * If we're flushing, we've already called VOP_PUTPAGES
869 * so don't do it again. Otherwise, we want to write
870 * everything we've got.
871 */
872 if (!IS_FLUSHING(fs, vp)) {
873 mutex_enter(&vp->v_interlock);
874 error = VOP_PUTPAGES(vp, 0, 0,
875 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
876 }
877 }
878
879 /*
880 * It may not be necessary to write the meta-data blocks at this point,
881 * as the roll-forward recovery code should be able to reconstruct the
882 * list.
883 *
884 * We have to write them anyway, though, under two conditions: (1) the
885 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
886 * checkpointing.
887 *
888 * BUT if we are cleaning, we might have indirect blocks that refer to
889 * new blocks not being written yet, in addition to fragments being
890 * moved out of a cleaned segment. If that is the case, don't
891 * write the indirect blocks, or the finfo will have a small block
892 * in the middle of it!
893 * XXX in this case isn't the inode size wrong too?
894 */
895 frag = 0;
896 if (sp->seg_flags & SEGM_CLEAN) {
897 for (i = 0; i < NDADDR; i++)
898 if (ip->i_lfs_fragsize[i] > 0 &&
899 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
900 ++frag;
901 }
902 #ifdef DIAGNOSTIC
903 if (frag > 1)
904 panic("lfs_writefile: more than one fragment!");
905 #endif
906 if (IS_FLUSHING(fs, vp) ||
907 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
908 lfs_gather(fs, sp, vp, lfs_match_indir);
909 lfs_gather(fs, sp, vp, lfs_match_dindir);
910 lfs_gather(fs, sp, vp, lfs_match_tindir);
911 }
912 fip = sp->fip;
913 lfs_release_finfo(fs);
914
915 return error;
916 }
917
918 /*
919 * Update segment accounting to reflect this inode's change of address.
920 */
921 static int
922 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
923 {
924 struct buf *bp;
925 daddr_t daddr;
926 IFILE *ifp;
927 SEGUSE *sup;
928 ino_t ino;
929 int redo_ifile, error;
930 u_int32_t sn;
931
932 redo_ifile = 0;
933
934 /*
935 * If updating the ifile, update the super-block. Update the disk
936 * address and access times for this inode in the ifile.
937 */
938 ino = ip->i_number;
939 if (ino == LFS_IFILE_INUM) {
940 daddr = fs->lfs_idaddr;
941 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
942 } else {
943 LFS_IENTRY(ifp, fs, ino, bp);
944 daddr = ifp->if_daddr;
945 ifp->if_daddr = dbtofsb(fs, ndaddr);
946 error = LFS_BWRITE_LOG(bp); /* Ifile */
947 }
948
949 /*
950 * If this is the Ifile and lfs_offset is set to the first block
951 * in the segment, dirty the new segment's accounting block
952 * (XXX should already be dirty?) and tell the caller to do it again.
953 */
954 if (ip->i_number == LFS_IFILE_INUM) {
955 sn = dtosn(fs, fs->lfs_offset);
956 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
957 fs->lfs_offset) {
958 LFS_SEGENTRY(sup, fs, sn, bp);
959 KASSERT(bp->b_oflags & BO_DELWRI);
960 LFS_WRITESEGENTRY(sup, fs, sn, bp);
961 /* fs->lfs_flags |= LFS_IFDIRTY; */
962 redo_ifile |= 1;
963 }
964 }
965
966 /*
967 * The inode's last address should not be in the current partial
968 * segment, except under exceptional circumstances (lfs_writevnodes
969 * had to start over, and in the meantime more blocks were written
970 * to a vnode). Both inodes will be accounted to this segment
971 * in lfs_writeseg so we need to subtract the earlier version
972 * here anyway. The segment count can temporarily dip below
973 * zero here; keep track of how many duplicates we have in
974 * "dupino" so we don't panic below.
975 */
976 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
977 ++sp->ndupino;
978 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
980 (long long)daddr, sp->ndupino));
981 }
982 /*
983 * Account the inode: it no longer belongs to its former segment,
984 * though it will not belong to the new segment until that segment
985 * is actually written.
986 */
987 if (daddr != LFS_UNUSED_DADDR) {
988 u_int32_t oldsn = dtosn(fs, daddr);
989 #ifdef DIAGNOSTIC
990 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
991 #endif
992 LFS_SEGENTRY(sup, fs, oldsn, bp);
993 #ifdef DIAGNOSTIC
994 if (sup->su_nbytes +
995 sizeof (struct ufs1_dinode) * ndupino
996 < sizeof (struct ufs1_dinode)) {
997 printf("lfs_writeinode: negative bytes "
998 "(segment %" PRIu32 " short by %d, "
999 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1000 ", daddr=%" PRId64 ", su_nbytes=%u, "
1001 "ndupino=%d)\n",
1002 dtosn(fs, daddr),
1003 (int)sizeof (struct ufs1_dinode) *
1004 (1 - sp->ndupino) - sup->su_nbytes,
1005 oldsn, sp->seg_number, daddr,
1006 (unsigned int)sup->su_nbytes,
1007 sp->ndupino);
1008 panic("lfs_writeinode: negative bytes");
1009 sup->su_nbytes = sizeof (struct ufs1_dinode);
1010 }
1011 #endif
1012 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1013 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1014 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1015 redo_ifile |=
1016 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1017 if (redo_ifile) {
1018 mutex_enter(&lfs_lock);
1019 fs->lfs_flags |= LFS_IFDIRTY;
1020 mutex_exit(&lfs_lock);
1021 /* Don't double-account */
1022 fs->lfs_idaddr = 0x0;
1023 }
1024 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1025 }
1026
1027 return redo_ifile;
1028 }
1029
1030 int
1031 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1032 {
1033 struct buf *bp;
1034 struct ufs1_dinode *cdp;
1035 daddr_t daddr;
1036 int32_t *daddrp; /* XXX ondisk32 */
1037 int i, ndx;
1038 int redo_ifile = 0;
1039 int gotblk = 0;
1040 int count;
1041
1042 ASSERT_SEGLOCK(fs);
1043 if (!(ip->i_flag & IN_ALLMOD))
1044 return (0);
1045
1046 /* Can't write ifile when writer is not set */
1047 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1048 (sp->seg_flags & SEGM_CLEAN));
1049
1050 /*
1051 * If this is the Ifile, see if writing it here will generate a
1052 * temporary misaccounting. If it will, do the accounting and write
1053 * the blocks, postponing the inode write until the accounting is
1054 * solid.
1055 */
1056 count = 0;
1057 while (ip->i_number == LFS_IFILE_INUM) {
1058 int redo = 0;
1059
1060 if (sp->idp == NULL && sp->ibp == NULL &&
1061 (sp->seg_bytes_left < fs->lfs_ibsize ||
1062 sp->sum_bytes_left < sizeof(int32_t))) {
1063 (void) lfs_writeseg(fs, sp);
1064 continue;
1065 }
1066
1067 /* Look for dirty Ifile blocks */
1068 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1069 if (!(bp->b_flags & B_GATHERED)) {
1070 redo = 1;
1071 break;
1072 }
1073 }
1074
1075 if (redo == 0)
1076 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1077 if (redo == 0)
1078 break;
1079
1080 if (sp->idp) {
1081 sp->idp->di_inumber = 0;
1082 sp->idp = NULL;
1083 }
1084 ++count;
1085 if (count > 2)
1086 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1087 lfs_writefile(fs, sp, fs->lfs_ivnode);
1088 }
1089
1090 /* Allocate a new inode block if necessary. */
1091 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1092 sp->ibp == NULL) {
1093 /* Allocate a new segment if necessary. */
1094 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1095 sp->sum_bytes_left < sizeof(int32_t))
1096 (void) lfs_writeseg(fs, sp);
1097
1098 /* Get next inode block. */
1099 daddr = fs->lfs_offset;
1100 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1101 sp->ibp = *sp->cbpp++ =
1102 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1103 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1104 gotblk++;
1105
1106 /* Zero out inode numbers */
1107 for (i = 0; i < INOPB(fs); ++i)
1108 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1109 0;
1110
1111 ++sp->start_bpp;
1112 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1113 /* Set remaining space counters. */
1114 sp->seg_bytes_left -= fs->lfs_ibsize;
1115 sp->sum_bytes_left -= sizeof(int32_t);
1116 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1117 sp->ninodes / INOPB(fs) - 1;
1118 ((int32_t *)(sp->segsum))[ndx] = daddr;
1119 }
1120
1121 /* Check VU_DIROP in case there is a new file with no data blocks */
1122 if (ITOV(ip)->v_uflag & VU_DIROP)
1123 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1124
1125 /* Update the inode times and copy the inode onto the inode page. */
1126 /* XXX kludge --- don't redirty the ifile just to put times on it */
1127 if (ip->i_number != LFS_IFILE_INUM)
1128 LFS_ITIMES(ip, NULL, NULL, NULL);
1129
1130 /*
1131 * If this is the Ifile, and we've already written the Ifile in this
1132 * partial segment, just overwrite it (it's not on disk yet) and
1133 * continue.
1134 *
1135 * XXX we know that the bp that we get the second time around has
1136 * already been gathered.
1137 */
1138 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1139 *(sp->idp) = *ip->i_din.ffs1_din;
1140 ip->i_lfs_osize = ip->i_size;
1141 return 0;
1142 }
1143
1144 bp = sp->ibp;
1145 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1146 *cdp = *ip->i_din.ffs1_din;
1147
1148 /*
1149 * If cleaning, link counts and directory file sizes cannot change,
1150 * since those would be directory operations---even if the file
1151 * we are writing is marked VU_DIROP we should write the old values.
1152 * If we're not cleaning, of course, update the values so we get
1153 * current values the next time we clean.
1154 */
1155 if (sp->seg_flags & SEGM_CLEAN) {
1156 if (ITOV(ip)->v_uflag & VU_DIROP) {
1157 cdp->di_nlink = ip->i_lfs_odnlink;
1158 /* if (ITOV(ip)->v_type == VDIR) */
1159 cdp->di_size = ip->i_lfs_osize;
1160 }
1161 } else {
1162 ip->i_lfs_odnlink = cdp->di_nlink;
1163 ip->i_lfs_osize = ip->i_size;
1164 }
1165
1166
1167 /* We can finish the segment accounting for truncations now */
1168 lfs_finalize_ino_seguse(fs, ip);
1169
1170 /*
1171 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1172 * addresses to disk; possibly change the on-disk record of
1173 * the inode size, either by reverting to the previous size
1174 * (in the case of cleaning) or by verifying the inode's block
1175 * holdings (in the case of files being allocated as they are being
1176 * written).
1177 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1178 * XXX count on disk wrong by the same amount. We should be
1179 * XXX able to "borrow" from lfs_avail and return it after the
1180 * XXX Ifile is written. See also in lfs_writeseg.
1181 */
1182
1183 /* Check file size based on highest allocated block */
1184 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1185 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1186 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1187 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1188 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1189 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1190 }
1191 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1192 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1193 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1194 ip->i_ffs1_blocks, fs->lfs_offset));
1195 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1196 daddrp++) {
1197 if (*daddrp == UNWRITTEN) {
1198 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1199 *daddrp = 0;
1200 }
1201 }
1202 }
1203
1204 #ifdef DIAGNOSTIC
1205 /*
1206 * Check dinode held blocks against dinode size.
1207 * This should be identical to the check in lfs_vget().
1208 */
1209 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1210 i < NDADDR; i++) {
1211 KASSERT(i >= 0);
1212 if ((cdp->di_mode & IFMT) == IFLNK)
1213 continue;
1214 if (((cdp->di_mode & IFMT) == IFBLK ||
1215 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1216 continue;
1217 if (cdp->di_db[i] != 0) {
1218 # ifdef DEBUG
1219 lfs_dump_dinode(cdp);
1220 # endif
1221 panic("writing inconsistent inode");
1222 }
1223 }
1224 #endif /* DIAGNOSTIC */
1225
1226 if (ip->i_flag & IN_CLEANING)
1227 LFS_CLR_UINO(ip, IN_CLEANING);
1228 else {
1229 /* XXX IN_ALLMOD */
1230 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1231 IN_UPDATE | IN_MODIFY);
1232 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1233 LFS_CLR_UINO(ip, IN_MODIFIED);
1234 else {
1235 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1236 "blks=%d, eff=%d\n", ip->i_number,
1237 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1238 }
1239 }
1240
1241 if (ip->i_number == LFS_IFILE_INUM) {
1242 /* We know sp->idp == NULL */
1243 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1244 (sp->ninodes % INOPB(fs));
1245
1246 /* Not dirty any more */
1247 mutex_enter(&lfs_lock);
1248 fs->lfs_flags &= ~LFS_IFDIRTY;
1249 mutex_exit(&lfs_lock);
1250 }
1251
1252 if (gotblk) {
1253 mutex_enter(&bufcache_lock);
1254 LFS_LOCK_BUF(bp);
1255 brelsel(bp, 0);
1256 mutex_exit(&bufcache_lock);
1257 }
1258
1259 /* Increment inode count in segment summary block. */
1260 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1261
1262 /* If this page is full, set flag to allocate a new page. */
1263 if (++sp->ninodes % INOPB(fs) == 0)
1264 sp->ibp = NULL;
1265
1266 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1267
1268 KASSERT(redo_ifile == 0);
1269 return (redo_ifile);
1270 }
1271
1272 int
1273 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1274 {
1275 struct lfs *fs;
1276 int vers;
1277 int j, blksinblk;
1278
1279 ASSERT_SEGLOCK(sp->fs);
1280 /*
1281 * If full, finish this segment. We may be doing I/O, so
1282 * release and reacquire the splbio().
1283 */
1284 #ifdef DIAGNOSTIC
1285 if (sp->vp == NULL)
1286 panic ("lfs_gatherblock: Null vp in segment");
1287 #endif
1288 fs = sp->fs;
1289 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1290 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1291 sp->seg_bytes_left < bp->b_bcount) {
1292 if (mptr)
1293 mutex_exit(mptr);
1294 lfs_updatemeta(sp);
1295
1296 vers = sp->fip->fi_version;
1297 (void) lfs_writeseg(fs, sp);
1298
1299 /* Add the current file to the segment summary. */
1300 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1301
1302 if (mptr)
1303 mutex_enter(mptr);
1304 return (1);
1305 }
1306
1307 if (bp->b_flags & B_GATHERED) {
1308 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1309 " lbn %" PRId64 "\n",
1310 sp->fip->fi_ino, bp->b_lblkno));
1311 return (0);
1312 }
1313
1314 /* Insert into the buffer list, update the FINFO block. */
1315 bp->b_flags |= B_GATHERED;
1316
1317 *sp->cbpp++ = bp;
1318 for (j = 0; j < blksinblk; j++) {
1319 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1320 /* This block's accounting moves from lfs_favail to lfs_avail */
1321 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1322 }
1323
1324 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1325 sp->seg_bytes_left -= bp->b_bcount;
1326 return (0);
1327 }
1328
1329 int
1330 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1331 int (*match)(struct lfs *, struct buf *))
1332 {
1333 struct buf *bp, *nbp;
1334 int count = 0;
1335
1336 ASSERT_SEGLOCK(fs);
1337 if (vp->v_type == VBLK)
1338 return 0;
1339 KASSERT(sp->vp == NULL);
1340 sp->vp = vp;
1341 mutex_enter(&bufcache_lock);
1342
1343 #ifndef LFS_NO_BACKBUF_HACK
1344 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1345 # define BUF_OFFSET \
1346 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1347 # define BACK_BUF(BP) \
1348 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1349 # define BEG_OF_LIST \
1350 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1351
1352 loop:
1353 /* Find last buffer. */
1354 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1355 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1356 bp = LIST_NEXT(bp, b_vnbufs))
1357 /* nothing */;
1358 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1359 nbp = BACK_BUF(bp);
1360 #else /* LFS_NO_BACKBUF_HACK */
1361 loop:
1362 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1363 nbp = LIST_NEXT(bp, b_vnbufs);
1364 #endif /* LFS_NO_BACKBUF_HACK */
1365 if ((bp->b_cflags & BC_BUSY) != 0 ||
1366 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1367 #ifdef DEBUG
1368 if (vp == fs->lfs_ivnode &&
1369 (bp->b_cflags & BC_BUSY) != 0 &&
1370 (bp->b_flags & B_GATHERED) == 0)
1371 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1372 PRId64 " busy (%x) at 0x%x",
1373 bp->b_lblkno, bp->b_flags,
1374 (unsigned)fs->lfs_offset);
1375 #endif
1376 continue;
1377 }
1378 #ifdef DIAGNOSTIC
1379 # ifdef LFS_USE_B_INVAL
1380 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1381 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1382 " is BC_INVAL\n", bp->b_lblkno));
1383 VOP_PRINT(bp->b_vp);
1384 }
1385 # endif /* LFS_USE_B_INVAL */
1386 if (!(bp->b_oflags & BO_DELWRI))
1387 panic("lfs_gather: bp not BO_DELWRI");
1388 if (!(bp->b_flags & B_LOCKED)) {
1389 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1390 " blk %" PRId64 " not B_LOCKED\n",
1391 bp->b_lblkno,
1392 dbtofsb(fs, bp->b_blkno)));
1393 VOP_PRINT(bp->b_vp);
1394 panic("lfs_gather: bp not B_LOCKED");
1395 }
1396 #endif
1397 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1398 goto loop;
1399 }
1400 count++;
1401 }
1402 mutex_exit(&bufcache_lock);
1403 lfs_updatemeta(sp);
1404 KASSERT(sp->vp == vp);
1405 sp->vp = NULL;
1406 return count;
1407 }
1408
1409 #if DEBUG
1410 # define DEBUG_OOFF(n) do { \
1411 if (ooff == 0) { \
1412 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1413 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1414 ", was 0x0 (or %" PRId64 ")\n", \
1415 (n), ip->i_number, lbn, ndaddr, daddr)); \
1416 } \
1417 } while (0)
1418 #else
1419 # define DEBUG_OOFF(n)
1420 #endif
1421
1422 /*
1423 * Change the given block's address to ndaddr, finding its previous
1424 * location using ufs_bmaparray().
1425 *
1426 * Account for this change in the segment table.
1427 *
1428 * called with sp == NULL by roll-forwarding code.
1429 */
1430 void
1431 lfs_update_single(struct lfs *fs, struct segment *sp,
1432 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1433 {
1434 SEGUSE *sup;
1435 struct buf *bp;
1436 struct indir a[NIADDR + 2], *ap;
1437 struct inode *ip;
1438 daddr_t daddr, ooff;
1439 int num, error;
1440 int bb, osize, obb;
1441
1442 ASSERT_SEGLOCK(fs);
1443 KASSERT(sp == NULL || sp->vp == vp);
1444 ip = VTOI(vp);
1445
1446 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1447 if (error)
1448 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1449
1450 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1451 KASSERT(daddr <= LFS_MAX_DADDR);
1452 if (daddr > 0)
1453 daddr = dbtofsb(fs, daddr);
1454
1455 bb = fragstofsb(fs, numfrags(fs, size));
1456 switch (num) {
1457 case 0:
1458 ooff = ip->i_ffs1_db[lbn];
1459 DEBUG_OOFF(0);
1460 if (ooff == UNWRITTEN)
1461 ip->i_ffs1_blocks += bb;
1462 else {
1463 /* possible fragment truncation or extension */
1464 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1465 ip->i_ffs1_blocks += (bb - obb);
1466 }
1467 ip->i_ffs1_db[lbn] = ndaddr;
1468 break;
1469 case 1:
1470 ooff = ip->i_ffs1_ib[a[0].in_off];
1471 DEBUG_OOFF(1);
1472 if (ooff == UNWRITTEN)
1473 ip->i_ffs1_blocks += bb;
1474 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1475 break;
1476 default:
1477 ap = &a[num - 1];
1478 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1479 panic("lfs_updatemeta: bread bno %" PRId64,
1480 ap->in_lbn);
1481
1482 /* XXX ondisk32 */
1483 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1484 DEBUG_OOFF(num);
1485 if (ooff == UNWRITTEN)
1486 ip->i_ffs1_blocks += bb;
1487 /* XXX ondisk32 */
1488 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1489 (void) VOP_BWRITE(bp);
1490 }
1491
1492 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1493
1494 /* Update hiblk when extending the file */
1495 if (lbn > ip->i_lfs_hiblk)
1496 ip->i_lfs_hiblk = lbn;
1497
1498 /*
1499 * Though we'd rather it couldn't, this *can* happen right now
1500 * if cleaning blocks and regular blocks coexist.
1501 */
1502 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1503
1504 /*
1505 * Update segment usage information, based on old size
1506 * and location.
1507 */
1508 if (daddr > 0) {
1509 u_int32_t oldsn = dtosn(fs, daddr);
1510 #ifdef DIAGNOSTIC
1511 int ndupino;
1512
1513 if (sp && sp->seg_number == oldsn) {
1514 ndupino = sp->ndupino;
1515 } else {
1516 ndupino = 0;
1517 }
1518 #endif
1519 KASSERT(oldsn < fs->lfs_nseg);
1520 if (lbn >= 0 && lbn < NDADDR)
1521 osize = ip->i_lfs_fragsize[lbn];
1522 else
1523 osize = fs->lfs_bsize;
1524 LFS_SEGENTRY(sup, fs, oldsn, bp);
1525 #ifdef DIAGNOSTIC
1526 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1527 < osize) {
1528 printf("lfs_updatemeta: negative bytes "
1529 "(segment %" PRIu32 " short by %" PRId64
1530 ")\n", dtosn(fs, daddr),
1531 (int64_t)osize -
1532 (sizeof (struct ufs1_dinode) * ndupino +
1533 sup->su_nbytes));
1534 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1535 ", addr = 0x%" PRIx64 "\n",
1536 (unsigned long long)ip->i_number, lbn, daddr);
1537 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1538 panic("lfs_updatemeta: negative bytes");
1539 sup->su_nbytes = osize -
1540 sizeof (struct ufs1_dinode) * ndupino;
1541 }
1542 #endif
1543 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1544 " db 0x%" PRIx64 "\n",
1545 dtosn(fs, daddr), osize,
1546 ip->i_number, lbn, daddr));
1547 sup->su_nbytes -= osize;
1548 if (!(bp->b_flags & B_GATHERED)) {
1549 mutex_enter(&lfs_lock);
1550 fs->lfs_flags |= LFS_IFDIRTY;
1551 mutex_exit(&lfs_lock);
1552 }
1553 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1554 }
1555 /*
1556 * Now that this block has a new address, and its old
1557 * segment no longer owns it, we can forget about its
1558 * old size.
1559 */
1560 if (lbn >= 0 && lbn < NDADDR)
1561 ip->i_lfs_fragsize[lbn] = size;
1562 }
1563
1564 /*
1565 * Update the metadata that points to the blocks listed in the FINFO
1566 * array.
1567 */
1568 void
1569 lfs_updatemeta(struct segment *sp)
1570 {
1571 struct buf *sbp;
1572 struct lfs *fs;
1573 struct vnode *vp;
1574 daddr_t lbn;
1575 int i, nblocks, num;
1576 int bb;
1577 int bytesleft, size;
1578
1579 ASSERT_SEGLOCK(sp->fs);
1580 vp = sp->vp;
1581 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1582 KASSERT(nblocks >= 0);
1583 KASSERT(vp != NULL);
1584 if (nblocks == 0)
1585 return;
1586
1587 /*
1588 * This count may be high due to oversize blocks from lfs_gop_write.
1589 * Correct for this. (XXX we should be able to keep track of these.)
1590 */
1591 fs = sp->fs;
1592 for (i = 0; i < nblocks; i++) {
1593 if (sp->start_bpp[i] == NULL) {
1594 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1595 nblocks = i;
1596 break;
1597 }
1598 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1599 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1600 nblocks -= num - 1;
1601 }
1602
1603 KASSERT(vp->v_type == VREG ||
1604 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1605 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1606
1607 /*
1608 * Sort the blocks.
1609 *
1610 * We have to sort even if the blocks come from the
1611 * cleaner, because there might be other pending blocks on the
1612 * same inode...and if we don't sort, and there are fragments
1613 * present, blocks may be written in the wrong place.
1614 */
1615 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1616
1617 /*
1618 * Record the length of the last block in case it's a fragment.
1619 * If there are indirect blocks present, they sort last. An
1620 * indirect block will be lfs_bsize and its presence indicates
1621 * that you cannot have fragments.
1622 *
1623 * XXX This last is a lie. A cleaned fragment can coexist with
1624 * XXX a later indirect block. This will continue to be
1625 * XXX true until lfs_markv is fixed to do everything with
1626 * XXX fake blocks (including fake inodes and fake indirect blocks).
1627 */
1628 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1629 fs->lfs_bmask) + 1;
1630
1631 /*
1632 * Assign disk addresses, and update references to the logical
1633 * block and the segment usage information.
1634 */
1635 for (i = nblocks; i--; ++sp->start_bpp) {
1636 sbp = *sp->start_bpp;
1637 lbn = *sp->start_lbp;
1638 KASSERT(sbp->b_lblkno == lbn);
1639
1640 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1641
1642 /*
1643 * If we write a frag in the wrong place, the cleaner won't
1644 * be able to correctly identify its size later, and the
1645 * segment will be uncleanable. (Even worse, it will assume
1646 * that the indirect block that actually ends the list
1647 * is of a smaller size!)
1648 */
1649 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1650 panic("lfs_updatemeta: fragment is not last block");
1651
1652 /*
1653 * For each subblock in this possibly oversized block,
1654 * update its address on disk.
1655 */
1656 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1657 KASSERT(vp == sbp->b_vp);
1658 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1659 bytesleft -= fs->lfs_bsize) {
1660 size = MIN(bytesleft, fs->lfs_bsize);
1661 bb = fragstofsb(fs, numfrags(fs, size));
1662 lbn = *sp->start_lbp++;
1663 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1664 size);
1665 fs->lfs_offset += bb;
1666 }
1667
1668 }
1669
1670 /* This inode has been modified */
1671 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1672 }
1673
1674 /*
1675 * Move lfs_offset to a segment earlier than sn.
1676 */
1677 int
1678 lfs_rewind(struct lfs *fs, int newsn)
1679 {
1680 int sn, osn, isdirty;
1681 struct buf *bp;
1682 SEGUSE *sup;
1683
1684 ASSERT_SEGLOCK(fs);
1685
1686 osn = dtosn(fs, fs->lfs_offset);
1687 if (osn < newsn)
1688 return 0;
1689
1690 /* lfs_avail eats the remaining space in this segment */
1691 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1692
1693 /* Find a low-numbered segment */
1694 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1695 LFS_SEGENTRY(sup, fs, sn, bp);
1696 isdirty = sup->su_flags & SEGUSE_DIRTY;
1697 brelse(bp, 0);
1698
1699 if (!isdirty)
1700 break;
1701 }
1702 if (sn == fs->lfs_nseg)
1703 panic("lfs_rewind: no clean segments");
1704 if (newsn >= 0 && sn >= newsn)
1705 return ENOENT;
1706 fs->lfs_nextseg = sn;
1707 lfs_newseg(fs);
1708 fs->lfs_offset = fs->lfs_curseg;
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * Start a new partial segment.
1715 *
1716 * Return 1 when we entered to a new segment.
1717 * Otherwise, return 0.
1718 */
1719 int
1720 lfs_initseg(struct lfs *fs)
1721 {
1722 struct segment *sp = fs->lfs_sp;
1723 SEGSUM *ssp;
1724 struct buf *sbp; /* buffer for SEGSUM */
1725 int repeat = 0; /* return value */
1726
1727 ASSERT_SEGLOCK(fs);
1728 /* Advance to the next segment. */
1729 if (!LFS_PARTIAL_FITS(fs)) {
1730 SEGUSE *sup;
1731 struct buf *bp;
1732
1733 /* lfs_avail eats the remaining space */
1734 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1735 fs->lfs_curseg);
1736 /* Wake up any cleaning procs waiting on this file system. */
1737 lfs_wakeup_cleaner(fs);
1738 lfs_newseg(fs);
1739 repeat = 1;
1740 fs->lfs_offset = fs->lfs_curseg;
1741
1742 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1743 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1744
1745 /*
1746 * If the segment contains a superblock, update the offset
1747 * and summary address to skip over it.
1748 */
1749 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1750 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1751 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1752 sp->seg_bytes_left -= LFS_SBPAD;
1753 }
1754 brelse(bp, 0);
1755 /* Segment zero could also contain the labelpad */
1756 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1757 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1758 fs->lfs_offset +=
1759 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1760 sp->seg_bytes_left -=
1761 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1762 }
1763 } else {
1764 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1765 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1766 (fs->lfs_offset - fs->lfs_curseg));
1767 }
1768 fs->lfs_lastpseg = fs->lfs_offset;
1769
1770 /* Record first address of this partial segment */
1771 if (sp->seg_flags & SEGM_CLEAN) {
1772 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1773 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1774 /* "1" is the artificial inc in lfs_seglock */
1775 mutex_enter(&lfs_lock);
1776 while (fs->lfs_iocount > 1) {
1777 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1778 "lfs_initseg", 0, &lfs_lock);
1779 }
1780 mutex_exit(&lfs_lock);
1781 fs->lfs_cleanind = 0;
1782 }
1783 }
1784
1785 sp->fs = fs;
1786 sp->ibp = NULL;
1787 sp->idp = NULL;
1788 sp->ninodes = 0;
1789 sp->ndupino = 0;
1790
1791 sp->cbpp = sp->bpp;
1792
1793 /* Get a new buffer for SEGSUM */
1794 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1795 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1796
1797 /* ... and enter it into the buffer list. */
1798 *sp->cbpp = sbp;
1799 sp->cbpp++;
1800 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1801
1802 sp->start_bpp = sp->cbpp;
1803
1804 /* Set point to SEGSUM, initialize it. */
1805 ssp = sp->segsum = sbp->b_data;
1806 memset(ssp, 0, fs->lfs_sumsize);
1807 ssp->ss_next = fs->lfs_nextseg;
1808 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1809 ssp->ss_magic = SS_MAGIC;
1810
1811 /* Set pointer to first FINFO, initialize it. */
1812 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1813 sp->fip->fi_nblocks = 0;
1814 sp->start_lbp = &sp->fip->fi_blocks[0];
1815 sp->fip->fi_lastlength = 0;
1816
1817 sp->seg_bytes_left -= fs->lfs_sumsize;
1818 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1819
1820 return (repeat);
1821 }
1822
1823 /*
1824 * Remove SEGUSE_INVAL from all segments.
1825 */
1826 void
1827 lfs_unset_inval_all(struct lfs *fs)
1828 {
1829 SEGUSE *sup;
1830 struct buf *bp;
1831 int i;
1832
1833 for (i = 0; i < fs->lfs_nseg; i++) {
1834 LFS_SEGENTRY(sup, fs, i, bp);
1835 if (sup->su_flags & SEGUSE_INVAL) {
1836 sup->su_flags &= ~SEGUSE_INVAL;
1837 LFS_WRITESEGENTRY(sup, fs, i, bp);
1838 } else
1839 brelse(bp, 0);
1840 }
1841 }
1842
1843 /*
1844 * Return the next segment to write.
1845 */
1846 void
1847 lfs_newseg(struct lfs *fs)
1848 {
1849 CLEANERINFO *cip;
1850 SEGUSE *sup;
1851 struct buf *bp;
1852 int curseg, isdirty, sn, skip_inval;
1853
1854 ASSERT_SEGLOCK(fs);
1855
1856 /* Honor LFCNWRAPSTOP */
1857 mutex_enter(&lfs_lock);
1858 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1859 if (fs->lfs_wrappass) {
1860 log(LOG_NOTICE, "%s: wrappass=%d\n",
1861 fs->lfs_fsmnt, fs->lfs_wrappass);
1862 fs->lfs_wrappass = 0;
1863 break;
1864 }
1865 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1866 wakeup(&fs->lfs_nowrap);
1867 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1868 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1869 &lfs_lock);
1870 }
1871 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1872 mutex_exit(&lfs_lock);
1873
1874 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1875 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1876 dtosn(fs, fs->lfs_nextseg)));
1877 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1878 sup->su_nbytes = 0;
1879 sup->su_nsums = 0;
1880 sup->su_ninos = 0;
1881 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1882
1883 LFS_CLEANERINFO(cip, fs, bp);
1884 --cip->clean;
1885 ++cip->dirty;
1886 fs->lfs_nclean = cip->clean;
1887 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1888
1889 fs->lfs_lastseg = fs->lfs_curseg;
1890 fs->lfs_curseg = fs->lfs_nextseg;
1891 skip_inval = 1;
1892 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1893 sn = (sn + 1) % fs->lfs_nseg;
1894
1895 if (sn == curseg) {
1896 if (skip_inval)
1897 skip_inval = 0;
1898 else
1899 panic("lfs_nextseg: no clean segments");
1900 }
1901 LFS_SEGENTRY(sup, fs, sn, bp);
1902 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1903 /* Check SEGUSE_EMPTY as we go along */
1904 if (isdirty && sup->su_nbytes == 0 &&
1905 !(sup->su_flags & SEGUSE_EMPTY))
1906 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1907 else
1908 brelse(bp, 0);
1909
1910 if (!isdirty)
1911 break;
1912 }
1913 if (skip_inval == 0)
1914 lfs_unset_inval_all(fs);
1915
1916 ++fs->lfs_nactive;
1917 fs->lfs_nextseg = sntod(fs, sn);
1918 if (lfs_dostats) {
1919 ++lfs_stats.segsused;
1920 }
1921 }
1922
1923 static struct buf *
1924 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1925 int n)
1926 {
1927 struct lfs_cluster *cl;
1928 struct buf **bpp, *bp;
1929
1930 ASSERT_SEGLOCK(fs);
1931 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1932 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1933 memset(cl, 0, sizeof(*cl));
1934 cl->fs = fs;
1935 cl->bpp = bpp;
1936 cl->bufcount = 0;
1937 cl->bufsize = 0;
1938
1939 /* If this segment is being written synchronously, note that */
1940 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1941 cl->flags |= LFS_CL_SYNC;
1942 cl->seg = fs->lfs_sp;
1943 ++cl->seg->seg_iocount;
1944 }
1945
1946 /* Get an empty buffer header, or maybe one with something on it */
1947 bp = getiobuf(vp, true);
1948 bp->b_dev = NODEV;
1949 bp->b_blkno = bp->b_lblkno = addr;
1950 bp->b_iodone = lfs_cluster_callback;
1951 bp->b_private = cl;
1952
1953 return bp;
1954 }
1955
1956 int
1957 lfs_writeseg(struct lfs *fs, struct segment *sp)
1958 {
1959 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1960 SEGUSE *sup;
1961 SEGSUM *ssp;
1962 int i;
1963 int do_again, nblocks, byteoffset;
1964 size_t el_size;
1965 struct lfs_cluster *cl;
1966 u_short ninos;
1967 struct vnode *devvp;
1968 char *p = NULL;
1969 struct vnode *vp;
1970 int32_t *daddrp; /* XXX ondisk32 */
1971 int changed;
1972 u_int32_t sum;
1973 #ifdef DEBUG
1974 FINFO *fip;
1975 int findex;
1976 #endif
1977
1978 ASSERT_SEGLOCK(fs);
1979
1980 ssp = (SEGSUM *)sp->segsum;
1981
1982 /*
1983 * If there are no buffers other than the segment summary to write,
1984 * don't do anything. If we are the end of a dirop sequence, however,
1985 * write the empty segment summary anyway, to help out the
1986 * roll-forward agent.
1987 */
1988 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1989 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1990 return 0;
1991 }
1992
1993 /* Note if partial segment is being written by the cleaner */
1994 if (sp->seg_flags & SEGM_CLEAN)
1995 ssp->ss_flags |= SS_CLEAN;
1996
1997 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1998
1999 /* Update the segment usage information. */
2000 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2001
2002 /* Loop through all blocks, except the segment summary. */
2003 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2004 if ((*bpp)->b_vp != devvp) {
2005 sup->su_nbytes += (*bpp)->b_bcount;
2006 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2007 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2008 sp->seg_number, (*bpp)->b_bcount,
2009 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2010 (*bpp)->b_blkno));
2011 }
2012 }
2013
2014 #ifdef DEBUG
2015 /* Check for zero-length and zero-version FINFO entries. */
2016 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2017 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2018 KDASSERT(fip->fi_nblocks > 0);
2019 KDASSERT(fip->fi_version > 0);
2020 fip = (FINFO *)((char *)fip + FINFOSIZE +
2021 sizeof(int32_t) * fip->fi_nblocks);
2022 }
2023 #endif /* DEBUG */
2024
2025 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2026 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2027 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2028 ssp->ss_ninos));
2029 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2030 /* sup->su_nbytes += fs->lfs_sumsize; */
2031 if (fs->lfs_version == 1)
2032 sup->su_olastmod = time_second;
2033 else
2034 sup->su_lastmod = time_second;
2035 sup->su_ninos += ninos;
2036 ++sup->su_nsums;
2037 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2038
2039 do_again = !(bp->b_flags & B_GATHERED);
2040 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2041
2042 /*
2043 * Mark blocks B_BUSY, to prevent then from being changed between
2044 * the checksum computation and the actual write.
2045 *
2046 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2047 * there are any, replace them with copies that have UNASSIGNED
2048 * instead.
2049 */
2050 mutex_enter(&bufcache_lock);
2051 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2052 ++bpp;
2053 bp = *bpp;
2054 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2055 bp->b_cflags |= BC_BUSY;
2056 continue;
2057 }
2058
2059 while (bp->b_cflags & BC_BUSY) {
2060 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2061 " data summary corruption for ino %d, lbn %"
2062 PRId64 "\n",
2063 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2064 bp->b_cflags |= BC_WANTED;
2065 cv_wait(&bp->b_busy, &bufcache_lock);
2066 }
2067 bp->b_cflags |= BC_BUSY;
2068 mutex_exit(&bufcache_lock);
2069 unbusybp = NULL;
2070
2071 /*
2072 * Check and replace indirect block UNWRITTEN bogosity.
2073 * XXX See comment in lfs_writefile.
2074 */
2075 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2076 VTOI(bp->b_vp)->i_ffs1_blocks !=
2077 VTOI(bp->b_vp)->i_lfs_effnblks) {
2078 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2079 VTOI(bp->b_vp)->i_number,
2080 VTOI(bp->b_vp)->i_lfs_effnblks,
2081 VTOI(bp->b_vp)->i_ffs1_blocks));
2082 /* Make a copy we'll make changes to */
2083 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2084 bp->b_bcount, LFS_NB_IBLOCK);
2085 newbp->b_blkno = bp->b_blkno;
2086 memcpy(newbp->b_data, bp->b_data,
2087 newbp->b_bcount);
2088
2089 changed = 0;
2090 /* XXX ondisk32 */
2091 for (daddrp = (int32_t *)(newbp->b_data);
2092 daddrp < (int32_t *)((char *)newbp->b_data +
2093 newbp->b_bcount); daddrp++) {
2094 if (*daddrp == UNWRITTEN) {
2095 ++changed;
2096 *daddrp = 0;
2097 }
2098 }
2099 /*
2100 * Get rid of the old buffer. Don't mark it clean,
2101 * though, if it still has dirty data on it.
2102 */
2103 if (changed) {
2104 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2105 " bp = %p newbp = %p\n", changed, bp,
2106 newbp));
2107 *bpp = newbp;
2108 bp->b_flags &= ~B_GATHERED;
2109 bp->b_error = 0;
2110 if (bp->b_iodone != NULL) {
2111 DLOG((DLOG_SEG, "lfs_writeseg: "
2112 "indir bp should not be B_CALL\n"));
2113 biodone(bp);
2114 bp = NULL;
2115 } else {
2116 /* Still on free list, leave it there */
2117 unbusybp = bp;
2118 /*
2119 * We have to re-decrement lfs_avail
2120 * since this block is going to come
2121 * back around to us in the next
2122 * segment.
2123 */
2124 fs->lfs_avail -=
2125 btofsb(fs, bp->b_bcount);
2126 }
2127 } else {
2128 lfs_freebuf(fs, newbp);
2129 }
2130 }
2131 mutex_enter(&bufcache_lock);
2132 if (unbusybp != NULL) {
2133 unbusybp->b_cflags &= ~BC_BUSY;
2134 if (unbusybp->b_cflags & BC_WANTED)
2135 cv_broadcast(&bp->b_busy);
2136 }
2137 }
2138 mutex_exit(&bufcache_lock);
2139
2140 /*
2141 * Compute checksum across data and then across summary; the first
2142 * block (the summary block) is skipped. Set the create time here
2143 * so that it's guaranteed to be later than the inode mod times.
2144 */
2145 sum = 0;
2146 if (fs->lfs_version == 1)
2147 el_size = sizeof(u_long);
2148 else
2149 el_size = sizeof(u_int32_t);
2150 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2151 ++bpp;
2152 /* Loop through gop_write cluster blocks */
2153 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2154 byteoffset += fs->lfs_bsize) {
2155 #ifdef LFS_USE_B_INVAL
2156 if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2157 (*bpp)->b_iodone != NULL) {
2158 if (copyin((void *)(*bpp)->b_saveaddr +
2159 byteoffset, dp, el_size)) {
2160 panic("lfs_writeseg: copyin failed [1]:"
2161 " ino %d blk %" PRId64,
2162 VTOI((*bpp)->b_vp)->i_number,
2163 (*bpp)->b_lblkno);
2164 }
2165 } else
2166 #endif /* LFS_USE_B_INVAL */
2167 {
2168 sum = lfs_cksum_part((char *)
2169 (*bpp)->b_data + byteoffset, el_size, sum);
2170 }
2171 }
2172 }
2173 if (fs->lfs_version == 1)
2174 ssp->ss_ocreate = time_second;
2175 else {
2176 ssp->ss_create = time_second;
2177 ssp->ss_serial = ++fs->lfs_serial;
2178 ssp->ss_ident = fs->lfs_ident;
2179 }
2180 ssp->ss_datasum = lfs_cksum_fold(sum);
2181 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2182 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2183
2184 mutex_enter(&lfs_lock);
2185 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2186 btofsb(fs, fs->lfs_sumsize));
2187 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2188 btofsb(fs, fs->lfs_sumsize));
2189 mutex_exit(&lfs_lock);
2190
2191 /*
2192 * When we simply write the blocks we lose a rotation for every block
2193 * written. To avoid this problem, we cluster the buffers into a
2194 * chunk and write the chunk. MAXPHYS is the largest size I/O
2195 * devices can handle, use that for the size of the chunks.
2196 *
2197 * Blocks that are already clusters (from GOP_WRITE), however, we
2198 * don't bother to copy into other clusters.
2199 */
2200
2201 #define CHUNKSIZE MAXPHYS
2202
2203 if (devvp == NULL)
2204 panic("devvp is NULL");
2205 for (bpp = sp->bpp, i = nblocks; i;) {
2206 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2207 cl = cbp->b_private;
2208
2209 cbp->b_flags |= B_ASYNC;
2210 cbp->b_cflags |= BC_BUSY;
2211 cbp->b_bcount = 0;
2212
2213 #if defined(DEBUG) && defined(DIAGNOSTIC)
2214 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2215 / sizeof(int32_t)) {
2216 panic("lfs_writeseg: real bpp overwrite");
2217 }
2218 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2219 panic("lfs_writeseg: theoretical bpp overwrite");
2220 }
2221 #endif
2222
2223 /*
2224 * Construct the cluster.
2225 */
2226 mutex_enter(&lfs_lock);
2227 ++fs->lfs_iocount;
2228 mutex_exit(&lfs_lock);
2229 while (i && cbp->b_bcount < CHUNKSIZE) {
2230 bp = *bpp;
2231
2232 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2233 break;
2234 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2235 break;
2236
2237 /* Clusters from GOP_WRITE are expedited */
2238 if (bp->b_bcount > fs->lfs_bsize) {
2239 if (cbp->b_bcount > 0)
2240 /* Put in its own buffer */
2241 break;
2242 else {
2243 cbp->b_data = bp->b_data;
2244 }
2245 } else if (cbp->b_bcount == 0) {
2246 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2247 LFS_NB_CLUSTER);
2248 cl->flags |= LFS_CL_MALLOC;
2249 }
2250 #ifdef DIAGNOSTIC
2251 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2252 btodb(bp->b_bcount - 1))) !=
2253 sp->seg_number) {
2254 printf("blk size %d daddr %" PRIx64
2255 " not in seg %d\n",
2256 bp->b_bcount, bp->b_blkno,
2257 sp->seg_number);
2258 panic("segment overwrite");
2259 }
2260 #endif
2261
2262 #ifdef LFS_USE_B_INVAL
2263 /*
2264 * Fake buffers from the cleaner are marked as B_INVAL.
2265 * We need to copy the data from user space rather than
2266 * from the buffer indicated.
2267 * XXX == what do I do on an error?
2268 */
2269 if ((bp->b_cflags & BC_INVAL) != 0 &&
2270 bp->b_iodone != NULL) {
2271 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2272 panic("lfs_writeseg: "
2273 "copyin failed [2]");
2274 } else
2275 #endif /* LFS_USE_B_INVAL */
2276 if (cl->flags & LFS_CL_MALLOC) {
2277 /* copy data into our cluster. */
2278 memcpy(p, bp->b_data, bp->b_bcount);
2279 p += bp->b_bcount;
2280 }
2281
2282 cbp->b_bcount += bp->b_bcount;
2283 cl->bufsize += bp->b_bcount;
2284
2285 bp->b_flags &= ~B_READ;
2286 bp->b_error = 0;
2287 cl->bpp[cl->bufcount++] = bp;
2288
2289 vp = bp->b_vp;
2290 mutex_enter(&bufcache_lock);
2291 mutex_enter(&vp->v_interlock);
2292 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2293 reassignbuf(bp, vp);
2294 vp->v_numoutput++;
2295 mutex_exit(&vp->v_interlock);
2296 mutex_exit(&bufcache_lock);
2297
2298 bpp++;
2299 i--;
2300 }
2301 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2302 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2303 else
2304 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2305 mutex_enter(&devvp->v_interlock);
2306 devvp->v_numoutput++;
2307 mutex_exit(&devvp->v_interlock);
2308 VOP_STRATEGY(devvp, cbp);
2309 curlwp->l_ru.ru_oublock++;
2310 }
2311
2312 if (lfs_dostats) {
2313 ++lfs_stats.psegwrites;
2314 lfs_stats.blocktot += nblocks - 1;
2315 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2316 ++lfs_stats.psyncwrites;
2317 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2318 ++lfs_stats.pcleanwrites;
2319 lfs_stats.cleanblocks += nblocks - 1;
2320 }
2321 }
2322
2323 return (lfs_initseg(fs) || do_again);
2324 }
2325
2326 void
2327 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2328 {
2329 struct buf *bp;
2330 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2331 int s;
2332
2333 ASSERT_MAYBE_SEGLOCK(fs);
2334 #ifdef DIAGNOSTIC
2335 KASSERT(fs->lfs_magic == LFS_MAGIC);
2336 #endif
2337 /*
2338 * If we can write one superblock while another is in
2339 * progress, we risk not having a complete checkpoint if we crash.
2340 * So, block here if a superblock write is in progress.
2341 */
2342 mutex_enter(&lfs_lock);
2343 s = splbio();
2344 while (fs->lfs_sbactive) {
2345 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2346 &lfs_lock);
2347 }
2348 fs->lfs_sbactive = daddr;
2349 splx(s);
2350 mutex_exit(&lfs_lock);
2351
2352 /* Set timestamp of this version of the superblock */
2353 if (fs->lfs_version == 1)
2354 fs->lfs_otstamp = time_second;
2355 fs->lfs_tstamp = time_second;
2356
2357 /* Checksum the superblock and copy it into a buffer. */
2358 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2359 bp = lfs_newbuf(fs, devvp,
2360 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2361 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2362 LFS_SBPAD - sizeof(struct dlfs));
2363 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2364
2365 bp->b_cflags |= BC_BUSY;
2366 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2367 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2368 bp->b_error = 0;
2369 bp->b_iodone = lfs_supercallback;
2370
2371 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2372 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2373 else
2374 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2375 curlwp->l_ru.ru_oublock++;
2376
2377 mutex_enter(&devvp->v_interlock);
2378 devvp->v_numoutput++;
2379 mutex_exit(&devvp->v_interlock);
2380
2381 mutex_enter(&lfs_lock);
2382 ++fs->lfs_iocount;
2383 mutex_exit(&lfs_lock);
2384 VOP_STRATEGY(devvp, bp);
2385 }
2386
2387 /*
2388 * Logical block number match routines used when traversing the dirty block
2389 * chain.
2390 */
2391 int
2392 lfs_match_fake(struct lfs *fs, struct buf *bp)
2393 {
2394
2395 ASSERT_SEGLOCK(fs);
2396 return LFS_IS_MALLOC_BUF(bp);
2397 }
2398
2399 #if 0
2400 int
2401 lfs_match_real(struct lfs *fs, struct buf *bp)
2402 {
2403
2404 ASSERT_SEGLOCK(fs);
2405 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2406 }
2407 #endif
2408
2409 int
2410 lfs_match_data(struct lfs *fs, struct buf *bp)
2411 {
2412
2413 ASSERT_SEGLOCK(fs);
2414 return (bp->b_lblkno >= 0);
2415 }
2416
2417 int
2418 lfs_match_indir(struct lfs *fs, struct buf *bp)
2419 {
2420 daddr_t lbn;
2421
2422 ASSERT_SEGLOCK(fs);
2423 lbn = bp->b_lblkno;
2424 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2425 }
2426
2427 int
2428 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2429 {
2430 daddr_t lbn;
2431
2432 ASSERT_SEGLOCK(fs);
2433 lbn = bp->b_lblkno;
2434 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2435 }
2436
2437 int
2438 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2439 {
2440 daddr_t lbn;
2441
2442 ASSERT_SEGLOCK(fs);
2443 lbn = bp->b_lblkno;
2444 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2445 }
2446
2447 static void
2448 lfs_free_aiodone(struct buf *bp)
2449 {
2450 struct lfs *fs;
2451
2452 KERNEL_LOCK(1, curlwp);
2453 fs = bp->b_private;
2454 ASSERT_NO_SEGLOCK(fs);
2455 lfs_freebuf(fs, bp);
2456 KERNEL_UNLOCK_LAST(curlwp);
2457 }
2458
2459 static void
2460 lfs_super_aiodone(struct buf *bp)
2461 {
2462 struct lfs *fs;
2463
2464 KERNEL_LOCK(1, curlwp);
2465 fs = bp->b_private;
2466 ASSERT_NO_SEGLOCK(fs);
2467 mutex_enter(&lfs_lock);
2468 fs->lfs_sbactive = 0;
2469 if (--fs->lfs_iocount <= 1)
2470 wakeup(&fs->lfs_iocount);
2471 wakeup(&fs->lfs_sbactive);
2472 mutex_exit(&lfs_lock);
2473 lfs_freebuf(fs, bp);
2474 KERNEL_UNLOCK_LAST(curlwp);
2475 }
2476
2477 static void
2478 lfs_cluster_aiodone(struct buf *bp)
2479 {
2480 struct lfs_cluster *cl;
2481 struct lfs *fs;
2482 struct buf *tbp, *fbp;
2483 struct vnode *vp, *devvp, *ovp;
2484 struct inode *ip;
2485 int error;
2486
2487 KERNEL_LOCK(1, curlwp);
2488
2489 error = bp->b_error;
2490 cl = bp->b_private;
2491 fs = cl->fs;
2492 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2493 ASSERT_NO_SEGLOCK(fs);
2494
2495 /* Put the pages back, and release the buffer */
2496 while (cl->bufcount--) {
2497 tbp = cl->bpp[cl->bufcount];
2498 KASSERT(tbp->b_cflags & BC_BUSY);
2499 if (error) {
2500 tbp->b_error = error;
2501 }
2502
2503 /*
2504 * We're done with tbp. If it has not been re-dirtied since
2505 * the cluster was written, free it. Otherwise, keep it on
2506 * the locked list to be written again.
2507 */
2508 vp = tbp->b_vp;
2509
2510 tbp->b_flags &= ~B_GATHERED;
2511
2512 LFS_BCLEAN_LOG(fs, tbp);
2513
2514 mutex_enter(&bufcache_lock);
2515 if (tbp->b_iodone == NULL) {
2516 KASSERT(tbp->b_flags & B_LOCKED);
2517 bremfree(tbp);
2518 if (vp) {
2519 mutex_enter(&vp->v_interlock);
2520 reassignbuf(tbp, vp);
2521 mutex_exit(&vp->v_interlock);
2522 }
2523 tbp->b_flags |= B_ASYNC; /* for biodone */
2524 }
2525
2526 if (((tbp->b_flags | tbp->b_oflags) &
2527 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2528 LFS_UNLOCK_BUF(tbp);
2529
2530 if (tbp->b_oflags & BO_DONE) {
2531 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2532 cl->bufcount, (long)tbp->b_flags));
2533 }
2534
2535 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2536 /*
2537 * A buffer from the page daemon.
2538 * We use the same iodone as it does,
2539 * so we must manually disassociate its
2540 * buffers from the vp.
2541 */
2542 if ((ovp = tbp->b_vp) != NULL) {
2543 /* This is just silly */
2544 mutex_enter(&ovp->v_interlock);
2545 brelvp(tbp);
2546 mutex_exit(&ovp->v_interlock);
2547 tbp->b_vp = vp;
2548 tbp->b_objlock = &vp->v_interlock;
2549 }
2550 /* Put it back the way it was */
2551 tbp->b_flags |= B_ASYNC;
2552 /* Master buffers have BC_AGE */
2553 if (tbp->b_private == tbp)
2554 tbp->b_flags |= BC_AGE;
2555 }
2556 mutex_exit(&bufcache_lock);
2557
2558 biodone(tbp);
2559
2560 /*
2561 * If this is the last block for this vnode, but
2562 * there are other blocks on its dirty list,
2563 * set IN_MODIFIED/IN_CLEANING depending on what
2564 * sort of block. Only do this for our mount point,
2565 * not for, e.g., inode blocks that are attached to
2566 * the devvp.
2567 * XXX KS - Shouldn't we set *both* if both types
2568 * of blocks are present (traverse the dirty list?)
2569 */
2570 mutex_enter(&lfs_lock);
2571 mutex_enter(&vp->v_interlock);
2572 if (vp != devvp && vp->v_numoutput == 0 &&
2573 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2574 ip = VTOI(vp);
2575 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2576 ip->i_number));
2577 if (LFS_IS_MALLOC_BUF(fbp))
2578 LFS_SET_UINO(ip, IN_CLEANING);
2579 else
2580 LFS_SET_UINO(ip, IN_MODIFIED);
2581 }
2582 cv_broadcast(&vp->v_cv);
2583 mutex_exit(&vp->v_interlock);
2584 mutex_exit(&lfs_lock);
2585 }
2586
2587 /* Fix up the cluster buffer, and release it */
2588 if (cl->flags & LFS_CL_MALLOC)
2589 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2590 putiobuf(bp);
2591
2592 /* Note i/o done */
2593 if (cl->flags & LFS_CL_SYNC) {
2594 if (--cl->seg->seg_iocount == 0)
2595 wakeup(&cl->seg->seg_iocount);
2596 }
2597 mutex_enter(&lfs_lock);
2598 #ifdef DIAGNOSTIC
2599 if (fs->lfs_iocount == 0)
2600 panic("lfs_cluster_aiodone: zero iocount");
2601 #endif
2602 if (--fs->lfs_iocount <= 1)
2603 wakeup(&fs->lfs_iocount);
2604 mutex_exit(&lfs_lock);
2605
2606 KERNEL_UNLOCK_LAST(curlwp);
2607
2608 pool_put(&fs->lfs_bpppool, cl->bpp);
2609 cl->bpp = NULL;
2610 pool_put(&fs->lfs_clpool, cl);
2611 }
2612
2613 static void
2614 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2615 {
2616 /* reset b_iodone for when this is a single-buf i/o. */
2617 bp->b_iodone = aiodone;
2618
2619 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2620 }
2621
2622 static void
2623 lfs_cluster_callback(struct buf *bp)
2624 {
2625
2626 lfs_generic_callback(bp, lfs_cluster_aiodone);
2627 }
2628
2629 void
2630 lfs_supercallback(struct buf *bp)
2631 {
2632
2633 lfs_generic_callback(bp, lfs_super_aiodone);
2634 }
2635
2636 /*
2637 * The only buffers that are going to hit these functions are the
2638 * segment write blocks, or the segment summaries, or the superblocks.
2639 *
2640 * All of the above are created by lfs_newbuf, and so do not need to be
2641 * released via brelse.
2642 */
2643 void
2644 lfs_callback(struct buf *bp)
2645 {
2646
2647 lfs_generic_callback(bp, lfs_free_aiodone);
2648 }
2649
2650 /*
2651 * Shellsort (diminishing increment sort) from Data Structures and
2652 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2653 * see also Knuth Vol. 3, page 84. The increments are selected from
2654 * formula (8), page 95. Roughly O(N^3/2).
2655 */
2656 /*
2657 * This is our own private copy of shellsort because we want to sort
2658 * two parallel arrays (the array of buffer pointers and the array of
2659 * logical block numbers) simultaneously. Note that we cast the array
2660 * of logical block numbers to a unsigned in this routine so that the
2661 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2662 */
2663
2664 void
2665 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2666 {
2667 static int __rsshell_increments[] = { 4, 1, 0 };
2668 int incr, *incrp, t1, t2;
2669 struct buf *bp_temp;
2670
2671 #ifdef DEBUG
2672 incr = 0;
2673 for (t1 = 0; t1 < nmemb; t1++) {
2674 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2675 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2676 /* dump before panic */
2677 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2678 nmemb, size);
2679 incr = 0;
2680 for (t1 = 0; t1 < nmemb; t1++) {
2681 const struct buf *bp = bp_array[t1];
2682
2683 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2684 PRIu64 "\n", t1,
2685 (uint64_t)bp->b_bcount,
2686 (uint64_t)bp->b_lblkno);
2687 printf("lbns:");
2688 for (t2 = 0; t2 * size < bp->b_bcount;
2689 t2++) {
2690 printf(" %" PRId32,
2691 lb_array[incr++]);
2692 }
2693 printf("\n");
2694 }
2695 panic("lfs_shellsort: inconsistent input");
2696 }
2697 }
2698 }
2699 #endif
2700
2701 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2702 for (t1 = incr; t1 < nmemb; ++t1)
2703 for (t2 = t1 - incr; t2 >= 0;)
2704 if ((u_int32_t)bp_array[t2]->b_lblkno >
2705 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2706 bp_temp = bp_array[t2];
2707 bp_array[t2] = bp_array[t2 + incr];
2708 bp_array[t2 + incr] = bp_temp;
2709 t2 -= incr;
2710 } else
2711 break;
2712
2713 /* Reform the list of logical blocks */
2714 incr = 0;
2715 for (t1 = 0; t1 < nmemb; t1++) {
2716 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2717 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2718 }
2719 }
2720 }
2721
2722 /*
2723 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2724 * however, we must press on. Just fake success in that case.
2725 */
2726 int
2727 lfs_vref(struct vnode *vp)
2728 {
2729 int error;
2730 struct lfs *fs;
2731
2732 KASSERT(mutex_owned(&vp->v_interlock));
2733
2734 fs = VTOI(vp)->i_lfs;
2735
2736 ASSERT_MAYBE_SEGLOCK(fs);
2737
2738 /*
2739 * If we return 1 here during a flush, we risk vinvalbuf() not
2740 * being able to flush all of the pages from this vnode, which
2741 * will cause it to panic. So, return 0 if a flush is in progress.
2742 */
2743 error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
2744 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2745 ++fs->lfs_flushvp_fakevref;
2746 return 0;
2747 }
2748 return error;
2749 }
2750
2751 /*
2752 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2753 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2754 */
2755 void
2756 lfs_vunref(struct vnode *vp)
2757 {
2758 struct lfs *fs;
2759
2760 fs = VTOI(vp)->i_lfs;
2761 ASSERT_MAYBE_SEGLOCK(fs);
2762
2763 /*
2764 * Analogous to lfs_vref, if the node is flushing, fake it.
2765 */
2766 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2767 --fs->lfs_flushvp_fakevref;
2768 return;
2769 }
2770
2771 /* does not call inactive */
2772 mutex_enter(&vp->v_interlock);
2773 vrelel(vp, VRELEL_NOINACTIVE);
2774 }
2775
2776 /*
2777 * We use this when we have vnodes that were loaded in solely for cleaning.
2778 * There is no reason to believe that these vnodes will be referenced again
2779 * soon, since the cleaning process is unrelated to normal filesystem
2780 * activity. Putting cleaned vnodes at the tail of the list has the effect
2781 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2782 * cleaning at the head of the list, instead.
2783 */
2784 void
2785 lfs_vunref_head(struct vnode *vp)
2786 {
2787
2788 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2789
2790 /* does not call inactive, inserts non-held vnode at head of freelist */
2791 mutex_enter(&vp->v_interlock);
2792 vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD);
2793 }
2794
2795
2796 /*
2797 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2798 * point at uninitialized space.
2799 */
2800 void
2801 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2802 {
2803 struct segment *sp = fs->lfs_sp;
2804
2805 KASSERT(vers > 0);
2806
2807 if (sp->seg_bytes_left < fs->lfs_bsize ||
2808 sp->sum_bytes_left < sizeof(struct finfo))
2809 (void) lfs_writeseg(fs, fs->lfs_sp);
2810
2811 sp->sum_bytes_left -= FINFOSIZE;
2812 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2813 sp->fip->fi_nblocks = 0;
2814 sp->fip->fi_ino = ino;
2815 sp->fip->fi_version = vers;
2816 }
2817
2818 /*
2819 * Release the FINFO entry, either clearing out an unused entry or
2820 * advancing us to the next available entry.
2821 */
2822 void
2823 lfs_release_finfo(struct lfs *fs)
2824 {
2825 struct segment *sp = fs->lfs_sp;
2826
2827 if (sp->fip->fi_nblocks != 0) {
2828 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2829 sizeof(int32_t) * sp->fip->fi_nblocks);
2830 sp->start_lbp = &sp->fip->fi_blocks[0];
2831 } else {
2832 sp->sum_bytes_left += FINFOSIZE;
2833 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2834 }
2835 }
2836