lfs_segment.c revision 1.222.2.2 1 /* $NetBSD: lfs_segment.c,v 1.222.2.2 2012/04/17 00:08:56 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.222.2.2 2012/04/17 00:08:56 yamt Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110
111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
112 static void lfs_free_aiodone(struct buf *);
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116
117 /*
118 * Determine if it's OK to start a partial in this segment, or if we need
119 * to go on to a new segment.
120 */
121 #define LFS_PARTIAL_FITS(fs) \
122 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
123 (fs)->lfs_frag)
124
125 /*
126 * Figure out whether we should do a checkpoint write or go ahead with
127 * an ordinary write.
128 */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130 ((flags & SEGM_CLEAN) == 0 && \
131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
132 (flags & SEGM_CKP) || \
133 fs->lfs_nclean < LFS_MAX_ACTIVE)))
134
135 int lfs_match_fake(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
146 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
147 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
148 int lfs_dirvcount = 0; /* # active dirops */
149
150 /* Statistics Counters */
151 int lfs_dostats = 1;
152 struct lfs_stats lfs_stats;
153
154 /* op values to lfs_writevnodes */
155 #define VN_REG 0
156 #define VN_DIROP 1
157 #define VN_EMPTY 2
158 #define VN_CLEAN 3
159
160 /*
161 * XXX KS - Set modification time on the Ifile, so the cleaner can
162 * read the fs mod time off of it. We don't set IN_UPDATE here,
163 * since we don't really need this to be flushed to disk (and in any
164 * case that wouldn't happen to the Ifile until we checkpoint).
165 */
166 void
167 lfs_imtime(struct lfs *fs)
168 {
169 struct timespec ts;
170 struct inode *ip;
171
172 ASSERT_MAYBE_SEGLOCK(fs);
173 vfs_timestamp(&ts);
174 ip = VTOI(fs->lfs_ivnode);
175 ip->i_ffs1_mtime = ts.tv_sec;
176 ip->i_ffs1_mtimensec = ts.tv_nsec;
177 }
178
179 /*
180 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
182 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
183 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
184 */
185
186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
187
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 struct inode *ip;
192 struct lfs *fs;
193 struct segment *sp;
194 struct buf *bp, *nbp, *tbp, *tnbp;
195 int error;
196 int flushed;
197 int relock;
198 int loopcount;
199
200 ip = VTOI(vp);
201 fs = VFSTOUFS(vp->v_mount)->um_lfs;
202 relock = 0;
203
204 top:
205 KASSERT(mutex_owned(vp->v_interlock) == false);
206 KASSERT(mutex_owned(&lfs_lock) == false);
207 KASSERT(mutex_owned(&bufcache_lock) == false);
208 ASSERT_NO_SEGLOCK(fs);
209 if (ip->i_flag & IN_CLEANING) {
210 ivndebug(vp,"vflush/in_cleaning");
211 mutex_enter(&lfs_lock);
212 LFS_CLR_UINO(ip, IN_CLEANING);
213 LFS_SET_UINO(ip, IN_MODIFIED);
214 mutex_exit(&lfs_lock);
215
216 /*
217 * Toss any cleaning buffers that have real counterparts
218 * to avoid losing new data.
219 */
220 mutex_enter(vp->v_interlock);
221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 nbp = LIST_NEXT(bp, b_vnbufs);
223 if (!LFS_IS_MALLOC_BUF(bp))
224 continue;
225 /*
226 * Look for pages matching the range covered
227 * by cleaning blocks. It's okay if more dirty
228 * pages appear, so long as none disappear out
229 * from under us.
230 */
231 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 vp != fs->lfs_ivnode) {
233 struct vm_page *pg;
234 voff_t off;
235
236 for (off = lblktosize(fs, bp->b_lblkno);
237 off < lblktosize(fs, bp->b_lblkno + 1);
238 off += PAGE_SIZE) {
239 pg = uvm_pagelookup(&vp->v_uobj, off);
240 if (pg == NULL)
241 continue;
242 if (uvm_pagegetdirty(pg)
243 == UVM_PAGE_STATUS_DIRTY ||
244 pmap_is_modified(pg)) {
245 fs->lfs_avail += btofsb(fs,
246 bp->b_bcount);
247 wakeup(&fs->lfs_avail);
248 mutex_exit(vp->v_interlock);
249 lfs_freebuf(fs, bp);
250 mutex_enter(vp->v_interlock);
251 bp = NULL;
252 break;
253 }
254 }
255 }
256 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
257 tbp = tnbp)
258 {
259 tnbp = LIST_NEXT(tbp, b_vnbufs);
260 if (tbp->b_vp == bp->b_vp
261 && tbp->b_lblkno == bp->b_lblkno
262 && tbp != bp)
263 {
264 fs->lfs_avail += btofsb(fs,
265 bp->b_bcount);
266 wakeup(&fs->lfs_avail);
267 mutex_exit(vp->v_interlock);
268 lfs_freebuf(fs, bp);
269 mutex_enter(vp->v_interlock);
270 bp = NULL;
271 break;
272 }
273 }
274 }
275 } else {
276 mutex_enter(vp->v_interlock);
277 }
278
279 /* If the node is being written, wait until that is done */
280 while (WRITEINPROG(vp)) {
281 ivndebug(vp,"vflush/writeinprog");
282 cv_wait(&vp->v_cv, vp->v_interlock);
283 }
284 mutex_exit(vp->v_interlock);
285
286 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
287 lfs_seglock(fs, SEGM_SYNC | ((vp->v_iflag & VI_XLOCK) ? SEGM_RECLAIM : 0));
288 if (vp->v_iflag & VI_XLOCK) {
289 fs->lfs_reclino = ip->i_number;
290 }
291
292 /* If we're supposed to flush a freed inode, just toss it */
293 if (ip->i_lfs_iflags & LFSI_DELETED) {
294 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
295 ip->i_number));
296 /* Drain v_numoutput */
297 mutex_enter(vp->v_interlock);
298 while (vp->v_numoutput > 0) {
299 cv_wait(&vp->v_cv, vp->v_interlock);
300 }
301 KASSERT(vp->v_numoutput == 0);
302 mutex_exit(vp->v_interlock);
303
304 mutex_enter(&bufcache_lock);
305 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
306 nbp = LIST_NEXT(bp, b_vnbufs);
307
308 KASSERT((bp->b_flags & B_GATHERED) == 0);
309 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
310 fs->lfs_avail += btofsb(fs, bp->b_bcount);
311 wakeup(&fs->lfs_avail);
312 }
313 /* Copied from lfs_writeseg */
314 if (bp->b_iodone != NULL) {
315 mutex_exit(&bufcache_lock);
316 biodone(bp);
317 mutex_enter(&bufcache_lock);
318 } else {
319 bremfree(bp);
320 LFS_UNLOCK_BUF(bp);
321 mutex_enter(vp->v_interlock);
322 bp->b_flags &= ~(B_READ | B_GATHERED);
323 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
324 bp->b_error = 0;
325 reassignbuf(bp, vp);
326 mutex_exit(vp->v_interlock);
327 brelse(bp, 0);
328 }
329 }
330 mutex_exit(&bufcache_lock);
331 LFS_CLR_UINO(ip, IN_CLEANING);
332 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
333 ip->i_flag &= ~IN_ALLMOD;
334 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
335 ip->i_number));
336 lfs_segunlock(fs);
337
338 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
339
340 return 0;
341 }
342
343 fs->lfs_flushvp = vp;
344 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
345 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
346 fs->lfs_flushvp = NULL;
347 KASSERT(fs->lfs_flushvp_fakevref == 0);
348 lfs_segunlock(fs);
349
350 /* Make sure that any pending buffers get written */
351 mutex_enter(vp->v_interlock);
352 while (vp->v_numoutput > 0) {
353 cv_wait(&vp->v_cv, vp->v_interlock);
354 }
355 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
356 KASSERT(vp->v_numoutput == 0);
357 mutex_exit(vp->v_interlock);
358
359 return error;
360 }
361 sp = fs->lfs_sp;
362
363 flushed = 0;
364 if (VPISEMPTY(vp)) {
365 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
366 ++flushed;
367 } else if ((ip->i_flag & IN_CLEANING) &&
368 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
369 ivndebug(vp,"vflush/clean");
370 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
371 ++flushed;
372 } else if (lfs_dostats) {
373 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
374 ++lfs_stats.vflush_invoked;
375 ivndebug(vp,"vflush");
376 }
377
378 #ifdef DIAGNOSTIC
379 if (vp->v_uflag & VU_DIROP) {
380 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
381 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
382 }
383 #endif
384
385 do {
386 loopcount = 0;
387 do {
388 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
389 relock = lfs_writefile(fs, sp, vp);
390 if (relock && vp != fs->lfs_ivnode) {
391 /*
392 * Might have to wait for the
393 * cleaner to run; but we're
394 * still not done with this vnode.
395 * XXX we can do better than this.
396 */
397 KDASSERT(ip->i_number != LFS_IFILE_INUM);
398 lfs_writeinode(fs, sp, ip);
399 mutex_enter(&lfs_lock);
400 LFS_SET_UINO(ip, IN_MODIFIED);
401 mutex_exit(&lfs_lock);
402 lfs_writeseg(fs, sp);
403 lfs_segunlock(fs);
404 lfs_segunlock_relock(fs);
405 goto top;
406 }
407 }
408 /*
409 * If we begin a new segment in the middle of writing
410 * the Ifile, it creates an inconsistent checkpoint,
411 * since the Ifile information for the new segment
412 * is not up-to-date. Take care of this here by
413 * sending the Ifile through again in case there
414 * are newly dirtied blocks. But wait, there's more!
415 * This second Ifile write could *also* cross a segment
416 * boundary, if the first one was large. The second
417 * one is guaranteed to be no more than 8 blocks,
418 * though (two segment blocks and supporting indirects)
419 * so the third write *will not* cross the boundary.
420 */
421 if (vp == fs->lfs_ivnode) {
422 lfs_writefile(fs, sp, vp);
423 lfs_writefile(fs, sp, vp);
424 }
425 #ifdef DEBUG
426 if (++loopcount > 2)
427 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
428 #endif
429 } while (lfs_writeinode(fs, sp, ip));
430 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
431
432 if (lfs_dostats) {
433 ++lfs_stats.nwrites;
434 if (sp->seg_flags & SEGM_SYNC)
435 ++lfs_stats.nsync_writes;
436 if (sp->seg_flags & SEGM_CKP)
437 ++lfs_stats.ncheckpoints;
438 }
439 /*
440 * If we were called from somewhere that has already held the seglock
441 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
442 * the write to complete because we are still locked.
443 * Since lfs_vflush() must return the vnode with no dirty buffers,
444 * we must explicitly wait, if that is the case.
445 *
446 * We compare the iocount against 1, not 0, because it is
447 * artificially incremented by lfs_seglock().
448 */
449 mutex_enter(&lfs_lock);
450 if (fs->lfs_seglock > 1) {
451 while (fs->lfs_iocount > 1)
452 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
453 "lfs_vflush", 0, &lfs_lock);
454 }
455 mutex_exit(&lfs_lock);
456
457 lfs_segunlock(fs);
458
459 /* Wait for these buffers to be recovered by aiodoned */
460 mutex_enter(vp->v_interlock);
461 while (vp->v_numoutput > 0) {
462 cv_wait(&vp->v_cv, vp->v_interlock);
463 }
464 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
465 KASSERT(vp->v_numoutput == 0);
466 mutex_exit(vp->v_interlock);
467
468 fs->lfs_flushvp = NULL;
469 KASSERT(fs->lfs_flushvp_fakevref == 0);
470
471 return (0);
472 }
473
474 int
475 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
476 {
477 struct inode *ip;
478 struct vnode *vp;
479 int inodes_written = 0, only_cleaning;
480 int error = 0;
481
482 ASSERT_SEGLOCK(fs);
483 loop:
484 /* start at last (newest) vnode. */
485 mutex_enter(&mntvnode_lock);
486 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
487 /*
488 * If the vnode that we are about to sync is no longer
489 * associated with this mount point, start over.
490 */
491 if (vp->v_mount != mp) {
492 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
493 /*
494 * After this, pages might be busy
495 * due to our own previous putpages.
496 * Start actual segment write here to avoid deadlock.
497 * If we were just writing one segment and we've done
498 * that, break out.
499 */
500 mutex_exit(&mntvnode_lock);
501 if (lfs_writeseg(fs, sp) &&
502 (sp->seg_flags & SEGM_SINGLE) &&
503 fs->lfs_curseg != fs->lfs_startseg) {
504 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
505 break;
506 }
507 goto loop;
508 }
509
510 mutex_enter(vp->v_interlock);
511 if (vp->v_type == VNON || vismarker(vp) ||
512 (vp->v_iflag & VI_CLEAN) != 0) {
513 mutex_exit(vp->v_interlock);
514 continue;
515 }
516
517 ip = VTOI(vp);
518 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
519 (op != VN_DIROP && op != VN_CLEAN &&
520 (vp->v_uflag & VU_DIROP))) {
521 mutex_exit(vp->v_interlock);
522 vndebug(vp,"dirop");
523 continue;
524 }
525
526 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
527 mutex_exit(vp->v_interlock);
528 vndebug(vp,"empty");
529 continue;
530 }
531
532 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
533 && vp != fs->lfs_flushvp
534 && !(ip->i_flag & IN_CLEANING)) {
535 mutex_exit(vp->v_interlock);
536 vndebug(vp,"cleaning");
537 continue;
538 }
539
540 mutex_exit(&mntvnode_lock);
541 if (lfs_vref(vp)) {
542 vndebug(vp,"vref");
543 mutex_enter(&mntvnode_lock);
544 continue;
545 }
546
547 only_cleaning = 0;
548 /*
549 * Write the inode/file if dirty and it's not the IFILE.
550 */
551 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
552 only_cleaning =
553 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
554
555 if (ip->i_number != LFS_IFILE_INUM) {
556 error = lfs_writefile(fs, sp, vp);
557 if (error) {
558 lfs_vunref(vp);
559 if (error == EAGAIN) {
560 /*
561 * This error from lfs_putpages
562 * indicates we need to drop
563 * the segment lock and start
564 * over after the cleaner has
565 * had a chance to run.
566 */
567 lfs_writeinode(fs, sp, ip);
568 lfs_writeseg(fs, sp);
569 if (!VPISEMPTY(vp) &&
570 !WRITEINPROG(vp) &&
571 !(ip->i_flag & IN_ALLMOD)) {
572 mutex_enter(&lfs_lock);
573 LFS_SET_UINO(ip, IN_MODIFIED);
574 mutex_exit(&lfs_lock);
575 }
576 mutex_enter(&mntvnode_lock);
577 break;
578 }
579 error = 0; /* XXX not quite right */
580 mutex_enter(&mntvnode_lock);
581 continue;
582 }
583
584 if (!VPISEMPTY(vp)) {
585 if (WRITEINPROG(vp)) {
586 ivndebug(vp,"writevnodes/write2");
587 } else if (!(ip->i_flag & IN_ALLMOD)) {
588 mutex_enter(&lfs_lock);
589 LFS_SET_UINO(ip, IN_MODIFIED);
590 mutex_exit(&lfs_lock);
591 }
592 }
593 (void) lfs_writeinode(fs, sp, ip);
594 inodes_written++;
595 }
596 }
597
598 if (lfs_clean_vnhead && only_cleaning)
599 lfs_vunref_head(vp);
600 else
601 lfs_vunref(vp);
602
603 mutex_enter(&mntvnode_lock);
604 }
605 mutex_exit(&mntvnode_lock);
606 return error;
607 }
608
609 /*
610 * Do a checkpoint.
611 */
612 int
613 lfs_segwrite(struct mount *mp, int flags)
614 {
615 struct buf *bp;
616 struct inode *ip;
617 struct lfs *fs;
618 struct segment *sp;
619 struct vnode *vp;
620 SEGUSE *segusep;
621 int do_ckp, did_ckp, error;
622 unsigned n, segleft, maxseg, sn, i, curseg;
623 int writer_set = 0;
624 int dirty;
625 int redo;
626 int um_error;
627 int loopcount;
628
629 fs = VFSTOUFS(mp)->um_lfs;
630 ASSERT_MAYBE_SEGLOCK(fs);
631
632 if (fs->lfs_ronly)
633 return EROFS;
634
635 lfs_imtime(fs);
636
637 /*
638 * Allocate a segment structure and enough space to hold pointers to
639 * the maximum possible number of buffers which can be described in a
640 * single summary block.
641 */
642 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
643
644 /* We can't do a partial write and checkpoint at the same time. */
645 if (do_ckp)
646 flags &= ~SEGM_SINGLE;
647
648 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
649 sp = fs->lfs_sp;
650 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
651 do_ckp = 1;
652
653 /*
654 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
655 * in which case we have to flush *all* buffers off of this vnode.
656 * We don't care about other nodes, but write any non-dirop nodes
657 * anyway in anticipation of another getnewvnode().
658 *
659 * If we're cleaning we only write cleaning and ifile blocks, and
660 * no dirops, since otherwise we'd risk corruption in a crash.
661 */
662 if (sp->seg_flags & SEGM_CLEAN)
663 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
664 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
665 do {
666 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
667 if ((sp->seg_flags & SEGM_SINGLE) &&
668 fs->lfs_curseg != fs->lfs_startseg) {
669 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
670 break;
671 }
672
673 if (do_ckp || fs->lfs_dirops == 0) {
674 if (!writer_set) {
675 lfs_writer_enter(fs, "lfs writer");
676 writer_set = 1;
677 }
678 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
679 if (um_error == 0)
680 um_error = error;
681 /* In case writevnodes errored out */
682 lfs_flush_dirops(fs);
683 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
684 lfs_finalize_fs_seguse(fs);
685 }
686 if (do_ckp && um_error) {
687 lfs_segunlock_relock(fs);
688 sp = fs->lfs_sp;
689 }
690 } while (do_ckp && um_error != 0);
691 }
692
693 /*
694 * If we are doing a checkpoint, mark everything since the
695 * last checkpoint as no longer ACTIVE.
696 */
697 if (do_ckp || fs->lfs_doifile) {
698 segleft = fs->lfs_nseg;
699 curseg = 0;
700 for (n = 0; n < fs->lfs_segtabsz; n++) {
701 dirty = 0;
702 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
703 fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
704 panic("lfs_segwrite: ifile read");
705 segusep = (SEGUSE *)bp->b_data;
706 maxseg = min(segleft, fs->lfs_sepb);
707 for (i = 0; i < maxseg; i++) {
708 sn = curseg + i;
709 if (sn != dtosn(fs, fs->lfs_curseg) &&
710 segusep->su_flags & SEGUSE_ACTIVE) {
711 segusep->su_flags &= ~SEGUSE_ACTIVE;
712 --fs->lfs_nactive;
713 ++dirty;
714 }
715 fs->lfs_suflags[fs->lfs_activesb][sn] =
716 segusep->su_flags;
717 if (fs->lfs_version > 1)
718 ++segusep;
719 else
720 segusep = (SEGUSE *)
721 ((SEGUSE_V1 *)segusep + 1);
722 }
723
724 if (dirty)
725 error = LFS_BWRITE_LOG(bp); /* Ifile */
726 else
727 brelse(bp, 0);
728 segleft -= fs->lfs_sepb;
729 curseg += fs->lfs_sepb;
730 }
731 }
732
733 KASSERT(LFS_SEGLOCK_HELD(fs));
734
735 did_ckp = 0;
736 if (do_ckp || fs->lfs_doifile) {
737 vp = fs->lfs_ivnode;
738 loopcount = 0;
739 do {
740 #ifdef DEBUG
741 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
742 #endif
743 mutex_enter(&lfs_lock);
744 fs->lfs_flags &= ~LFS_IFDIRTY;
745 mutex_exit(&lfs_lock);
746
747 ip = VTOI(vp);
748
749 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
750 /*
751 * Ifile has no pages, so we don't need
752 * to check error return here.
753 */
754 lfs_writefile(fs, sp, vp);
755 /*
756 * Ensure the Ifile takes the current segment
757 * into account. See comment in lfs_vflush.
758 */
759 lfs_writefile(fs, sp, vp);
760 lfs_writefile(fs, sp, vp);
761 }
762
763 if (ip->i_flag & IN_ALLMOD)
764 ++did_ckp;
765 #if 0
766 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
767 #else
768 redo = lfs_writeinode(fs, sp, ip);
769 #endif
770 redo += lfs_writeseg(fs, sp);
771 mutex_enter(&lfs_lock);
772 redo += (fs->lfs_flags & LFS_IFDIRTY);
773 mutex_exit(&lfs_lock);
774 #ifdef DEBUG
775 if (++loopcount > 2)
776 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
777 loopcount);
778 #endif
779 } while (redo && do_ckp);
780
781 /*
782 * Unless we are unmounting, the Ifile may continue to have
783 * dirty blocks even after a checkpoint, due to changes to
784 * inodes' atime. If we're checkpointing, it's "impossible"
785 * for other parts of the Ifile to be dirty after the loop
786 * above, since we hold the segment lock.
787 */
788 mutex_enter(vp->v_interlock);
789 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
790 LFS_CLR_UINO(ip, IN_ALLMOD);
791 }
792 #ifdef DIAGNOSTIC
793 else if (do_ckp) {
794 int do_panic = 0;
795 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
796 if (bp->b_lblkno < fs->lfs_cleansz +
797 fs->lfs_segtabsz &&
798 !(bp->b_flags & B_GATHERED)) {
799 printf("ifile lbn %ld still dirty (flags %lx)\n",
800 (long)bp->b_lblkno,
801 (long)bp->b_flags);
802 ++do_panic;
803 }
804 }
805 if (do_panic)
806 panic("dirty blocks");
807 }
808 #endif
809 mutex_exit(vp->v_interlock);
810 } else {
811 (void) lfs_writeseg(fs, sp);
812 }
813
814 /* Note Ifile no longer needs to be written */
815 fs->lfs_doifile = 0;
816 if (writer_set)
817 lfs_writer_leave(fs);
818
819 /*
820 * If we didn't write the Ifile, we didn't really do anything.
821 * That means that (1) there is a checkpoint on disk and (2)
822 * nothing has changed since it was written.
823 *
824 * Take the flags off of the segment so that lfs_segunlock
825 * doesn't have to write the superblock either.
826 */
827 if (do_ckp && !did_ckp) {
828 sp->seg_flags &= ~SEGM_CKP;
829 }
830
831 if (lfs_dostats) {
832 ++lfs_stats.nwrites;
833 if (sp->seg_flags & SEGM_SYNC)
834 ++lfs_stats.nsync_writes;
835 if (sp->seg_flags & SEGM_CKP)
836 ++lfs_stats.ncheckpoints;
837 }
838 lfs_segunlock(fs);
839 return (0);
840 }
841
842 /*
843 * Write the dirty blocks associated with a vnode.
844 */
845 int
846 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
847 {
848 struct finfo *fip;
849 struct inode *ip;
850 int i, frag;
851 int error;
852
853 ASSERT_SEGLOCK(fs);
854 error = 0;
855 ip = VTOI(vp);
856
857 fip = sp->fip;
858 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
859
860 if (vp->v_uflag & VU_DIROP)
861 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
862
863 if (sp->seg_flags & SEGM_CLEAN) {
864 lfs_gather(fs, sp, vp, lfs_match_fake);
865 /*
866 * For a file being flushed, we need to write *all* blocks.
867 * This means writing the cleaning blocks first, and then
868 * immediately following with any non-cleaning blocks.
869 * The same is true of the Ifile since checkpoints assume
870 * that all valid Ifile blocks are written.
871 */
872 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
873 lfs_gather(fs, sp, vp, lfs_match_data);
874 /*
875 * Don't call VOP_PUTPAGES: if we're flushing,
876 * we've already done it, and the Ifile doesn't
877 * use the page cache.
878 */
879 }
880 } else {
881 lfs_gather(fs, sp, vp, lfs_match_data);
882 /*
883 * If we're flushing, we've already called VOP_PUTPAGES
884 * so don't do it again. Otherwise, we want to write
885 * everything we've got.
886 */
887 if (!IS_FLUSHING(fs, vp)) {
888 mutex_enter(vp->v_interlock);
889 error = VOP_PUTPAGES(vp, 0, 0,
890 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
891 }
892 }
893
894 /*
895 * It may not be necessary to write the meta-data blocks at this point,
896 * as the roll-forward recovery code should be able to reconstruct the
897 * list.
898 *
899 * We have to write them anyway, though, under two conditions: (1) the
900 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
901 * checkpointing.
902 *
903 * BUT if we are cleaning, we might have indirect blocks that refer to
904 * new blocks not being written yet, in addition to fragments being
905 * moved out of a cleaned segment. If that is the case, don't
906 * write the indirect blocks, or the finfo will have a small block
907 * in the middle of it!
908 * XXX in this case isn't the inode size wrong too?
909 */
910 frag = 0;
911 if (sp->seg_flags & SEGM_CLEAN) {
912 for (i = 0; i < NDADDR; i++)
913 if (ip->i_lfs_fragsize[i] > 0 &&
914 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
915 ++frag;
916 }
917 #ifdef DIAGNOSTIC
918 if (frag > 1)
919 panic("lfs_writefile: more than one fragment!");
920 #endif
921 if (IS_FLUSHING(fs, vp) ||
922 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
923 lfs_gather(fs, sp, vp, lfs_match_indir);
924 lfs_gather(fs, sp, vp, lfs_match_dindir);
925 lfs_gather(fs, sp, vp, lfs_match_tindir);
926 }
927 fip = sp->fip;
928 lfs_release_finfo(fs);
929
930 return error;
931 }
932
933 /*
934 * Update segment accounting to reflect this inode's change of address.
935 */
936 static int
937 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
938 {
939 struct buf *bp;
940 daddr_t daddr;
941 IFILE *ifp;
942 SEGUSE *sup;
943 ino_t ino;
944 int redo_ifile, error;
945 u_int32_t sn;
946
947 redo_ifile = 0;
948
949 /*
950 * If updating the ifile, update the super-block. Update the disk
951 * address and access times for this inode in the ifile.
952 */
953 ino = ip->i_number;
954 if (ino == LFS_IFILE_INUM) {
955 daddr = fs->lfs_idaddr;
956 fs->lfs_idaddr = dbtofsb(fs, ndaddr);
957 } else {
958 LFS_IENTRY(ifp, fs, ino, bp);
959 daddr = ifp->if_daddr;
960 ifp->if_daddr = dbtofsb(fs, ndaddr);
961 error = LFS_BWRITE_LOG(bp); /* Ifile */
962 }
963
964 /*
965 * If this is the Ifile and lfs_offset is set to the first block
966 * in the segment, dirty the new segment's accounting block
967 * (XXX should already be dirty?) and tell the caller to do it again.
968 */
969 if (ip->i_number == LFS_IFILE_INUM) {
970 sn = dtosn(fs, fs->lfs_offset);
971 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
972 fs->lfs_offset) {
973 LFS_SEGENTRY(sup, fs, sn, bp);
974 KASSERT(bp->b_oflags & BO_DELWRI);
975 LFS_WRITESEGENTRY(sup, fs, sn, bp);
976 /* fs->lfs_flags |= LFS_IFDIRTY; */
977 redo_ifile |= 1;
978 }
979 }
980
981 /*
982 * The inode's last address should not be in the current partial
983 * segment, except under exceptional circumstances (lfs_writevnodes
984 * had to start over, and in the meantime more blocks were written
985 * to a vnode). Both inodes will be accounted to this segment
986 * in lfs_writeseg so we need to subtract the earlier version
987 * here anyway. The segment count can temporarily dip below
988 * zero here; keep track of how many duplicates we have in
989 * "dupino" so we don't panic below.
990 */
991 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
992 ++sp->ndupino;
993 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
994 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
995 (long long)daddr, sp->ndupino));
996 }
997 /*
998 * Account the inode: it no longer belongs to its former segment,
999 * though it will not belong to the new segment until that segment
1000 * is actually written.
1001 */
1002 if (daddr != LFS_UNUSED_DADDR) {
1003 u_int32_t oldsn = dtosn(fs, daddr);
1004 #ifdef DIAGNOSTIC
1005 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1006 #endif
1007 LFS_SEGENTRY(sup, fs, oldsn, bp);
1008 #ifdef DIAGNOSTIC
1009 if (sup->su_nbytes +
1010 sizeof (struct ufs1_dinode) * ndupino
1011 < sizeof (struct ufs1_dinode)) {
1012 printf("lfs_writeinode: negative bytes "
1013 "(segment %" PRIu32 " short by %d, "
1014 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1015 ", daddr=%" PRId64 ", su_nbytes=%u, "
1016 "ndupino=%d)\n",
1017 dtosn(fs, daddr),
1018 (int)sizeof (struct ufs1_dinode) *
1019 (1 - sp->ndupino) - sup->su_nbytes,
1020 oldsn, sp->seg_number, daddr,
1021 (unsigned int)sup->su_nbytes,
1022 sp->ndupino);
1023 panic("lfs_writeinode: negative bytes");
1024 sup->su_nbytes = sizeof (struct ufs1_dinode);
1025 }
1026 #endif
1027 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1028 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1029 sup->su_nbytes -= sizeof (struct ufs1_dinode);
1030 redo_ifile |=
1031 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1032 if (redo_ifile) {
1033 mutex_enter(&lfs_lock);
1034 fs->lfs_flags |= LFS_IFDIRTY;
1035 mutex_exit(&lfs_lock);
1036 /* Don't double-account */
1037 fs->lfs_idaddr = 0x0;
1038 }
1039 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1040 }
1041
1042 return redo_ifile;
1043 }
1044
1045 int
1046 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1047 {
1048 struct buf *bp;
1049 struct ufs1_dinode *cdp;
1050 struct vnode *vp = ITOV(ip);
1051 daddr_t daddr;
1052 int32_t *daddrp; /* XXX ondisk32 */
1053 int i, ndx;
1054 int redo_ifile = 0;
1055 int gotblk = 0;
1056 int count;
1057
1058 ASSERT_SEGLOCK(fs);
1059 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1060 return (0);
1061
1062 /* Can't write ifile when writer is not set */
1063 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1064 (sp->seg_flags & SEGM_CLEAN));
1065
1066 /*
1067 * If this is the Ifile, see if writing it here will generate a
1068 * temporary misaccounting. If it will, do the accounting and write
1069 * the blocks, postponing the inode write until the accounting is
1070 * solid.
1071 */
1072 count = 0;
1073 while (vp == fs->lfs_ivnode) {
1074 int redo = 0;
1075
1076 if (sp->idp == NULL && sp->ibp == NULL &&
1077 (sp->seg_bytes_left < fs->lfs_ibsize ||
1078 sp->sum_bytes_left < sizeof(int32_t))) {
1079 (void) lfs_writeseg(fs, sp);
1080 continue;
1081 }
1082
1083 /* Look for dirty Ifile blocks */
1084 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1085 if (!(bp->b_flags & B_GATHERED)) {
1086 redo = 1;
1087 break;
1088 }
1089 }
1090
1091 if (redo == 0)
1092 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1093 if (redo == 0)
1094 break;
1095
1096 if (sp->idp) {
1097 sp->idp->di_inumber = 0;
1098 sp->idp = NULL;
1099 }
1100 ++count;
1101 if (count > 2)
1102 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1103 lfs_writefile(fs, sp, fs->lfs_ivnode);
1104 }
1105
1106 /* Allocate a new inode block if necessary. */
1107 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1108 sp->ibp == NULL) {
1109 /* Allocate a new segment if necessary. */
1110 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1111 sp->sum_bytes_left < sizeof(int32_t))
1112 (void) lfs_writeseg(fs, sp);
1113
1114 /* Get next inode block. */
1115 daddr = fs->lfs_offset;
1116 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1117 sp->ibp = *sp->cbpp++ =
1118 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1119 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1120 gotblk++;
1121
1122 /* Zero out inode numbers */
1123 for (i = 0; i < INOPB(fs); ++i)
1124 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1125 0;
1126
1127 ++sp->start_bpp;
1128 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1129 /* Set remaining space counters. */
1130 sp->seg_bytes_left -= fs->lfs_ibsize;
1131 sp->sum_bytes_left -= sizeof(int32_t);
1132 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1133 sp->ninodes / INOPB(fs) - 1;
1134 ((int32_t *)(sp->segsum))[ndx] = daddr;
1135 }
1136
1137 /* Check VU_DIROP in case there is a new file with no data blocks */
1138 if (vp->v_uflag & VU_DIROP)
1139 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1140
1141 /* Update the inode times and copy the inode onto the inode page. */
1142 /* XXX kludge --- don't redirty the ifile just to put times on it */
1143 if (ip->i_number != LFS_IFILE_INUM)
1144 LFS_ITIMES(ip, NULL, NULL, NULL);
1145
1146 /*
1147 * If this is the Ifile, and we've already written the Ifile in this
1148 * partial segment, just overwrite it (it's not on disk yet) and
1149 * continue.
1150 *
1151 * XXX we know that the bp that we get the second time around has
1152 * already been gathered.
1153 */
1154 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1155 *(sp->idp) = *ip->i_din.ffs1_din;
1156 ip->i_lfs_osize = ip->i_size;
1157 return 0;
1158 }
1159
1160 bp = sp->ibp;
1161 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1162 *cdp = *ip->i_din.ffs1_din;
1163
1164 /*
1165 * This inode is on its way to disk; clear its VU_DIROP status when
1166 * the write is complete.
1167 */
1168 if (vp->v_uflag & VU_DIROP) {
1169 if (!(sp->seg_flags & SEGM_CLEAN))
1170 ip->i_flag |= IN_CDIROP;
1171 else {
1172 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1173 }
1174 }
1175
1176 /*
1177 * If cleaning, link counts and directory file sizes cannot change,
1178 * since those would be directory operations---even if the file
1179 * we are writing is marked VU_DIROP we should write the old values.
1180 * If we're not cleaning, of course, update the values so we get
1181 * current values the next time we clean.
1182 */
1183 if (sp->seg_flags & SEGM_CLEAN) {
1184 if (vp->v_uflag & VU_DIROP) {
1185 cdp->di_nlink = ip->i_lfs_odnlink;
1186 /* if (vp->v_type == VDIR) */
1187 cdp->di_size = ip->i_lfs_osize;
1188 }
1189 } else {
1190 ip->i_lfs_odnlink = cdp->di_nlink;
1191 ip->i_lfs_osize = ip->i_size;
1192 }
1193
1194
1195 /* We can finish the segment accounting for truncations now */
1196 lfs_finalize_ino_seguse(fs, ip);
1197
1198 /*
1199 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1200 * addresses to disk; possibly change the on-disk record of
1201 * the inode size, either by reverting to the previous size
1202 * (in the case of cleaning) or by verifying the inode's block
1203 * holdings (in the case of files being allocated as they are being
1204 * written).
1205 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1206 * XXX count on disk wrong by the same amount. We should be
1207 * XXX able to "borrow" from lfs_avail and return it after the
1208 * XXX Ifile is written. See also in lfs_writeseg.
1209 */
1210
1211 /* Check file size based on highest allocated block */
1212 if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1213 (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1214 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1215 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1216 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1217 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1218 }
1219 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1220 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1221 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1222 ip->i_ffs1_blocks, fs->lfs_offset));
1223 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1224 daddrp++) {
1225 if (*daddrp == UNWRITTEN) {
1226 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1227 *daddrp = 0;
1228 }
1229 }
1230 }
1231
1232 #ifdef DIAGNOSTIC
1233 /*
1234 * Check dinode held blocks against dinode size.
1235 * This should be identical to the check in lfs_vget().
1236 */
1237 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1238 i < NDADDR; i++) {
1239 KASSERT(i >= 0);
1240 if ((cdp->di_mode & IFMT) == IFLNK)
1241 continue;
1242 if (((cdp->di_mode & IFMT) == IFBLK ||
1243 (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1244 continue;
1245 if (cdp->di_db[i] != 0) {
1246 # ifdef DEBUG
1247 lfs_dump_dinode(cdp);
1248 # endif
1249 panic("writing inconsistent inode");
1250 }
1251 }
1252 #endif /* DIAGNOSTIC */
1253
1254 if (ip->i_flag & IN_CLEANING)
1255 LFS_CLR_UINO(ip, IN_CLEANING);
1256 else {
1257 /* XXX IN_ALLMOD */
1258 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1259 IN_UPDATE | IN_MODIFY);
1260 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1261 LFS_CLR_UINO(ip, IN_MODIFIED);
1262 else {
1263 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1264 "blks=%d, eff=%d\n", ip->i_number,
1265 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1266 }
1267 }
1268
1269 if (ip->i_number == LFS_IFILE_INUM) {
1270 /* We know sp->idp == NULL */
1271 sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1272 (sp->ninodes % INOPB(fs));
1273
1274 /* Not dirty any more */
1275 mutex_enter(&lfs_lock);
1276 fs->lfs_flags &= ~LFS_IFDIRTY;
1277 mutex_exit(&lfs_lock);
1278 }
1279
1280 if (gotblk) {
1281 mutex_enter(&bufcache_lock);
1282 LFS_LOCK_BUF(bp);
1283 brelsel(bp, 0);
1284 mutex_exit(&bufcache_lock);
1285 }
1286
1287 /* Increment inode count in segment summary block. */
1288 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1289
1290 /* If this page is full, set flag to allocate a new page. */
1291 if (++sp->ninodes % INOPB(fs) == 0)
1292 sp->ibp = NULL;
1293
1294 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1295
1296 KASSERT(redo_ifile == 0);
1297 return (redo_ifile);
1298 }
1299
1300 int
1301 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1302 {
1303 struct lfs *fs;
1304 int vers;
1305 int j, blksinblk;
1306
1307 ASSERT_SEGLOCK(sp->fs);
1308 /*
1309 * If full, finish this segment. We may be doing I/O, so
1310 * release and reacquire the splbio().
1311 */
1312 #ifdef DIAGNOSTIC
1313 if (sp->vp == NULL)
1314 panic ("lfs_gatherblock: Null vp in segment");
1315 #endif
1316 fs = sp->fs;
1317 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1318 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1319 sp->seg_bytes_left < bp->b_bcount) {
1320 if (mptr)
1321 mutex_exit(mptr);
1322 lfs_updatemeta(sp);
1323
1324 vers = sp->fip->fi_version;
1325 (void) lfs_writeseg(fs, sp);
1326
1327 /* Add the current file to the segment summary. */
1328 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1329
1330 if (mptr)
1331 mutex_enter(mptr);
1332 return (1);
1333 }
1334
1335 if (bp->b_flags & B_GATHERED) {
1336 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1337 " lbn %" PRId64 "\n",
1338 sp->fip->fi_ino, bp->b_lblkno));
1339 return (0);
1340 }
1341
1342 /* Insert into the buffer list, update the FINFO block. */
1343 bp->b_flags |= B_GATHERED;
1344
1345 *sp->cbpp++ = bp;
1346 for (j = 0; j < blksinblk; j++) {
1347 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1348 /* This block's accounting moves from lfs_favail to lfs_avail */
1349 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1350 }
1351
1352 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1353 sp->seg_bytes_left -= bp->b_bcount;
1354 return (0);
1355 }
1356
1357 int
1358 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1359 int (*match)(struct lfs *, struct buf *))
1360 {
1361 struct buf *bp, *nbp;
1362 int count = 0;
1363
1364 ASSERT_SEGLOCK(fs);
1365 if (vp->v_type == VBLK)
1366 return 0;
1367 KASSERT(sp->vp == NULL);
1368 sp->vp = vp;
1369 mutex_enter(&bufcache_lock);
1370
1371 #ifndef LFS_NO_BACKBUF_HACK
1372 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1373 # define BUF_OFFSET \
1374 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1375 # define BACK_BUF(BP) \
1376 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1377 # define BEG_OF_LIST \
1378 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1379
1380 loop:
1381 /* Find last buffer. */
1382 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1383 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1384 bp = LIST_NEXT(bp, b_vnbufs))
1385 /* nothing */;
1386 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1387 nbp = BACK_BUF(bp);
1388 #else /* LFS_NO_BACKBUF_HACK */
1389 loop:
1390 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1391 nbp = LIST_NEXT(bp, b_vnbufs);
1392 #endif /* LFS_NO_BACKBUF_HACK */
1393 if ((bp->b_cflags & BC_BUSY) != 0 ||
1394 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1395 #ifdef DEBUG
1396 if (vp == fs->lfs_ivnode &&
1397 (bp->b_cflags & BC_BUSY) != 0 &&
1398 (bp->b_flags & B_GATHERED) == 0)
1399 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1400 PRId64 " busy (%x) at 0x%x",
1401 bp->b_lblkno, bp->b_flags,
1402 (unsigned)fs->lfs_offset);
1403 #endif
1404 continue;
1405 }
1406 #ifdef DIAGNOSTIC
1407 # ifdef LFS_USE_B_INVAL
1408 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1409 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1410 " is BC_INVAL\n", bp->b_lblkno));
1411 VOP_PRINT(bp->b_vp);
1412 }
1413 # endif /* LFS_USE_B_INVAL */
1414 if (!(bp->b_oflags & BO_DELWRI))
1415 panic("lfs_gather: bp not BO_DELWRI");
1416 if (!(bp->b_flags & B_LOCKED)) {
1417 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1418 " blk %" PRId64 " not B_LOCKED\n",
1419 bp->b_lblkno,
1420 dbtofsb(fs, bp->b_blkno)));
1421 VOP_PRINT(bp->b_vp);
1422 panic("lfs_gather: bp not B_LOCKED");
1423 }
1424 #endif
1425 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1426 goto loop;
1427 }
1428 count++;
1429 }
1430 mutex_exit(&bufcache_lock);
1431 lfs_updatemeta(sp);
1432 KASSERT(sp->vp == vp);
1433 sp->vp = NULL;
1434 return count;
1435 }
1436
1437 #if DEBUG
1438 # define DEBUG_OOFF(n) do { \
1439 if (ooff == 0) { \
1440 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1441 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1442 ", was 0x0 (or %" PRId64 ")\n", \
1443 (n), ip->i_number, lbn, ndaddr, daddr)); \
1444 } \
1445 } while (0)
1446 #else
1447 # define DEBUG_OOFF(n)
1448 #endif
1449
1450 /*
1451 * Change the given block's address to ndaddr, finding its previous
1452 * location using ufs_bmaparray().
1453 *
1454 * Account for this change in the segment table.
1455 *
1456 * called with sp == NULL by roll-forwarding code.
1457 */
1458 void
1459 lfs_update_single(struct lfs *fs, struct segment *sp,
1460 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1461 {
1462 SEGUSE *sup;
1463 struct buf *bp;
1464 struct indir a[NIADDR + 2], *ap;
1465 struct inode *ip;
1466 daddr_t daddr, ooff;
1467 int num, error;
1468 int bb, osize, obb;
1469
1470 ASSERT_SEGLOCK(fs);
1471 KASSERT(sp == NULL || sp->vp == vp);
1472 ip = VTOI(vp);
1473
1474 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1475 if (error)
1476 panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1477
1478 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1479 KASSERT(daddr <= LFS_MAX_DADDR);
1480 if (daddr > 0)
1481 daddr = dbtofsb(fs, daddr);
1482
1483 bb = numfrags(fs, size);
1484 switch (num) {
1485 case 0:
1486 ooff = ip->i_ffs1_db[lbn];
1487 DEBUG_OOFF(0);
1488 if (ooff == UNWRITTEN)
1489 ip->i_ffs1_blocks += bb;
1490 else {
1491 /* possible fragment truncation or extension */
1492 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1493 ip->i_ffs1_blocks += (bb - obb);
1494 }
1495 ip->i_ffs1_db[lbn] = ndaddr;
1496 break;
1497 case 1:
1498 ooff = ip->i_ffs1_ib[a[0].in_off];
1499 DEBUG_OOFF(1);
1500 if (ooff == UNWRITTEN)
1501 ip->i_ffs1_blocks += bb;
1502 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1503 break;
1504 default:
1505 ap = &a[num - 1];
1506 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1507 B_MODIFY, &bp))
1508 panic("lfs_updatemeta: bread bno %" PRId64,
1509 ap->in_lbn);
1510
1511 /* XXX ondisk32 */
1512 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1513 DEBUG_OOFF(num);
1514 if (ooff == UNWRITTEN)
1515 ip->i_ffs1_blocks += bb;
1516 /* XXX ondisk32 */
1517 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1518 (void) VOP_BWRITE(bp->b_vp, bp);
1519 }
1520
1521 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1522
1523 /* Update hiblk when extending the file */
1524 if (lbn > ip->i_lfs_hiblk)
1525 ip->i_lfs_hiblk = lbn;
1526
1527 /*
1528 * Though we'd rather it couldn't, this *can* happen right now
1529 * if cleaning blocks and regular blocks coexist.
1530 */
1531 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1532
1533 /*
1534 * Update segment usage information, based on old size
1535 * and location.
1536 */
1537 if (daddr > 0) {
1538 u_int32_t oldsn = dtosn(fs, daddr);
1539 #ifdef DIAGNOSTIC
1540 int ndupino;
1541
1542 if (sp && sp->seg_number == oldsn) {
1543 ndupino = sp->ndupino;
1544 } else {
1545 ndupino = 0;
1546 }
1547 #endif
1548 KASSERT(oldsn < fs->lfs_nseg);
1549 if (lbn >= 0 && lbn < NDADDR)
1550 osize = ip->i_lfs_fragsize[lbn];
1551 else
1552 osize = fs->lfs_bsize;
1553 LFS_SEGENTRY(sup, fs, oldsn, bp);
1554 #ifdef DIAGNOSTIC
1555 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1556 < osize) {
1557 printf("lfs_updatemeta: negative bytes "
1558 "(segment %" PRIu32 " short by %" PRId64
1559 ")\n", dtosn(fs, daddr),
1560 (int64_t)osize -
1561 (sizeof (struct ufs1_dinode) * ndupino +
1562 sup->su_nbytes));
1563 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1564 ", addr = 0x%" PRIx64 "\n",
1565 (unsigned long long)ip->i_number, lbn, daddr);
1566 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1567 panic("lfs_updatemeta: negative bytes");
1568 sup->su_nbytes = osize -
1569 sizeof (struct ufs1_dinode) * ndupino;
1570 }
1571 #endif
1572 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1573 " db 0x%" PRIx64 "\n",
1574 dtosn(fs, daddr), osize,
1575 ip->i_number, lbn, daddr));
1576 sup->su_nbytes -= osize;
1577 if (!(bp->b_flags & B_GATHERED)) {
1578 mutex_enter(&lfs_lock);
1579 fs->lfs_flags |= LFS_IFDIRTY;
1580 mutex_exit(&lfs_lock);
1581 }
1582 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1583 }
1584 /*
1585 * Now that this block has a new address, and its old
1586 * segment no longer owns it, we can forget about its
1587 * old size.
1588 */
1589 if (lbn >= 0 && lbn < NDADDR)
1590 ip->i_lfs_fragsize[lbn] = size;
1591 }
1592
1593 /*
1594 * Update the metadata that points to the blocks listed in the FINFO
1595 * array.
1596 */
1597 void
1598 lfs_updatemeta(struct segment *sp)
1599 {
1600 struct buf *sbp;
1601 struct lfs *fs;
1602 struct vnode *vp;
1603 daddr_t lbn;
1604 int i, nblocks, num;
1605 int bb;
1606 int bytesleft, size;
1607
1608 ASSERT_SEGLOCK(sp->fs);
1609 vp = sp->vp;
1610 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1611 KASSERT(nblocks >= 0);
1612 KASSERT(vp != NULL);
1613 if (nblocks == 0)
1614 return;
1615
1616 /*
1617 * This count may be high due to oversize blocks from lfs_gop_write.
1618 * Correct for this. (XXX we should be able to keep track of these.)
1619 */
1620 fs = sp->fs;
1621 for (i = 0; i < nblocks; i++) {
1622 if (sp->start_bpp[i] == NULL) {
1623 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1624 nblocks = i;
1625 break;
1626 }
1627 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1628 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1629 nblocks -= num - 1;
1630 }
1631
1632 KASSERT(vp->v_type == VREG ||
1633 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1634 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1635
1636 /*
1637 * Sort the blocks.
1638 *
1639 * We have to sort even if the blocks come from the
1640 * cleaner, because there might be other pending blocks on the
1641 * same inode...and if we don't sort, and there are fragments
1642 * present, blocks may be written in the wrong place.
1643 */
1644 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1645
1646 /*
1647 * Record the length of the last block in case it's a fragment.
1648 * If there are indirect blocks present, they sort last. An
1649 * indirect block will be lfs_bsize and its presence indicates
1650 * that you cannot have fragments.
1651 *
1652 * XXX This last is a lie. A cleaned fragment can coexist with
1653 * XXX a later indirect block. This will continue to be
1654 * XXX true until lfs_markv is fixed to do everything with
1655 * XXX fake blocks (including fake inodes and fake indirect blocks).
1656 */
1657 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1658 fs->lfs_bmask) + 1;
1659
1660 /*
1661 * Assign disk addresses, and update references to the logical
1662 * block and the segment usage information.
1663 */
1664 for (i = nblocks; i--; ++sp->start_bpp) {
1665 sbp = *sp->start_bpp;
1666 lbn = *sp->start_lbp;
1667 KASSERT(sbp->b_lblkno == lbn);
1668
1669 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1670
1671 /*
1672 * If we write a frag in the wrong place, the cleaner won't
1673 * be able to correctly identify its size later, and the
1674 * segment will be uncleanable. (Even worse, it will assume
1675 * that the indirect block that actually ends the list
1676 * is of a smaller size!)
1677 */
1678 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1679 panic("lfs_updatemeta: fragment is not last block");
1680
1681 /*
1682 * For each subblock in this possibly oversized block,
1683 * update its address on disk.
1684 */
1685 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1686 KASSERT(vp == sbp->b_vp);
1687 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1688 bytesleft -= fs->lfs_bsize) {
1689 size = MIN(bytesleft, fs->lfs_bsize);
1690 bb = numfrags(fs, size);
1691 lbn = *sp->start_lbp++;
1692 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1693 size);
1694 fs->lfs_offset += bb;
1695 }
1696
1697 }
1698
1699 /* This inode has been modified */
1700 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1701 }
1702
1703 /*
1704 * Move lfs_offset to a segment earlier than sn.
1705 */
1706 int
1707 lfs_rewind(struct lfs *fs, int newsn)
1708 {
1709 int sn, osn, isdirty;
1710 struct buf *bp;
1711 SEGUSE *sup;
1712
1713 ASSERT_SEGLOCK(fs);
1714
1715 osn = dtosn(fs, fs->lfs_offset);
1716 if (osn < newsn)
1717 return 0;
1718
1719 /* lfs_avail eats the remaining space in this segment */
1720 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1721
1722 /* Find a low-numbered segment */
1723 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1724 LFS_SEGENTRY(sup, fs, sn, bp);
1725 isdirty = sup->su_flags & SEGUSE_DIRTY;
1726 brelse(bp, 0);
1727
1728 if (!isdirty)
1729 break;
1730 }
1731 if (sn == fs->lfs_nseg)
1732 panic("lfs_rewind: no clean segments");
1733 if (newsn >= 0 && sn >= newsn)
1734 return ENOENT;
1735 fs->lfs_nextseg = sn;
1736 lfs_newseg(fs);
1737 fs->lfs_offset = fs->lfs_curseg;
1738
1739 return 0;
1740 }
1741
1742 /*
1743 * Start a new partial segment.
1744 *
1745 * Return 1 when we entered to a new segment.
1746 * Otherwise, return 0.
1747 */
1748 int
1749 lfs_initseg(struct lfs *fs)
1750 {
1751 struct segment *sp = fs->lfs_sp;
1752 SEGSUM *ssp;
1753 struct buf *sbp; /* buffer for SEGSUM */
1754 int repeat = 0; /* return value */
1755
1756 ASSERT_SEGLOCK(fs);
1757 /* Advance to the next segment. */
1758 if (!LFS_PARTIAL_FITS(fs)) {
1759 SEGUSE *sup;
1760 struct buf *bp;
1761
1762 /* lfs_avail eats the remaining space */
1763 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1764 fs->lfs_curseg);
1765 /* Wake up any cleaning procs waiting on this file system. */
1766 lfs_wakeup_cleaner(fs);
1767 lfs_newseg(fs);
1768 repeat = 1;
1769 fs->lfs_offset = fs->lfs_curseg;
1770
1771 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1772 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1773
1774 /*
1775 * If the segment contains a superblock, update the offset
1776 * and summary address to skip over it.
1777 */
1778 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1779 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1780 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1781 sp->seg_bytes_left -= LFS_SBPAD;
1782 }
1783 brelse(bp, 0);
1784 /* Segment zero could also contain the labelpad */
1785 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1786 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1787 fs->lfs_offset +=
1788 btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1789 sp->seg_bytes_left -=
1790 LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1791 }
1792 } else {
1793 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1794 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1795 (fs->lfs_offset - fs->lfs_curseg));
1796 }
1797 fs->lfs_lastpseg = fs->lfs_offset;
1798
1799 /* Record first address of this partial segment */
1800 if (sp->seg_flags & SEGM_CLEAN) {
1801 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1802 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1803 /* "1" is the artificial inc in lfs_seglock */
1804 mutex_enter(&lfs_lock);
1805 while (fs->lfs_iocount > 1) {
1806 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1807 "lfs_initseg", 0, &lfs_lock);
1808 }
1809 mutex_exit(&lfs_lock);
1810 fs->lfs_cleanind = 0;
1811 }
1812 }
1813
1814 sp->fs = fs;
1815 sp->ibp = NULL;
1816 sp->idp = NULL;
1817 sp->ninodes = 0;
1818 sp->ndupino = 0;
1819
1820 sp->cbpp = sp->bpp;
1821
1822 /* Get a new buffer for SEGSUM */
1823 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1824 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1825
1826 /* ... and enter it into the buffer list. */
1827 *sp->cbpp = sbp;
1828 sp->cbpp++;
1829 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1830
1831 sp->start_bpp = sp->cbpp;
1832
1833 /* Set point to SEGSUM, initialize it. */
1834 ssp = sp->segsum = sbp->b_data;
1835 memset(ssp, 0, fs->lfs_sumsize);
1836 ssp->ss_next = fs->lfs_nextseg;
1837 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1838 ssp->ss_magic = SS_MAGIC;
1839
1840 /* Set pointer to first FINFO, initialize it. */
1841 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1842 sp->fip->fi_nblocks = 0;
1843 sp->start_lbp = &sp->fip->fi_blocks[0];
1844 sp->fip->fi_lastlength = 0;
1845
1846 sp->seg_bytes_left -= fs->lfs_sumsize;
1847 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1848
1849 return (repeat);
1850 }
1851
1852 /*
1853 * Remove SEGUSE_INVAL from all segments.
1854 */
1855 void
1856 lfs_unset_inval_all(struct lfs *fs)
1857 {
1858 SEGUSE *sup;
1859 struct buf *bp;
1860 int i;
1861
1862 for (i = 0; i < fs->lfs_nseg; i++) {
1863 LFS_SEGENTRY(sup, fs, i, bp);
1864 if (sup->su_flags & SEGUSE_INVAL) {
1865 sup->su_flags &= ~SEGUSE_INVAL;
1866 LFS_WRITESEGENTRY(sup, fs, i, bp);
1867 } else
1868 brelse(bp, 0);
1869 }
1870 }
1871
1872 /*
1873 * Return the next segment to write.
1874 */
1875 void
1876 lfs_newseg(struct lfs *fs)
1877 {
1878 CLEANERINFO *cip;
1879 SEGUSE *sup;
1880 struct buf *bp;
1881 int curseg, isdirty, sn, skip_inval;
1882
1883 ASSERT_SEGLOCK(fs);
1884
1885 /* Honor LFCNWRAPSTOP */
1886 mutex_enter(&lfs_lock);
1887 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1888 if (fs->lfs_wrappass) {
1889 log(LOG_NOTICE, "%s: wrappass=%d\n",
1890 fs->lfs_fsmnt, fs->lfs_wrappass);
1891 fs->lfs_wrappass = 0;
1892 break;
1893 }
1894 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1895 wakeup(&fs->lfs_nowrap);
1896 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1897 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1898 &lfs_lock);
1899 }
1900 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1901 mutex_exit(&lfs_lock);
1902
1903 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1904 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1905 dtosn(fs, fs->lfs_nextseg)));
1906 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1907 sup->su_nbytes = 0;
1908 sup->su_nsums = 0;
1909 sup->su_ninos = 0;
1910 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1911
1912 LFS_CLEANERINFO(cip, fs, bp);
1913 --cip->clean;
1914 ++cip->dirty;
1915 fs->lfs_nclean = cip->clean;
1916 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1917
1918 fs->lfs_lastseg = fs->lfs_curseg;
1919 fs->lfs_curseg = fs->lfs_nextseg;
1920 skip_inval = 1;
1921 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1922 sn = (sn + 1) % fs->lfs_nseg;
1923
1924 if (sn == curseg) {
1925 if (skip_inval)
1926 skip_inval = 0;
1927 else
1928 panic("lfs_nextseg: no clean segments");
1929 }
1930 LFS_SEGENTRY(sup, fs, sn, bp);
1931 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1932 /* Check SEGUSE_EMPTY as we go along */
1933 if (isdirty && sup->su_nbytes == 0 &&
1934 !(sup->su_flags & SEGUSE_EMPTY))
1935 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1936 else
1937 brelse(bp, 0);
1938
1939 if (!isdirty)
1940 break;
1941 }
1942 if (skip_inval == 0)
1943 lfs_unset_inval_all(fs);
1944
1945 ++fs->lfs_nactive;
1946 fs->lfs_nextseg = sntod(fs, sn);
1947 if (lfs_dostats) {
1948 ++lfs_stats.segsused;
1949 }
1950 }
1951
1952 static struct buf *
1953 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1954 int n)
1955 {
1956 struct lfs_cluster *cl;
1957 struct buf **bpp, *bp;
1958
1959 ASSERT_SEGLOCK(fs);
1960 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1961 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1962 memset(cl, 0, sizeof(*cl));
1963 cl->fs = fs;
1964 cl->bpp = bpp;
1965 cl->bufcount = 0;
1966 cl->bufsize = 0;
1967
1968 /* If this segment is being written synchronously, note that */
1969 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1970 cl->flags |= LFS_CL_SYNC;
1971 cl->seg = fs->lfs_sp;
1972 ++cl->seg->seg_iocount;
1973 }
1974
1975 /* Get an empty buffer header, or maybe one with something on it */
1976 bp = getiobuf(vp, true);
1977 bp->b_dev = NODEV;
1978 bp->b_blkno = bp->b_lblkno = addr;
1979 bp->b_iodone = lfs_cluster_callback;
1980 bp->b_private = cl;
1981
1982 return bp;
1983 }
1984
1985 int
1986 lfs_writeseg(struct lfs *fs, struct segment *sp)
1987 {
1988 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1989 SEGUSE *sup;
1990 SEGSUM *ssp;
1991 int i;
1992 int do_again, nblocks, byteoffset;
1993 size_t el_size;
1994 struct lfs_cluster *cl;
1995 u_short ninos;
1996 struct vnode *devvp;
1997 char *p = NULL;
1998 struct vnode *vp;
1999 int32_t *daddrp; /* XXX ondisk32 */
2000 int changed;
2001 u_int32_t sum;
2002 #ifdef DEBUG
2003 FINFO *fip;
2004 int findex;
2005 #endif
2006
2007 ASSERT_SEGLOCK(fs);
2008
2009 ssp = (SEGSUM *)sp->segsum;
2010
2011 /*
2012 * If there are no buffers other than the segment summary to write,
2013 * don't do anything. If we are the end of a dirop sequence, however,
2014 * write the empty segment summary anyway, to help out the
2015 * roll-forward agent.
2016 */
2017 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2018 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2019 return 0;
2020 }
2021
2022 /* Note if partial segment is being written by the cleaner */
2023 if (sp->seg_flags & SEGM_CLEAN)
2024 ssp->ss_flags |= SS_CLEAN;
2025
2026 /* Note if we are writing to reclaim */
2027 if (sp->seg_flags & SEGM_RECLAIM) {
2028 ssp->ss_flags |= SS_RECLAIM;
2029 ssp->ss_reclino = fs->lfs_reclino;
2030 }
2031
2032 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2033
2034 /* Update the segment usage information. */
2035 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2036
2037 /* Loop through all blocks, except the segment summary. */
2038 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2039 if ((*bpp)->b_vp != devvp) {
2040 sup->su_nbytes += (*bpp)->b_bcount;
2041 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2042 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2043 sp->seg_number, (*bpp)->b_bcount,
2044 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2045 (*bpp)->b_blkno));
2046 }
2047 }
2048
2049 #ifdef DEBUG
2050 /* Check for zero-length and zero-version FINFO entries. */
2051 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2052 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2053 KDASSERT(fip->fi_nblocks > 0);
2054 KDASSERT(fip->fi_version > 0);
2055 fip = (FINFO *)((char *)fip + FINFOSIZE +
2056 sizeof(int32_t) * fip->fi_nblocks);
2057 }
2058 #endif /* DEBUG */
2059
2060 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2061 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2062 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2063 ssp->ss_ninos));
2064 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2065 /* sup->su_nbytes += fs->lfs_sumsize; */
2066 if (fs->lfs_version == 1)
2067 sup->su_olastmod = time_second;
2068 else
2069 sup->su_lastmod = time_second;
2070 sup->su_ninos += ninos;
2071 ++sup->su_nsums;
2072 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2073
2074 do_again = !(bp->b_flags & B_GATHERED);
2075 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2076
2077 /*
2078 * Mark blocks B_BUSY, to prevent then from being changed between
2079 * the checksum computation and the actual write.
2080 *
2081 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2082 * there are any, replace them with copies that have UNASSIGNED
2083 * instead.
2084 */
2085 mutex_enter(&bufcache_lock);
2086 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2087 ++bpp;
2088 bp = *bpp;
2089 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2090 bp->b_cflags |= BC_BUSY;
2091 continue;
2092 }
2093
2094 while (bp->b_cflags & BC_BUSY) {
2095 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2096 " data summary corruption for ino %d, lbn %"
2097 PRId64 "\n",
2098 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2099 bp->b_cflags |= BC_WANTED;
2100 cv_wait(&bp->b_busy, &bufcache_lock);
2101 }
2102 bp->b_cflags |= BC_BUSY;
2103 mutex_exit(&bufcache_lock);
2104 unbusybp = NULL;
2105
2106 /*
2107 * Check and replace indirect block UNWRITTEN bogosity.
2108 * XXX See comment in lfs_writefile.
2109 */
2110 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2111 VTOI(bp->b_vp)->i_ffs1_blocks !=
2112 VTOI(bp->b_vp)->i_lfs_effnblks) {
2113 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2114 VTOI(bp->b_vp)->i_number,
2115 VTOI(bp->b_vp)->i_lfs_effnblks,
2116 VTOI(bp->b_vp)->i_ffs1_blocks));
2117 /* Make a copy we'll make changes to */
2118 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2119 bp->b_bcount, LFS_NB_IBLOCK);
2120 newbp->b_blkno = bp->b_blkno;
2121 memcpy(newbp->b_data, bp->b_data,
2122 newbp->b_bcount);
2123
2124 changed = 0;
2125 /* XXX ondisk32 */
2126 for (daddrp = (int32_t *)(newbp->b_data);
2127 daddrp < (int32_t *)((char *)newbp->b_data +
2128 newbp->b_bcount); daddrp++) {
2129 if (*daddrp == UNWRITTEN) {
2130 ++changed;
2131 *daddrp = 0;
2132 }
2133 }
2134 /*
2135 * Get rid of the old buffer. Don't mark it clean,
2136 * though, if it still has dirty data on it.
2137 */
2138 if (changed) {
2139 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2140 " bp = %p newbp = %p\n", changed, bp,
2141 newbp));
2142 *bpp = newbp;
2143 bp->b_flags &= ~B_GATHERED;
2144 bp->b_error = 0;
2145 if (bp->b_iodone != NULL) {
2146 DLOG((DLOG_SEG, "lfs_writeseg: "
2147 "indir bp should not be B_CALL\n"));
2148 biodone(bp);
2149 bp = NULL;
2150 } else {
2151 /* Still on free list, leave it there */
2152 unbusybp = bp;
2153 /*
2154 * We have to re-decrement lfs_avail
2155 * since this block is going to come
2156 * back around to us in the next
2157 * segment.
2158 */
2159 fs->lfs_avail -=
2160 btofsb(fs, bp->b_bcount);
2161 }
2162 } else {
2163 lfs_freebuf(fs, newbp);
2164 }
2165 }
2166 mutex_enter(&bufcache_lock);
2167 if (unbusybp != NULL) {
2168 unbusybp->b_cflags &= ~BC_BUSY;
2169 if (unbusybp->b_cflags & BC_WANTED)
2170 cv_broadcast(&bp->b_busy);
2171 }
2172 }
2173 mutex_exit(&bufcache_lock);
2174
2175 /*
2176 * Compute checksum across data and then across summary; the first
2177 * block (the summary block) is skipped. Set the create time here
2178 * so that it's guaranteed to be later than the inode mod times.
2179 */
2180 sum = 0;
2181 if (fs->lfs_version == 1)
2182 el_size = sizeof(u_long);
2183 else
2184 el_size = sizeof(u_int32_t);
2185 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2186 ++bpp;
2187 /* Loop through gop_write cluster blocks */
2188 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2189 byteoffset += fs->lfs_bsize) {
2190 #ifdef LFS_USE_B_INVAL
2191 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2192 (*bpp)->b_iodone != NULL) {
2193 if (copyin((void *)(*bpp)->b_saveaddr +
2194 byteoffset, dp, el_size)) {
2195 panic("lfs_writeseg: copyin failed [1]:"
2196 " ino %d blk %" PRId64,
2197 VTOI((*bpp)->b_vp)->i_number,
2198 (*bpp)->b_lblkno);
2199 }
2200 } else
2201 #endif /* LFS_USE_B_INVAL */
2202 {
2203 sum = lfs_cksum_part((char *)
2204 (*bpp)->b_data + byteoffset, el_size, sum);
2205 }
2206 }
2207 }
2208 if (fs->lfs_version == 1)
2209 ssp->ss_ocreate = time_second;
2210 else {
2211 ssp->ss_create = time_second;
2212 ssp->ss_serial = ++fs->lfs_serial;
2213 ssp->ss_ident = fs->lfs_ident;
2214 }
2215 ssp->ss_datasum = lfs_cksum_fold(sum);
2216 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2217 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2218
2219 mutex_enter(&lfs_lock);
2220 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2221 btofsb(fs, fs->lfs_sumsize));
2222 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2223 btofsb(fs, fs->lfs_sumsize));
2224 mutex_exit(&lfs_lock);
2225
2226 /*
2227 * When we simply write the blocks we lose a rotation for every block
2228 * written. To avoid this problem, we cluster the buffers into a
2229 * chunk and write the chunk. MAXPHYS is the largest size I/O
2230 * devices can handle, use that for the size of the chunks.
2231 *
2232 * Blocks that are already clusters (from GOP_WRITE), however, we
2233 * don't bother to copy into other clusters.
2234 */
2235
2236 #define CHUNKSIZE MAXPHYS
2237
2238 if (devvp == NULL)
2239 panic("devvp is NULL");
2240 for (bpp = sp->bpp, i = nblocks; i;) {
2241 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2242 cl = cbp->b_private;
2243
2244 cbp->b_flags |= B_ASYNC;
2245 cbp->b_cflags |= BC_BUSY;
2246 cbp->b_bcount = 0;
2247
2248 #if defined(DEBUG) && defined(DIAGNOSTIC)
2249 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2250 / sizeof(int32_t)) {
2251 panic("lfs_writeseg: real bpp overwrite");
2252 }
2253 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2254 panic("lfs_writeseg: theoretical bpp overwrite");
2255 }
2256 #endif
2257
2258 /*
2259 * Construct the cluster.
2260 */
2261 mutex_enter(&lfs_lock);
2262 ++fs->lfs_iocount;
2263 mutex_exit(&lfs_lock);
2264 while (i && cbp->b_bcount < CHUNKSIZE) {
2265 bp = *bpp;
2266
2267 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2268 break;
2269 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2270 break;
2271
2272 /* Clusters from GOP_WRITE are expedited */
2273 if (bp->b_bcount > fs->lfs_bsize) {
2274 if (cbp->b_bcount > 0)
2275 /* Put in its own buffer */
2276 break;
2277 else {
2278 cbp->b_data = bp->b_data;
2279 }
2280 } else if (cbp->b_bcount == 0) {
2281 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2282 LFS_NB_CLUSTER);
2283 cl->flags |= LFS_CL_MALLOC;
2284 }
2285 #ifdef DIAGNOSTIC
2286 if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2287 btodb(bp->b_bcount - 1))) !=
2288 sp->seg_number) {
2289 printf("blk size %d daddr %" PRIx64
2290 " not in seg %d\n",
2291 bp->b_bcount, bp->b_blkno,
2292 sp->seg_number);
2293 panic("segment overwrite");
2294 }
2295 #endif
2296
2297 #ifdef LFS_USE_B_INVAL
2298 /*
2299 * Fake buffers from the cleaner are marked as B_INVAL.
2300 * We need to copy the data from user space rather than
2301 * from the buffer indicated.
2302 * XXX == what do I do on an error?
2303 */
2304 if ((bp->b_cflags & BC_INVAL) != 0 &&
2305 bp->b_iodone != NULL) {
2306 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2307 panic("lfs_writeseg: "
2308 "copyin failed [2]");
2309 } else
2310 #endif /* LFS_USE_B_INVAL */
2311 if (cl->flags & LFS_CL_MALLOC) {
2312 /* copy data into our cluster. */
2313 memcpy(p, bp->b_data, bp->b_bcount);
2314 p += bp->b_bcount;
2315 }
2316
2317 cbp->b_bcount += bp->b_bcount;
2318 cl->bufsize += bp->b_bcount;
2319
2320 bp->b_flags &= ~B_READ;
2321 bp->b_error = 0;
2322 cl->bpp[cl->bufcount++] = bp;
2323
2324 vp = bp->b_vp;
2325 mutex_enter(&bufcache_lock);
2326 mutex_enter(vp->v_interlock);
2327 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2328 reassignbuf(bp, vp);
2329 vp->v_numoutput++;
2330 mutex_exit(vp->v_interlock);
2331 mutex_exit(&bufcache_lock);
2332
2333 bpp++;
2334 i--;
2335 }
2336 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2337 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2338 else
2339 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2340 mutex_enter(devvp->v_interlock);
2341 devvp->v_numoutput++;
2342 mutex_exit(devvp->v_interlock);
2343 VOP_STRATEGY(devvp, cbp);
2344 curlwp->l_ru.ru_oublock++;
2345 }
2346
2347 if (lfs_dostats) {
2348 ++lfs_stats.psegwrites;
2349 lfs_stats.blocktot += nblocks - 1;
2350 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2351 ++lfs_stats.psyncwrites;
2352 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2353 ++lfs_stats.pcleanwrites;
2354 lfs_stats.cleanblocks += nblocks - 1;
2355 }
2356 }
2357
2358 return (lfs_initseg(fs) || do_again);
2359 }
2360
2361 void
2362 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2363 {
2364 struct buf *bp;
2365 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2366 int s;
2367
2368 ASSERT_MAYBE_SEGLOCK(fs);
2369 #ifdef DIAGNOSTIC
2370 KASSERT(fs->lfs_magic == LFS_MAGIC);
2371 #endif
2372 /*
2373 * If we can write one superblock while another is in
2374 * progress, we risk not having a complete checkpoint if we crash.
2375 * So, block here if a superblock write is in progress.
2376 */
2377 mutex_enter(&lfs_lock);
2378 s = splbio();
2379 while (fs->lfs_sbactive) {
2380 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2381 &lfs_lock);
2382 }
2383 fs->lfs_sbactive = daddr;
2384 splx(s);
2385 mutex_exit(&lfs_lock);
2386
2387 /* Set timestamp of this version of the superblock */
2388 if (fs->lfs_version == 1)
2389 fs->lfs_otstamp = time_second;
2390 fs->lfs_tstamp = time_second;
2391
2392 /* Checksum the superblock and copy it into a buffer. */
2393 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2394 bp = lfs_newbuf(fs, devvp,
2395 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2396 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2397 LFS_SBPAD - sizeof(struct dlfs));
2398 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2399
2400 bp->b_cflags |= BC_BUSY;
2401 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2402 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2403 bp->b_error = 0;
2404 bp->b_iodone = lfs_supercallback;
2405
2406 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2407 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2408 else
2409 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2410 curlwp->l_ru.ru_oublock++;
2411
2412 mutex_enter(devvp->v_interlock);
2413 devvp->v_numoutput++;
2414 mutex_exit(devvp->v_interlock);
2415
2416 mutex_enter(&lfs_lock);
2417 ++fs->lfs_iocount;
2418 mutex_exit(&lfs_lock);
2419 VOP_STRATEGY(devvp, bp);
2420 }
2421
2422 /*
2423 * Logical block number match routines used when traversing the dirty block
2424 * chain.
2425 */
2426 int
2427 lfs_match_fake(struct lfs *fs, struct buf *bp)
2428 {
2429
2430 ASSERT_SEGLOCK(fs);
2431 return LFS_IS_MALLOC_BUF(bp);
2432 }
2433
2434 #if 0
2435 int
2436 lfs_match_real(struct lfs *fs, struct buf *bp)
2437 {
2438
2439 ASSERT_SEGLOCK(fs);
2440 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2441 }
2442 #endif
2443
2444 int
2445 lfs_match_data(struct lfs *fs, struct buf *bp)
2446 {
2447
2448 ASSERT_SEGLOCK(fs);
2449 return (bp->b_lblkno >= 0);
2450 }
2451
2452 int
2453 lfs_match_indir(struct lfs *fs, struct buf *bp)
2454 {
2455 daddr_t lbn;
2456
2457 ASSERT_SEGLOCK(fs);
2458 lbn = bp->b_lblkno;
2459 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2460 }
2461
2462 int
2463 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2464 {
2465 daddr_t lbn;
2466
2467 ASSERT_SEGLOCK(fs);
2468 lbn = bp->b_lblkno;
2469 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2470 }
2471
2472 int
2473 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2474 {
2475 daddr_t lbn;
2476
2477 ASSERT_SEGLOCK(fs);
2478 lbn = bp->b_lblkno;
2479 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2480 }
2481
2482 static void
2483 lfs_free_aiodone(struct buf *bp)
2484 {
2485 struct lfs *fs;
2486
2487 KERNEL_LOCK(1, curlwp);
2488 fs = bp->b_private;
2489 ASSERT_NO_SEGLOCK(fs);
2490 lfs_freebuf(fs, bp);
2491 KERNEL_UNLOCK_LAST(curlwp);
2492 }
2493
2494 static void
2495 lfs_super_aiodone(struct buf *bp)
2496 {
2497 struct lfs *fs;
2498
2499 KERNEL_LOCK(1, curlwp);
2500 fs = bp->b_private;
2501 ASSERT_NO_SEGLOCK(fs);
2502 mutex_enter(&lfs_lock);
2503 fs->lfs_sbactive = 0;
2504 if (--fs->lfs_iocount <= 1)
2505 wakeup(&fs->lfs_iocount);
2506 wakeup(&fs->lfs_sbactive);
2507 mutex_exit(&lfs_lock);
2508 lfs_freebuf(fs, bp);
2509 KERNEL_UNLOCK_LAST(curlwp);
2510 }
2511
2512 static void
2513 lfs_cluster_aiodone(struct buf *bp)
2514 {
2515 struct lfs_cluster *cl;
2516 struct lfs *fs;
2517 struct buf *tbp, *fbp;
2518 struct vnode *vp, *devvp, *ovp;
2519 struct inode *ip;
2520 int error;
2521
2522 KERNEL_LOCK(1, curlwp);
2523
2524 error = bp->b_error;
2525 cl = bp->b_private;
2526 fs = cl->fs;
2527 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2528 ASSERT_NO_SEGLOCK(fs);
2529
2530 /* Put the pages back, and release the buffer */
2531 while (cl->bufcount--) {
2532 tbp = cl->bpp[cl->bufcount];
2533 KASSERT(tbp->b_cflags & BC_BUSY);
2534 if (error) {
2535 tbp->b_error = error;
2536 }
2537
2538 /*
2539 * We're done with tbp. If it has not been re-dirtied since
2540 * the cluster was written, free it. Otherwise, keep it on
2541 * the locked list to be written again.
2542 */
2543 vp = tbp->b_vp;
2544
2545 tbp->b_flags &= ~B_GATHERED;
2546
2547 LFS_BCLEAN_LOG(fs, tbp);
2548
2549 mutex_enter(&bufcache_lock);
2550 if (tbp->b_iodone == NULL) {
2551 KASSERT(tbp->b_flags & B_LOCKED);
2552 bremfree(tbp);
2553 if (vp) {
2554 mutex_enter(vp->v_interlock);
2555 reassignbuf(tbp, vp);
2556 mutex_exit(vp->v_interlock);
2557 }
2558 tbp->b_flags |= B_ASYNC; /* for biodone */
2559 }
2560
2561 if (((tbp->b_flags | tbp->b_oflags) &
2562 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2563 LFS_UNLOCK_BUF(tbp);
2564
2565 if (tbp->b_oflags & BO_DONE) {
2566 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2567 cl->bufcount, (long)tbp->b_flags));
2568 }
2569
2570 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2571 /*
2572 * A buffer from the page daemon.
2573 * We use the same iodone as it does,
2574 * so we must manually disassociate its
2575 * buffers from the vp.
2576 */
2577 if ((ovp = tbp->b_vp) != NULL) {
2578 /* This is just silly */
2579 mutex_enter(ovp->v_interlock);
2580 brelvp(tbp);
2581 mutex_exit(ovp->v_interlock);
2582 tbp->b_vp = vp;
2583 tbp->b_objlock = vp->v_interlock;
2584 }
2585 /* Put it back the way it was */
2586 tbp->b_flags |= B_ASYNC;
2587 /* Master buffers have BC_AGE */
2588 if (tbp->b_private == tbp)
2589 tbp->b_cflags |= BC_AGE;
2590 }
2591 mutex_exit(&bufcache_lock);
2592
2593 biodone(tbp);
2594
2595 /*
2596 * If this is the last block for this vnode, but
2597 * there are other blocks on its dirty list,
2598 * set IN_MODIFIED/IN_CLEANING depending on what
2599 * sort of block. Only do this for our mount point,
2600 * not for, e.g., inode blocks that are attached to
2601 * the devvp.
2602 * XXX KS - Shouldn't we set *both* if both types
2603 * of blocks are present (traverse the dirty list?)
2604 */
2605 mutex_enter(vp->v_interlock);
2606 mutex_enter(&lfs_lock);
2607 if (vp != devvp && vp->v_numoutput == 0 &&
2608 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2609 ip = VTOI(vp);
2610 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2611 ip->i_number));
2612 if (LFS_IS_MALLOC_BUF(fbp))
2613 LFS_SET_UINO(ip, IN_CLEANING);
2614 else
2615 LFS_SET_UINO(ip, IN_MODIFIED);
2616 }
2617 cv_broadcast(&vp->v_cv);
2618 mutex_exit(&lfs_lock);
2619 mutex_exit(vp->v_interlock);
2620 }
2621
2622 /* Fix up the cluster buffer, and release it */
2623 if (cl->flags & LFS_CL_MALLOC)
2624 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2625 putiobuf(bp);
2626
2627 /* Note i/o done */
2628 if (cl->flags & LFS_CL_SYNC) {
2629 if (--cl->seg->seg_iocount == 0)
2630 wakeup(&cl->seg->seg_iocount);
2631 }
2632 mutex_enter(&lfs_lock);
2633 #ifdef DIAGNOSTIC
2634 if (fs->lfs_iocount == 0)
2635 panic("lfs_cluster_aiodone: zero iocount");
2636 #endif
2637 if (--fs->lfs_iocount <= 1)
2638 wakeup(&fs->lfs_iocount);
2639 mutex_exit(&lfs_lock);
2640
2641 KERNEL_UNLOCK_LAST(curlwp);
2642
2643 pool_put(&fs->lfs_bpppool, cl->bpp);
2644 cl->bpp = NULL;
2645 pool_put(&fs->lfs_clpool, cl);
2646 }
2647
2648 static void
2649 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2650 {
2651 /* reset b_iodone for when this is a single-buf i/o. */
2652 bp->b_iodone = aiodone;
2653
2654 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2655 }
2656
2657 static void
2658 lfs_cluster_callback(struct buf *bp)
2659 {
2660
2661 lfs_generic_callback(bp, lfs_cluster_aiodone);
2662 }
2663
2664 void
2665 lfs_supercallback(struct buf *bp)
2666 {
2667
2668 lfs_generic_callback(bp, lfs_super_aiodone);
2669 }
2670
2671 /*
2672 * The only buffers that are going to hit these functions are the
2673 * segment write blocks, or the segment summaries, or the superblocks.
2674 *
2675 * All of the above are created by lfs_newbuf, and so do not need to be
2676 * released via brelse.
2677 */
2678 void
2679 lfs_callback(struct buf *bp)
2680 {
2681
2682 lfs_generic_callback(bp, lfs_free_aiodone);
2683 }
2684
2685 /*
2686 * Shellsort (diminishing increment sort) from Data Structures and
2687 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2688 * see also Knuth Vol. 3, page 84. The increments are selected from
2689 * formula (8), page 95. Roughly O(N^3/2).
2690 */
2691 /*
2692 * This is our own private copy of shellsort because we want to sort
2693 * two parallel arrays (the array of buffer pointers and the array of
2694 * logical block numbers) simultaneously. Note that we cast the array
2695 * of logical block numbers to a unsigned in this routine so that the
2696 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2697 */
2698
2699 void
2700 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2701 {
2702 static int __rsshell_increments[] = { 4, 1, 0 };
2703 int incr, *incrp, t1, t2;
2704 struct buf *bp_temp;
2705
2706 #ifdef DEBUG
2707 incr = 0;
2708 for (t1 = 0; t1 < nmemb; t1++) {
2709 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2710 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2711 /* dump before panic */
2712 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2713 nmemb, size);
2714 incr = 0;
2715 for (t1 = 0; t1 < nmemb; t1++) {
2716 const struct buf *bp = bp_array[t1];
2717
2718 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2719 PRIu64 "\n", t1,
2720 (uint64_t)bp->b_bcount,
2721 (uint64_t)bp->b_lblkno);
2722 printf("lbns:");
2723 for (t2 = 0; t2 * size < bp->b_bcount;
2724 t2++) {
2725 printf(" %" PRId32,
2726 lb_array[incr++]);
2727 }
2728 printf("\n");
2729 }
2730 panic("lfs_shellsort: inconsistent input");
2731 }
2732 }
2733 }
2734 #endif
2735
2736 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2737 for (t1 = incr; t1 < nmemb; ++t1)
2738 for (t2 = t1 - incr; t2 >= 0;)
2739 if ((u_int32_t)bp_array[t2]->b_lblkno >
2740 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2741 bp_temp = bp_array[t2];
2742 bp_array[t2] = bp_array[t2 + incr];
2743 bp_array[t2 + incr] = bp_temp;
2744 t2 -= incr;
2745 } else
2746 break;
2747
2748 /* Reform the list of logical blocks */
2749 incr = 0;
2750 for (t1 = 0; t1 < nmemb; t1++) {
2751 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2752 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2753 }
2754 }
2755 }
2756
2757 /*
2758 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2759 * however, we must press on. Just fake success in that case.
2760 */
2761 int
2762 lfs_vref(struct vnode *vp)
2763 {
2764 struct lfs *fs;
2765
2766 KASSERT(mutex_owned(vp->v_interlock));
2767
2768 fs = VTOI(vp)->i_lfs;
2769
2770 ASSERT_MAYBE_SEGLOCK(fs);
2771
2772 /*
2773 * If we return 1 here during a flush, we risk vinvalbuf() not
2774 * being able to flush all of the pages from this vnode, which
2775 * will cause it to panic. So, return 0 if a flush is in progress.
2776 */
2777 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2778 ++fs->lfs_flushvp_fakevref;
2779 mutex_exit(vp->v_interlock);
2780 return 0;
2781 }
2782
2783 return vget(vp, LK_NOWAIT);
2784 }
2785
2786 /*
2787 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2788 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2789 */
2790 void
2791 lfs_vunref(struct vnode *vp)
2792 {
2793 struct lfs *fs;
2794
2795 fs = VTOI(vp)->i_lfs;
2796 ASSERT_MAYBE_SEGLOCK(fs);
2797
2798 /*
2799 * Analogous to lfs_vref, if the node is flushing, fake it.
2800 */
2801 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2802 --fs->lfs_flushvp_fakevref;
2803 return;
2804 }
2805
2806 /* does not call inactive */
2807 mutex_enter(vp->v_interlock);
2808 vrelel(vp, 0);
2809 }
2810
2811 /*
2812 * We use this when we have vnodes that were loaded in solely for cleaning.
2813 * There is no reason to believe that these vnodes will be referenced again
2814 * soon, since the cleaning process is unrelated to normal filesystem
2815 * activity. Putting cleaned vnodes at the tail of the list has the effect
2816 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2817 * cleaning at the head of the list, instead.
2818 */
2819 void
2820 lfs_vunref_head(struct vnode *vp)
2821 {
2822
2823 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2824
2825 /* does not call inactive, inserts non-held vnode at head of freelist */
2826 mutex_enter(vp->v_interlock);
2827 vrelel(vp, 0);
2828 }
2829
2830
2831 /*
2832 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2833 * point at uninitialized space.
2834 */
2835 void
2836 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2837 {
2838 struct segment *sp = fs->lfs_sp;
2839
2840 KASSERT(vers > 0);
2841
2842 if (sp->seg_bytes_left < fs->lfs_bsize ||
2843 sp->sum_bytes_left < sizeof(struct finfo))
2844 (void) lfs_writeseg(fs, fs->lfs_sp);
2845
2846 sp->sum_bytes_left -= FINFOSIZE;
2847 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2848 sp->fip->fi_nblocks = 0;
2849 sp->fip->fi_ino = ino;
2850 sp->fip->fi_version = vers;
2851 }
2852
2853 /*
2854 * Release the FINFO entry, either clearing out an unused entry or
2855 * advancing us to the next available entry.
2856 */
2857 void
2858 lfs_release_finfo(struct lfs *fs)
2859 {
2860 struct segment *sp = fs->lfs_sp;
2861
2862 if (sp->fip->fi_nblocks != 0) {
2863 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2864 sizeof(int32_t) * sp->fip->fi_nblocks);
2865 sp->start_lbp = &sp->fip->fi_blocks[0];
2866 } else {
2867 sp->sum_bytes_left += FINFOSIZE;
2868 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2869 }
2870 }
2871