lfs_segment.c revision 1.222.2.4 1 /* $NetBSD: lfs_segment.c,v 1.222.2.4 2014/05/22 11:41:19 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.222.2.4 2014/05/22 11:41:19 yamt Exp $");
64
65 #define _VFS_VNODE_PRIVATE /* XXX: check for VI_MARKER, this has to go */
66
67 #ifdef DEBUG
68 # define vndebug(vp, str) do { \
69 if (VTOI(vp)->i_flag & IN_CLEANING) \
70 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
71 VTOI(vp)->i_number, (str), op)); \
72 } while(0)
73 #else
74 # define vndebug(vp, str)
75 #endif
76 #define ivndebug(vp, str) \
77 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
78
79 #if defined(_KERNEL_OPT)
80 #include "opt_ddb.h"
81 #endif
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/namei.h>
86 #include <sys/kernel.h>
87 #include <sys/resourcevar.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/buf.h>
91 #include <sys/proc.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/kauth.h>
95 #include <sys/syslog.h>
96
97 #include <miscfs/specfs/specdev.h>
98 #include <miscfs/fifofs/fifo.h>
99
100 #include <ufs/lfs/ulfs_inode.h>
101 #include <ufs/lfs/ulfsmount.h>
102 #include <ufs/lfs/ulfs_extern.h>
103
104 #include <ufs/lfs/lfs.h>
105 #include <ufs/lfs/lfs_kernel.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 #include <uvm/uvm.h>
109 #include <uvm/uvm_extern.h>
110
111 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_free_aiodone(struct buf *);
115 static void lfs_super_aiodone(struct buf *);
116 static void lfs_cluster_aiodone(struct buf *);
117 static void lfs_cluster_callback(struct buf *);
118
119 /*
120 * Determine if it's OK to start a partial in this segment, or if we need
121 * to go on to a new segment.
122 */
123 #define LFS_PARTIAL_FITS(fs) \
124 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
125 (fs)->lfs_frag)
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 fs->lfs_nclean < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 /* XXX ondisk32 */
140 void lfs_shellsort(struct buf **, int32_t *, int, int);
141 void lfs_supercallback(struct buf *);
142 void lfs_updatemeta(struct segment *);
143 void lfs_writesuper(struct lfs *, daddr_t);
144 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
145 struct segment *sp, int dirops);
146
147 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
148 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
149 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
150 int lfs_dirvcount = 0; /* # active dirops */
151
152 /* Statistics Counters */
153 int lfs_dostats = 1;
154 struct lfs_stats lfs_stats;
155
156 /* op values to lfs_writevnodes */
157 #define VN_REG 0
158 #define VN_DIROP 1
159 #define VN_EMPTY 2
160 #define VN_CLEAN 3
161
162 /*
163 * XXX KS - Set modification time on the Ifile, so the cleaner can
164 * read the fs mod time off of it. We don't set IN_UPDATE here,
165 * since we don't really need this to be flushed to disk (and in any
166 * case that wouldn't happen to the Ifile until we checkpoint).
167 */
168 void
169 lfs_imtime(struct lfs *fs)
170 {
171 struct timespec ts;
172 struct inode *ip;
173
174 ASSERT_MAYBE_SEGLOCK(fs);
175 vfs_timestamp(&ts);
176 ip = VTOI(fs->lfs_ivnode);
177 ip->i_ffs1_mtime = ts.tv_sec;
178 ip->i_ffs1_mtimensec = ts.tv_nsec;
179 }
180
181 /*
182 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
183 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
184 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
185 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
186 */
187
188 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
189
190 int
191 lfs_vflush(struct vnode *vp)
192 {
193 struct inode *ip;
194 struct lfs *fs;
195 struct segment *sp;
196 struct buf *bp, *nbp, *tbp, *tnbp;
197 int error;
198 int flushed;
199 int relock;
200
201 ip = VTOI(vp);
202 fs = VFSTOULFS(vp->v_mount)->um_lfs;
203 relock = 0;
204
205 top:
206 KASSERT(mutex_owned(vp->v_interlock) == false);
207 KASSERT(mutex_owned(&lfs_lock) == false);
208 KASSERT(mutex_owned(&bufcache_lock) == false);
209 ASSERT_NO_SEGLOCK(fs);
210 if (ip->i_flag & IN_CLEANING) {
211 ivndebug(vp,"vflush/in_cleaning");
212 mutex_enter(&lfs_lock);
213 LFS_CLR_UINO(ip, IN_CLEANING);
214 LFS_SET_UINO(ip, IN_MODIFIED);
215 mutex_exit(&lfs_lock);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 mutex_enter(vp->v_interlock);
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 for (off = lfs_lblktosize(fs, bp->b_lblkno);
238 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
239 off += PAGE_SIZE) {
240 pg = uvm_pagelookup(&vp->v_uobj, off);
241 if (pg == NULL)
242 continue;
243 if (uvm_pagegetdirty(pg)
244 == UVM_PAGE_STATUS_DIRTY ||
245 pmap_is_modified(pg)) {
246 fs->lfs_avail += lfs_btofsb(fs,
247 bp->b_bcount);
248 wakeup(&fs->lfs_avail);
249 mutex_exit(vp->v_interlock);
250 lfs_freebuf(fs, bp);
251 mutex_enter(vp->v_interlock);
252 bp = NULL;
253 break;
254 }
255 }
256 }
257 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
258 tbp = tnbp)
259 {
260 tnbp = LIST_NEXT(tbp, b_vnbufs);
261 if (tbp->b_vp == bp->b_vp
262 && tbp->b_lblkno == bp->b_lblkno
263 && tbp != bp)
264 {
265 fs->lfs_avail += lfs_btofsb(fs,
266 bp->b_bcount);
267 wakeup(&fs->lfs_avail);
268 mutex_exit(vp->v_interlock);
269 lfs_freebuf(fs, bp);
270 mutex_enter(vp->v_interlock);
271 bp = NULL;
272 break;
273 }
274 }
275 }
276 } else {
277 mutex_enter(vp->v_interlock);
278 }
279
280 /* If the node is being written, wait until that is done */
281 while (WRITEINPROG(vp)) {
282 ivndebug(vp,"vflush/writeinprog");
283 cv_wait(&vp->v_cv, vp->v_interlock);
284 }
285 error = vdead_check(vp, VDEAD_NOWAIT);
286 mutex_exit(vp->v_interlock);
287
288 /* Protect against deadlock in vinvalbuf() */
289 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
290 if (error != 0) {
291 fs->lfs_reclino = ip->i_number;
292 }
293
294 /* If we're supposed to flush a freed inode, just toss it */
295 if (ip->i_lfs_iflags & LFSI_DELETED) {
296 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
297 ip->i_number));
298 /* Drain v_numoutput */
299 mutex_enter(vp->v_interlock);
300 while (vp->v_numoutput > 0) {
301 cv_wait(&vp->v_cv, vp->v_interlock);
302 }
303 KASSERT(vp->v_numoutput == 0);
304 mutex_exit(vp->v_interlock);
305
306 mutex_enter(&bufcache_lock);
307 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
308 nbp = LIST_NEXT(bp, b_vnbufs);
309
310 KASSERT((bp->b_flags & B_GATHERED) == 0);
311 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
312 fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
313 wakeup(&fs->lfs_avail);
314 }
315 /* Copied from lfs_writeseg */
316 if (bp->b_iodone != NULL) {
317 mutex_exit(&bufcache_lock);
318 biodone(bp);
319 mutex_enter(&bufcache_lock);
320 } else {
321 bremfree(bp);
322 LFS_UNLOCK_BUF(bp);
323 mutex_enter(vp->v_interlock);
324 bp->b_flags &= ~(B_READ | B_GATHERED);
325 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
326 bp->b_error = 0;
327 reassignbuf(bp, vp);
328 mutex_exit(vp->v_interlock);
329 brelse(bp, 0);
330 }
331 }
332 mutex_exit(&bufcache_lock);
333 LFS_CLR_UINO(ip, IN_CLEANING);
334 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
335 ip->i_flag &= ~IN_ALLMOD;
336 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
337 ip->i_number));
338 lfs_segunlock(fs);
339
340 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
341
342 return 0;
343 }
344
345 fs->lfs_flushvp = vp;
346 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
347 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
348 fs->lfs_flushvp = NULL;
349 KASSERT(fs->lfs_flushvp_fakevref == 0);
350 lfs_segunlock(fs);
351
352 /* Make sure that any pending buffers get written */
353 mutex_enter(vp->v_interlock);
354 while (vp->v_numoutput > 0) {
355 cv_wait(&vp->v_cv, vp->v_interlock);
356 }
357 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
358 KASSERT(vp->v_numoutput == 0);
359 mutex_exit(vp->v_interlock);
360
361 return error;
362 }
363 sp = fs->lfs_sp;
364
365 flushed = 0;
366 if (VPISEMPTY(vp)) {
367 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
368 ++flushed;
369 } else if ((ip->i_flag & IN_CLEANING) &&
370 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
371 ivndebug(vp,"vflush/clean");
372 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
373 ++flushed;
374 } else if (lfs_dostats) {
375 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
376 ++lfs_stats.vflush_invoked;
377 ivndebug(vp,"vflush");
378 }
379
380 #ifdef DIAGNOSTIC
381 if (vp->v_uflag & VU_DIROP) {
382 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
383 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
384 }
385 #endif
386
387 do {
388 #ifdef DEBUG
389 int loopcount = 0;
390 #endif
391 do {
392 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
393 relock = lfs_writefile(fs, sp, vp);
394 if (relock && vp != fs->lfs_ivnode) {
395 /*
396 * Might have to wait for the
397 * cleaner to run; but we're
398 * still not done with this vnode.
399 * XXX we can do better than this.
400 */
401 KDASSERT(ip->i_number != LFS_IFILE_INUM);
402 lfs_writeinode(fs, sp, ip);
403 mutex_enter(&lfs_lock);
404 LFS_SET_UINO(ip, IN_MODIFIED);
405 mutex_exit(&lfs_lock);
406 lfs_writeseg(fs, sp);
407 lfs_segunlock(fs);
408 lfs_segunlock_relock(fs);
409 goto top;
410 }
411 }
412 /*
413 * If we begin a new segment in the middle of writing
414 * the Ifile, it creates an inconsistent checkpoint,
415 * since the Ifile information for the new segment
416 * is not up-to-date. Take care of this here by
417 * sending the Ifile through again in case there
418 * are newly dirtied blocks. But wait, there's more!
419 * This second Ifile write could *also* cross a segment
420 * boundary, if the first one was large. The second
421 * one is guaranteed to be no more than 8 blocks,
422 * though (two segment blocks and supporting indirects)
423 * so the third write *will not* cross the boundary.
424 */
425 if (vp == fs->lfs_ivnode) {
426 lfs_writefile(fs, sp, vp);
427 lfs_writefile(fs, sp, vp);
428 }
429 #ifdef DEBUG
430 if (++loopcount > 2)
431 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
432 #endif
433 } while (lfs_writeinode(fs, sp, ip));
434 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
435
436 if (lfs_dostats) {
437 ++lfs_stats.nwrites;
438 if (sp->seg_flags & SEGM_SYNC)
439 ++lfs_stats.nsync_writes;
440 if (sp->seg_flags & SEGM_CKP)
441 ++lfs_stats.ncheckpoints;
442 }
443 /*
444 * If we were called from somewhere that has already held the seglock
445 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
446 * the write to complete because we are still locked.
447 * Since lfs_vflush() must return the vnode with no dirty buffers,
448 * we must explicitly wait, if that is the case.
449 *
450 * We compare the iocount against 1, not 0, because it is
451 * artificially incremented by lfs_seglock().
452 */
453 mutex_enter(&lfs_lock);
454 if (fs->lfs_seglock > 1) {
455 while (fs->lfs_iocount > 1)
456 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
457 "lfs_vflush", 0, &lfs_lock);
458 }
459 mutex_exit(&lfs_lock);
460
461 lfs_segunlock(fs);
462
463 /* Wait for these buffers to be recovered by aiodoned */
464 mutex_enter(vp->v_interlock);
465 while (vp->v_numoutput > 0) {
466 cv_wait(&vp->v_cv, vp->v_interlock);
467 }
468 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
469 KASSERT(vp->v_numoutput == 0);
470 mutex_exit(vp->v_interlock);
471
472 fs->lfs_flushvp = NULL;
473 KASSERT(fs->lfs_flushvp_fakevref == 0);
474
475 return (0);
476 }
477
478 int
479 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
480 {
481 struct inode *ip;
482 struct vnode *vp;
483 int inodes_written = 0, only_cleaning;
484 int error = 0;
485
486 ASSERT_SEGLOCK(fs);
487 loop:
488 /* start at last (newest) vnode. */
489 mutex_enter(&mntvnode_lock);
490 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
491 /*
492 * If the vnode that we are about to sync is no longer
493 * associated with this mount point, start over.
494 */
495 if (vp->v_mount != mp) {
496 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
497 /*
498 * After this, pages might be busy
499 * due to our own previous putpages.
500 * Start actual segment write here to avoid deadlock.
501 * If we were just writing one segment and we've done
502 * that, break out.
503 */
504 mutex_exit(&mntvnode_lock);
505 if (lfs_writeseg(fs, sp) &&
506 (sp->seg_flags & SEGM_SINGLE) &&
507 fs->lfs_curseg != fs->lfs_startseg) {
508 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
509 break;
510 }
511 goto loop;
512 }
513
514 mutex_enter(vp->v_interlock);
515 if (vp->v_type == VNON || (vp->v_iflag & VI_MARKER) ||
516 vdead_check(vp, VDEAD_NOWAIT) != 0) {
517 mutex_exit(vp->v_interlock);
518 continue;
519 }
520
521 ip = VTOI(vp);
522 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
523 (op != VN_DIROP && op != VN_CLEAN &&
524 (vp->v_uflag & VU_DIROP))) {
525 mutex_exit(vp->v_interlock);
526 vndebug(vp,"dirop");
527 continue;
528 }
529
530 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
531 mutex_exit(vp->v_interlock);
532 vndebug(vp,"empty");
533 continue;
534 }
535
536 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
537 && vp != fs->lfs_flushvp
538 && !(ip->i_flag & IN_CLEANING)) {
539 mutex_exit(vp->v_interlock);
540 vndebug(vp,"cleaning");
541 continue;
542 }
543
544 mutex_exit(&mntvnode_lock);
545 if (lfs_vref(vp)) {
546 vndebug(vp,"vref");
547 mutex_enter(&mntvnode_lock);
548 continue;
549 }
550
551 only_cleaning = 0;
552 /*
553 * Write the inode/file if dirty and it's not the IFILE.
554 */
555 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
556 only_cleaning =
557 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
558
559 if (ip->i_number != LFS_IFILE_INUM) {
560 error = lfs_writefile(fs, sp, vp);
561 if (error) {
562 lfs_vunref(vp);
563 if (error == EAGAIN) {
564 /*
565 * This error from lfs_putpages
566 * indicates we need to drop
567 * the segment lock and start
568 * over after the cleaner has
569 * had a chance to run.
570 */
571 lfs_writeinode(fs, sp, ip);
572 lfs_writeseg(fs, sp);
573 if (!VPISEMPTY(vp) &&
574 !WRITEINPROG(vp) &&
575 !(ip->i_flag & IN_ALLMOD)) {
576 mutex_enter(&lfs_lock);
577 LFS_SET_UINO(ip, IN_MODIFIED);
578 mutex_exit(&lfs_lock);
579 }
580 mutex_enter(&mntvnode_lock);
581 break;
582 }
583 error = 0; /* XXX not quite right */
584 mutex_enter(&mntvnode_lock);
585 continue;
586 }
587
588 if (!VPISEMPTY(vp)) {
589 if (WRITEINPROG(vp)) {
590 ivndebug(vp,"writevnodes/write2");
591 } else if (!(ip->i_flag & IN_ALLMOD)) {
592 mutex_enter(&lfs_lock);
593 LFS_SET_UINO(ip, IN_MODIFIED);
594 mutex_exit(&lfs_lock);
595 }
596 }
597 (void) lfs_writeinode(fs, sp, ip);
598 inodes_written++;
599 }
600 }
601
602 if (lfs_clean_vnhead && only_cleaning)
603 lfs_vunref_head(vp);
604 else
605 lfs_vunref(vp);
606
607 mutex_enter(&mntvnode_lock);
608 }
609 mutex_exit(&mntvnode_lock);
610 return error;
611 }
612
613 /*
614 * Do a checkpoint.
615 */
616 int
617 lfs_segwrite(struct mount *mp, int flags)
618 {
619 struct buf *bp;
620 struct inode *ip;
621 struct lfs *fs;
622 struct segment *sp;
623 struct vnode *vp;
624 SEGUSE *segusep;
625 int do_ckp, did_ckp, error;
626 unsigned n, segleft, maxseg, sn, i, curseg;
627 int writer_set = 0;
628 int dirty;
629 int redo;
630 int um_error;
631
632 fs = VFSTOULFS(mp)->um_lfs;
633 ASSERT_MAYBE_SEGLOCK(fs);
634
635 if (fs->lfs_ronly)
636 return EROFS;
637
638 lfs_imtime(fs);
639
640 /*
641 * Allocate a segment structure and enough space to hold pointers to
642 * the maximum possible number of buffers which can be described in a
643 * single summary block.
644 */
645 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
646
647 /* We can't do a partial write and checkpoint at the same time. */
648 if (do_ckp)
649 flags &= ~SEGM_SINGLE;
650
651 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
652 sp = fs->lfs_sp;
653 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
654 do_ckp = 1;
655
656 /*
657 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
658 * in which case we have to flush *all* buffers off of this vnode.
659 * We don't care about other nodes, but write any non-dirop nodes
660 * anyway in anticipation of another getnewvnode().
661 *
662 * If we're cleaning we only write cleaning and ifile blocks, and
663 * no dirops, since otherwise we'd risk corruption in a crash.
664 */
665 if (sp->seg_flags & SEGM_CLEAN)
666 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
667 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
668 do {
669 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
670 if ((sp->seg_flags & SEGM_SINGLE) &&
671 fs->lfs_curseg != fs->lfs_startseg) {
672 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
673 break;
674 }
675
676 if (do_ckp || fs->lfs_dirops == 0) {
677 if (!writer_set) {
678 lfs_writer_enter(fs, "lfs writer");
679 writer_set = 1;
680 }
681 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
682 if (um_error == 0)
683 um_error = error;
684 /* In case writevnodes errored out */
685 lfs_flush_dirops(fs);
686 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
687 lfs_finalize_fs_seguse(fs);
688 }
689 if (do_ckp && um_error) {
690 lfs_segunlock_relock(fs);
691 sp = fs->lfs_sp;
692 }
693 } while (do_ckp && um_error != 0);
694 }
695
696 /*
697 * If we are doing a checkpoint, mark everything since the
698 * last checkpoint as no longer ACTIVE.
699 */
700 if (do_ckp || fs->lfs_doifile) {
701 segleft = fs->lfs_nseg;
702 curseg = 0;
703 for (n = 0; n < fs->lfs_segtabsz; n++) {
704 dirty = 0;
705 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
706 fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
707 panic("lfs_segwrite: ifile read");
708 segusep = (SEGUSE *)bp->b_data;
709 maxseg = min(segleft, fs->lfs_sepb);
710 for (i = 0; i < maxseg; i++) {
711 sn = curseg + i;
712 if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
713 segusep->su_flags & SEGUSE_ACTIVE) {
714 segusep->su_flags &= ~SEGUSE_ACTIVE;
715 --fs->lfs_nactive;
716 ++dirty;
717 }
718 fs->lfs_suflags[fs->lfs_activesb][sn] =
719 segusep->su_flags;
720 if (fs->lfs_version > 1)
721 ++segusep;
722 else
723 segusep = (SEGUSE *)
724 ((SEGUSE_V1 *)segusep + 1);
725 }
726
727 if (dirty)
728 error = LFS_BWRITE_LOG(bp); /* Ifile */
729 else
730 brelse(bp, 0);
731 segleft -= fs->lfs_sepb;
732 curseg += fs->lfs_sepb;
733 }
734 }
735
736 KASSERT(LFS_SEGLOCK_HELD(fs));
737
738 did_ckp = 0;
739 if (do_ckp || fs->lfs_doifile) {
740 vp = fs->lfs_ivnode;
741 #ifdef DEBUG
742 int loopcount = 0;
743 #endif
744 do {
745 #ifdef DEBUG
746 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
747 #endif
748 mutex_enter(&lfs_lock);
749 fs->lfs_flags &= ~LFS_IFDIRTY;
750 mutex_exit(&lfs_lock);
751
752 ip = VTOI(vp);
753
754 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
755 /*
756 * Ifile has no pages, so we don't need
757 * to check error return here.
758 */
759 lfs_writefile(fs, sp, vp);
760 /*
761 * Ensure the Ifile takes the current segment
762 * into account. See comment in lfs_vflush.
763 */
764 lfs_writefile(fs, sp, vp);
765 lfs_writefile(fs, sp, vp);
766 }
767
768 if (ip->i_flag & IN_ALLMOD)
769 ++did_ckp;
770 #if 0
771 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
772 #else
773 redo = lfs_writeinode(fs, sp, ip);
774 #endif
775 redo += lfs_writeseg(fs, sp);
776 mutex_enter(&lfs_lock);
777 redo += (fs->lfs_flags & LFS_IFDIRTY);
778 mutex_exit(&lfs_lock);
779 #ifdef DEBUG
780 if (++loopcount > 2)
781 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
782 loopcount);
783 #endif
784 } while (redo && do_ckp);
785
786 /*
787 * Unless we are unmounting, the Ifile may continue to have
788 * dirty blocks even after a checkpoint, due to changes to
789 * inodes' atime. If we're checkpointing, it's "impossible"
790 * for other parts of the Ifile to be dirty after the loop
791 * above, since we hold the segment lock.
792 */
793 mutex_enter(vp->v_interlock);
794 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
795 LFS_CLR_UINO(ip, IN_ALLMOD);
796 }
797 #ifdef DIAGNOSTIC
798 else if (do_ckp) {
799 int do_panic = 0;
800 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
801 if (bp->b_lblkno < fs->lfs_cleansz +
802 fs->lfs_segtabsz &&
803 !(bp->b_flags & B_GATHERED)) {
804 printf("ifile lbn %ld still dirty (flags %lx)\n",
805 (long)bp->b_lblkno,
806 (long)bp->b_flags);
807 ++do_panic;
808 }
809 }
810 if (do_panic)
811 panic("dirty blocks");
812 }
813 #endif
814 mutex_exit(vp->v_interlock);
815 } else {
816 (void) lfs_writeseg(fs, sp);
817 }
818
819 /* Note Ifile no longer needs to be written */
820 fs->lfs_doifile = 0;
821 if (writer_set)
822 lfs_writer_leave(fs);
823
824 /*
825 * If we didn't write the Ifile, we didn't really do anything.
826 * That means that (1) there is a checkpoint on disk and (2)
827 * nothing has changed since it was written.
828 *
829 * Take the flags off of the segment so that lfs_segunlock
830 * doesn't have to write the superblock either.
831 */
832 if (do_ckp && !did_ckp) {
833 sp->seg_flags &= ~SEGM_CKP;
834 }
835
836 if (lfs_dostats) {
837 ++lfs_stats.nwrites;
838 if (sp->seg_flags & SEGM_SYNC)
839 ++lfs_stats.nsync_writes;
840 if (sp->seg_flags & SEGM_CKP)
841 ++lfs_stats.ncheckpoints;
842 }
843 lfs_segunlock(fs);
844 return (0);
845 }
846
847 /*
848 * Write the dirty blocks associated with a vnode.
849 */
850 int
851 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
852 {
853 struct inode *ip;
854 int i, frag;
855 int error;
856
857 ASSERT_SEGLOCK(fs);
858 error = 0;
859 ip = VTOI(vp);
860
861 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
862
863 if (vp->v_uflag & VU_DIROP)
864 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
865
866 if (sp->seg_flags & SEGM_CLEAN) {
867 lfs_gather(fs, sp, vp, lfs_match_fake);
868 /*
869 * For a file being flushed, we need to write *all* blocks.
870 * This means writing the cleaning blocks first, and then
871 * immediately following with any non-cleaning blocks.
872 * The same is true of the Ifile since checkpoints assume
873 * that all valid Ifile blocks are written.
874 */
875 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
876 lfs_gather(fs, sp, vp, lfs_match_data);
877 /*
878 * Don't call VOP_PUTPAGES: if we're flushing,
879 * we've already done it, and the Ifile doesn't
880 * use the page cache.
881 */
882 }
883 } else {
884 lfs_gather(fs, sp, vp, lfs_match_data);
885 /*
886 * If we're flushing, we've already called VOP_PUTPAGES
887 * so don't do it again. Otherwise, we want to write
888 * everything we've got.
889 */
890 if (!IS_FLUSHING(fs, vp)) {
891 mutex_enter(vp->v_interlock);
892 error = VOP_PUTPAGES(vp, 0, 0,
893 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
894 }
895 }
896
897 /*
898 * It may not be necessary to write the meta-data blocks at this point,
899 * as the roll-forward recovery code should be able to reconstruct the
900 * list.
901 *
902 * We have to write them anyway, though, under two conditions: (1) the
903 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
904 * checkpointing.
905 *
906 * BUT if we are cleaning, we might have indirect blocks that refer to
907 * new blocks not being written yet, in addition to fragments being
908 * moved out of a cleaned segment. If that is the case, don't
909 * write the indirect blocks, or the finfo will have a small block
910 * in the middle of it!
911 * XXX in this case isn't the inode size wrong too?
912 */
913 frag = 0;
914 if (sp->seg_flags & SEGM_CLEAN) {
915 for (i = 0; i < ULFS_NDADDR; i++)
916 if (ip->i_lfs_fragsize[i] > 0 &&
917 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
918 ++frag;
919 }
920 #ifdef DIAGNOSTIC
921 if (frag > 1)
922 panic("lfs_writefile: more than one fragment!");
923 #endif
924 if (IS_FLUSHING(fs, vp) ||
925 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
926 lfs_gather(fs, sp, vp, lfs_match_indir);
927 lfs_gather(fs, sp, vp, lfs_match_dindir);
928 lfs_gather(fs, sp, vp, lfs_match_tindir);
929 }
930 lfs_release_finfo(fs);
931
932 return error;
933 }
934
935 /*
936 * Update segment accounting to reflect this inode's change of address.
937 */
938 static int
939 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
940 {
941 struct buf *bp;
942 daddr_t daddr;
943 IFILE *ifp;
944 SEGUSE *sup;
945 ino_t ino;
946 int redo_ifile;
947 u_int32_t sn;
948
949 redo_ifile = 0;
950
951 /*
952 * If updating the ifile, update the super-block. Update the disk
953 * address and access times for this inode in the ifile.
954 */
955 ino = ip->i_number;
956 if (ino == LFS_IFILE_INUM) {
957 daddr = fs->lfs_idaddr;
958 fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
959 } else {
960 LFS_IENTRY(ifp, fs, ino, bp);
961 daddr = ifp->if_daddr;
962 ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
963 (void)LFS_BWRITE_LOG(bp); /* Ifile */
964 }
965
966 /*
967 * If this is the Ifile and lfs_offset is set to the first block
968 * in the segment, dirty the new segment's accounting block
969 * (XXX should already be dirty?) and tell the caller to do it again.
970 */
971 if (ip->i_number == LFS_IFILE_INUM) {
972 sn = lfs_dtosn(fs, fs->lfs_offset);
973 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
974 fs->lfs_offset) {
975 LFS_SEGENTRY(sup, fs, sn, bp);
976 KASSERT(bp->b_oflags & BO_DELWRI);
977 LFS_WRITESEGENTRY(sup, fs, sn, bp);
978 /* fs->lfs_flags |= LFS_IFDIRTY; */
979 redo_ifile |= 1;
980 }
981 }
982
983 /*
984 * The inode's last address should not be in the current partial
985 * segment, except under exceptional circumstances (lfs_writevnodes
986 * had to start over, and in the meantime more blocks were written
987 * to a vnode). Both inodes will be accounted to this segment
988 * in lfs_writeseg so we need to subtract the earlier version
989 * here anyway. The segment count can temporarily dip below
990 * zero here; keep track of how many duplicates we have in
991 * "dupino" so we don't panic below.
992 */
993 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
994 ++sp->ndupino;
995 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
996 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
997 (long long)daddr, sp->ndupino));
998 }
999 /*
1000 * Account the inode: it no longer belongs to its former segment,
1001 * though it will not belong to the new segment until that segment
1002 * is actually written.
1003 */
1004 if (daddr != LFS_UNUSED_DADDR) {
1005 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1006 #ifdef DIAGNOSTIC
1007 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1008 #endif
1009 LFS_SEGENTRY(sup, fs, oldsn, bp);
1010 #ifdef DIAGNOSTIC
1011 if (sup->su_nbytes +
1012 sizeof (struct ulfs1_dinode) * ndupino
1013 < sizeof (struct ulfs1_dinode)) {
1014 printf("lfs_writeinode: negative bytes "
1015 "(segment %" PRIu32 " short by %d, "
1016 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1017 ", daddr=%" PRId64 ", su_nbytes=%u, "
1018 "ndupino=%d)\n",
1019 lfs_dtosn(fs, daddr),
1020 (int)sizeof (struct ulfs1_dinode) *
1021 (1 - sp->ndupino) - sup->su_nbytes,
1022 oldsn, sp->seg_number, daddr,
1023 (unsigned int)sup->su_nbytes,
1024 sp->ndupino);
1025 panic("lfs_writeinode: negative bytes");
1026 sup->su_nbytes = sizeof (struct ulfs1_dinode);
1027 }
1028 #endif
1029 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1030 lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
1031 sup->su_nbytes -= sizeof (struct ulfs1_dinode);
1032 redo_ifile |=
1033 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1034 if (redo_ifile) {
1035 mutex_enter(&lfs_lock);
1036 fs->lfs_flags |= LFS_IFDIRTY;
1037 mutex_exit(&lfs_lock);
1038 /* Don't double-account */
1039 fs->lfs_idaddr = 0x0;
1040 }
1041 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1042 }
1043
1044 return redo_ifile;
1045 }
1046
1047 int
1048 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1049 {
1050 struct buf *bp;
1051 struct ulfs1_dinode *cdp;
1052 struct vnode *vp = ITOV(ip);
1053 daddr_t daddr;
1054 int32_t *daddrp; /* XXX ondisk32 */
1055 int i, ndx;
1056 int redo_ifile = 0;
1057 int gotblk = 0;
1058 int count;
1059
1060 ASSERT_SEGLOCK(fs);
1061 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1062 return (0);
1063
1064 /* Can't write ifile when writer is not set */
1065 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1066 (sp->seg_flags & SEGM_CLEAN));
1067
1068 /*
1069 * If this is the Ifile, see if writing it here will generate a
1070 * temporary misaccounting. If it will, do the accounting and write
1071 * the blocks, postponing the inode write until the accounting is
1072 * solid.
1073 */
1074 count = 0;
1075 while (vp == fs->lfs_ivnode) {
1076 int redo = 0;
1077
1078 if (sp->idp == NULL && sp->ibp == NULL &&
1079 (sp->seg_bytes_left < fs->lfs_ibsize ||
1080 sp->sum_bytes_left < sizeof(int32_t))) {
1081 (void) lfs_writeseg(fs, sp);
1082 continue;
1083 }
1084
1085 /* Look for dirty Ifile blocks */
1086 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1087 if (!(bp->b_flags & B_GATHERED)) {
1088 redo = 1;
1089 break;
1090 }
1091 }
1092
1093 if (redo == 0)
1094 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1095 if (redo == 0)
1096 break;
1097
1098 if (sp->idp) {
1099 sp->idp->di_inumber = 0;
1100 sp->idp = NULL;
1101 }
1102 ++count;
1103 if (count > 2)
1104 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1105 lfs_writefile(fs, sp, fs->lfs_ivnode);
1106 }
1107
1108 /* Allocate a new inode block if necessary. */
1109 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1110 sp->ibp == NULL) {
1111 /* Allocate a new segment if necessary. */
1112 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1113 sp->sum_bytes_left < sizeof(int32_t))
1114 (void) lfs_writeseg(fs, sp);
1115
1116 /* Get next inode block. */
1117 daddr = fs->lfs_offset;
1118 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
1119 sp->ibp = *sp->cbpp++ =
1120 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1121 LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
1122 gotblk++;
1123
1124 /* Zero out inode numbers */
1125 for (i = 0; i < LFS_INOPB(fs); ++i)
1126 ((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1127 0;
1128
1129 ++sp->start_bpp;
1130 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
1131 /* Set remaining space counters. */
1132 sp->seg_bytes_left -= fs->lfs_ibsize;
1133 sp->sum_bytes_left -= sizeof(int32_t);
1134 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1135 sp->ninodes / LFS_INOPB(fs) - 1;
1136 ((int32_t *)(sp->segsum))[ndx] = daddr;
1137 }
1138
1139 /* Check VU_DIROP in case there is a new file with no data blocks */
1140 if (vp->v_uflag & VU_DIROP)
1141 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1142
1143 /* Update the inode times and copy the inode onto the inode page. */
1144 /* XXX kludge --- don't redirty the ifile just to put times on it */
1145 if (ip->i_number != LFS_IFILE_INUM)
1146 LFS_ITIMES(ip, NULL, NULL, NULL);
1147
1148 /*
1149 * If this is the Ifile, and we've already written the Ifile in this
1150 * partial segment, just overwrite it (it's not on disk yet) and
1151 * continue.
1152 *
1153 * XXX we know that the bp that we get the second time around has
1154 * already been gathered.
1155 */
1156 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1157 *(sp->idp) = *ip->i_din.ffs1_din;
1158 ip->i_lfs_osize = ip->i_size;
1159 return 0;
1160 }
1161
1162 bp = sp->ibp;
1163 cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
1164 *cdp = *ip->i_din.ffs1_din;
1165
1166 /*
1167 * This inode is on its way to disk; clear its VU_DIROP status when
1168 * the write is complete.
1169 */
1170 if (vp->v_uflag & VU_DIROP) {
1171 if (!(sp->seg_flags & SEGM_CLEAN))
1172 ip->i_flag |= IN_CDIROP;
1173 else {
1174 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1175 }
1176 }
1177
1178 /*
1179 * If cleaning, link counts and directory file sizes cannot change,
1180 * since those would be directory operations---even if the file
1181 * we are writing is marked VU_DIROP we should write the old values.
1182 * If we're not cleaning, of course, update the values so we get
1183 * current values the next time we clean.
1184 */
1185 if (sp->seg_flags & SEGM_CLEAN) {
1186 if (vp->v_uflag & VU_DIROP) {
1187 cdp->di_nlink = ip->i_lfs_odnlink;
1188 /* if (vp->v_type == VDIR) */
1189 cdp->di_size = ip->i_lfs_osize;
1190 }
1191 } else {
1192 ip->i_lfs_odnlink = cdp->di_nlink;
1193 ip->i_lfs_osize = ip->i_size;
1194 }
1195
1196
1197 /* We can finish the segment accounting for truncations now */
1198 lfs_finalize_ino_seguse(fs, ip);
1199
1200 /*
1201 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1202 * addresses to disk; possibly change the on-disk record of
1203 * the inode size, either by reverting to the previous size
1204 * (in the case of cleaning) or by verifying the inode's block
1205 * holdings (in the case of files being allocated as they are being
1206 * written).
1207 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1208 * XXX count on disk wrong by the same amount. We should be
1209 * XXX able to "borrow" from lfs_avail and return it after the
1210 * XXX Ifile is written. See also in lfs_writeseg.
1211 */
1212
1213 /* Check file size based on highest allocated block */
1214 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1215 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1216 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1217 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1218 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1219 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1220 }
1221 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1222 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1223 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1224 ip->i_ffs1_blocks, fs->lfs_offset));
1225 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
1226 daddrp++) {
1227 if (*daddrp == UNWRITTEN) {
1228 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1229 *daddrp = 0;
1230 }
1231 }
1232 }
1233
1234 #ifdef DIAGNOSTIC
1235 /*
1236 * Check dinode held blocks against dinode size.
1237 * This should be identical to the check in lfs_vget().
1238 */
1239 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1240 i < ULFS_NDADDR; i++) {
1241 KASSERT(i >= 0);
1242 if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
1243 continue;
1244 if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
1245 (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
1246 continue;
1247 if (cdp->di_db[i] != 0) {
1248 # ifdef DEBUG
1249 lfs_dump_dinode(cdp);
1250 # endif
1251 panic("writing inconsistent inode");
1252 }
1253 }
1254 #endif /* DIAGNOSTIC */
1255
1256 if (ip->i_flag & IN_CLEANING)
1257 LFS_CLR_UINO(ip, IN_CLEANING);
1258 else {
1259 /* XXX IN_ALLMOD */
1260 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1261 IN_UPDATE | IN_MODIFY);
1262 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1263 LFS_CLR_UINO(ip, IN_MODIFIED);
1264 else {
1265 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1266 "blks=%d, eff=%d\n", ip->i_number,
1267 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1268 }
1269 }
1270
1271 if (ip->i_number == LFS_IFILE_INUM) {
1272 /* We know sp->idp == NULL */
1273 sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
1274 (sp->ninodes % LFS_INOPB(fs));
1275
1276 /* Not dirty any more */
1277 mutex_enter(&lfs_lock);
1278 fs->lfs_flags &= ~LFS_IFDIRTY;
1279 mutex_exit(&lfs_lock);
1280 }
1281
1282 if (gotblk) {
1283 mutex_enter(&bufcache_lock);
1284 LFS_LOCK_BUF(bp);
1285 brelsel(bp, 0);
1286 mutex_exit(&bufcache_lock);
1287 }
1288
1289 /* Increment inode count in segment summary block. */
1290 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1291
1292 /* If this page is full, set flag to allocate a new page. */
1293 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1294 sp->ibp = NULL;
1295
1296 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1297
1298 KASSERT(redo_ifile == 0);
1299 return (redo_ifile);
1300 }
1301
1302 int
1303 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1304 {
1305 struct lfs *fs;
1306 int vers;
1307 int j, blksinblk;
1308
1309 ASSERT_SEGLOCK(sp->fs);
1310 /*
1311 * If full, finish this segment. We may be doing I/O, so
1312 * release and reacquire the splbio().
1313 */
1314 #ifdef DIAGNOSTIC
1315 if (sp->vp == NULL)
1316 panic ("lfs_gatherblock: Null vp in segment");
1317 #endif
1318 fs = sp->fs;
1319 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1320 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1321 sp->seg_bytes_left < bp->b_bcount) {
1322 if (mptr)
1323 mutex_exit(mptr);
1324 lfs_updatemeta(sp);
1325
1326 vers = sp->fip->fi_version;
1327 (void) lfs_writeseg(fs, sp);
1328
1329 /* Add the current file to the segment summary. */
1330 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1331
1332 if (mptr)
1333 mutex_enter(mptr);
1334 return (1);
1335 }
1336
1337 if (bp->b_flags & B_GATHERED) {
1338 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1339 " lbn %" PRId64 "\n",
1340 sp->fip->fi_ino, bp->b_lblkno));
1341 return (0);
1342 }
1343
1344 /* Insert into the buffer list, update the FINFO block. */
1345 bp->b_flags |= B_GATHERED;
1346
1347 *sp->cbpp++ = bp;
1348 for (j = 0; j < blksinblk; j++) {
1349 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1350 /* This block's accounting moves from lfs_favail to lfs_avail */
1351 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1352 }
1353
1354 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1355 sp->seg_bytes_left -= bp->b_bcount;
1356 return (0);
1357 }
1358
1359 int
1360 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1361 int (*match)(struct lfs *, struct buf *))
1362 {
1363 struct buf *bp, *nbp;
1364 int count = 0;
1365
1366 ASSERT_SEGLOCK(fs);
1367 if (vp->v_type == VBLK)
1368 return 0;
1369 KASSERT(sp->vp == NULL);
1370 sp->vp = vp;
1371 mutex_enter(&bufcache_lock);
1372
1373 #ifndef LFS_NO_BACKBUF_HACK
1374 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1375 # define BUF_OFFSET \
1376 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1377 # define BACK_BUF(BP) \
1378 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1379 # define BEG_OF_LIST \
1380 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1381
1382 loop:
1383 /* Find last buffer. */
1384 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1385 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1386 bp = LIST_NEXT(bp, b_vnbufs))
1387 /* nothing */;
1388 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1389 nbp = BACK_BUF(bp);
1390 #else /* LFS_NO_BACKBUF_HACK */
1391 loop:
1392 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1393 nbp = LIST_NEXT(bp, b_vnbufs);
1394 #endif /* LFS_NO_BACKBUF_HACK */
1395 if ((bp->b_cflags & BC_BUSY) != 0 ||
1396 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1397 #ifdef DEBUG
1398 if (vp == fs->lfs_ivnode &&
1399 (bp->b_cflags & BC_BUSY) != 0 &&
1400 (bp->b_flags & B_GATHERED) == 0)
1401 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1402 PRId64 " busy (%x) at 0x%x",
1403 bp->b_lblkno, bp->b_flags,
1404 (unsigned)fs->lfs_offset);
1405 #endif
1406 continue;
1407 }
1408 #ifdef DIAGNOSTIC
1409 # ifdef LFS_USE_B_INVAL
1410 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1411 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1412 " is BC_INVAL\n", bp->b_lblkno));
1413 VOP_PRINT(bp->b_vp);
1414 }
1415 # endif /* LFS_USE_B_INVAL */
1416 if (!(bp->b_oflags & BO_DELWRI))
1417 panic("lfs_gather: bp not BO_DELWRI");
1418 if (!(bp->b_flags & B_LOCKED)) {
1419 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1420 " blk %" PRId64 " not B_LOCKED\n",
1421 bp->b_lblkno,
1422 LFS_DBTOFSB(fs, bp->b_blkno)));
1423 VOP_PRINT(bp->b_vp);
1424 panic("lfs_gather: bp not B_LOCKED");
1425 }
1426 #endif
1427 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1428 goto loop;
1429 }
1430 count++;
1431 }
1432 mutex_exit(&bufcache_lock);
1433 lfs_updatemeta(sp);
1434 KASSERT(sp->vp == vp);
1435 sp->vp = NULL;
1436 return count;
1437 }
1438
1439 #if DEBUG
1440 # define DEBUG_OOFF(n) do { \
1441 if (ooff == 0) { \
1442 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1443 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1444 ", was 0x0 (or %" PRId64 ")\n", \
1445 (n), ip->i_number, lbn, ndaddr, daddr)); \
1446 } \
1447 } while (0)
1448 #else
1449 # define DEBUG_OOFF(n)
1450 #endif
1451
1452 /*
1453 * Change the given block's address to ndaddr, finding its previous
1454 * location using ulfs_bmaparray().
1455 *
1456 * Account for this change in the segment table.
1457 *
1458 * called with sp == NULL by roll-forwarding code.
1459 */
1460 void
1461 lfs_update_single(struct lfs *fs, struct segment *sp,
1462 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1463 {
1464 SEGUSE *sup;
1465 struct buf *bp;
1466 struct indir a[ULFS_NIADDR + 2], *ap;
1467 struct inode *ip;
1468 daddr_t daddr, ooff;
1469 int num, error;
1470 int bb, osize, obb;
1471
1472 ASSERT_SEGLOCK(fs);
1473 KASSERT(sp == NULL || sp->vp == vp);
1474 ip = VTOI(vp);
1475
1476 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1477 if (error)
1478 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1479
1480 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1481 KASSERT(daddr <= LFS_MAX_DADDR);
1482 if (daddr > 0)
1483 daddr = LFS_DBTOFSB(fs, daddr);
1484
1485 bb = lfs_numfrags(fs, size);
1486 switch (num) {
1487 case 0:
1488 ooff = ip->i_ffs1_db[lbn];
1489 DEBUG_OOFF(0);
1490 if (ooff == UNWRITTEN)
1491 ip->i_ffs1_blocks += bb;
1492 else {
1493 /* possible fragment truncation or extension */
1494 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1495 ip->i_ffs1_blocks += (bb - obb);
1496 }
1497 ip->i_ffs1_db[lbn] = ndaddr;
1498 break;
1499 case 1:
1500 ooff = ip->i_ffs1_ib[a[0].in_off];
1501 DEBUG_OOFF(1);
1502 if (ooff == UNWRITTEN)
1503 ip->i_ffs1_blocks += bb;
1504 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1505 break;
1506 default:
1507 ap = &a[num - 1];
1508 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1509 B_MODIFY, &bp))
1510 panic("lfs_updatemeta: bread bno %" PRId64,
1511 ap->in_lbn);
1512
1513 /* XXX ondisk32 */
1514 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1515 DEBUG_OOFF(num);
1516 if (ooff == UNWRITTEN)
1517 ip->i_ffs1_blocks += bb;
1518 /* XXX ondisk32 */
1519 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1520 (void) VOP_BWRITE(bp->b_vp, bp);
1521 }
1522
1523 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1524
1525 /* Update hiblk when extending the file */
1526 if (lbn > ip->i_lfs_hiblk)
1527 ip->i_lfs_hiblk = lbn;
1528
1529 /*
1530 * Though we'd rather it couldn't, this *can* happen right now
1531 * if cleaning blocks and regular blocks coexist.
1532 */
1533 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1534
1535 /*
1536 * Update segment usage information, based on old size
1537 * and location.
1538 */
1539 if (daddr > 0) {
1540 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1541 #ifdef DIAGNOSTIC
1542 int ndupino;
1543
1544 if (sp && sp->seg_number == oldsn) {
1545 ndupino = sp->ndupino;
1546 } else {
1547 ndupino = 0;
1548 }
1549 #endif
1550 KASSERT(oldsn < fs->lfs_nseg);
1551 if (lbn >= 0 && lbn < ULFS_NDADDR)
1552 osize = ip->i_lfs_fragsize[lbn];
1553 else
1554 osize = fs->lfs_bsize;
1555 LFS_SEGENTRY(sup, fs, oldsn, bp);
1556 #ifdef DIAGNOSTIC
1557 if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
1558 < osize) {
1559 printf("lfs_updatemeta: negative bytes "
1560 "(segment %" PRIu32 " short by %" PRId64
1561 ")\n", lfs_dtosn(fs, daddr),
1562 (int64_t)osize -
1563 (sizeof (struct ulfs1_dinode) * ndupino +
1564 sup->su_nbytes));
1565 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1566 ", addr = 0x%" PRIx64 "\n",
1567 (unsigned long long)ip->i_number, lbn, daddr);
1568 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1569 panic("lfs_updatemeta: negative bytes");
1570 sup->su_nbytes = osize -
1571 sizeof (struct ulfs1_dinode) * ndupino;
1572 }
1573 #endif
1574 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1575 " db 0x%" PRIx64 "\n",
1576 lfs_dtosn(fs, daddr), osize,
1577 ip->i_number, lbn, daddr));
1578 sup->su_nbytes -= osize;
1579 if (!(bp->b_flags & B_GATHERED)) {
1580 mutex_enter(&lfs_lock);
1581 fs->lfs_flags |= LFS_IFDIRTY;
1582 mutex_exit(&lfs_lock);
1583 }
1584 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1585 }
1586 /*
1587 * Now that this block has a new address, and its old
1588 * segment no longer owns it, we can forget about its
1589 * old size.
1590 */
1591 if (lbn >= 0 && lbn < ULFS_NDADDR)
1592 ip->i_lfs_fragsize[lbn] = size;
1593 }
1594
1595 /*
1596 * Update the metadata that points to the blocks listed in the FINFO
1597 * array.
1598 */
1599 void
1600 lfs_updatemeta(struct segment *sp)
1601 {
1602 struct buf *sbp;
1603 struct lfs *fs;
1604 struct vnode *vp;
1605 daddr_t lbn;
1606 int i, nblocks, num;
1607 int bb;
1608 int bytesleft, size;
1609
1610 ASSERT_SEGLOCK(sp->fs);
1611 vp = sp->vp;
1612 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1613 KASSERT(nblocks >= 0);
1614 KASSERT(vp != NULL);
1615 if (nblocks == 0)
1616 return;
1617
1618 /*
1619 * This count may be high due to oversize blocks from lfs_gop_write.
1620 * Correct for this. (XXX we should be able to keep track of these.)
1621 */
1622 fs = sp->fs;
1623 for (i = 0; i < nblocks; i++) {
1624 if (sp->start_bpp[i] == NULL) {
1625 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1626 nblocks = i;
1627 break;
1628 }
1629 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1630 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1631 nblocks -= num - 1;
1632 }
1633
1634 KASSERT(vp->v_type == VREG ||
1635 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1636 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1637
1638 /*
1639 * Sort the blocks.
1640 *
1641 * We have to sort even if the blocks come from the
1642 * cleaner, because there might be other pending blocks on the
1643 * same inode...and if we don't sort, and there are fragments
1644 * present, blocks may be written in the wrong place.
1645 */
1646 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1647
1648 /*
1649 * Record the length of the last block in case it's a fragment.
1650 * If there are indirect blocks present, they sort last. An
1651 * indirect block will be lfs_bsize and its presence indicates
1652 * that you cannot have fragments.
1653 *
1654 * XXX This last is a lie. A cleaned fragment can coexist with
1655 * XXX a later indirect block. This will continue to be
1656 * XXX true until lfs_markv is fixed to do everything with
1657 * XXX fake blocks (including fake inodes and fake indirect blocks).
1658 */
1659 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1660 fs->lfs_bmask) + 1;
1661
1662 /*
1663 * Assign disk addresses, and update references to the logical
1664 * block and the segment usage information.
1665 */
1666 for (i = nblocks; i--; ++sp->start_bpp) {
1667 sbp = *sp->start_bpp;
1668 lbn = *sp->start_lbp;
1669 KASSERT(sbp->b_lblkno == lbn);
1670
1671 sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
1672
1673 /*
1674 * If we write a frag in the wrong place, the cleaner won't
1675 * be able to correctly identify its size later, and the
1676 * segment will be uncleanable. (Even worse, it will assume
1677 * that the indirect block that actually ends the list
1678 * is of a smaller size!)
1679 */
1680 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1681 panic("lfs_updatemeta: fragment is not last block");
1682
1683 /*
1684 * For each subblock in this possibly oversized block,
1685 * update its address on disk.
1686 */
1687 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1688 KASSERT(vp == sbp->b_vp);
1689 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1690 bytesleft -= fs->lfs_bsize) {
1691 size = MIN(bytesleft, fs->lfs_bsize);
1692 bb = lfs_numfrags(fs, size);
1693 lbn = *sp->start_lbp++;
1694 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1695 size);
1696 fs->lfs_offset += bb;
1697 }
1698
1699 }
1700
1701 /* This inode has been modified */
1702 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1703 }
1704
1705 /*
1706 * Move lfs_offset to a segment earlier than sn.
1707 */
1708 int
1709 lfs_rewind(struct lfs *fs, int newsn)
1710 {
1711 int sn, osn, isdirty;
1712 struct buf *bp;
1713 SEGUSE *sup;
1714
1715 ASSERT_SEGLOCK(fs);
1716
1717 osn = lfs_dtosn(fs, fs->lfs_offset);
1718 if (osn < newsn)
1719 return 0;
1720
1721 /* lfs_avail eats the remaining space in this segment */
1722 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1723
1724 /* Find a low-numbered segment */
1725 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1726 LFS_SEGENTRY(sup, fs, sn, bp);
1727 isdirty = sup->su_flags & SEGUSE_DIRTY;
1728 brelse(bp, 0);
1729
1730 if (!isdirty)
1731 break;
1732 }
1733 if (sn == fs->lfs_nseg)
1734 panic("lfs_rewind: no clean segments");
1735 if (newsn >= 0 && sn >= newsn)
1736 return ENOENT;
1737 fs->lfs_nextseg = sn;
1738 lfs_newseg(fs);
1739 fs->lfs_offset = fs->lfs_curseg;
1740
1741 return 0;
1742 }
1743
1744 /*
1745 * Start a new partial segment.
1746 *
1747 * Return 1 when we entered to a new segment.
1748 * Otherwise, return 0.
1749 */
1750 int
1751 lfs_initseg(struct lfs *fs)
1752 {
1753 struct segment *sp = fs->lfs_sp;
1754 SEGSUM *ssp;
1755 struct buf *sbp; /* buffer for SEGSUM */
1756 int repeat = 0; /* return value */
1757
1758 ASSERT_SEGLOCK(fs);
1759 /* Advance to the next segment. */
1760 if (!LFS_PARTIAL_FITS(fs)) {
1761 SEGUSE *sup;
1762 struct buf *bp;
1763
1764 /* lfs_avail eats the remaining space */
1765 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1766 fs->lfs_curseg);
1767 /* Wake up any cleaning procs waiting on this file system. */
1768 lfs_wakeup_cleaner(fs);
1769 lfs_newseg(fs);
1770 repeat = 1;
1771 fs->lfs_offset = fs->lfs_curseg;
1772
1773 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1774 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
1775
1776 /*
1777 * If the segment contains a superblock, update the offset
1778 * and summary address to skip over it.
1779 */
1780 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1781 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1782 fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
1783 sp->seg_bytes_left -= LFS_SBPAD;
1784 }
1785 brelse(bp, 0);
1786 /* Segment zero could also contain the labelpad */
1787 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1788 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD)) {
1789 fs->lfs_offset +=
1790 lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1791 sp->seg_bytes_left -=
1792 LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_start);
1793 }
1794 } else {
1795 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1796 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
1797 (fs->lfs_offset - fs->lfs_curseg));
1798 }
1799 fs->lfs_lastpseg = fs->lfs_offset;
1800
1801 /* Record first address of this partial segment */
1802 if (sp->seg_flags & SEGM_CLEAN) {
1803 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1804 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1805 /* "1" is the artificial inc in lfs_seglock */
1806 mutex_enter(&lfs_lock);
1807 while (fs->lfs_iocount > 1) {
1808 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1809 "lfs_initseg", 0, &lfs_lock);
1810 }
1811 mutex_exit(&lfs_lock);
1812 fs->lfs_cleanind = 0;
1813 }
1814 }
1815
1816 sp->fs = fs;
1817 sp->ibp = NULL;
1818 sp->idp = NULL;
1819 sp->ninodes = 0;
1820 sp->ndupino = 0;
1821
1822 sp->cbpp = sp->bpp;
1823
1824 /* Get a new buffer for SEGSUM */
1825 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1826 LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1827
1828 /* ... and enter it into the buffer list. */
1829 *sp->cbpp = sbp;
1830 sp->cbpp++;
1831 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
1832
1833 sp->start_bpp = sp->cbpp;
1834
1835 /* Set point to SEGSUM, initialize it. */
1836 ssp = sp->segsum = sbp->b_data;
1837 memset(ssp, 0, fs->lfs_sumsize);
1838 ssp->ss_next = fs->lfs_nextseg;
1839 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1840 ssp->ss_magic = SS_MAGIC;
1841
1842 /* Set pointer to first FINFO, initialize it. */
1843 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1844 sp->fip->fi_nblocks = 0;
1845 sp->start_lbp = &sp->fip->fi_blocks[0];
1846 sp->fip->fi_lastlength = 0;
1847
1848 sp->seg_bytes_left -= fs->lfs_sumsize;
1849 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1850
1851 return (repeat);
1852 }
1853
1854 /*
1855 * Remove SEGUSE_INVAL from all segments.
1856 */
1857 void
1858 lfs_unset_inval_all(struct lfs *fs)
1859 {
1860 SEGUSE *sup;
1861 struct buf *bp;
1862 int i;
1863
1864 for (i = 0; i < fs->lfs_nseg; i++) {
1865 LFS_SEGENTRY(sup, fs, i, bp);
1866 if (sup->su_flags & SEGUSE_INVAL) {
1867 sup->su_flags &= ~SEGUSE_INVAL;
1868 LFS_WRITESEGENTRY(sup, fs, i, bp);
1869 } else
1870 brelse(bp, 0);
1871 }
1872 }
1873
1874 /*
1875 * Return the next segment to write.
1876 */
1877 void
1878 lfs_newseg(struct lfs *fs)
1879 {
1880 CLEANERINFO *cip;
1881 SEGUSE *sup;
1882 struct buf *bp;
1883 int curseg, isdirty, sn, skip_inval;
1884
1885 ASSERT_SEGLOCK(fs);
1886
1887 /* Honor LFCNWRAPSTOP */
1888 mutex_enter(&lfs_lock);
1889 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1890 if (fs->lfs_wrappass) {
1891 log(LOG_NOTICE, "%s: wrappass=%d\n",
1892 fs->lfs_fsmnt, fs->lfs_wrappass);
1893 fs->lfs_wrappass = 0;
1894 break;
1895 }
1896 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1897 wakeup(&fs->lfs_nowrap);
1898 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1899 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1900 &lfs_lock);
1901 }
1902 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1903 mutex_exit(&lfs_lock);
1904
1905 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1906 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1907 lfs_dtosn(fs, fs->lfs_nextseg)));
1908 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1909 sup->su_nbytes = 0;
1910 sup->su_nsums = 0;
1911 sup->su_ninos = 0;
1912 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1913
1914 LFS_CLEANERINFO(cip, fs, bp);
1915 --cip->clean;
1916 ++cip->dirty;
1917 fs->lfs_nclean = cip->clean;
1918 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1919
1920 fs->lfs_lastseg = fs->lfs_curseg;
1921 fs->lfs_curseg = fs->lfs_nextseg;
1922 skip_inval = 1;
1923 for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1924 sn = (sn + 1) % fs->lfs_nseg;
1925
1926 if (sn == curseg) {
1927 if (skip_inval)
1928 skip_inval = 0;
1929 else
1930 panic("lfs_nextseg: no clean segments");
1931 }
1932 LFS_SEGENTRY(sup, fs, sn, bp);
1933 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1934 /* Check SEGUSE_EMPTY as we go along */
1935 if (isdirty && sup->su_nbytes == 0 &&
1936 !(sup->su_flags & SEGUSE_EMPTY))
1937 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1938 else
1939 brelse(bp, 0);
1940
1941 if (!isdirty)
1942 break;
1943 }
1944 if (skip_inval == 0)
1945 lfs_unset_inval_all(fs);
1946
1947 ++fs->lfs_nactive;
1948 fs->lfs_nextseg = lfs_sntod(fs, sn);
1949 if (lfs_dostats) {
1950 ++lfs_stats.segsused;
1951 }
1952 }
1953
1954 static struct buf *
1955 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1956 int n)
1957 {
1958 struct lfs_cluster *cl;
1959 struct buf **bpp, *bp;
1960
1961 ASSERT_SEGLOCK(fs);
1962 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1963 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1964 memset(cl, 0, sizeof(*cl));
1965 cl->fs = fs;
1966 cl->bpp = bpp;
1967 cl->bufcount = 0;
1968 cl->bufsize = 0;
1969
1970 /* If this segment is being written synchronously, note that */
1971 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1972 cl->flags |= LFS_CL_SYNC;
1973 cl->seg = fs->lfs_sp;
1974 ++cl->seg->seg_iocount;
1975 }
1976
1977 /* Get an empty buffer header, or maybe one with something on it */
1978 bp = getiobuf(vp, true);
1979 bp->b_dev = NODEV;
1980 bp->b_blkno = bp->b_lblkno = addr;
1981 bp->b_iodone = lfs_cluster_callback;
1982 bp->b_private = cl;
1983
1984 return bp;
1985 }
1986
1987 int
1988 lfs_writeseg(struct lfs *fs, struct segment *sp)
1989 {
1990 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1991 SEGUSE *sup;
1992 SEGSUM *ssp;
1993 int i;
1994 int do_again, nblocks, byteoffset;
1995 size_t el_size;
1996 struct lfs_cluster *cl;
1997 u_short ninos;
1998 struct vnode *devvp;
1999 char *p = NULL;
2000 struct vnode *vp;
2001 int32_t *daddrp; /* XXX ondisk32 */
2002 int changed;
2003 u_int32_t sum;
2004 #ifdef DEBUG
2005 FINFO *fip;
2006 int findex;
2007 #endif
2008
2009 ASSERT_SEGLOCK(fs);
2010
2011 ssp = (SEGSUM *)sp->segsum;
2012
2013 /*
2014 * If there are no buffers other than the segment summary to write,
2015 * don't do anything. If we are the end of a dirop sequence, however,
2016 * write the empty segment summary anyway, to help out the
2017 * roll-forward agent.
2018 */
2019 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2020 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2021 return 0;
2022 }
2023
2024 /* Note if partial segment is being written by the cleaner */
2025 if (sp->seg_flags & SEGM_CLEAN)
2026 ssp->ss_flags |= SS_CLEAN;
2027
2028 /* Note if we are writing to reclaim */
2029 if (sp->seg_flags & SEGM_RECLAIM) {
2030 ssp->ss_flags |= SS_RECLAIM;
2031 ssp->ss_reclino = fs->lfs_reclino;
2032 }
2033
2034 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2035
2036 /* Update the segment usage information. */
2037 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2038
2039 /* Loop through all blocks, except the segment summary. */
2040 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2041 if ((*bpp)->b_vp != devvp) {
2042 sup->su_nbytes += (*bpp)->b_bcount;
2043 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2044 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2045 sp->seg_number, (*bpp)->b_bcount,
2046 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2047 (*bpp)->b_blkno));
2048 }
2049 }
2050
2051 #ifdef DEBUG
2052 /* Check for zero-length and zero-version FINFO entries. */
2053 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2054 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2055 KDASSERT(fip->fi_nblocks > 0);
2056 KDASSERT(fip->fi_version > 0);
2057 fip = (FINFO *)((char *)fip + FINFOSIZE +
2058 sizeof(int32_t) * fip->fi_nblocks);
2059 }
2060 #endif /* DEBUG */
2061
2062 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2063 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2064 sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
2065 ssp->ss_ninos));
2066 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
2067 /* sup->su_nbytes += fs->lfs_sumsize; */
2068 if (fs->lfs_version == 1)
2069 sup->su_olastmod = time_second;
2070 else
2071 sup->su_lastmod = time_second;
2072 sup->su_ninos += ninos;
2073 ++sup->su_nsums;
2074 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
2075
2076 do_again = !(bp->b_flags & B_GATHERED);
2077 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2078
2079 /*
2080 * Mark blocks B_BUSY, to prevent then from being changed between
2081 * the checksum computation and the actual write.
2082 *
2083 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2084 * there are any, replace them with copies that have UNASSIGNED
2085 * instead.
2086 */
2087 mutex_enter(&bufcache_lock);
2088 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2089 ++bpp;
2090 bp = *bpp;
2091 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2092 bp->b_cflags |= BC_BUSY;
2093 continue;
2094 }
2095
2096 while (bp->b_cflags & BC_BUSY) {
2097 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2098 " data summary corruption for ino %d, lbn %"
2099 PRId64 "\n",
2100 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2101 bp->b_cflags |= BC_WANTED;
2102 cv_wait(&bp->b_busy, &bufcache_lock);
2103 }
2104 bp->b_cflags |= BC_BUSY;
2105 mutex_exit(&bufcache_lock);
2106 unbusybp = NULL;
2107
2108 /*
2109 * Check and replace indirect block UNWRITTEN bogosity.
2110 * XXX See comment in lfs_writefile.
2111 */
2112 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2113 VTOI(bp->b_vp)->i_ffs1_blocks !=
2114 VTOI(bp->b_vp)->i_lfs_effnblks) {
2115 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2116 VTOI(bp->b_vp)->i_number,
2117 VTOI(bp->b_vp)->i_lfs_effnblks,
2118 VTOI(bp->b_vp)->i_ffs1_blocks));
2119 /* Make a copy we'll make changes to */
2120 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2121 bp->b_bcount, LFS_NB_IBLOCK);
2122 newbp->b_blkno = bp->b_blkno;
2123 memcpy(newbp->b_data, bp->b_data,
2124 newbp->b_bcount);
2125
2126 changed = 0;
2127 /* XXX ondisk32 */
2128 for (daddrp = (int32_t *)(newbp->b_data);
2129 daddrp < (int32_t *)((char *)newbp->b_data +
2130 newbp->b_bcount); daddrp++) {
2131 if (*daddrp == UNWRITTEN) {
2132 ++changed;
2133 *daddrp = 0;
2134 }
2135 }
2136 /*
2137 * Get rid of the old buffer. Don't mark it clean,
2138 * though, if it still has dirty data on it.
2139 */
2140 if (changed) {
2141 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2142 " bp = %p newbp = %p\n", changed, bp,
2143 newbp));
2144 *bpp = newbp;
2145 bp->b_flags &= ~B_GATHERED;
2146 bp->b_error = 0;
2147 if (bp->b_iodone != NULL) {
2148 DLOG((DLOG_SEG, "lfs_writeseg: "
2149 "indir bp should not be B_CALL\n"));
2150 biodone(bp);
2151 bp = NULL;
2152 } else {
2153 /* Still on free list, leave it there */
2154 unbusybp = bp;
2155 /*
2156 * We have to re-decrement lfs_avail
2157 * since this block is going to come
2158 * back around to us in the next
2159 * segment.
2160 */
2161 fs->lfs_avail -=
2162 lfs_btofsb(fs, bp->b_bcount);
2163 }
2164 } else {
2165 lfs_freebuf(fs, newbp);
2166 }
2167 }
2168 mutex_enter(&bufcache_lock);
2169 if (unbusybp != NULL) {
2170 unbusybp->b_cflags &= ~BC_BUSY;
2171 if (unbusybp->b_cflags & BC_WANTED)
2172 cv_broadcast(&bp->b_busy);
2173 }
2174 }
2175 mutex_exit(&bufcache_lock);
2176
2177 /*
2178 * Compute checksum across data and then across summary; the first
2179 * block (the summary block) is skipped. Set the create time here
2180 * so that it's guaranteed to be later than the inode mod times.
2181 */
2182 sum = 0;
2183 if (fs->lfs_version == 1)
2184 el_size = sizeof(u_long);
2185 else
2186 el_size = sizeof(u_int32_t);
2187 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2188 ++bpp;
2189 /* Loop through gop_write cluster blocks */
2190 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2191 byteoffset += fs->lfs_bsize) {
2192 #ifdef LFS_USE_B_INVAL
2193 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2194 (*bpp)->b_iodone != NULL) {
2195 if (copyin((void *)(*bpp)->b_saveaddr +
2196 byteoffset, dp, el_size)) {
2197 panic("lfs_writeseg: copyin failed [1]:"
2198 " ino %d blk %" PRId64,
2199 VTOI((*bpp)->b_vp)->i_number,
2200 (*bpp)->b_lblkno);
2201 }
2202 } else
2203 #endif /* LFS_USE_B_INVAL */
2204 {
2205 sum = lfs_cksum_part((char *)
2206 (*bpp)->b_data + byteoffset, el_size, sum);
2207 }
2208 }
2209 }
2210 if (fs->lfs_version == 1)
2211 ssp->ss_ocreate = time_second;
2212 else {
2213 ssp->ss_create = time_second;
2214 ssp->ss_serial = ++fs->lfs_serial;
2215 ssp->ss_ident = fs->lfs_ident;
2216 }
2217 ssp->ss_datasum = lfs_cksum_fold(sum);
2218 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2219 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2220
2221 mutex_enter(&lfs_lock);
2222 fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2223 lfs_btofsb(fs, fs->lfs_sumsize));
2224 fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2225 lfs_btofsb(fs, fs->lfs_sumsize));
2226 mutex_exit(&lfs_lock);
2227
2228 /*
2229 * When we simply write the blocks we lose a rotation for every block
2230 * written. To avoid this problem, we cluster the buffers into a
2231 * chunk and write the chunk. MAXPHYS is the largest size I/O
2232 * devices can handle, use that for the size of the chunks.
2233 *
2234 * Blocks that are already clusters (from GOP_WRITE), however, we
2235 * don't bother to copy into other clusters.
2236 */
2237
2238 #define CHUNKSIZE MAXPHYS
2239
2240 if (devvp == NULL)
2241 panic("devvp is NULL");
2242 for (bpp = sp->bpp, i = nblocks; i;) {
2243 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2244 cl = cbp->b_private;
2245
2246 cbp->b_flags |= B_ASYNC;
2247 cbp->b_cflags |= BC_BUSY;
2248 cbp->b_bcount = 0;
2249
2250 #if defined(DEBUG) && defined(DIAGNOSTIC)
2251 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2252 / sizeof(int32_t)) {
2253 panic("lfs_writeseg: real bpp overwrite");
2254 }
2255 if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
2256 panic("lfs_writeseg: theoretical bpp overwrite");
2257 }
2258 #endif
2259
2260 /*
2261 * Construct the cluster.
2262 */
2263 mutex_enter(&lfs_lock);
2264 ++fs->lfs_iocount;
2265 mutex_exit(&lfs_lock);
2266 while (i && cbp->b_bcount < CHUNKSIZE) {
2267 bp = *bpp;
2268
2269 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2270 break;
2271 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2272 break;
2273
2274 /* Clusters from GOP_WRITE are expedited */
2275 if (bp->b_bcount > fs->lfs_bsize) {
2276 if (cbp->b_bcount > 0)
2277 /* Put in its own buffer */
2278 break;
2279 else {
2280 cbp->b_data = bp->b_data;
2281 }
2282 } else if (cbp->b_bcount == 0) {
2283 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2284 LFS_NB_CLUSTER);
2285 cl->flags |= LFS_CL_MALLOC;
2286 }
2287 #ifdef DIAGNOSTIC
2288 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2289 btodb(bp->b_bcount - 1))) !=
2290 sp->seg_number) {
2291 printf("blk size %d daddr %" PRIx64
2292 " not in seg %d\n",
2293 bp->b_bcount, bp->b_blkno,
2294 sp->seg_number);
2295 panic("segment overwrite");
2296 }
2297 #endif
2298
2299 #ifdef LFS_USE_B_INVAL
2300 /*
2301 * Fake buffers from the cleaner are marked as B_INVAL.
2302 * We need to copy the data from user space rather than
2303 * from the buffer indicated.
2304 * XXX == what do I do on an error?
2305 */
2306 if ((bp->b_cflags & BC_INVAL) != 0 &&
2307 bp->b_iodone != NULL) {
2308 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2309 panic("lfs_writeseg: "
2310 "copyin failed [2]");
2311 } else
2312 #endif /* LFS_USE_B_INVAL */
2313 if (cl->flags & LFS_CL_MALLOC) {
2314 /* copy data into our cluster. */
2315 memcpy(p, bp->b_data, bp->b_bcount);
2316 p += bp->b_bcount;
2317 }
2318
2319 cbp->b_bcount += bp->b_bcount;
2320 cl->bufsize += bp->b_bcount;
2321
2322 bp->b_flags &= ~B_READ;
2323 bp->b_error = 0;
2324 cl->bpp[cl->bufcount++] = bp;
2325
2326 vp = bp->b_vp;
2327 mutex_enter(&bufcache_lock);
2328 mutex_enter(vp->v_interlock);
2329 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2330 reassignbuf(bp, vp);
2331 vp->v_numoutput++;
2332 mutex_exit(vp->v_interlock);
2333 mutex_exit(&bufcache_lock);
2334
2335 bpp++;
2336 i--;
2337 }
2338 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2339 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2340 else
2341 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2342 mutex_enter(devvp->v_interlock);
2343 devvp->v_numoutput++;
2344 mutex_exit(devvp->v_interlock);
2345 VOP_STRATEGY(devvp, cbp);
2346 curlwp->l_ru.ru_oublock++;
2347 }
2348
2349 if (lfs_dostats) {
2350 ++lfs_stats.psegwrites;
2351 lfs_stats.blocktot += nblocks - 1;
2352 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2353 ++lfs_stats.psyncwrites;
2354 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2355 ++lfs_stats.pcleanwrites;
2356 lfs_stats.cleanblocks += nblocks - 1;
2357 }
2358 }
2359
2360 return (lfs_initseg(fs) || do_again);
2361 }
2362
2363 void
2364 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2365 {
2366 struct buf *bp;
2367 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2368 int s;
2369
2370 ASSERT_MAYBE_SEGLOCK(fs);
2371 #ifdef DIAGNOSTIC
2372 KASSERT(fs->lfs_magic == LFS_MAGIC);
2373 #endif
2374 /*
2375 * If we can write one superblock while another is in
2376 * progress, we risk not having a complete checkpoint if we crash.
2377 * So, block here if a superblock write is in progress.
2378 */
2379 mutex_enter(&lfs_lock);
2380 s = splbio();
2381 while (fs->lfs_sbactive) {
2382 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2383 &lfs_lock);
2384 }
2385 fs->lfs_sbactive = daddr;
2386 splx(s);
2387 mutex_exit(&lfs_lock);
2388
2389 /* Set timestamp of this version of the superblock */
2390 if (fs->lfs_version == 1)
2391 fs->lfs_otstamp = time_second;
2392 fs->lfs_tstamp = time_second;
2393
2394 /* Checksum the superblock and copy it into a buffer. */
2395 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2396 bp = lfs_newbuf(fs, devvp,
2397 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2398 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2399 LFS_SBPAD - sizeof(struct dlfs));
2400 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2401
2402 bp->b_cflags |= BC_BUSY;
2403 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2404 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2405 bp->b_error = 0;
2406 bp->b_iodone = lfs_supercallback;
2407
2408 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2409 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2410 else
2411 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2412 curlwp->l_ru.ru_oublock++;
2413
2414 mutex_enter(devvp->v_interlock);
2415 devvp->v_numoutput++;
2416 mutex_exit(devvp->v_interlock);
2417
2418 mutex_enter(&lfs_lock);
2419 ++fs->lfs_iocount;
2420 mutex_exit(&lfs_lock);
2421 VOP_STRATEGY(devvp, bp);
2422 }
2423
2424 /*
2425 * Logical block number match routines used when traversing the dirty block
2426 * chain.
2427 */
2428 int
2429 lfs_match_fake(struct lfs *fs, struct buf *bp)
2430 {
2431
2432 ASSERT_SEGLOCK(fs);
2433 return LFS_IS_MALLOC_BUF(bp);
2434 }
2435
2436 #if 0
2437 int
2438 lfs_match_real(struct lfs *fs, struct buf *bp)
2439 {
2440
2441 ASSERT_SEGLOCK(fs);
2442 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2443 }
2444 #endif
2445
2446 int
2447 lfs_match_data(struct lfs *fs, struct buf *bp)
2448 {
2449
2450 ASSERT_SEGLOCK(fs);
2451 return (bp->b_lblkno >= 0);
2452 }
2453
2454 int
2455 lfs_match_indir(struct lfs *fs, struct buf *bp)
2456 {
2457 daddr_t lbn;
2458
2459 ASSERT_SEGLOCK(fs);
2460 lbn = bp->b_lblkno;
2461 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2462 }
2463
2464 int
2465 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2466 {
2467 daddr_t lbn;
2468
2469 ASSERT_SEGLOCK(fs);
2470 lbn = bp->b_lblkno;
2471 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2472 }
2473
2474 int
2475 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2476 {
2477 daddr_t lbn;
2478
2479 ASSERT_SEGLOCK(fs);
2480 lbn = bp->b_lblkno;
2481 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2482 }
2483
2484 static void
2485 lfs_free_aiodone(struct buf *bp)
2486 {
2487 struct lfs *fs;
2488
2489 KERNEL_LOCK(1, curlwp);
2490 fs = bp->b_private;
2491 ASSERT_NO_SEGLOCK(fs);
2492 lfs_freebuf(fs, bp);
2493 KERNEL_UNLOCK_LAST(curlwp);
2494 }
2495
2496 static void
2497 lfs_super_aiodone(struct buf *bp)
2498 {
2499 struct lfs *fs;
2500
2501 KERNEL_LOCK(1, curlwp);
2502 fs = bp->b_private;
2503 ASSERT_NO_SEGLOCK(fs);
2504 mutex_enter(&lfs_lock);
2505 fs->lfs_sbactive = 0;
2506 if (--fs->lfs_iocount <= 1)
2507 wakeup(&fs->lfs_iocount);
2508 wakeup(&fs->lfs_sbactive);
2509 mutex_exit(&lfs_lock);
2510 lfs_freebuf(fs, bp);
2511 KERNEL_UNLOCK_LAST(curlwp);
2512 }
2513
2514 static void
2515 lfs_cluster_aiodone(struct buf *bp)
2516 {
2517 struct lfs_cluster *cl;
2518 struct lfs *fs;
2519 struct buf *tbp, *fbp;
2520 struct vnode *vp, *devvp, *ovp;
2521 struct inode *ip;
2522 int error;
2523
2524 KERNEL_LOCK(1, curlwp);
2525
2526 error = bp->b_error;
2527 cl = bp->b_private;
2528 fs = cl->fs;
2529 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2530 ASSERT_NO_SEGLOCK(fs);
2531
2532 /* Put the pages back, and release the buffer */
2533 while (cl->bufcount--) {
2534 tbp = cl->bpp[cl->bufcount];
2535 KASSERT(tbp->b_cflags & BC_BUSY);
2536 if (error) {
2537 tbp->b_error = error;
2538 }
2539
2540 /*
2541 * We're done with tbp. If it has not been re-dirtied since
2542 * the cluster was written, free it. Otherwise, keep it on
2543 * the locked list to be written again.
2544 */
2545 vp = tbp->b_vp;
2546
2547 tbp->b_flags &= ~B_GATHERED;
2548
2549 LFS_BCLEAN_LOG(fs, tbp);
2550
2551 mutex_enter(&bufcache_lock);
2552 if (tbp->b_iodone == NULL) {
2553 KASSERT(tbp->b_flags & B_LOCKED);
2554 bremfree(tbp);
2555 if (vp) {
2556 mutex_enter(vp->v_interlock);
2557 reassignbuf(tbp, vp);
2558 mutex_exit(vp->v_interlock);
2559 }
2560 tbp->b_flags |= B_ASYNC; /* for biodone */
2561 }
2562
2563 if (((tbp->b_flags | tbp->b_oflags) &
2564 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2565 LFS_UNLOCK_BUF(tbp);
2566
2567 if (tbp->b_oflags & BO_DONE) {
2568 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2569 cl->bufcount, (long)tbp->b_flags));
2570 }
2571
2572 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2573 /*
2574 * A buffer from the page daemon.
2575 * We use the same iodone as it does,
2576 * so we must manually disassociate its
2577 * buffers from the vp.
2578 */
2579 if ((ovp = tbp->b_vp) != NULL) {
2580 /* This is just silly */
2581 mutex_enter(ovp->v_interlock);
2582 brelvp(tbp);
2583 mutex_exit(ovp->v_interlock);
2584 tbp->b_vp = vp;
2585 tbp->b_objlock = vp->v_interlock;
2586 }
2587 /* Put it back the way it was */
2588 tbp->b_flags |= B_ASYNC;
2589 /* Master buffers have BC_AGE */
2590 if (tbp->b_private == tbp)
2591 tbp->b_cflags |= BC_AGE;
2592 }
2593 mutex_exit(&bufcache_lock);
2594
2595 biodone(tbp);
2596
2597 /*
2598 * If this is the last block for this vnode, but
2599 * there are other blocks on its dirty list,
2600 * set IN_MODIFIED/IN_CLEANING depending on what
2601 * sort of block. Only do this for our mount point,
2602 * not for, e.g., inode blocks that are attached to
2603 * the devvp.
2604 * XXX KS - Shouldn't we set *both* if both types
2605 * of blocks are present (traverse the dirty list?)
2606 */
2607 mutex_enter(vp->v_interlock);
2608 mutex_enter(&lfs_lock);
2609 if (vp != devvp && vp->v_numoutput == 0 &&
2610 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2611 ip = VTOI(vp);
2612 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2613 ip->i_number));
2614 if (LFS_IS_MALLOC_BUF(fbp))
2615 LFS_SET_UINO(ip, IN_CLEANING);
2616 else
2617 LFS_SET_UINO(ip, IN_MODIFIED);
2618 }
2619 cv_broadcast(&vp->v_cv);
2620 mutex_exit(&lfs_lock);
2621 mutex_exit(vp->v_interlock);
2622 }
2623
2624 /* Fix up the cluster buffer, and release it */
2625 if (cl->flags & LFS_CL_MALLOC)
2626 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2627 putiobuf(bp);
2628
2629 /* Note i/o done */
2630 if (cl->flags & LFS_CL_SYNC) {
2631 if (--cl->seg->seg_iocount == 0)
2632 wakeup(&cl->seg->seg_iocount);
2633 }
2634 mutex_enter(&lfs_lock);
2635 #ifdef DIAGNOSTIC
2636 if (fs->lfs_iocount == 0)
2637 panic("lfs_cluster_aiodone: zero iocount");
2638 #endif
2639 if (--fs->lfs_iocount <= 1)
2640 wakeup(&fs->lfs_iocount);
2641 mutex_exit(&lfs_lock);
2642
2643 KERNEL_UNLOCK_LAST(curlwp);
2644
2645 pool_put(&fs->lfs_bpppool, cl->bpp);
2646 cl->bpp = NULL;
2647 pool_put(&fs->lfs_clpool, cl);
2648 }
2649
2650 static void
2651 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2652 {
2653 /* reset b_iodone for when this is a single-buf i/o. */
2654 bp->b_iodone = aiodone;
2655
2656 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2657 }
2658
2659 static void
2660 lfs_cluster_callback(struct buf *bp)
2661 {
2662
2663 lfs_generic_callback(bp, lfs_cluster_aiodone);
2664 }
2665
2666 void
2667 lfs_supercallback(struct buf *bp)
2668 {
2669
2670 lfs_generic_callback(bp, lfs_super_aiodone);
2671 }
2672
2673 /*
2674 * The only buffers that are going to hit these functions are the
2675 * segment write blocks, or the segment summaries, or the superblocks.
2676 *
2677 * All of the above are created by lfs_newbuf, and so do not need to be
2678 * released via brelse.
2679 */
2680 void
2681 lfs_callback(struct buf *bp)
2682 {
2683
2684 lfs_generic_callback(bp, lfs_free_aiodone);
2685 }
2686
2687 /*
2688 * Shellsort (diminishing increment sort) from Data Structures and
2689 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2690 * see also Knuth Vol. 3, page 84. The increments are selected from
2691 * formula (8), page 95. Roughly O(N^3/2).
2692 */
2693 /*
2694 * This is our own private copy of shellsort because we want to sort
2695 * two parallel arrays (the array of buffer pointers and the array of
2696 * logical block numbers) simultaneously. Note that we cast the array
2697 * of logical block numbers to a unsigned in this routine so that the
2698 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2699 */
2700
2701 void
2702 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2703 {
2704 static int __rsshell_increments[] = { 4, 1, 0 };
2705 int incr, *incrp, t1, t2;
2706 struct buf *bp_temp;
2707
2708 #ifdef DEBUG
2709 incr = 0;
2710 for (t1 = 0; t1 < nmemb; t1++) {
2711 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2712 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2713 /* dump before panic */
2714 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2715 nmemb, size);
2716 incr = 0;
2717 for (t1 = 0; t1 < nmemb; t1++) {
2718 const struct buf *bp = bp_array[t1];
2719
2720 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2721 PRIu64 "\n", t1,
2722 (uint64_t)bp->b_bcount,
2723 (uint64_t)bp->b_lblkno);
2724 printf("lbns:");
2725 for (t2 = 0; t2 * size < bp->b_bcount;
2726 t2++) {
2727 printf(" %" PRId32,
2728 lb_array[incr++]);
2729 }
2730 printf("\n");
2731 }
2732 panic("lfs_shellsort: inconsistent input");
2733 }
2734 }
2735 }
2736 #endif
2737
2738 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2739 for (t1 = incr; t1 < nmemb; ++t1)
2740 for (t2 = t1 - incr; t2 >= 0;)
2741 if ((u_int32_t)bp_array[t2]->b_lblkno >
2742 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2743 bp_temp = bp_array[t2];
2744 bp_array[t2] = bp_array[t2 + incr];
2745 bp_array[t2 + incr] = bp_temp;
2746 t2 -= incr;
2747 } else
2748 break;
2749
2750 /* Reform the list of logical blocks */
2751 incr = 0;
2752 for (t1 = 0; t1 < nmemb; t1++) {
2753 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2754 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2755 }
2756 }
2757 }
2758
2759 /*
2760 * Call vget with LK_NOWAIT. If we are the one who is dead,
2761 * however, we must press on. Just fake success in that case.
2762 */
2763 int
2764 lfs_vref(struct vnode *vp)
2765 {
2766 struct lfs *fs;
2767
2768 KASSERT(mutex_owned(vp->v_interlock));
2769
2770 fs = VTOI(vp)->i_lfs;
2771
2772 ASSERT_MAYBE_SEGLOCK(fs);
2773
2774 /*
2775 * If we return 1 here during a flush, we risk vinvalbuf() not
2776 * being able to flush all of the pages from this vnode, which
2777 * will cause it to panic. So, return 0 if a flush is in progress.
2778 */
2779 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2780 ++fs->lfs_flushvp_fakevref;
2781 mutex_exit(vp->v_interlock);
2782 return 0;
2783 }
2784
2785 return vget(vp, LK_NOWAIT);
2786 }
2787
2788 /*
2789 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2790 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2791 */
2792 void
2793 lfs_vunref(struct vnode *vp)
2794 {
2795 struct lfs *fs;
2796
2797 fs = VTOI(vp)->i_lfs;
2798 ASSERT_MAYBE_SEGLOCK(fs);
2799
2800 /*
2801 * Analogous to lfs_vref, if the node is flushing, fake it.
2802 */
2803 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2804 --fs->lfs_flushvp_fakevref;
2805 return;
2806 }
2807
2808 /* does not call inactive XXX sure it does XXX */
2809 vrele(vp);
2810 }
2811
2812 /*
2813 * We use this when we have vnodes that were loaded in solely for cleaning.
2814 * There is no reason to believe that these vnodes will be referenced again
2815 * soon, since the cleaning process is unrelated to normal filesystem
2816 * activity. Putting cleaned vnodes at the tail of the list has the effect
2817 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2818 * cleaning at the head of the list, instead.
2819 */
2820 void
2821 lfs_vunref_head(struct vnode *vp)
2822 {
2823
2824 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2825
2826 /* does not call inactive XXX sure it does XXX,
2827 inserts non-held vnode at head of freelist */
2828 vrele(vp);
2829 }
2830
2831
2832 /*
2833 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2834 * point at uninitialized space.
2835 */
2836 void
2837 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2838 {
2839 struct segment *sp = fs->lfs_sp;
2840
2841 KASSERT(vers > 0);
2842
2843 if (sp->seg_bytes_left < fs->lfs_bsize ||
2844 sp->sum_bytes_left < sizeof(struct finfo))
2845 (void) lfs_writeseg(fs, fs->lfs_sp);
2846
2847 sp->sum_bytes_left -= FINFOSIZE;
2848 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2849 sp->fip->fi_nblocks = 0;
2850 sp->fip->fi_ino = ino;
2851 sp->fip->fi_version = vers;
2852 }
2853
2854 /*
2855 * Release the FINFO entry, either clearing out an unused entry or
2856 * advancing us to the next available entry.
2857 */
2858 void
2859 lfs_release_finfo(struct lfs *fs)
2860 {
2861 struct segment *sp = fs->lfs_sp;
2862
2863 if (sp->fip->fi_nblocks != 0) {
2864 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2865 sizeof(int32_t) * sp->fip->fi_nblocks);
2866 sp->start_lbp = &sp->fip->fi_blocks[0];
2867 } else {
2868 sp->sum_bytes_left += FINFOSIZE;
2869 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2870 }
2871 }
2872