lfs_segment.c revision 1.23.2.6 1 /* $NetBSD: lfs_segment.c,v 1.23.2.6 1999/12/17 23:54:40 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/namei.h>
78 #include <sys/kernel.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/stat.h>
82 #include <sys/buf.h>
83 #include <sys/proc.h>
84 #include <sys/conf.h>
85 #include <sys/vnode.h>
86 #include <sys/malloc.h>
87 #include <sys/mount.h>
88
89 #include <miscfs/specfs/specdev.h>
90 #include <miscfs/fifofs/fifo.h>
91
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 extern int count_lock_queue __P((void));
102 extern struct simplelock vnode_free_list_slock; /* XXX */
103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 int error;
191
192 ip = VTOI(vp);
193 fs = VFSTOUFS(vp->v_mount)->um_lfs;
194
195 if(ip->i_flag & IN_CLEANING) {
196 #ifdef DEBUG_LFS
197 ivndebug(vp,"vflush/in_cleaning");
198 #endif
199 ip->i_flag &= ~IN_CLEANING;
200 if(ip->i_flag & IN_MODIFIED) {
201 fs->lfs_uinodes--;
202 } else
203 ip->i_flag |= IN_MODIFIED;
204 }
205
206 /* If the node is being written, wait until that is done */
207 if(WRITEINPROG(vp)) {
208 #ifdef DEBUG_LFS
209 ivndebug(vp,"vflush/writeinprog");
210 #endif
211 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
212 }
213
214 /* Protect against VXLOCK deadlock in vinvalbuf() */
215 lfs_seglock(fs, SEGM_SYNC);
216 SET_FLUSHING(fs,vp);
217 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
218 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
219 CLR_FLUSHING(fs,vp);
220 lfs_segunlock(fs);
221 return error;
222 }
223 sp = fs->lfs_sp;
224
225 if (vp->v_dirtyblkhd.lh_first == NULL) {
226 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
227 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
228 #ifdef DEBUG_LFS
229 ivndebug(vp,"vflush/clean");
230 #endif
231 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
232 }
233 else if(lfs_dostats) {
234 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
235 ++lfs_stats.vflush_invoked;
236 #ifdef DEBUG_LFS
237 ivndebug(vp,"vflush");
238 #endif
239 }
240
241 #ifdef DIAGNOSTIC
242 /* XXX KS This actually can happen right now, though it shouldn't(?) */
243 if(vp->v_flag & VDIROP) {
244 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
245 /* panic("VDIROP being flushed...this can\'t happen"); */
246 }
247 if(vp->v_usecount<0) {
248 printf("usecount=%ld\n",vp->v_usecount);
249 panic("lfs_vflush: usecount<0");
250 }
251 #endif
252
253 do {
254 do {
255 if (vp->v_dirtyblkhd.lh_first != NULL)
256 lfs_writefile(fs, sp, vp);
257 } while (lfs_writeinode(fs, sp, ip));
258 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
259
260 if(lfs_dostats) {
261 ++lfs_stats.nwrites;
262 if (sp->seg_flags & SEGM_SYNC)
263 ++lfs_stats.nsync_writes;
264 if (sp->seg_flags & SEGM_CKP)
265 ++lfs_stats.ncheckpoints;
266 }
267 lfs_segunlock(fs);
268
269 CLR_FLUSHING(fs,vp);
270 return (0);
271 }
272
273 #ifdef DEBUG_LFS_VERBOSE
274 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
275 #else
276 # define vndebug(vp,str)
277 #endif
278
279 int
280 lfs_writevnodes(fs, mp, sp, op)
281 struct lfs *fs;
282 struct mount *mp;
283 struct segment *sp;
284 int op;
285 {
286 struct inode *ip;
287 struct vnode *vp;
288 int inodes_written=0, only_cleaning;
289
290 #ifndef LFS_NO_BACKVP_HACK
291 /* BEGIN HACK */
292 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
293 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
294 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
295
296 /* Find last vnode. */
297 loop: for (vp = mp->mnt_vnodelist.lh_first;
298 vp && vp->v_mntvnodes.le_next != NULL;
299 vp = vp->v_mntvnodes.le_next);
300 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
301 #else
302 loop:
303 for (vp = mp->mnt_vnodelist.lh_first;
304 vp != NULL;
305 vp = vp->v_mntvnodes.le_next) {
306 #endif
307 /*
308 * If the vnode that we are about to sync is no longer
309 * associated with this mount point, start over.
310 */
311 if (vp->v_mount != mp)
312 goto loop;
313
314 ip = VTOI(vp);
315 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
316 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
317 vndebug(vp,"dirop");
318 continue;
319 }
320
321 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
322 vndebug(vp,"empty");
323 continue;
324 }
325
326 if (vp->v_type == VNON) {
327 continue;
328 }
329
330 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
331 && !(ip->i_flag & IN_CLEANING)) {
332 vndebug(vp,"cleaning");
333 continue;
334 }
335
336 if (lfs_vref(vp)) {
337 vndebug(vp,"vref");
338 continue;
339 }
340
341 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
342 if(WRITEINPROG(vp)) {
343 lfs_vunref(vp);
344 #ifdef DEBUG_LFS
345 ivndebug(vp,"writevnodes/writeinprog");
346 #endif
347 continue;
348 }
349 #endif
350 only_cleaning = 0;
351 /*
352 * Write the inode/file if dirty and it's not the
353 * the IFILE.
354 */
355 if ((ip->i_flag &
356 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
357 vp->v_dirtyblkhd.lh_first != NULL))
358 {
359 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
360
361 if(ip->i_number != LFS_IFILE_INUM
362 && vp->v_dirtyblkhd.lh_first != NULL)
363 {
364 lfs_writefile(fs, sp, vp);
365 }
366 if(vp->v_dirtyblkhd.lh_first != NULL) {
367 if(WRITEINPROG(vp)) {
368 #ifdef DEBUG_LFS
369 ivndebug(vp,"writevnodes/write2");
370 #endif
371 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
372 #ifdef DEBUG_LFS
373 printf("<%d>",ip->i_number);
374 #endif
375 ip->i_flag |= IN_MODIFIED;
376 ++fs->lfs_uinodes;
377 }
378 }
379 (void) lfs_writeinode(fs, sp, ip);
380 inodes_written++;
381 }
382
383 if(vp->v_flag & VDIROP) {
384 --lfs_dirvcount;
385 vp->v_flag &= ~VDIROP;
386 wakeup(&lfs_dirvcount);
387 lfs_vunref(vp);
388 }
389
390 if(lfs_clean_vnhead && only_cleaning)
391 lfs_vunref_head(vp);
392 else
393 lfs_vunref(vp);
394 }
395 return inodes_written;
396 }
397
398 int
399 lfs_segwrite(mp, flags)
400 struct mount *mp;
401 int flags; /* Do a checkpoint. */
402 {
403 struct buf *bp;
404 struct inode *ip;
405 struct lfs *fs;
406 struct segment *sp;
407 struct vnode *vp;
408 SEGUSE *segusep;
409 ufs_daddr_t ibno;
410 int do_ckp, error, i;
411 int writer_set = 0;
412 int need_unlock = 0;
413
414 fs = VFSTOUFS(mp)->um_lfs;
415
416 lfs_imtime(fs);
417
418 /*
419 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
420 * clean segments, wait until cleaner writes.
421 */
422 if(!(flags & SEGM_CLEAN)
423 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
424 {
425 do {
426 if (fs->lfs_nclean <= MIN_FREE_SEGS
427 || fs->lfs_avail <= 0)
428 {
429 wakeup(&lfs_allclean_wakeup);
430 wakeup(&fs->lfs_nextseg);
431 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
432 "lfs_avail", 0);
433 if (error) {
434 return (error);
435 }
436 }
437 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
438 }
439
440 /*
441 * Allocate a segment structure and enough space to hold pointers to
442 * the maximum possible number of buffers which can be described in a
443 * single summary block.
444 */
445 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
446 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
447 sp = fs->lfs_sp;
448
449 /*
450 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
451 * in which case we have to flush *all* buffers off of this vnode.
452 */
453 if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
454 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
455 else {
456 lfs_writevnodes(fs, mp, sp, VN_REG);
457 /*
458 * XXX KS - If we're cleaning, we can't wait for dirops,
459 * because they might be waiting on us. The downside of this
460 * is that, if we write anything besides cleaning blocks
461 * while cleaning, the checkpoint is not completely
462 * consistent.
463 */
464 if(!(sp->seg_flags & SEGM_CLEAN)) {
465 while(fs->lfs_dirops)
466 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
467 "lfs writer", 0)))
468 {
469 free(sp->bpp, M_SEGMENT);
470 free(sp, M_SEGMENT);
471 return (error);
472 }
473 fs->lfs_writer++;
474 writer_set=1;
475 lfs_writevnodes(fs, mp, sp, VN_DIROP);
476 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
477 }
478 }
479
480 /*
481 * If we are doing a checkpoint, mark everything since the
482 * last checkpoint as no longer ACTIVE.
483 */
484 if (do_ckp) {
485 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
486 --ibno >= fs->lfs_cleansz; ) {
487 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
488
489 panic("lfs_segwrite: ifile read");
490 segusep = (SEGUSE *)bp->b_data;
491 for (i = fs->lfs_sepb; i--; segusep++)
492 segusep->su_flags &= ~SEGUSE_ACTIVE;
493
494 /* But the current segment is still ACTIVE */
495 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
496 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
497 error = VOP_BWRITE(bp);
498 }
499 }
500
501 if (do_ckp || fs->lfs_doifile) {
502 redo:
503 vp = fs->lfs_ivnode;
504 /*
505 * Depending on the circumstances of our calling, the ifile
506 * inode might be locked. If it is, and if it is locked by
507 * us, we should VREF instead of vget here.
508 */
509 need_unlock = 0;
510 if(VOP_ISLOCKED(vp)
511 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
512 VREF(vp);
513 } else {
514 while (vget(vp, LK_EXCLUSIVE))
515 continue;
516 need_unlock = 1;
517 }
518 ip = VTOI(vp);
519 if (vp->v_dirtyblkhd.lh_first != NULL)
520 lfs_writefile(fs, sp, vp);
521 (void)lfs_writeinode(fs, sp, ip);
522
523 /* Only vput if we used vget() above. */
524 if(need_unlock)
525 vput(vp);
526 else
527 vrele(vp);
528
529 if (lfs_writeseg(fs, sp) && do_ckp)
530 goto redo;
531 } else {
532 (void) lfs_writeseg(fs, sp);
533 }
534
535 /*
536 * If the I/O count is non-zero, sleep until it reaches zero.
537 * At the moment, the user's process hangs around so we can
538 * sleep.
539 */
540 fs->lfs_doifile = 0;
541 if(writer_set && --fs->lfs_writer==0)
542 wakeup(&fs->lfs_dirops);
543
544 if(lfs_dostats) {
545 ++lfs_stats.nwrites;
546 if (sp->seg_flags & SEGM_SYNC)
547 ++lfs_stats.nsync_writes;
548 if (sp->seg_flags & SEGM_CKP)
549 ++lfs_stats.ncheckpoints;
550 }
551 lfs_segunlock(fs);
552 return (0);
553 }
554
555 /*
556 * Write the dirty blocks associated with a vnode.
557 */
558 void
559 lfs_writefile(fs, sp, vp)
560 struct lfs *fs;
561 struct segment *sp;
562 struct vnode *vp;
563 {
564 struct buf *bp;
565 struct finfo *fip;
566 IFILE *ifp;
567
568
569 if (sp->seg_bytes_left < fs->lfs_bsize ||
570 sp->sum_bytes_left < sizeof(struct finfo))
571 (void) lfs_writeseg(fs, sp);
572
573 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
574 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
575
576 if(vp->v_flag & VDIROP)
577 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
578
579 fip = sp->fip;
580 fip->fi_nblocks = 0;
581 fip->fi_ino = VTOI(vp)->i_number;
582 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
583 fip->fi_version = ifp->if_version;
584 brelse(bp);
585
586 /*
587 * It may not be necessary to write the meta-data blocks at this point,
588 * as the roll-forward recovery code should be able to reconstruct the
589 * list.
590 *
591 * We have to write them anyway, though, under two conditions: (1) the
592 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
593 * checkpointing.
594 */
595 if((sp->seg_flags & SEGM_CLEAN)
596 && VTOI(vp)->i_number != LFS_IFILE_INUM
597 && !IS_FLUSHING(fs,vp))
598 {
599 lfs_gather(fs, sp, vp, lfs_match_fake);
600 } else
601 lfs_gather(fs, sp, vp, lfs_match_data);
602
603 if(lfs_writeindir
604 || IS_FLUSHING(fs,vp)
605 || (sp->seg_flags & SEGM_CKP))
606 {
607 lfs_gather(fs, sp, vp, lfs_match_indir);
608 lfs_gather(fs, sp, vp, lfs_match_dindir);
609 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
610 lfs_gather(fs, sp, vp, lfs_match_tindir);
611 /* #endif */
612 }
613 fip = sp->fip;
614 if (fip->fi_nblocks != 0) {
615 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
616 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
617 sp->start_lbp = &sp->fip->fi_blocks[0];
618 } else {
619 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
620 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
621 }
622 }
623
624 int
625 lfs_writeinode(fs, sp, ip)
626 struct lfs *fs;
627 struct segment *sp;
628 struct inode *ip;
629 {
630 struct buf *bp, *ibp;
631 IFILE *ifp;
632 SEGUSE *sup;
633 ufs_daddr_t daddr;
634 ino_t ino;
635 int error, i, ndx;
636 int redo_ifile = 0;
637 struct timespec ts;
638 int gotblk=0;
639
640 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
641 return(0);
642
643 /* Allocate a new inode block if necessary. */
644 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
645 /* Allocate a new segment if necessary. */
646 if (sp->seg_bytes_left < fs->lfs_bsize ||
647 sp->sum_bytes_left < sizeof(ufs_daddr_t))
648 (void) lfs_writeseg(fs, sp);
649
650 /* Get next inode block. */
651 daddr = fs->lfs_offset;
652 fs->lfs_offset += fsbtodb(fs, 1);
653 sp->ibp = *sp->cbpp++ =
654 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
655 gotblk++;
656
657 /* Zero out inode numbers */
658 for (i = 0; i < INOPB(fs); ++i)
659 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
660
661 ++sp->start_bpp;
662 fs->lfs_avail -= fsbtodb(fs, 1);
663 /* Set remaining space counters. */
664 sp->seg_bytes_left -= fs->lfs_bsize;
665 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
666 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
667 sp->ninodes / INOPB(fs) - 1;
668 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
669 }
670
671 /* Update the inode times and copy the inode onto the inode page. */
672 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
673 --fs->lfs_uinodes;
674 TIMEVAL_TO_TIMESPEC(&time, &ts);
675 LFS_ITIMES(ip, &ts, &ts, &ts);
676
677 if(ip->i_flag & IN_CLEANING)
678 ip->i_flag &= ~IN_CLEANING;
679 else
680 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
681
682 /*
683 * If this is the Ifile, and we've already written the Ifile in this
684 * partial segment, just overwrite it (it's not on disk yet) and
685 * continue.
686 *
687 * XXX we know that the bp that we get the second time around has
688 * already been gathered.
689 */
690 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
691 *(sp->idp) = ip->i_din.ffs_din;
692 return 0;
693 }
694
695 bp = sp->ibp;
696 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
697 ip->i_din.ffs_din;
698
699 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
700 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
701 if(gotblk) {
702 bp->b_flags |= B_LOCKED;
703 brelse(bp);
704 }
705
706 /* Increment inode count in segment summary block. */
707 ++((SEGSUM *)(sp->segsum))->ss_ninos;
708
709 /* If this page is full, set flag to allocate a new page. */
710 if (++sp->ninodes % INOPB(fs) == 0)
711 sp->ibp = NULL;
712
713 /*
714 * If updating the ifile, update the super-block. Update the disk
715 * address and access times for this inode in the ifile.
716 */
717 ino = ip->i_number;
718 if (ino == LFS_IFILE_INUM) {
719 daddr = fs->lfs_idaddr;
720 fs->lfs_idaddr = bp->b_blkno;
721 } else {
722 LFS_IENTRY(ifp, fs, ino, ibp);
723 daddr = ifp->if_daddr;
724 ifp->if_daddr = bp->b_blkno;
725 error = VOP_BWRITE(ibp);
726 }
727
728 /*
729 * No need to update segment usage if there was no former inode address
730 * or if the last inode address is in the current partial segment.
731 */
732 if (daddr != LFS_UNUSED_DADDR &&
733 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
734 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
735 #ifdef DIAGNOSTIC
736 if (sup->su_nbytes < DINODE_SIZE) {
737 /* XXX -- Change to a panic. */
738 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
739 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
740 panic("lfs_writeinode: negative bytes");
741 sup->su_nbytes = DINODE_SIZE;
742 }
743 #endif
744 sup->su_nbytes -= DINODE_SIZE;
745 redo_ifile =
746 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
747 error = VOP_BWRITE(bp);
748 }
749 return (redo_ifile);
750 }
751
752 int
753 lfs_gatherblock(sp, bp, sptr)
754 struct segment *sp;
755 struct buf *bp;
756 int *sptr;
757 {
758 struct lfs *fs;
759 int version;
760
761 /*
762 * If full, finish this segment. We may be doing I/O, so
763 * release and reacquire the splbio().
764 */
765 #ifdef DIAGNOSTIC
766 if (sp->vp == NULL)
767 panic ("lfs_gatherblock: Null vp in segment");
768 #endif
769 fs = sp->fs;
770 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
771 sp->seg_bytes_left < bp->b_bcount) {
772 if (sptr)
773 splx(*sptr);
774 lfs_updatemeta(sp);
775
776 version = sp->fip->fi_version;
777 (void) lfs_writeseg(fs, sp);
778
779 sp->fip->fi_version = version;
780 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
781 /* Add the current file to the segment summary. */
782 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
783 sp->sum_bytes_left -=
784 sizeof(struct finfo) - sizeof(ufs_daddr_t);
785
786 if (sptr)
787 *sptr = splbio();
788 return(1);
789 }
790
791 #ifdef DEBUG
792 if(bp->b_flags & B_GATHERED) {
793 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
794 sp->fip->fi_ino, bp->b_lblkno);
795 return(0);
796 }
797 #endif
798 /* Insert into the buffer list, update the FINFO block. */
799 bp->b_flags |= B_GATHERED;
800 *sp->cbpp++ = bp;
801 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
802
803 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
804 sp->seg_bytes_left -= bp->b_bcount;
805 return(0);
806 }
807
808 int
809 lfs_gather(fs, sp, vp, match)
810 struct lfs *fs;
811 struct segment *sp;
812 struct vnode *vp;
813 int (*match) __P((struct lfs *, struct buf *));
814 {
815 struct buf *bp;
816 int s, count=0;
817
818 sp->vp = vp;
819 s = splbio();
820
821 #ifndef LFS_NO_BACKBUF_HACK
822 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
823 #else /* LFS_NO_BACKBUF_HACK */
824 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
825 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
826 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
827 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
828 /* Find last buffer. */
829 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
830 bp = bp->b_vnbufs.le_next);
831 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
832 #endif /* LFS_NO_BACKBUF_HACK */
833 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
834 continue;
835 #ifdef DIAGNOSTIC
836 if (!(bp->b_flags & B_DELWRI))
837 panic("lfs_gather: bp not B_DELWRI");
838 if (!(bp->b_flags & B_LOCKED))
839 panic("lfs_gather: bp not B_LOCKED");
840 #endif
841 count++;
842 if (lfs_gatherblock(sp, bp, &s)) {
843 goto loop;
844 }
845 }
846 splx(s);
847 lfs_updatemeta(sp);
848 sp->vp = NULL;
849 return count;
850 }
851
852 /*
853 * Update the metadata that points to the blocks listed in the FINFO
854 * array.
855 */
856 void
857 lfs_updatemeta(sp)
858 struct segment *sp;
859 {
860 SEGUSE *sup;
861 struct buf *bp;
862 struct lfs *fs;
863 struct vnode *vp;
864 struct indir a[NIADDR + 2], *ap;
865 struct inode *ip;
866 ufs_daddr_t daddr, lbn, off;
867 int error, i, nblocks, num;
868
869 vp = sp->vp;
870 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
871 if (nblocks < 0)
872 panic("This is a bad thing\n");
873 if (vp == NULL || nblocks == 0)
874 return;
875
876 /* Sort the blocks. */
877 /*
878 * XXX KS - We have to sort even if the blocks come from the
879 * cleaner, because there might be other pending blocks on the
880 * same inode...and if we don't sort, and there are fragments
881 * present, blocks may be written in the wrong place.
882 */
883 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
884 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
885
886 /*
887 * Record the length of the last block in case it's a fragment.
888 * If there are indirect blocks present, they sort last. An
889 * indirect block will be lfs_bsize and its presence indicates
890 * that you cannot have fragments.
891 */
892 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
893
894 /*
895 * Assign disk addresses, and update references to the logical
896 * block and the segment usage information.
897 */
898 fs = sp->fs;
899 for (i = nblocks; i--; ++sp->start_bpp) {
900 lbn = *sp->start_lbp++;
901
902 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
903 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
904 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
905 }
906 fs->lfs_offset +=
907 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
908 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
909 if (error)
910 panic("lfs_updatemeta: ufs_bmaparray %d", error);
911 ip = VTOI(vp);
912 switch (num) {
913 case 0:
914 ip->i_ffs_db[lbn] = off;
915 break;
916 case 1:
917 ip->i_ffs_ib[a[0].in_off] = off;
918 break;
919 default:
920 ap = &a[num - 1];
921 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
922 panic("lfs_updatemeta: bread bno %d",
923 ap->in_lbn);
924 /*
925 * Bread may create a new (indirect) block which needs
926 * to get counted for the inode.
927 */
928 if (/* bp->b_blkno == -1 && */
929 !(bp->b_flags & (B_DELWRI|B_DONE))) {
930 ip->i_ffs_blocks += fsbtodb(fs, 1);
931 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
932 }
933 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
934 VOP_BWRITE(bp);
935 }
936 /* Update segment usage information. */
937 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
938 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
939 #ifdef DIAGNOSTIC
940 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
941 /* XXX -- Change to a panic. */
942 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
943 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
944 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
945 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
946 panic("lfs_updatemeta: negative bytes");
947 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
948 }
949 #endif
950 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
951 error = VOP_BWRITE(bp);
952 }
953 }
954 }
955
956 /*
957 * Start a new segment.
958 */
959 int
960 lfs_initseg(fs)
961 struct lfs *fs;
962 {
963 struct segment *sp;
964 SEGUSE *sup;
965 SEGSUM *ssp;
966 struct buf *bp;
967 int repeat;
968
969 sp = fs->lfs_sp;
970
971 repeat = 0;
972 /* Advance to the next segment. */
973 if (!LFS_PARTIAL_FITS(fs)) {
974 /* Wake up any cleaning procs waiting on this file system. */
975 wakeup(&lfs_allclean_wakeup);
976 wakeup(&fs->lfs_nextseg);
977 lfs_newseg(fs);
978 repeat = 1;
979 fs->lfs_offset = fs->lfs_curseg;
980 sp->seg_number = datosn(fs, fs->lfs_curseg);
981 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
982 /*
983 * If the segment contains a superblock, update the offset
984 * and summary address to skip over it.
985 */
986 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
987 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
988 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
989 sp->seg_bytes_left -= LFS_SBPAD;
990 }
991 brelse(bp);
992 } else {
993 sp->seg_number = datosn(fs, fs->lfs_curseg);
994 sp->seg_bytes_left = (fs->lfs_dbpseg -
995 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
996 }
997 fs->lfs_lastpseg = fs->lfs_offset;
998
999 sp->fs = fs;
1000 sp->ibp = NULL;
1001 sp->idp = NULL;
1002 sp->ninodes = 0;
1003
1004 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1005 sp->cbpp = sp->bpp;
1006 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1007 fs->lfs_offset, LFS_SUMMARY_SIZE);
1008 sp->segsum = (*sp->cbpp)->b_data;
1009 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1010 sp->start_bpp = ++sp->cbpp;
1011 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1012
1013 /* Set point to SEGSUM, initialize it. */
1014 ssp = sp->segsum;
1015 ssp->ss_next = fs->lfs_nextseg;
1016 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1017 ssp->ss_magic = SS_MAGIC;
1018
1019 /* Set pointer to first FINFO, initialize it. */
1020 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1021 sp->fip->fi_nblocks = 0;
1022 sp->start_lbp = &sp->fip->fi_blocks[0];
1023 sp->fip->fi_lastlength = 0;
1024
1025 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1026 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1027
1028 return(repeat);
1029 }
1030
1031 /*
1032 * Return the next segment to write.
1033 */
1034 void
1035 lfs_newseg(fs)
1036 struct lfs *fs;
1037 {
1038 CLEANERINFO *cip;
1039 SEGUSE *sup;
1040 struct buf *bp;
1041 int curseg, isdirty, sn;
1042
1043 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1044 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1045 sup->su_nbytes = 0;
1046 sup->su_nsums = 0;
1047 sup->su_ninos = 0;
1048 (void) VOP_BWRITE(bp);
1049
1050 LFS_CLEANERINFO(cip, fs, bp);
1051 --cip->clean;
1052 ++cip->dirty;
1053 fs->lfs_nclean = cip->clean;
1054 (void) VOP_BWRITE(bp);
1055
1056 fs->lfs_lastseg = fs->lfs_curseg;
1057 fs->lfs_curseg = fs->lfs_nextseg;
1058 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1059 sn = (sn + 1) % fs->lfs_nseg;
1060 if (sn == curseg)
1061 panic("lfs_nextseg: no clean segments");
1062 LFS_SEGENTRY(sup, fs, sn, bp);
1063 isdirty = sup->su_flags & SEGUSE_DIRTY;
1064 brelse(bp);
1065 if (!isdirty)
1066 break;
1067 }
1068
1069 ++fs->lfs_nactive;
1070 fs->lfs_nextseg = sntoda(fs, sn);
1071 if(lfs_dostats) {
1072 ++lfs_stats.segsused;
1073 }
1074 }
1075
1076 int
1077 lfs_writeseg(fs, sp)
1078 struct lfs *fs;
1079 struct segment *sp;
1080 {
1081 extern int locked_queue_count;
1082 extern long locked_queue_bytes;
1083 struct buf **bpp, *bp, *cbp;
1084 SEGUSE *sup;
1085 SEGSUM *ssp;
1086 dev_t i_dev;
1087 u_long *datap, *dp;
1088 int do_again, i, nblocks, s;
1089 #ifdef LFS_TRACK_IOS
1090 int j;
1091 #endif
1092 int (*strategy)__P((void *));
1093 struct vop_strategy_args vop_strategy_a;
1094 u_short ninos;
1095 struct vnode *devvp;
1096 char *p;
1097 struct vnode *vn;
1098 struct inode *ip;
1099 #if defined(DEBUG) && defined(LFS_PROPELLER)
1100 static int propeller;
1101 char propstring[4] = "-\\|/";
1102
1103 printf("%c\b",propstring[propeller++]);
1104 if(propeller==4)
1105 propeller = 0;
1106 #endif
1107
1108 /*
1109 * If there are no buffers other than the segment summary to write
1110 * and it is not a checkpoint, don't do anything. On a checkpoint,
1111 * even if there aren't any buffers, you need to write the superblock.
1112 */
1113 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1114 return (0);
1115
1116 #ifdef DEBUG_LFS
1117 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1118 #endif
1119 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1120 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1121
1122 /* Update the segment usage information. */
1123 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1124
1125 /* Loop through all blocks, except the segment summary. */
1126 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1127 if((*bpp)->b_vp != devvp)
1128 sup->su_nbytes += (*bpp)->b_bcount;
1129 }
1130
1131 ssp = (SEGSUM *)sp->segsum;
1132
1133 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1134 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1135 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1136 sup->su_lastmod = time.tv_sec;
1137 sup->su_ninos += ninos;
1138 ++sup->su_nsums;
1139
1140 do_again = !(bp->b_flags & B_GATHERED);
1141 (void)VOP_BWRITE(bp);
1142 /*
1143 * Compute checksum across data and then across summary; the first
1144 * block (the summary block) is skipped. Set the create time here
1145 * so that it's guaranteed to be later than the inode mod times.
1146 *
1147 * XXX
1148 * Fix this to do it inline, instead of malloc/copy.
1149 */
1150 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1151 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1152 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1153 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1154 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1155 } else {
1156 if( !((*bpp)->b_flags & B_CALL) ) {
1157 /*
1158 * Before we record data for a checksm,
1159 * make sure the data won't change in between
1160 * the checksum calculation and the write,
1161 * by marking the buffer B_BUSY. It will
1162 * be freed later by brelse().
1163 */
1164 again:
1165 s = splbio();
1166 if((*bpp)->b_flags & B_BUSY) {
1167 #ifdef DEBUG
1168 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1169 VTOI((*bpp)->b_vp)->i_number,
1170 bp->b_lblkno);
1171 #endif
1172 (*bpp)->b_flags |= B_WANTED;
1173 tsleep((*bpp), (PRIBIO + 1),
1174 "lfs_writeseg", 0);
1175 splx(s);
1176 goto again;
1177 }
1178 (*bpp)->b_flags |= B_BUSY;
1179 splx(s);
1180 }
1181 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1182 }
1183 }
1184 ssp->ss_create = time.tv_sec;
1185 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1186 ssp->ss_sumsum =
1187 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1188 free(datap, M_SEGMENT);
1189 #ifdef DIAGNOSTIC
1190 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1191 panic("lfs_writeseg: No diskspace for summary");
1192 #endif
1193 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1194
1195 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1196
1197 /*
1198 * When we simply write the blocks we lose a rotation for every block
1199 * written. To avoid this problem, we allocate memory in chunks, copy
1200 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1201 * largest size I/O devices can handle.
1202 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1203 * and brelse the buffer (which will move them to the LRU list). Add
1204 * the B_CALL flag to the buffer header so we can count I/O's for the
1205 * checkpoints and so we can release the allocated memory.
1206 *
1207 * XXX
1208 * This should be removed if the new virtual memory system allows us to
1209 * easily make the buffers contiguous in kernel memory and if that's
1210 * fast enough.
1211 */
1212
1213 #define CHUNKSIZE MAXPHYS
1214
1215 if(devvp==NULL)
1216 panic("devvp is NULL");
1217 for (bpp = sp->bpp,i = nblocks; i;) {
1218 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1219 cbp->b_dev = i_dev;
1220 cbp->b_flags |= B_ASYNC | B_BUSY;
1221 cbp->b_bcount = 0;
1222
1223 #ifdef DIAGNOSTIC
1224 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1225 panic("lfs_writeseg: Segment overwrite");
1226 }
1227 #endif
1228
1229 s = splbio();
1230 if(fs->lfs_iocount >= LFS_THROTTLE) {
1231 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1232 }
1233 ++fs->lfs_iocount;
1234 #ifdef LFS_TRACK_IOS
1235 for(j=0;j<LFS_THROTTLE;j++) {
1236 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1237 fs->lfs_pending[j] = cbp->b_blkno;
1238 break;
1239 }
1240 }
1241 #endif /* LFS_TRACK_IOS */
1242 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1243 bp = *bpp;
1244
1245 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1246 break;
1247
1248 /*
1249 * Fake buffers from the cleaner are marked as B_INVAL.
1250 * We need to copy the data from user space rather than
1251 * from the buffer indicated.
1252 * XXX == what do I do on an error?
1253 */
1254 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1255 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1256 panic("lfs_writeseg: copyin failed [2]");
1257 } else
1258 bcopy(bp->b_data, p, bp->b_bcount);
1259 p += bp->b_bcount;
1260 cbp->b_bcount += bp->b_bcount;
1261 if (bp->b_flags & B_LOCKED) {
1262 --locked_queue_count;
1263 locked_queue_bytes -= bp->b_bufsize;
1264 }
1265 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1266 B_LOCKED | B_GATHERED);
1267 vn = bp->b_vp;
1268 if (bp->b_flags & B_CALL) {
1269 /* if B_CALL, it was created with newbuf */
1270 lfs_freebuf(bp);
1271 } else {
1272 bremfree(bp);
1273 bp->b_flags |= B_DONE;
1274 if(vn)
1275 reassignbuf(bp, vn);
1276 brelse(bp);
1277 }
1278 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1279 bp->b_flags &= ~B_NEEDCOMMIT;
1280 wakeup(bp);
1281 }
1282
1283 bpp++;
1284
1285 /*
1286 * If this is the last block for this vnode, but
1287 * there are other blocks on its dirty list,
1288 * set IN_MODIFIED/IN_CLEANING depending on what
1289 * sort of block. Only do this for our mount point,
1290 * not for, e.g., inode blocks that are attached to
1291 * the devvp.
1292 */
1293 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1294 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1295 vn->v_mount == fs->lfs_ivnode->v_mount)
1296 {
1297 ip = VTOI(vn);
1298 #ifdef DEBUG_LFS
1299 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1300 #endif
1301 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1302 fs->lfs_uinodes++;
1303 if(bp->b_flags & B_CALL)
1304 ip->i_flag |= IN_CLEANING;
1305 else
1306 ip->i_flag |= IN_MODIFIED;
1307 }
1308 }
1309 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1310 wakeup(vn);
1311 }
1312 ++cbp->b_vp->v_numoutput;
1313 splx(s);
1314 /*
1315 * XXXX This is a gross and disgusting hack. Since these
1316 * buffers are physically addressed, they hang off the
1317 * device vnode (devvp). As a result, they have no way
1318 * of getting to the LFS superblock or lfs structure to
1319 * keep track of the number of I/O's pending. So, I am
1320 * going to stuff the fs into the saveaddr field of
1321 * the buffer (yuk).
1322 */
1323 cbp->b_saveaddr = (caddr_t)fs;
1324 vop_strategy_a.a_desc = VDESC(vop_strategy);
1325 vop_strategy_a.a_bp = cbp;
1326 (strategy)(&vop_strategy_a);
1327 }
1328 /*
1329 * XXX
1330 * Vinvalbuf can move locked buffers off the locked queue
1331 * and we have no way of knowing about this. So, after
1332 * doing a big write, we recalculate how many buffers are
1333 * really still left on the locked queue.
1334 */
1335 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1336 wakeup(&locked_queue_count);
1337 if(lfs_dostats) {
1338 ++lfs_stats.psegwrites;
1339 lfs_stats.blocktot += nblocks - 1;
1340 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1341 ++lfs_stats.psyncwrites;
1342 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1343 ++lfs_stats.pcleanwrites;
1344 lfs_stats.cleanblocks += nblocks - 1;
1345 }
1346 }
1347 return (lfs_initseg(fs) || do_again);
1348 }
1349
1350 void
1351 lfs_writesuper(fs, daddr)
1352 struct lfs *fs;
1353 daddr_t daddr;
1354 {
1355 struct buf *bp;
1356 dev_t i_dev;
1357 int (*strategy) __P((void *));
1358 int s;
1359 struct vop_strategy_args vop_strategy_a;
1360
1361 #ifdef LFS_CANNOT_ROLLFW
1362 /*
1363 * If we can write one superblock while another is in
1364 * progress, we risk not having a complete checkpoint if we crash.
1365 * So, block here if a superblock write is in progress.
1366 */
1367 s = splbio();
1368 while(fs->lfs_sbactive) {
1369 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1370 }
1371 fs->lfs_sbactive = daddr;
1372 splx(s);
1373 #endif
1374 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1375 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1376
1377 /* Set timestamp of this version of the superblock */
1378 fs->lfs_tstamp = time.tv_sec;
1379
1380 /* Checksum the superblock and copy it into a buffer. */
1381 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1382 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1383 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1384
1385 bp->b_dev = i_dev;
1386 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1387 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1388 bp->b_iodone = lfs_supercallback;
1389 /* XXX KS - same nasty hack as above */
1390 bp->b_saveaddr = (caddr_t)fs;
1391
1392 vop_strategy_a.a_desc = VDESC(vop_strategy);
1393 vop_strategy_a.a_bp = bp;
1394 s = splbio();
1395 ++bp->b_vp->v_numoutput;
1396 splx(s);
1397 (strategy)(&vop_strategy_a);
1398 }
1399
1400 /*
1401 * Logical block number match routines used when traversing the dirty block
1402 * chain.
1403 */
1404 int
1405 lfs_match_fake(fs, bp)
1406 struct lfs *fs;
1407 struct buf *bp;
1408 {
1409 return (bp->b_flags & B_CALL);
1410 }
1411
1412 int
1413 lfs_match_data(fs, bp)
1414 struct lfs *fs;
1415 struct buf *bp;
1416 {
1417 return (bp->b_lblkno >= 0);
1418 }
1419
1420 int
1421 lfs_match_indir(fs, bp)
1422 struct lfs *fs;
1423 struct buf *bp;
1424 {
1425 int lbn;
1426
1427 lbn = bp->b_lblkno;
1428 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1429 }
1430
1431 int
1432 lfs_match_dindir(fs, bp)
1433 struct lfs *fs;
1434 struct buf *bp;
1435 {
1436 int lbn;
1437
1438 lbn = bp->b_lblkno;
1439 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1440 }
1441
1442 int
1443 lfs_match_tindir(fs, bp)
1444 struct lfs *fs;
1445 struct buf *bp;
1446 {
1447 int lbn;
1448
1449 lbn = bp->b_lblkno;
1450 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1451 }
1452
1453 /*
1454 * XXX - The only buffers that are going to hit these functions are the
1455 * segment write blocks, or the segment summaries, or the superblocks.
1456 *
1457 * All of the above are created by lfs_newbuf, and so do not need to be
1458 * released via brelse.
1459 */
1460 void
1461 lfs_callback(bp)
1462 struct buf *bp;
1463 {
1464 struct lfs *fs;
1465 #ifdef LFS_TRACK_IOS
1466 int j;
1467 #endif
1468
1469 fs = (struct lfs *)bp->b_saveaddr;
1470 #ifdef DIAGNOSTIC
1471 if (fs->lfs_iocount == 0)
1472 panic("lfs_callback: zero iocount\n");
1473 #endif
1474 if (--fs->lfs_iocount < LFS_THROTTLE)
1475 wakeup(&fs->lfs_iocount);
1476 #ifdef LFS_TRACK_IOS
1477 for(j=0;j<LFS_THROTTLE;j++) {
1478 if(fs->lfs_pending[j]==bp->b_blkno) {
1479 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1480 wakeup(&(fs->lfs_pending[j]));
1481 break;
1482 }
1483 }
1484 #endif /* LFS_TRACK_IOS */
1485
1486 lfs_freebuf(bp);
1487 }
1488
1489 void
1490 lfs_supercallback(bp)
1491 struct buf *bp;
1492 {
1493 #ifdef LFS_CANNOT_ROLLFW
1494 struct lfs *fs;
1495
1496 fs = (struct lfs *)bp->b_saveaddr;
1497 fs->lfs_sbactive=NULL;
1498 wakeup(&fs->lfs_sbactive);
1499 #endif
1500 lfs_freebuf(bp);
1501 }
1502
1503 /*
1504 * Shellsort (diminishing increment sort) from Data Structures and
1505 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1506 * see also Knuth Vol. 3, page 84. The increments are selected from
1507 * formula (8), page 95. Roughly O(N^3/2).
1508 */
1509 /*
1510 * This is our own private copy of shellsort because we want to sort
1511 * two parallel arrays (the array of buffer pointers and the array of
1512 * logical block numbers) simultaneously. Note that we cast the array
1513 * of logical block numbers to a unsigned in this routine so that the
1514 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1515 */
1516
1517 void
1518 lfs_shellsort(bp_array, lb_array, nmemb)
1519 struct buf **bp_array;
1520 ufs_daddr_t *lb_array;
1521 register int nmemb;
1522 {
1523 static int __rsshell_increments[] = { 4, 1, 0 };
1524 register int incr, *incrp, t1, t2;
1525 struct buf *bp_temp;
1526 u_long lb_temp;
1527
1528 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1529 for (t1 = incr; t1 < nmemb; ++t1)
1530 for (t2 = t1 - incr; t2 >= 0;)
1531 if (lb_array[t2] > lb_array[t2 + incr]) {
1532 lb_temp = lb_array[t2];
1533 lb_array[t2] = lb_array[t2 + incr];
1534 lb_array[t2 + incr] = lb_temp;
1535 bp_temp = bp_array[t2];
1536 bp_array[t2] = bp_array[t2 + incr];
1537 bp_array[t2 + incr] = bp_temp;
1538 t2 -= incr;
1539 } else
1540 break;
1541 }
1542
1543 /*
1544 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1545 */
1546 int
1547 lfs_vref(vp)
1548 register struct vnode *vp;
1549 {
1550 /*
1551 * If we return 1 here during a flush, we risk vinvalbuf() not
1552 * being able to flush all of the pages from this vnode, which
1553 * will cause it to panic. So, return 0 if a flush is in progress.
1554 */
1555 if (vp->v_flag & VXLOCK) {
1556 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1557 return 0;
1558 }
1559 return(1);
1560 }
1561 return (vget(vp, 0));
1562 }
1563
1564 /*
1565 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1566 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1567 */
1568 void
1569 lfs_vunref(vp)
1570 register struct vnode *vp;
1571 {
1572 /*
1573 * Analogous to lfs_vref, if the node is flushing, fake it.
1574 */
1575 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1576 return;
1577 }
1578
1579 simple_lock(&vp->v_interlock);
1580 #ifdef DIAGNOSTIC
1581 if(vp->v_usecount<=0) {
1582 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1583 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1584 panic("lfs_vunref: v_usecount<0");
1585 }
1586 #endif
1587 vp->v_usecount--;
1588 if (vp->v_usecount > 0) {
1589 simple_unlock(&vp->v_interlock);
1590 return;
1591 }
1592 #ifdef DIAGNOSTIC
1593 if(VOP_ISLOCKED(vp))
1594 panic("lfs_vunref: vnode locked");
1595 #endif
1596 /*
1597 * insert at tail of LRU list
1598 */
1599 simple_lock(&vnode_free_list_slock);
1600 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1601 simple_unlock(&vnode_free_list_slock);
1602 simple_unlock(&vp->v_interlock);
1603 }
1604
1605 /*
1606 * We use this when we have vnodes that were loaded in solely for cleaning.
1607 * There is no reason to believe that these vnodes will be referenced again
1608 * soon, since the cleaning process is unrelated to normal filesystem
1609 * activity. Putting cleaned vnodes at the tail of the list has the effect
1610 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1611 * cleaning at the head of the list, instead.
1612 */
1613 void
1614 lfs_vunref_head(vp)
1615 register struct vnode *vp;
1616 {
1617 simple_lock(&vp->v_interlock);
1618 #ifdef DIAGNOSTIC
1619 if(vp->v_usecount==0) {
1620 panic("lfs_vunref: v_usecount<0");
1621 }
1622 #endif
1623 vp->v_usecount--;
1624 if (vp->v_usecount > 0) {
1625 simple_unlock(&vp->v_interlock);
1626 return;
1627 }
1628 #ifdef DIAGNOSTIC
1629 if(VOP_ISLOCKED(vp))
1630 panic("lfs_vunref_head: vnode locked");
1631 #endif
1632 /*
1633 * insert at head of LRU list
1634 */
1635 simple_lock(&vnode_free_list_slock);
1636 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1637 simple_unlock(&vnode_free_list_slock);
1638 simple_unlock(&vp->v_interlock);
1639 }
1640
1641