lfs_segment.c revision 1.23.2.7 1 /* $NetBSD: lfs_segment.c,v 1.23.2.7 1999/12/18 00:01:26 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/namei.h>
78 #include <sys/kernel.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/stat.h>
82 #include <sys/buf.h>
83 #include <sys/proc.h>
84 #include <sys/conf.h>
85 #include <sys/vnode.h>
86 #include <sys/malloc.h>
87 #include <sys/mount.h>
88
89 #include <miscfs/specfs/specdev.h>
90 #include <miscfs/fifofs/fifo.h>
91
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/dir.h>
95 #include <ufs/ufs/ufsmount.h>
96 #include <ufs/ufs/ufs_extern.h>
97
98 #include <ufs/lfs/lfs.h>
99 #include <ufs/lfs/lfs_extern.h>
100
101 extern int count_lock_queue __P((void));
102 extern struct simplelock vnode_free_list_slock; /* XXX */
103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 int error;
191
192 ip = VTOI(vp);
193 fs = VFSTOUFS(vp->v_mount)->um_lfs;
194
195 if(ip->i_flag & IN_CLEANING) {
196 #ifdef DEBUG_LFS
197 ivndebug(vp,"vflush/in_cleaning");
198 #endif
199 ip->i_flag &= ~IN_CLEANING;
200 if(ip->i_flag & IN_MODIFIED) {
201 fs->lfs_uinodes--;
202 } else
203 ip->i_flag |= IN_MODIFIED;
204 }
205
206 /* If the node is being written, wait until that is done */
207 if(WRITEINPROG(vp)) {
208 #ifdef DEBUG_LFS
209 ivndebug(vp,"vflush/writeinprog");
210 #endif
211 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
212 }
213
214 /* Protect against VXLOCK deadlock in vinvalbuf() */
215 lfs_seglock(fs, SEGM_SYNC);
216 SET_FLUSHING(fs,vp);
217 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
218 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
219 CLR_FLUSHING(fs,vp);
220 lfs_segunlock(fs);
221 return error;
222 }
223 sp = fs->lfs_sp;
224
225 if (vp->v_dirtyblkhd.lh_first == NULL) {
226 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
227 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
228 #ifdef DEBUG_LFS
229 ivndebug(vp,"vflush/clean");
230 #endif
231 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
232 }
233 else if(lfs_dostats) {
234 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
235 ++lfs_stats.vflush_invoked;
236 #ifdef DEBUG_LFS
237 ivndebug(vp,"vflush");
238 #endif
239 }
240
241 #ifdef DIAGNOSTIC
242 /* XXX KS This actually can happen right now, though it shouldn't(?) */
243 if(vp->v_flag & VDIROP) {
244 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
245 /* panic("VDIROP being flushed...this can\'t happen"); */
246 }
247 if(vp->v_usecount<0) {
248 printf("usecount=%ld\n",vp->v_usecount);
249 panic("lfs_vflush: usecount<0");
250 }
251 #endif
252
253 do {
254 do {
255 if (vp->v_dirtyblkhd.lh_first != NULL)
256 lfs_writefile(fs, sp, vp);
257 } while (lfs_writeinode(fs, sp, ip));
258 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
259
260 if(lfs_dostats) {
261 ++lfs_stats.nwrites;
262 if (sp->seg_flags & SEGM_SYNC)
263 ++lfs_stats.nsync_writes;
264 if (sp->seg_flags & SEGM_CKP)
265 ++lfs_stats.ncheckpoints;
266 }
267 lfs_segunlock(fs);
268
269 CLR_FLUSHING(fs,vp);
270 return (0);
271 }
272
273 #ifdef DEBUG_LFS_VERBOSE
274 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
275 #else
276 # define vndebug(vp,str)
277 #endif
278
279 int
280 lfs_writevnodes(fs, mp, sp, op)
281 struct lfs *fs;
282 struct mount *mp;
283 struct segment *sp;
284 int op;
285 {
286 struct inode *ip;
287 struct vnode *vp;
288 int inodes_written=0, only_cleaning;
289
290 #ifndef LFS_NO_BACKVP_HACK
291 /* BEGIN HACK */
292 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
293 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
294 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
295
296 /* Find last vnode. */
297 loop: for (vp = mp->mnt_vnodelist.lh_first;
298 vp && vp->v_mntvnodes.le_next != NULL;
299 vp = vp->v_mntvnodes.le_next);
300 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
301 #else
302 loop:
303 for (vp = mp->mnt_vnodelist.lh_first;
304 vp != NULL;
305 vp = vp->v_mntvnodes.le_next) {
306 #endif
307 /*
308 * If the vnode that we are about to sync is no longer
309 * associated with this mount point, start over.
310 */
311 if (vp->v_mount != mp)
312 goto loop;
313
314 ip = VTOI(vp);
315 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
316 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
317 vndebug(vp,"dirop");
318 continue;
319 }
320
321 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
322 vndebug(vp,"empty");
323 continue;
324 }
325
326 if (vp->v_type == VNON) {
327 continue;
328 }
329
330 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
331 && !(ip->i_flag & IN_CLEANING)) {
332 vndebug(vp,"cleaning");
333 continue;
334 }
335
336 if (lfs_vref(vp)) {
337 vndebug(vp,"vref");
338 continue;
339 }
340
341 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
342 if(WRITEINPROG(vp)) {
343 lfs_vunref(vp);
344 #ifdef DEBUG_LFS
345 ivndebug(vp,"writevnodes/writeinprog");
346 #endif
347 continue;
348 }
349 #endif
350 only_cleaning = 0;
351 /*
352 * Write the inode/file if dirty and it's not the
353 * the IFILE.
354 */
355 if ((ip->i_flag &
356 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
357 vp->v_dirtyblkhd.lh_first != NULL))
358 {
359 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
360
361 if(ip->i_number != LFS_IFILE_INUM
362 && vp->v_dirtyblkhd.lh_first != NULL)
363 {
364 lfs_writefile(fs, sp, vp);
365 }
366 if(vp->v_dirtyblkhd.lh_first != NULL) {
367 if(WRITEINPROG(vp)) {
368 #ifdef DEBUG_LFS
369 ivndebug(vp,"writevnodes/write2");
370 #endif
371 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
372 #ifdef DEBUG_LFS
373 printf("<%d>",ip->i_number);
374 #endif
375 ip->i_flag |= IN_MODIFIED;
376 ++fs->lfs_uinodes;
377 }
378 }
379 (void) lfs_writeinode(fs, sp, ip);
380 inodes_written++;
381 }
382
383 if(vp->v_flag & VDIROP) {
384 --lfs_dirvcount;
385 vp->v_flag &= ~VDIROP;
386 wakeup(&lfs_dirvcount);
387 lfs_vunref(vp);
388 }
389
390 if(lfs_clean_vnhead && only_cleaning)
391 lfs_vunref_head(vp);
392 else
393 lfs_vunref(vp);
394 }
395 return inodes_written;
396 }
397
398 int
399 lfs_segwrite(mp, flags)
400 struct mount *mp;
401 int flags; /* Do a checkpoint. */
402 {
403 struct buf *bp;
404 struct inode *ip;
405 struct lfs *fs;
406 struct segment *sp;
407 struct vnode *vp;
408 SEGUSE *segusep;
409 ufs_daddr_t ibno;
410 int do_ckp, error, i;
411 int writer_set = 0;
412 int need_unlock = 0;
413
414 fs = VFSTOUFS(mp)->um_lfs;
415
416 lfs_imtime(fs);
417
418 /*
419 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
420 * clean segments, wait until cleaner writes.
421 */
422 if(!(flags & SEGM_CLEAN)
423 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
424 {
425 do {
426 if (fs->lfs_nclean <= MIN_FREE_SEGS
427 || fs->lfs_avail <= 0)
428 {
429 wakeup(&lfs_allclean_wakeup);
430 wakeup(&fs->lfs_nextseg);
431 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
432 "lfs_avail", 0);
433 if (error) {
434 return (error);
435 }
436 }
437 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
438 }
439
440 /*
441 * Allocate a segment structure and enough space to hold pointers to
442 * the maximum possible number of buffers which can be described in a
443 * single summary block.
444 */
445 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
446 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
447 sp = fs->lfs_sp;
448
449 /*
450 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
451 * in which case we have to flush *all* buffers off of this vnode.
452 * We don't care about other nodes, but write any non-dirop nodes
453 * anyway in anticipation of another getnewvnode().
454 *
455 * If we're cleaning we only write cleaning and ifile blocks, and
456 * no dirops, since otherwise we'd risk corruption in a crash.
457 */
458 if(fs->lfs_flushvp)
459 lfs_writevnodes(fs, mp, sp, VN_REG);
460 else if(sp->seg_flags & SEGM_CLEAN)
461 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
462 else {
463 lfs_writevnodes(fs, mp, sp, VN_REG);
464 while(fs->lfs_dirops)
465 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
466 "lfs writer", 0)))
467 {
468 free(sp->bpp, M_SEGMENT);
469 free(sp, M_SEGMENT);
470 return (error);
471 }
472 fs->lfs_writer++;
473 writer_set=1;
474 lfs_writevnodes(fs, mp, sp, VN_DIROP);
475 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
476 }
477
478 /*
479 * If we are doing a checkpoint, mark everything since the
480 * last checkpoint as no longer ACTIVE.
481 */
482 if (do_ckp) {
483 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
484 --ibno >= fs->lfs_cleansz; ) {
485 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
486
487 panic("lfs_segwrite: ifile read");
488 segusep = (SEGUSE *)bp->b_data;
489 for (i = fs->lfs_sepb; i--; segusep++)
490 segusep->su_flags &= ~SEGUSE_ACTIVE;
491
492 /* But the current segment is still ACTIVE */
493 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
494 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
495 error = VOP_BWRITE(bp);
496 }
497 }
498
499 if (do_ckp || fs->lfs_doifile) {
500 redo:
501 vp = fs->lfs_ivnode;
502 /*
503 * Depending on the circumstances of our calling, the ifile
504 * inode might be locked. If it is, and if it is locked by
505 * us, we should VREF instead of vget here.
506 */
507 need_unlock = 0;
508 if(VOP_ISLOCKED(vp)
509 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
510 VREF(vp);
511 } else {
512 while (vget(vp, LK_EXCLUSIVE))
513 continue;
514 need_unlock = 1;
515 }
516 ip = VTOI(vp);
517 if (vp->v_dirtyblkhd.lh_first != NULL)
518 lfs_writefile(fs, sp, vp);
519 (void)lfs_writeinode(fs, sp, ip);
520
521 /* Only vput if we used vget() above. */
522 if(need_unlock)
523 vput(vp);
524 else
525 vrele(vp);
526
527 if (lfs_writeseg(fs, sp) && do_ckp)
528 goto redo;
529 } else {
530 (void) lfs_writeseg(fs, sp);
531 }
532
533 /*
534 * If the I/O count is non-zero, sleep until it reaches zero.
535 * At the moment, the user's process hangs around so we can
536 * sleep.
537 */
538 fs->lfs_doifile = 0;
539 if(writer_set && --fs->lfs_writer==0)
540 wakeup(&fs->lfs_dirops);
541
542 if(lfs_dostats) {
543 ++lfs_stats.nwrites;
544 if (sp->seg_flags & SEGM_SYNC)
545 ++lfs_stats.nsync_writes;
546 if (sp->seg_flags & SEGM_CKP)
547 ++lfs_stats.ncheckpoints;
548 }
549 lfs_segunlock(fs);
550 return (0);
551 }
552
553 /*
554 * Write the dirty blocks associated with a vnode.
555 */
556 void
557 lfs_writefile(fs, sp, vp)
558 struct lfs *fs;
559 struct segment *sp;
560 struct vnode *vp;
561 {
562 struct buf *bp;
563 struct finfo *fip;
564 IFILE *ifp;
565
566
567 if (sp->seg_bytes_left < fs->lfs_bsize ||
568 sp->sum_bytes_left < sizeof(struct finfo))
569 (void) lfs_writeseg(fs, sp);
570
571 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
572 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
573
574 if(vp->v_flag & VDIROP)
575 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
576
577 fip = sp->fip;
578 fip->fi_nblocks = 0;
579 fip->fi_ino = VTOI(vp)->i_number;
580 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
581 fip->fi_version = ifp->if_version;
582 brelse(bp);
583
584 /*
585 * It may not be necessary to write the meta-data blocks at this point,
586 * as the roll-forward recovery code should be able to reconstruct the
587 * list.
588 *
589 * We have to write them anyway, though, under two conditions: (1) the
590 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
591 * checkpointing.
592 */
593 if((sp->seg_flags & SEGM_CLEAN)
594 && VTOI(vp)->i_number != LFS_IFILE_INUM
595 && !IS_FLUSHING(fs,vp))
596 {
597 lfs_gather(fs, sp, vp, lfs_match_fake);
598 } else
599 lfs_gather(fs, sp, vp, lfs_match_data);
600
601 if(lfs_writeindir
602 || IS_FLUSHING(fs,vp)
603 || (sp->seg_flags & SEGM_CKP))
604 {
605 lfs_gather(fs, sp, vp, lfs_match_indir);
606 lfs_gather(fs, sp, vp, lfs_match_dindir);
607 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
608 lfs_gather(fs, sp, vp, lfs_match_tindir);
609 /* #endif */
610 }
611 fip = sp->fip;
612 if (fip->fi_nblocks != 0) {
613 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
614 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
615 sp->start_lbp = &sp->fip->fi_blocks[0];
616 } else {
617 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
618 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
619 }
620 }
621
622 int
623 lfs_writeinode(fs, sp, ip)
624 struct lfs *fs;
625 struct segment *sp;
626 struct inode *ip;
627 {
628 struct buf *bp, *ibp;
629 IFILE *ifp;
630 SEGUSE *sup;
631 ufs_daddr_t daddr;
632 ino_t ino;
633 int error, i, ndx;
634 int redo_ifile = 0;
635 struct timespec ts;
636 int gotblk=0;
637
638 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
639 return(0);
640
641 /* Allocate a new inode block if necessary. */
642 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
643 /* Allocate a new segment if necessary. */
644 if (sp->seg_bytes_left < fs->lfs_bsize ||
645 sp->sum_bytes_left < sizeof(ufs_daddr_t))
646 (void) lfs_writeseg(fs, sp);
647
648 /* Get next inode block. */
649 daddr = fs->lfs_offset;
650 fs->lfs_offset += fsbtodb(fs, 1);
651 sp->ibp = *sp->cbpp++ =
652 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
653 gotblk++;
654
655 /* Zero out inode numbers */
656 for (i = 0; i < INOPB(fs); ++i)
657 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
658
659 ++sp->start_bpp;
660 fs->lfs_avail -= fsbtodb(fs, 1);
661 /* Set remaining space counters. */
662 sp->seg_bytes_left -= fs->lfs_bsize;
663 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
664 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
665 sp->ninodes / INOPB(fs) - 1;
666 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
667 }
668
669 /* Update the inode times and copy the inode onto the inode page. */
670 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
671 --fs->lfs_uinodes;
672 TIMEVAL_TO_TIMESPEC(&time, &ts);
673 LFS_ITIMES(ip, &ts, &ts, &ts);
674
675 if(ip->i_flag & IN_CLEANING)
676 ip->i_flag &= ~IN_CLEANING;
677 else
678 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
679
680 /*
681 * If this is the Ifile, and we've already written the Ifile in this
682 * partial segment, just overwrite it (it's not on disk yet) and
683 * continue.
684 *
685 * XXX we know that the bp that we get the second time around has
686 * already been gathered.
687 */
688 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
689 *(sp->idp) = ip->i_din.ffs_din;
690 return 0;
691 }
692
693 bp = sp->ibp;
694 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
695 ip->i_din.ffs_din;
696
697 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
698 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
699 if(gotblk) {
700 bp->b_flags |= B_LOCKED;
701 brelse(bp);
702 }
703
704 /* Increment inode count in segment summary block. */
705 ++((SEGSUM *)(sp->segsum))->ss_ninos;
706
707 /* If this page is full, set flag to allocate a new page. */
708 if (++sp->ninodes % INOPB(fs) == 0)
709 sp->ibp = NULL;
710
711 /*
712 * If updating the ifile, update the super-block. Update the disk
713 * address and access times for this inode in the ifile.
714 */
715 ino = ip->i_number;
716 if (ino == LFS_IFILE_INUM) {
717 daddr = fs->lfs_idaddr;
718 fs->lfs_idaddr = bp->b_blkno;
719 } else {
720 LFS_IENTRY(ifp, fs, ino, ibp);
721 daddr = ifp->if_daddr;
722 ifp->if_daddr = bp->b_blkno;
723 error = VOP_BWRITE(ibp);
724 }
725
726 /*
727 * No need to update segment usage if there was no former inode address
728 * or if the last inode address is in the current partial segment.
729 */
730 if (daddr != LFS_UNUSED_DADDR &&
731 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
732 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
733 #ifdef DIAGNOSTIC
734 if (sup->su_nbytes < DINODE_SIZE) {
735 /* XXX -- Change to a panic. */
736 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
737 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
738 panic("lfs_writeinode: negative bytes");
739 sup->su_nbytes = DINODE_SIZE;
740 }
741 #endif
742 sup->su_nbytes -= DINODE_SIZE;
743 redo_ifile =
744 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
745 error = VOP_BWRITE(bp);
746 }
747 return (redo_ifile);
748 }
749
750 int
751 lfs_gatherblock(sp, bp, sptr)
752 struct segment *sp;
753 struct buf *bp;
754 int *sptr;
755 {
756 struct lfs *fs;
757 int version;
758
759 /*
760 * If full, finish this segment. We may be doing I/O, so
761 * release and reacquire the splbio().
762 */
763 #ifdef DIAGNOSTIC
764 if (sp->vp == NULL)
765 panic ("lfs_gatherblock: Null vp in segment");
766 #endif
767 fs = sp->fs;
768 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
769 sp->seg_bytes_left < bp->b_bcount) {
770 if (sptr)
771 splx(*sptr);
772 lfs_updatemeta(sp);
773
774 version = sp->fip->fi_version;
775 (void) lfs_writeseg(fs, sp);
776
777 sp->fip->fi_version = version;
778 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
779 /* Add the current file to the segment summary. */
780 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
781 sp->sum_bytes_left -=
782 sizeof(struct finfo) - sizeof(ufs_daddr_t);
783
784 if (sptr)
785 *sptr = splbio();
786 return(1);
787 }
788
789 #ifdef DEBUG
790 if(bp->b_flags & B_GATHERED) {
791 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
792 sp->fip->fi_ino, bp->b_lblkno);
793 return(0);
794 }
795 #endif
796 /* Insert into the buffer list, update the FINFO block. */
797 bp->b_flags |= B_GATHERED;
798 *sp->cbpp++ = bp;
799 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
800
801 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
802 sp->seg_bytes_left -= bp->b_bcount;
803 return(0);
804 }
805
806 int
807 lfs_gather(fs, sp, vp, match)
808 struct lfs *fs;
809 struct segment *sp;
810 struct vnode *vp;
811 int (*match) __P((struct lfs *, struct buf *));
812 {
813 struct buf *bp;
814 int s, count=0;
815
816 sp->vp = vp;
817 s = splbio();
818
819 #ifndef LFS_NO_BACKBUF_HACK
820 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
821 #else /* LFS_NO_BACKBUF_HACK */
822 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
823 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
824 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
825 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
826 /* Find last buffer. */
827 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
828 bp = bp->b_vnbufs.le_next);
829 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
830 #endif /* LFS_NO_BACKBUF_HACK */
831 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
832 continue;
833 #ifdef DIAGNOSTIC
834 if (!(bp->b_flags & B_DELWRI))
835 panic("lfs_gather: bp not B_DELWRI");
836 if (!(bp->b_flags & B_LOCKED))
837 panic("lfs_gather: bp not B_LOCKED");
838 #endif
839 count++;
840 if (lfs_gatherblock(sp, bp, &s)) {
841 goto loop;
842 }
843 }
844 splx(s);
845 lfs_updatemeta(sp);
846 sp->vp = NULL;
847 return count;
848 }
849
850 /*
851 * Update the metadata that points to the blocks listed in the FINFO
852 * array.
853 */
854 void
855 lfs_updatemeta(sp)
856 struct segment *sp;
857 {
858 SEGUSE *sup;
859 struct buf *bp;
860 struct lfs *fs;
861 struct vnode *vp;
862 struct indir a[NIADDR + 2], *ap;
863 struct inode *ip;
864 ufs_daddr_t daddr, lbn, off;
865 int error, i, nblocks, num;
866
867 vp = sp->vp;
868 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
869 if (nblocks < 0)
870 panic("This is a bad thing\n");
871 if (vp == NULL || nblocks == 0)
872 return;
873
874 /* Sort the blocks. */
875 /*
876 * XXX KS - We have to sort even if the blocks come from the
877 * cleaner, because there might be other pending blocks on the
878 * same inode...and if we don't sort, and there are fragments
879 * present, blocks may be written in the wrong place.
880 */
881 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
882 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
883
884 /*
885 * Record the length of the last block in case it's a fragment.
886 * If there are indirect blocks present, they sort last. An
887 * indirect block will be lfs_bsize and its presence indicates
888 * that you cannot have fragments.
889 */
890 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
891
892 /*
893 * Assign disk addresses, and update references to the logical
894 * block and the segment usage information.
895 */
896 fs = sp->fs;
897 for (i = nblocks; i--; ++sp->start_bpp) {
898 lbn = *sp->start_lbp++;
899
900 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
901 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
902 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
903 }
904 fs->lfs_offset +=
905 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
906 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
907 if (error)
908 panic("lfs_updatemeta: ufs_bmaparray %d", error);
909 ip = VTOI(vp);
910 switch (num) {
911 case 0:
912 ip->i_ffs_db[lbn] = off;
913 break;
914 case 1:
915 ip->i_ffs_ib[a[0].in_off] = off;
916 break;
917 default:
918 ap = &a[num - 1];
919 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
920 panic("lfs_updatemeta: bread bno %d",
921 ap->in_lbn);
922 /*
923 * Bread may create a new (indirect) block which needs
924 * to get counted for the inode.
925 */
926 if (/* bp->b_blkno == -1 && */
927 !(bp->b_flags & (B_DELWRI|B_DONE))) {
928 ip->i_ffs_blocks += fsbtodb(fs, 1);
929 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
930 }
931 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
932 VOP_BWRITE(bp);
933 }
934 /* Update segment usage information. */
935 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
936 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
937 #ifdef DIAGNOSTIC
938 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
939 /* XXX -- Change to a panic. */
940 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
941 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
942 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
943 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
944 panic("lfs_updatemeta: negative bytes");
945 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
946 }
947 #endif
948 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
949 error = VOP_BWRITE(bp);
950 }
951 }
952 }
953
954 /*
955 * Start a new segment.
956 */
957 int
958 lfs_initseg(fs)
959 struct lfs *fs;
960 {
961 struct segment *sp;
962 SEGUSE *sup;
963 SEGSUM *ssp;
964 struct buf *bp;
965 int repeat;
966
967 sp = fs->lfs_sp;
968
969 repeat = 0;
970 /* Advance to the next segment. */
971 if (!LFS_PARTIAL_FITS(fs)) {
972 /* Wake up any cleaning procs waiting on this file system. */
973 wakeup(&lfs_allclean_wakeup);
974 wakeup(&fs->lfs_nextseg);
975 lfs_newseg(fs);
976 repeat = 1;
977 fs->lfs_offset = fs->lfs_curseg;
978 sp->seg_number = datosn(fs, fs->lfs_curseg);
979 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
980 /*
981 * If the segment contains a superblock, update the offset
982 * and summary address to skip over it.
983 */
984 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
985 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
986 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
987 sp->seg_bytes_left -= LFS_SBPAD;
988 }
989 brelse(bp);
990 } else {
991 sp->seg_number = datosn(fs, fs->lfs_curseg);
992 sp->seg_bytes_left = (fs->lfs_dbpseg -
993 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
994 }
995 fs->lfs_lastpseg = fs->lfs_offset;
996
997 sp->fs = fs;
998 sp->ibp = NULL;
999 sp->idp = NULL;
1000 sp->ninodes = 0;
1001
1002 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1003 sp->cbpp = sp->bpp;
1004 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1005 fs->lfs_offset, LFS_SUMMARY_SIZE);
1006 sp->segsum = (*sp->cbpp)->b_data;
1007 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1008 sp->start_bpp = ++sp->cbpp;
1009 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1010
1011 /* Set point to SEGSUM, initialize it. */
1012 ssp = sp->segsum;
1013 ssp->ss_next = fs->lfs_nextseg;
1014 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1015 ssp->ss_magic = SS_MAGIC;
1016
1017 /* Set pointer to first FINFO, initialize it. */
1018 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1019 sp->fip->fi_nblocks = 0;
1020 sp->start_lbp = &sp->fip->fi_blocks[0];
1021 sp->fip->fi_lastlength = 0;
1022
1023 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1024 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1025
1026 return(repeat);
1027 }
1028
1029 /*
1030 * Return the next segment to write.
1031 */
1032 void
1033 lfs_newseg(fs)
1034 struct lfs *fs;
1035 {
1036 CLEANERINFO *cip;
1037 SEGUSE *sup;
1038 struct buf *bp;
1039 int curseg, isdirty, sn;
1040
1041 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1042 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1043 sup->su_nbytes = 0;
1044 sup->su_nsums = 0;
1045 sup->su_ninos = 0;
1046 (void) VOP_BWRITE(bp);
1047
1048 LFS_CLEANERINFO(cip, fs, bp);
1049 --cip->clean;
1050 ++cip->dirty;
1051 fs->lfs_nclean = cip->clean;
1052 (void) VOP_BWRITE(bp);
1053
1054 fs->lfs_lastseg = fs->lfs_curseg;
1055 fs->lfs_curseg = fs->lfs_nextseg;
1056 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1057 sn = (sn + 1) % fs->lfs_nseg;
1058 if (sn == curseg)
1059 panic("lfs_nextseg: no clean segments");
1060 LFS_SEGENTRY(sup, fs, sn, bp);
1061 isdirty = sup->su_flags & SEGUSE_DIRTY;
1062 brelse(bp);
1063 if (!isdirty)
1064 break;
1065 }
1066
1067 ++fs->lfs_nactive;
1068 fs->lfs_nextseg = sntoda(fs, sn);
1069 if(lfs_dostats) {
1070 ++lfs_stats.segsused;
1071 }
1072 }
1073
1074 int
1075 lfs_writeseg(fs, sp)
1076 struct lfs *fs;
1077 struct segment *sp;
1078 {
1079 extern int locked_queue_count;
1080 extern long locked_queue_bytes;
1081 struct buf **bpp, *bp, *cbp;
1082 SEGUSE *sup;
1083 SEGSUM *ssp;
1084 dev_t i_dev;
1085 u_long *datap, *dp;
1086 int do_again, i, nblocks, s;
1087 #ifdef LFS_TRACK_IOS
1088 int j;
1089 #endif
1090 int (*strategy)__P((void *));
1091 struct vop_strategy_args vop_strategy_a;
1092 u_short ninos;
1093 struct vnode *devvp;
1094 char *p;
1095 struct vnode *vn;
1096 struct inode *ip;
1097 #if defined(DEBUG) && defined(LFS_PROPELLER)
1098 static int propeller;
1099 char propstring[4] = "-\\|/";
1100
1101 printf("%c\b",propstring[propeller++]);
1102 if(propeller==4)
1103 propeller = 0;
1104 #endif
1105
1106 /*
1107 * If there are no buffers other than the segment summary to write
1108 * and it is not a checkpoint, don't do anything. On a checkpoint,
1109 * even if there aren't any buffers, you need to write the superblock.
1110 */
1111 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1112 return (0);
1113
1114 #ifdef DEBUG_LFS
1115 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1116 #endif
1117 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1118 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1119
1120 /* Update the segment usage information. */
1121 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1122
1123 /* Loop through all blocks, except the segment summary. */
1124 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1125 if((*bpp)->b_vp != devvp)
1126 sup->su_nbytes += (*bpp)->b_bcount;
1127 }
1128
1129 ssp = (SEGSUM *)sp->segsum;
1130
1131 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1132 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1133 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1134 sup->su_lastmod = time.tv_sec;
1135 sup->su_ninos += ninos;
1136 ++sup->su_nsums;
1137
1138 do_again = !(bp->b_flags & B_GATHERED);
1139 (void)VOP_BWRITE(bp);
1140 /*
1141 * Compute checksum across data and then across summary; the first
1142 * block (the summary block) is skipped. Set the create time here
1143 * so that it's guaranteed to be later than the inode mod times.
1144 *
1145 * XXX
1146 * Fix this to do it inline, instead of malloc/copy.
1147 */
1148 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1149 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1150 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1151 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1152 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1153 } else {
1154 if( !((*bpp)->b_flags & B_CALL) ) {
1155 /*
1156 * Before we record data for a checksm,
1157 * make sure the data won't change in between
1158 * the checksum calculation and the write,
1159 * by marking the buffer B_BUSY. It will
1160 * be freed later by brelse().
1161 */
1162 again:
1163 s = splbio();
1164 if((*bpp)->b_flags & B_BUSY) {
1165 #ifdef DEBUG
1166 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1167 VTOI((*bpp)->b_vp)->i_number,
1168 bp->b_lblkno);
1169 #endif
1170 (*bpp)->b_flags |= B_WANTED;
1171 tsleep((*bpp), (PRIBIO + 1),
1172 "lfs_writeseg", 0);
1173 splx(s);
1174 goto again;
1175 }
1176 (*bpp)->b_flags |= B_BUSY;
1177 splx(s);
1178 }
1179 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1180 }
1181 }
1182 ssp->ss_create = time.tv_sec;
1183 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1184 ssp->ss_sumsum =
1185 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1186 free(datap, M_SEGMENT);
1187 #ifdef DIAGNOSTIC
1188 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1189 panic("lfs_writeseg: No diskspace for summary");
1190 #endif
1191 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1192
1193 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1194
1195 /*
1196 * When we simply write the blocks we lose a rotation for every block
1197 * written. To avoid this problem, we allocate memory in chunks, copy
1198 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1199 * largest size I/O devices can handle.
1200 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1201 * and brelse the buffer (which will move them to the LRU list). Add
1202 * the B_CALL flag to the buffer header so we can count I/O's for the
1203 * checkpoints and so we can release the allocated memory.
1204 *
1205 * XXX
1206 * This should be removed if the new virtual memory system allows us to
1207 * easily make the buffers contiguous in kernel memory and if that's
1208 * fast enough.
1209 */
1210
1211 #define CHUNKSIZE MAXPHYS
1212
1213 if(devvp==NULL)
1214 panic("devvp is NULL");
1215 for (bpp = sp->bpp,i = nblocks; i;) {
1216 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1217 cbp->b_dev = i_dev;
1218 cbp->b_flags |= B_ASYNC | B_BUSY;
1219 cbp->b_bcount = 0;
1220
1221 #ifdef DIAGNOSTIC
1222 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1223 panic("lfs_writeseg: Segment overwrite");
1224 }
1225 #endif
1226
1227 s = splbio();
1228 if(fs->lfs_iocount >= LFS_THROTTLE) {
1229 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1230 }
1231 ++fs->lfs_iocount;
1232 #ifdef LFS_TRACK_IOS
1233 for(j=0;j<LFS_THROTTLE;j++) {
1234 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1235 fs->lfs_pending[j] = cbp->b_blkno;
1236 break;
1237 }
1238 }
1239 #endif /* LFS_TRACK_IOS */
1240 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1241 bp = *bpp;
1242
1243 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1244 break;
1245
1246 /*
1247 * Fake buffers from the cleaner are marked as B_INVAL.
1248 * We need to copy the data from user space rather than
1249 * from the buffer indicated.
1250 * XXX == what do I do on an error?
1251 */
1252 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1253 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1254 panic("lfs_writeseg: copyin failed [2]");
1255 } else
1256 bcopy(bp->b_data, p, bp->b_bcount);
1257 p += bp->b_bcount;
1258 cbp->b_bcount += bp->b_bcount;
1259 if (bp->b_flags & B_LOCKED) {
1260 --locked_queue_count;
1261 locked_queue_bytes -= bp->b_bufsize;
1262 }
1263 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1264 B_LOCKED | B_GATHERED);
1265 vn = bp->b_vp;
1266 if (bp->b_flags & B_CALL) {
1267 /* if B_CALL, it was created with newbuf */
1268 lfs_freebuf(bp);
1269 } else {
1270 bremfree(bp);
1271 bp->b_flags |= B_DONE;
1272 if(vn)
1273 reassignbuf(bp, vn);
1274 brelse(bp);
1275 }
1276 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1277 bp->b_flags &= ~B_NEEDCOMMIT;
1278 wakeup(bp);
1279 }
1280
1281 bpp++;
1282
1283 /*
1284 * If this is the last block for this vnode, but
1285 * there are other blocks on its dirty list,
1286 * set IN_MODIFIED/IN_CLEANING depending on what
1287 * sort of block. Only do this for our mount point,
1288 * not for, e.g., inode blocks that are attached to
1289 * the devvp.
1290 */
1291 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1292 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1293 vn->v_mount == fs->lfs_ivnode->v_mount)
1294 {
1295 ip = VTOI(vn);
1296 #ifdef DEBUG_LFS
1297 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1298 #endif
1299 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1300 fs->lfs_uinodes++;
1301 if(bp->b_flags & B_CALL)
1302 ip->i_flag |= IN_CLEANING;
1303 else
1304 ip->i_flag |= IN_MODIFIED;
1305 }
1306 }
1307 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1308 wakeup(vn);
1309 }
1310 ++cbp->b_vp->v_numoutput;
1311 splx(s);
1312 /*
1313 * XXXX This is a gross and disgusting hack. Since these
1314 * buffers are physically addressed, they hang off the
1315 * device vnode (devvp). As a result, they have no way
1316 * of getting to the LFS superblock or lfs structure to
1317 * keep track of the number of I/O's pending. So, I am
1318 * going to stuff the fs into the saveaddr field of
1319 * the buffer (yuk).
1320 */
1321 cbp->b_saveaddr = (caddr_t)fs;
1322 vop_strategy_a.a_desc = VDESC(vop_strategy);
1323 vop_strategy_a.a_bp = cbp;
1324 (strategy)(&vop_strategy_a);
1325 }
1326 /*
1327 * XXX
1328 * Vinvalbuf can move locked buffers off the locked queue
1329 * and we have no way of knowing about this. So, after
1330 * doing a big write, we recalculate how many buffers are
1331 * really still left on the locked queue.
1332 */
1333 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1334 wakeup(&locked_queue_count);
1335 if(lfs_dostats) {
1336 ++lfs_stats.psegwrites;
1337 lfs_stats.blocktot += nblocks - 1;
1338 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1339 ++lfs_stats.psyncwrites;
1340 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1341 ++lfs_stats.pcleanwrites;
1342 lfs_stats.cleanblocks += nblocks - 1;
1343 }
1344 }
1345 return (lfs_initseg(fs) || do_again);
1346 }
1347
1348 void
1349 lfs_writesuper(fs, daddr)
1350 struct lfs *fs;
1351 daddr_t daddr;
1352 {
1353 struct buf *bp;
1354 dev_t i_dev;
1355 int (*strategy) __P((void *));
1356 int s;
1357 struct vop_strategy_args vop_strategy_a;
1358
1359 #ifdef LFS_CANNOT_ROLLFW
1360 /*
1361 * If we can write one superblock while another is in
1362 * progress, we risk not having a complete checkpoint if we crash.
1363 * So, block here if a superblock write is in progress.
1364 */
1365 s = splbio();
1366 while(fs->lfs_sbactive) {
1367 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1368 }
1369 fs->lfs_sbactive = daddr;
1370 splx(s);
1371 #endif
1372 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1373 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1374
1375 /* Set timestamp of this version of the superblock */
1376 fs->lfs_tstamp = time.tv_sec;
1377
1378 /* Checksum the superblock and copy it into a buffer. */
1379 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1380 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1381 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1382
1383 bp->b_dev = i_dev;
1384 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1385 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1386 bp->b_iodone = lfs_supercallback;
1387 /* XXX KS - same nasty hack as above */
1388 bp->b_saveaddr = (caddr_t)fs;
1389
1390 vop_strategy_a.a_desc = VDESC(vop_strategy);
1391 vop_strategy_a.a_bp = bp;
1392 s = splbio();
1393 ++bp->b_vp->v_numoutput;
1394 splx(s);
1395 (strategy)(&vop_strategy_a);
1396 }
1397
1398 /*
1399 * Logical block number match routines used when traversing the dirty block
1400 * chain.
1401 */
1402 int
1403 lfs_match_fake(fs, bp)
1404 struct lfs *fs;
1405 struct buf *bp;
1406 {
1407 return (bp->b_flags & B_CALL);
1408 }
1409
1410 int
1411 lfs_match_data(fs, bp)
1412 struct lfs *fs;
1413 struct buf *bp;
1414 {
1415 return (bp->b_lblkno >= 0);
1416 }
1417
1418 int
1419 lfs_match_indir(fs, bp)
1420 struct lfs *fs;
1421 struct buf *bp;
1422 {
1423 int lbn;
1424
1425 lbn = bp->b_lblkno;
1426 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1427 }
1428
1429 int
1430 lfs_match_dindir(fs, bp)
1431 struct lfs *fs;
1432 struct buf *bp;
1433 {
1434 int lbn;
1435
1436 lbn = bp->b_lblkno;
1437 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1438 }
1439
1440 int
1441 lfs_match_tindir(fs, bp)
1442 struct lfs *fs;
1443 struct buf *bp;
1444 {
1445 int lbn;
1446
1447 lbn = bp->b_lblkno;
1448 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1449 }
1450
1451 /*
1452 * XXX - The only buffers that are going to hit these functions are the
1453 * segment write blocks, or the segment summaries, or the superblocks.
1454 *
1455 * All of the above are created by lfs_newbuf, and so do not need to be
1456 * released via brelse.
1457 */
1458 void
1459 lfs_callback(bp)
1460 struct buf *bp;
1461 {
1462 struct lfs *fs;
1463 #ifdef LFS_TRACK_IOS
1464 int j;
1465 #endif
1466
1467 fs = (struct lfs *)bp->b_saveaddr;
1468 #ifdef DIAGNOSTIC
1469 if (fs->lfs_iocount == 0)
1470 panic("lfs_callback: zero iocount\n");
1471 #endif
1472 if (--fs->lfs_iocount < LFS_THROTTLE)
1473 wakeup(&fs->lfs_iocount);
1474 #ifdef LFS_TRACK_IOS
1475 for(j=0;j<LFS_THROTTLE;j++) {
1476 if(fs->lfs_pending[j]==bp->b_blkno) {
1477 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1478 wakeup(&(fs->lfs_pending[j]));
1479 break;
1480 }
1481 }
1482 #endif /* LFS_TRACK_IOS */
1483
1484 lfs_freebuf(bp);
1485 }
1486
1487 void
1488 lfs_supercallback(bp)
1489 struct buf *bp;
1490 {
1491 #ifdef LFS_CANNOT_ROLLFW
1492 struct lfs *fs;
1493
1494 fs = (struct lfs *)bp->b_saveaddr;
1495 fs->lfs_sbactive=NULL;
1496 wakeup(&fs->lfs_sbactive);
1497 #endif
1498 lfs_freebuf(bp);
1499 }
1500
1501 /*
1502 * Shellsort (diminishing increment sort) from Data Structures and
1503 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1504 * see also Knuth Vol. 3, page 84. The increments are selected from
1505 * formula (8), page 95. Roughly O(N^3/2).
1506 */
1507 /*
1508 * This is our own private copy of shellsort because we want to sort
1509 * two parallel arrays (the array of buffer pointers and the array of
1510 * logical block numbers) simultaneously. Note that we cast the array
1511 * of logical block numbers to a unsigned in this routine so that the
1512 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1513 */
1514
1515 void
1516 lfs_shellsort(bp_array, lb_array, nmemb)
1517 struct buf **bp_array;
1518 ufs_daddr_t *lb_array;
1519 register int nmemb;
1520 {
1521 static int __rsshell_increments[] = { 4, 1, 0 };
1522 register int incr, *incrp, t1, t2;
1523 struct buf *bp_temp;
1524 u_long lb_temp;
1525
1526 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1527 for (t1 = incr; t1 < nmemb; ++t1)
1528 for (t2 = t1 - incr; t2 >= 0;)
1529 if (lb_array[t2] > lb_array[t2 + incr]) {
1530 lb_temp = lb_array[t2];
1531 lb_array[t2] = lb_array[t2 + incr];
1532 lb_array[t2 + incr] = lb_temp;
1533 bp_temp = bp_array[t2];
1534 bp_array[t2] = bp_array[t2 + incr];
1535 bp_array[t2 + incr] = bp_temp;
1536 t2 -= incr;
1537 } else
1538 break;
1539 }
1540
1541 /*
1542 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1543 */
1544 int
1545 lfs_vref(vp)
1546 register struct vnode *vp;
1547 {
1548 /*
1549 * If we return 1 here during a flush, we risk vinvalbuf() not
1550 * being able to flush all of the pages from this vnode, which
1551 * will cause it to panic. So, return 0 if a flush is in progress.
1552 */
1553 if (vp->v_flag & VXLOCK) {
1554 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1555 return 0;
1556 }
1557 return(1);
1558 }
1559 return (vget(vp, 0));
1560 }
1561
1562 /*
1563 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1564 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1565 */
1566 void
1567 lfs_vunref(vp)
1568 register struct vnode *vp;
1569 {
1570 /*
1571 * Analogous to lfs_vref, if the node is flushing, fake it.
1572 */
1573 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1574 return;
1575 }
1576
1577 simple_lock(&vp->v_interlock);
1578 #ifdef DIAGNOSTIC
1579 if(vp->v_usecount<=0) {
1580 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1581 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1582 panic("lfs_vunref: v_usecount<0");
1583 }
1584 #endif
1585 vp->v_usecount--;
1586 if (vp->v_usecount > 0) {
1587 simple_unlock(&vp->v_interlock);
1588 return;
1589 }
1590 #ifdef DIAGNOSTIC
1591 if(VOP_ISLOCKED(vp))
1592 panic("lfs_vunref: vnode locked");
1593 #endif
1594 /*
1595 * insert at tail of LRU list
1596 */
1597 simple_lock(&vnode_free_list_slock);
1598 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1599 simple_unlock(&vnode_free_list_slock);
1600 simple_unlock(&vp->v_interlock);
1601 }
1602
1603 /*
1604 * We use this when we have vnodes that were loaded in solely for cleaning.
1605 * There is no reason to believe that these vnodes will be referenced again
1606 * soon, since the cleaning process is unrelated to normal filesystem
1607 * activity. Putting cleaned vnodes at the tail of the list has the effect
1608 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1609 * cleaning at the head of the list, instead.
1610 */
1611 void
1612 lfs_vunref_head(vp)
1613 register struct vnode *vp;
1614 {
1615 simple_lock(&vp->v_interlock);
1616 #ifdef DIAGNOSTIC
1617 if(vp->v_usecount==0) {
1618 panic("lfs_vunref: v_usecount<0");
1619 }
1620 #endif
1621 vp->v_usecount--;
1622 if (vp->v_usecount > 0) {
1623 simple_unlock(&vp->v_interlock);
1624 return;
1625 }
1626 #ifdef DIAGNOSTIC
1627 if(VOP_ISLOCKED(vp))
1628 panic("lfs_vunref_head: vnode locked");
1629 #endif
1630 /*
1631 * insert at head of LRU list
1632 */
1633 simple_lock(&vnode_free_list_slock);
1634 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1635 simple_unlock(&vnode_free_list_slock);
1636 simple_unlock(&vp->v_interlock);
1637 }
1638
1639