lfs_segment.c revision 1.23.2.9 1 /* $NetBSD: lfs_segment.c,v 1.23.2.9 2000/01/15 18:01:45 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104 extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
105
106 /*
107 * Determine if it's OK to start a partial in this segment, or if we need
108 * to go on to a new segment.
109 */
110 #define LFS_PARTIAL_FITS(fs) \
111 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
112 1 << (fs)->lfs_fsbtodb)
113
114 void lfs_callback __P((struct buf *));
115 int lfs_gather __P((struct lfs *, struct segment *,
116 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
117 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
118 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
119 int lfs_match_fake __P((struct lfs *, struct buf *));
120 int lfs_match_data __P((struct lfs *, struct buf *));
121 int lfs_match_dindir __P((struct lfs *, struct buf *));
122 int lfs_match_indir __P((struct lfs *, struct buf *));
123 int lfs_match_tindir __P((struct lfs *, struct buf *));
124 void lfs_newseg __P((struct lfs *));
125 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
126 void lfs_supercallback __P((struct buf *));
127 void lfs_updatemeta __P((struct segment *));
128 int lfs_vref __P((struct vnode *));
129 void lfs_vunref __P((struct vnode *));
130 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
131 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
132 int lfs_writeseg __P((struct lfs *, struct segment *));
133 void lfs_writesuper __P((struct lfs *, daddr_t));
134 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
135 struct segment *sp, int dirops));
136
137 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
138 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
139 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
140 int lfs_dirvcount = 0; /* # active dirops */
141
142 /* Statistics Counters */
143 int lfs_dostats = 1;
144 struct lfs_stats lfs_stats;
145
146 /* op values to lfs_writevnodes */
147 #define VN_REG 0
148 #define VN_DIROP 1
149 #define VN_EMPTY 2
150 #define VN_CLEAN 3
151
152 #define LFS_MAX_ACTIVE 10
153
154 /*
155 * XXX KS - Set modification time on the Ifile, so the cleaner can
156 * read the fs mod time off of it. We don't set IN_UPDATE here,
157 * since we don't really need this to be flushed to disk (and in any
158 * case that wouldn't happen to the Ifile until we checkpoint).
159 */
160 void
161 lfs_imtime(fs)
162 struct lfs *fs;
163 {
164 struct timespec ts;
165 struct inode *ip;
166
167 TIMEVAL_TO_TIMESPEC(&time, &ts);
168 ip = VTOI(fs->lfs_ivnode);
169 ip->i_ffs_mtime = ts.tv_sec;
170 ip->i_ffs_mtimensec = ts.tv_nsec;
171 }
172
173 /*
174 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
175 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
176 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
177 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
178 */
179
180 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
181 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
182 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
183
184 int
185 lfs_vflush(vp)
186 struct vnode *vp;
187 {
188 struct inode *ip;
189 struct lfs *fs;
190 struct segment *sp;
191 struct buf *bp, *nbp, *tbp, *tnbp;
192 int error, s;
193
194 ip = VTOI(vp);
195 fs = VFSTOUFS(vp->v_mount)->um_lfs;
196
197 if(ip->i_flag & IN_CLEANING) {
198 #ifdef DEBUG_LFS
199 ivndebug(vp,"vflush/in_cleaning");
200 #endif
201 ip->i_flag &= ~IN_CLEANING;
202 if(ip->i_flag & IN_MODIFIED) {
203 fs->lfs_uinodes--;
204 } else
205 ip->i_flag |= IN_MODIFIED;
206 /*
207 * Toss any cleaning buffers that have real counterparts
208 * to avoid losing new data
209 */
210 s = splbio();
211 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
212 nbp = bp->b_vnbufs.le_next;
213 if(bp->b_flags & B_CALL) {
214 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
215 tbp=tnbp)
216 {
217 tnbp = tbp->b_vnbufs.le_next;
218 if(tbp->b_vp == bp->b_vp
219 && tbp->b_lblkno == bp->b_lblkno
220 && tbp != bp)
221 {
222 lfs_freebuf(bp);
223 }
224 }
225 }
226 }
227 splx(s);
228 }
229
230 /* If the node is being written, wait until that is done */
231 if(WRITEINPROG(vp)) {
232 #ifdef DEBUG_LFS
233 ivndebug(vp,"vflush/writeinprog");
234 #endif
235 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
236 }
237
238 /* Protect against VXLOCK deadlock in vinvalbuf() */
239 lfs_seglock(fs, SEGM_SYNC);
240
241 /* If we're supposed to flush a freed inode, just toss it */
242 /* XXX - seglock, so these buffers can't be gathered, right? */
243 if(ip->i_ffs_mode == 0) {
244 printf("lfs_vflush: ino %d is freed, not flushing\n",
245 ip->i_number);
246 s = splbio();
247 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
248 nbp = bp->b_vnbufs.le_next;
249 /* Copied from lfs_writeseg */
250 if (bp->b_flags & B_CALL) {
251 /* if B_CALL, it was created with newbuf */
252 lfs_freebuf(bp);
253 } else {
254 bremfree(bp);
255 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
256 B_LOCKED | B_GATHERED);
257 bp->b_flags |= B_DONE;
258 reassignbuf(bp, vp);
259 brelse(bp);
260 }
261 }
262 splx(s);
263 if(ip->i_flag & IN_CLEANING)
264 fs->lfs_uinodes--;
265 if(ip->i_flag & IN_MODIFIED)
266 fs->lfs_uinodes--;
267 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
268 printf("lfs_vflush: done not flushing ino %d\n",
269 ip->i_number);
270 lfs_segunlock(fs);
271 return 0;
272 }
273
274 SET_FLUSHING(fs,vp);
275 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
276 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
277 CLR_FLUSHING(fs,vp);
278 lfs_segunlock(fs);
279 return error;
280 }
281 sp = fs->lfs_sp;
282
283 if (vp->v_dirtyblkhd.lh_first == NULL) {
284 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
285 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
286 #ifdef DEBUG_LFS
287 ivndebug(vp,"vflush/clean");
288 #endif
289 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
290 }
291 else if(lfs_dostats) {
292 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
293 ++lfs_stats.vflush_invoked;
294 #ifdef DEBUG_LFS
295 ivndebug(vp,"vflush");
296 #endif
297 }
298
299 #ifdef DIAGNOSTIC
300 /* XXX KS This actually can happen right now, though it shouldn't(?) */
301 if(vp->v_flag & VDIROP) {
302 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
303 /* panic("VDIROP being flushed...this can\'t happen"); */
304 }
305 if(vp->v_usecount<0) {
306 printf("usecount=%ld\n",vp->v_usecount);
307 panic("lfs_vflush: usecount<0");
308 }
309 #endif
310
311 do {
312 do {
313 if (vp->v_dirtyblkhd.lh_first != NULL)
314 lfs_writefile(fs, sp, vp);
315 } while (lfs_writeinode(fs, sp, ip));
316 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
317
318 if(lfs_dostats) {
319 ++lfs_stats.nwrites;
320 if (sp->seg_flags & SEGM_SYNC)
321 ++lfs_stats.nsync_writes;
322 if (sp->seg_flags & SEGM_CKP)
323 ++lfs_stats.ncheckpoints;
324 }
325 lfs_segunlock(fs);
326
327 CLR_FLUSHING(fs,vp);
328 return (0);
329 }
330
331 #ifdef DEBUG_LFS_VERBOSE
332 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
333 #else
334 # define vndebug(vp,str)
335 #endif
336
337 int
338 lfs_writevnodes(fs, mp, sp, op)
339 struct lfs *fs;
340 struct mount *mp;
341 struct segment *sp;
342 int op;
343 {
344 struct inode *ip;
345 struct vnode *vp;
346 int inodes_written=0, only_cleaning;
347
348 #ifndef LFS_NO_BACKVP_HACK
349 /* BEGIN HACK */
350 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
351 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
352 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
353
354 /* Find last vnode. */
355 loop: for (vp = mp->mnt_vnodelist.lh_first;
356 vp && vp->v_mntvnodes.le_next != NULL;
357 vp = vp->v_mntvnodes.le_next);
358 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
359 #else
360 loop:
361 for (vp = mp->mnt_vnodelist.lh_first;
362 vp != NULL;
363 vp = vp->v_mntvnodes.le_next) {
364 #endif
365 /*
366 * If the vnode that we are about to sync is no longer
367 * associated with this mount point, start over.
368 */
369 if (vp->v_mount != mp)
370 goto loop;
371
372 ip = VTOI(vp);
373 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
374 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
375 vndebug(vp,"dirop");
376 continue;
377 }
378
379 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
380 vndebug(vp,"empty");
381 continue;
382 }
383
384 if (vp->v_type == VNON) {
385 continue;
386 }
387
388 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
389 && vp != fs->lfs_flushvp
390 && !(ip->i_flag & IN_CLEANING)) {
391 vndebug(vp,"cleaning");
392 continue;
393 }
394
395 if (lfs_vref(vp)) {
396 vndebug(vp,"vref");
397 continue;
398 }
399
400 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
401 if(WRITEINPROG(vp)) {
402 lfs_vunref(vp);
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/writeinprog");
405 #endif
406 continue;
407 }
408 #endif
409 only_cleaning = 0;
410 /*
411 * Write the inode/file if dirty and it's not the
412 * the IFILE.
413 */
414 if ((ip->i_flag &
415 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
416 vp->v_dirtyblkhd.lh_first != NULL))
417 {
418 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
419
420 if(ip->i_number != LFS_IFILE_INUM
421 && vp->v_dirtyblkhd.lh_first != NULL)
422 {
423 lfs_writefile(fs, sp, vp);
424 }
425 if(vp->v_dirtyblkhd.lh_first != NULL) {
426 if(WRITEINPROG(vp)) {
427 #ifdef DEBUG_LFS
428 ivndebug(vp,"writevnodes/write2");
429 #endif
430 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
431 #ifdef DEBUG_LFS
432 printf("<%d>",ip->i_number);
433 #endif
434 ip->i_flag |= IN_MODIFIED;
435 ++fs->lfs_uinodes;
436 }
437 }
438 (void) lfs_writeinode(fs, sp, ip);
439 inodes_written++;
440 }
441
442 if(vp->v_flag & VDIROP) {
443 --lfs_dirvcount;
444 vp->v_flag &= ~VDIROP;
445 wakeup(&lfs_dirvcount);
446 lfs_vunref(vp);
447 }
448
449 if(lfs_clean_vnhead && only_cleaning)
450 lfs_vunref_head(vp);
451 else
452 lfs_vunref(vp);
453 }
454 return inodes_written;
455 }
456
457 int
458 lfs_segwrite(mp, flags)
459 struct mount *mp;
460 int flags; /* Do a checkpoint. */
461 {
462 struct buf *bp;
463 struct inode *ip;
464 struct lfs *fs;
465 struct segment *sp;
466 struct vnode *vp;
467 SEGUSE *segusep;
468 ufs_daddr_t ibno;
469 int do_ckp, error, i;
470 int writer_set = 0;
471 int need_unlock = 0;
472
473 fs = VFSTOUFS(mp)->um_lfs;
474
475 lfs_imtime(fs);
476
477 /*
478 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
479 * clean segments, wait until cleaner writes.
480 */
481 if(!(flags & SEGM_CLEAN)
482 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
483 {
484 do {
485 if (fs->lfs_nclean <= MIN_FREE_SEGS
486 || fs->lfs_avail <= 0)
487 {
488 wakeup(&lfs_allclean_wakeup);
489 wakeup(&fs->lfs_nextseg);
490 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
491 "lfs_avail", 0);
492 if (error) {
493 return (error);
494 }
495 }
496 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
497 }
498
499 /*
500 * Allocate a segment structure and enough space to hold pointers to
501 * the maximum possible number of buffers which can be described in a
502 * single summary block.
503 */
504 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
505 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
506 sp = fs->lfs_sp;
507
508 /*
509 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
510 * in which case we have to flush *all* buffers off of this vnode.
511 * We don't care about other nodes, but write any non-dirop nodes
512 * anyway in anticipation of another getnewvnode().
513 *
514 * If we're cleaning we only write cleaning and ifile blocks, and
515 * no dirops, since otherwise we'd risk corruption in a crash.
516 */
517 if(sp->seg_flags & SEGM_CLEAN)
518 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
519 else {
520 lfs_writevnodes(fs, mp, sp, VN_REG);
521 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
522 while(fs->lfs_dirops)
523 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
524 "lfs writer", 0)))
525 {
526 free(sp->bpp, M_SEGMENT);
527 free(sp, M_SEGMENT);
528 return (error);
529 }
530 fs->lfs_writer++;
531 writer_set=1;
532 lfs_writevnodes(fs, mp, sp, VN_DIROP);
533 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
534 }
535 }
536
537 /*
538 * If we are doing a checkpoint, mark everything since the
539 * last checkpoint as no longer ACTIVE.
540 */
541 if (do_ckp) {
542 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
543 --ibno >= fs->lfs_cleansz; ) {
544 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
545
546 panic("lfs_segwrite: ifile read");
547 segusep = (SEGUSE *)bp->b_data;
548 for (i = fs->lfs_sepb; i--; segusep++)
549 segusep->su_flags &= ~SEGUSE_ACTIVE;
550
551 /* But the current segment is still ACTIVE */
552 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
553 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
554 error = VOP_BWRITE(bp);
555 }
556 }
557
558 if (do_ckp || fs->lfs_doifile) {
559 redo:
560 vp = fs->lfs_ivnode;
561 /*
562 * Depending on the circumstances of our calling, the ifile
563 * inode might be locked. If it is, and if it is locked by
564 * us, we should VREF instead of vget here.
565 */
566 need_unlock = 0;
567 if(VOP_ISLOCKED(vp)
568 && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
569 VREF(vp);
570 } else {
571 while (vget(vp, LK_EXCLUSIVE))
572 continue;
573 need_unlock = 1;
574 }
575 ip = VTOI(vp);
576 if (vp->v_dirtyblkhd.lh_first != NULL)
577 lfs_writefile(fs, sp, vp);
578 (void)lfs_writeinode(fs, sp, ip);
579
580 /* Only vput if we used vget() above. */
581 if(need_unlock)
582 vput(vp);
583 else
584 vrele(vp);
585
586 if (lfs_writeseg(fs, sp) && do_ckp)
587 goto redo;
588 } else {
589 (void) lfs_writeseg(fs, sp);
590 }
591
592 /*
593 * If the I/O count is non-zero, sleep until it reaches zero.
594 * At the moment, the user's process hangs around so we can
595 * sleep.
596 */
597 fs->lfs_doifile = 0;
598 if(writer_set && --fs->lfs_writer==0)
599 wakeup(&fs->lfs_dirops);
600
601 if(lfs_dostats) {
602 ++lfs_stats.nwrites;
603 if (sp->seg_flags & SEGM_SYNC)
604 ++lfs_stats.nsync_writes;
605 if (sp->seg_flags & SEGM_CKP)
606 ++lfs_stats.ncheckpoints;
607 }
608 lfs_segunlock(fs);
609 return (0);
610 }
611
612 /*
613 * Write the dirty blocks associated with a vnode.
614 */
615 void
616 lfs_writefile(fs, sp, vp)
617 struct lfs *fs;
618 struct segment *sp;
619 struct vnode *vp;
620 {
621 struct buf *bp;
622 struct finfo *fip;
623 IFILE *ifp;
624
625
626 if (sp->seg_bytes_left < fs->lfs_bsize ||
627 sp->sum_bytes_left < sizeof(struct finfo))
628 (void) lfs_writeseg(fs, sp);
629
630 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
631 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
632
633 if(vp->v_flag & VDIROP)
634 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
635
636 fip = sp->fip;
637 fip->fi_nblocks = 0;
638 fip->fi_ino = VTOI(vp)->i_number;
639 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
640 fip->fi_version = ifp->if_version;
641 brelse(bp);
642
643 if(sp->seg_flags & SEGM_CLEAN)
644 {
645 lfs_gather(fs, sp, vp, lfs_match_fake);
646 /*
647 * For a file being flushed, we need to write *all* blocks.
648 * This means writing the cleaning blocks first, and then
649 * immediately following with any non-cleaning blocks.
650 * The same is true of the Ifile since checkpoints assume
651 * that all valid Ifile blocks are written.
652 */
653 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
654 lfs_gather(fs, sp, vp, lfs_match_data);
655 } else
656 lfs_gather(fs, sp, vp, lfs_match_data);
657
658 /*
659 * It may not be necessary to write the meta-data blocks at this point,
660 * as the roll-forward recovery code should be able to reconstruct the
661 * list.
662 *
663 * We have to write them anyway, though, under two conditions: (1) the
664 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
665 * checkpointing.
666 */
667 if(lfs_writeindir
668 || IS_FLUSHING(fs,vp)
669 || (sp->seg_flags & SEGM_CKP))
670 {
671 lfs_gather(fs, sp, vp, lfs_match_indir);
672 lfs_gather(fs, sp, vp, lfs_match_dindir);
673 lfs_gather(fs, sp, vp, lfs_match_tindir);
674 }
675 fip = sp->fip;
676 if (fip->fi_nblocks != 0) {
677 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
678 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
679 sp->start_lbp = &sp->fip->fi_blocks[0];
680 } else {
681 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
682 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
683 }
684 }
685
686 int
687 lfs_writeinode(fs, sp, ip)
688 struct lfs *fs;
689 struct segment *sp;
690 struct inode *ip;
691 {
692 struct buf *bp, *ibp;
693 IFILE *ifp;
694 SEGUSE *sup;
695 ufs_daddr_t daddr;
696 ino_t ino;
697 int error, i, ndx;
698 int redo_ifile = 0;
699 struct timespec ts;
700 int gotblk=0;
701
702 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
703 return(0);
704
705 /* Allocate a new inode block if necessary. */
706 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
707 /* Allocate a new segment if necessary. */
708 if (sp->seg_bytes_left < fs->lfs_bsize ||
709 sp->sum_bytes_left < sizeof(ufs_daddr_t))
710 (void) lfs_writeseg(fs, sp);
711
712 /* Get next inode block. */
713 daddr = fs->lfs_offset;
714 fs->lfs_offset += fsbtodb(fs, 1);
715 sp->ibp = *sp->cbpp++ =
716 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
717 gotblk++;
718
719 /* Zero out inode numbers */
720 for (i = 0; i < INOPB(fs); ++i)
721 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
722
723 ++sp->start_bpp;
724 fs->lfs_avail -= fsbtodb(fs, 1);
725 /* Set remaining space counters. */
726 sp->seg_bytes_left -= fs->lfs_bsize;
727 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
728 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
729 sp->ninodes / INOPB(fs) - 1;
730 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
731 }
732
733 /* Update the inode times and copy the inode onto the inode page. */
734 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
735 --fs->lfs_uinodes;
736 TIMEVAL_TO_TIMESPEC(&time, &ts);
737 LFS_ITIMES(ip, &ts, &ts, &ts);
738
739 if(ip->i_flag & IN_CLEANING)
740 ip->i_flag &= ~IN_CLEANING;
741 else
742 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
743
744 /*
745 * If this is the Ifile, and we've already written the Ifile in this
746 * partial segment, just overwrite it (it's not on disk yet) and
747 * continue.
748 *
749 * XXX we know that the bp that we get the second time around has
750 * already been gathered.
751 */
752 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
753 *(sp->idp) = ip->i_din.ffs_din;
754 return 0;
755 }
756
757 bp = sp->ibp;
758 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
759 ip->i_din.ffs_din;
760
761 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
762 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
763 if(gotblk) {
764 bp->b_flags |= B_LOCKED;
765 brelse(bp);
766 }
767
768 /* Increment inode count in segment summary block. */
769 ++((SEGSUM *)(sp->segsum))->ss_ninos;
770
771 /* If this page is full, set flag to allocate a new page. */
772 if (++sp->ninodes % INOPB(fs) == 0)
773 sp->ibp = NULL;
774
775 /*
776 * If updating the ifile, update the super-block. Update the disk
777 * address and access times for this inode in the ifile.
778 */
779 ino = ip->i_number;
780 if (ino == LFS_IFILE_INUM) {
781 daddr = fs->lfs_idaddr;
782 fs->lfs_idaddr = bp->b_blkno;
783 } else {
784 LFS_IENTRY(ifp, fs, ino, ibp);
785 daddr = ifp->if_daddr;
786 ifp->if_daddr = bp->b_blkno;
787 #ifdef LFS_DEBUG_NEXTFREE
788 if(ino > 3 && ifp->if_nextfree) {
789 vprint("lfs_writeinode",ITOV(ip));
790 printf("lfs_writeinode: updating free ino %d\n",
791 ip->i_number);
792 }
793 #endif
794 error = VOP_BWRITE(ibp);
795 }
796
797 /*
798 * No need to update segment usage if there was no former inode address
799 * or if the last inode address is in the current partial segment.
800 */
801 if (daddr != LFS_UNUSED_DADDR &&
802 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
803 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
804 #ifdef DIAGNOSTIC
805 if (sup->su_nbytes < DINODE_SIZE) {
806 /* XXX -- Change to a panic. */
807 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
808 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
809 panic("lfs_writeinode: negative bytes");
810 sup->su_nbytes = DINODE_SIZE;
811 }
812 #endif
813 sup->su_nbytes -= DINODE_SIZE;
814 redo_ifile =
815 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
816 error = VOP_BWRITE(bp);
817 }
818 return (redo_ifile);
819 }
820
821 int
822 lfs_gatherblock(sp, bp, sptr)
823 struct segment *sp;
824 struct buf *bp;
825 int *sptr;
826 {
827 struct lfs *fs;
828 int version;
829
830 /*
831 * If full, finish this segment. We may be doing I/O, so
832 * release and reacquire the splbio().
833 */
834 #ifdef DIAGNOSTIC
835 if (sp->vp == NULL)
836 panic ("lfs_gatherblock: Null vp in segment");
837 #endif
838 fs = sp->fs;
839 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
840 sp->seg_bytes_left < bp->b_bcount) {
841 if (sptr)
842 splx(*sptr);
843 lfs_updatemeta(sp);
844
845 version = sp->fip->fi_version;
846 (void) lfs_writeseg(fs, sp);
847
848 sp->fip->fi_version = version;
849 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
850 /* Add the current file to the segment summary. */
851 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
852 sp->sum_bytes_left -=
853 sizeof(struct finfo) - sizeof(ufs_daddr_t);
854
855 if (sptr)
856 *sptr = splbio();
857 return(1);
858 }
859
860 #ifdef DEBUG
861 if(bp->b_flags & B_GATHERED) {
862 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
863 sp->fip->fi_ino, bp->b_lblkno);
864 return(0);
865 }
866 #endif
867 /* Insert into the buffer list, update the FINFO block. */
868 bp->b_flags |= B_GATHERED;
869 *sp->cbpp++ = bp;
870 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
871
872 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
873 sp->seg_bytes_left -= bp->b_bcount;
874 return(0);
875 }
876
877 int
878 lfs_gather(fs, sp, vp, match)
879 struct lfs *fs;
880 struct segment *sp;
881 struct vnode *vp;
882 int (*match) __P((struct lfs *, struct buf *));
883 {
884 struct buf *bp;
885 int s, count=0;
886
887 sp->vp = vp;
888 s = splbio();
889
890 #ifndef LFS_NO_BACKBUF_HACK
891 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
892 #else /* LFS_NO_BACKBUF_HACK */
893 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
894 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
895 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
896 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
897 /* Find last buffer. */
898 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
899 bp = bp->b_vnbufs.le_next);
900 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
901 #endif /* LFS_NO_BACKBUF_HACK */
902 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
903 continue;
904 if(vp->v_type == VBLK) {
905 /* For block devices, just write the blocks. */
906 /* XXX Do we really need to even do this? */
907 #ifdef DEBUG_LFS
908 if(count==0)
909 printf("BLK(");
910 printf(".");
911 #endif
912 /* Get the block before bwrite, so we don't corrupt the free list */
913 bp->b_flags |= B_BUSY;
914 bremfree(bp);
915 bwrite(bp);
916 } else {
917 #ifdef DIAGNOSTIC
918 if (!(bp->b_flags & B_DELWRI))
919 panic("lfs_gather: bp not B_DELWRI");
920 if (!(bp->b_flags & B_LOCKED)) {
921 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
922 VOP_PRINT(bp->b_vp);
923 panic("lfs_gather: bp not B_LOCKED");
924 }
925 #endif
926 if (lfs_gatherblock(sp, bp, &s)) {
927 goto loop;
928 }
929 }
930 count++;
931 }
932 splx(s);
933 #ifdef DEBUG_LFS
934 if(vp->v_type == VBLK && count)
935 printf(")\n");
936 #endif
937 lfs_updatemeta(sp);
938 sp->vp = NULL;
939 return count;
940 }
941
942 /*
943 * Update the metadata that points to the blocks listed in the FINFO
944 * array.
945 */
946 void
947 lfs_updatemeta(sp)
948 struct segment *sp;
949 {
950 SEGUSE *sup;
951 struct buf *bp;
952 struct lfs *fs;
953 struct vnode *vp;
954 struct indir a[NIADDR + 2], *ap;
955 struct inode *ip;
956 ufs_daddr_t daddr, lbn, off;
957 int error, i, nblocks, num;
958
959 vp = sp->vp;
960 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
961 if (nblocks < 0)
962 panic("This is a bad thing\n");
963 if (vp == NULL || nblocks == 0)
964 return;
965
966 /* Sort the blocks. */
967 /*
968 * XXX KS - We have to sort even if the blocks come from the
969 * cleaner, because there might be other pending blocks on the
970 * same inode...and if we don't sort, and there are fragments
971 * present, blocks may be written in the wrong place.
972 */
973 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
974 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
975
976 /*
977 * Record the length of the last block in case it's a fragment.
978 * If there are indirect blocks present, they sort last. An
979 * indirect block will be lfs_bsize and its presence indicates
980 * that you cannot have fragments.
981 */
982 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
983
984 /*
985 * Assign disk addresses, and update references to the logical
986 * block and the segment usage information.
987 */
988 fs = sp->fs;
989 for (i = nblocks; i--; ++sp->start_bpp) {
990 lbn = *sp->start_lbp++;
991
992 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
993 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
994 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
995 }
996 fs->lfs_offset +=
997 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
998 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
999 if (error)
1000 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1001 ip = VTOI(vp);
1002 switch (num) {
1003 case 0:
1004 ip->i_ffs_db[lbn] = off;
1005 break;
1006 case 1:
1007 ip->i_ffs_ib[a[0].in_off] = off;
1008 break;
1009 default:
1010 ap = &a[num - 1];
1011 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1012 panic("lfs_updatemeta: bread bno %d",
1013 ap->in_lbn);
1014 /*
1015 * Bread may create a new (indirect) block which needs
1016 * to get counted for the inode.
1017 */
1018 if (/* bp->b_blkno == -1 && */
1019 !(bp->b_flags & (B_DELWRI|B_DONE))) {
1020 ip->i_ffs_blocks += fsbtodb(fs, 1);
1021 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1022 }
1023 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1024 VOP_BWRITE(bp);
1025 }
1026 /* Update segment usage information. */
1027 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1028 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1029 #ifdef DIAGNOSTIC
1030 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1031 /* XXX -- Change to a panic. */
1032 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1033 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1034 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1035 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1036 panic("lfs_updatemeta: negative bytes");
1037 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1038 }
1039 #endif
1040 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1041 error = VOP_BWRITE(bp);
1042 }
1043 }
1044 }
1045
1046 /*
1047 * Start a new segment.
1048 */
1049 int
1050 lfs_initseg(fs)
1051 struct lfs *fs;
1052 {
1053 struct segment *sp;
1054 SEGUSE *sup;
1055 SEGSUM *ssp;
1056 struct buf *bp;
1057 int repeat;
1058
1059 sp = fs->lfs_sp;
1060
1061 repeat = 0;
1062 /* Advance to the next segment. */
1063 if (!LFS_PARTIAL_FITS(fs)) {
1064 /* Wake up any cleaning procs waiting on this file system. */
1065 wakeup(&lfs_allclean_wakeup);
1066 wakeup(&fs->lfs_nextseg);
1067 lfs_newseg(fs);
1068 repeat = 1;
1069 fs->lfs_offset = fs->lfs_curseg;
1070 sp->seg_number = datosn(fs, fs->lfs_curseg);
1071 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1072 /*
1073 * If the segment contains a superblock, update the offset
1074 * and summary address to skip over it.
1075 */
1076 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1077 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1078 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1079 sp->seg_bytes_left -= LFS_SBPAD;
1080 }
1081 brelse(bp);
1082 } else {
1083 sp->seg_number = datosn(fs, fs->lfs_curseg);
1084 sp->seg_bytes_left = (fs->lfs_dbpseg -
1085 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1086 }
1087 fs->lfs_lastpseg = fs->lfs_offset;
1088
1089 sp->fs = fs;
1090 sp->ibp = NULL;
1091 sp->idp = NULL;
1092 sp->ninodes = 0;
1093
1094 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1095 sp->cbpp = sp->bpp;
1096 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1097 fs->lfs_offset, LFS_SUMMARY_SIZE);
1098 sp->segsum = (*sp->cbpp)->b_data;
1099 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1100 sp->start_bpp = ++sp->cbpp;
1101 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1102
1103 /* Set point to SEGSUM, initialize it. */
1104 ssp = sp->segsum;
1105 ssp->ss_next = fs->lfs_nextseg;
1106 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1107 ssp->ss_magic = SS_MAGIC;
1108
1109 /* Set pointer to first FINFO, initialize it. */
1110 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1111 sp->fip->fi_nblocks = 0;
1112 sp->start_lbp = &sp->fip->fi_blocks[0];
1113 sp->fip->fi_lastlength = 0;
1114
1115 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1116 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1117
1118 return(repeat);
1119 }
1120
1121 /*
1122 * Return the next segment to write.
1123 */
1124 void
1125 lfs_newseg(fs)
1126 struct lfs *fs;
1127 {
1128 CLEANERINFO *cip;
1129 SEGUSE *sup;
1130 struct buf *bp;
1131 int curseg, isdirty, sn;
1132
1133 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1134 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1135 sup->su_nbytes = 0;
1136 sup->su_nsums = 0;
1137 sup->su_ninos = 0;
1138 (void) VOP_BWRITE(bp);
1139
1140 LFS_CLEANERINFO(cip, fs, bp);
1141 --cip->clean;
1142 ++cip->dirty;
1143 fs->lfs_nclean = cip->clean;
1144 (void) VOP_BWRITE(bp);
1145
1146 fs->lfs_lastseg = fs->lfs_curseg;
1147 fs->lfs_curseg = fs->lfs_nextseg;
1148 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1149 sn = (sn + 1) % fs->lfs_nseg;
1150 if (sn == curseg)
1151 panic("lfs_nextseg: no clean segments");
1152 LFS_SEGENTRY(sup, fs, sn, bp);
1153 isdirty = sup->su_flags & SEGUSE_DIRTY;
1154 brelse(bp);
1155 if (!isdirty)
1156 break;
1157 }
1158
1159 ++fs->lfs_nactive;
1160 fs->lfs_nextseg = sntoda(fs, sn);
1161 if(lfs_dostats) {
1162 ++lfs_stats.segsused;
1163 }
1164 }
1165
1166 int
1167 lfs_writeseg(fs, sp)
1168 struct lfs *fs;
1169 struct segment *sp;
1170 {
1171 extern int locked_queue_count;
1172 extern long locked_queue_bytes;
1173 struct buf **bpp, *bp, *cbp;
1174 SEGUSE *sup;
1175 SEGSUM *ssp;
1176 dev_t i_dev;
1177 u_long *datap, *dp;
1178 int do_again, i, nblocks, s;
1179 #ifdef LFS_TRACK_IOS
1180 int j;
1181 #endif
1182 int (*strategy)__P((void *));
1183 struct vop_strategy_args vop_strategy_a;
1184 u_short ninos;
1185 struct vnode *devvp;
1186 char *p;
1187 struct vnode *vn;
1188 struct inode *ip;
1189 #if defined(DEBUG) && defined(LFS_PROPELLER)
1190 static int propeller;
1191 char propstring[4] = "-\\|/";
1192
1193 printf("%c\b",propstring[propeller++]);
1194 if(propeller==4)
1195 propeller = 0;
1196 #endif
1197
1198 /*
1199 * If there are no buffers other than the segment summary to write
1200 * and it is not a checkpoint, don't do anything. On a checkpoint,
1201 * even if there aren't any buffers, you need to write the superblock.
1202 */
1203 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1204 return (0);
1205
1206 #ifdef DEBUG_LFS
1207 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1208 #endif
1209 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1210 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1211
1212 /* Update the segment usage information. */
1213 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1214
1215 /* Loop through all blocks, except the segment summary. */
1216 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1217 if((*bpp)->b_vp != devvp)
1218 sup->su_nbytes += (*bpp)->b_bcount;
1219 }
1220
1221 ssp = (SEGSUM *)sp->segsum;
1222
1223 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1224 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1225 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1226 sup->su_lastmod = time.tv_sec;
1227 sup->su_ninos += ninos;
1228 ++sup->su_nsums;
1229
1230 do_again = !(bp->b_flags & B_GATHERED);
1231 (void)VOP_BWRITE(bp);
1232 /*
1233 * Compute checksum across data and then across summary; the first
1234 * block (the summary block) is skipped. Set the create time here
1235 * so that it's guaranteed to be later than the inode mod times.
1236 *
1237 * XXX
1238 * Fix this to do it inline, instead of malloc/copy.
1239 */
1240 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1241 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1242 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1243 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1244 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1245 } else {
1246 if( !((*bpp)->b_flags & B_CALL) ) {
1247 /*
1248 * Before we record data for a checksm,
1249 * make sure the data won't change in between
1250 * the checksum calculation and the write,
1251 * by marking the buffer B_BUSY. It will
1252 * be freed later by brelse().
1253 */
1254 again:
1255 s = splbio();
1256 if((*bpp)->b_flags & B_BUSY) {
1257 #ifdef DEBUG
1258 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1259 VTOI((*bpp)->b_vp)->i_number,
1260 bp->b_lblkno);
1261 #endif
1262 (*bpp)->b_flags |= B_WANTED;
1263 tsleep((*bpp), (PRIBIO + 1),
1264 "lfs_writeseg", 0);
1265 splx(s);
1266 goto again;
1267 }
1268 (*bpp)->b_flags |= B_BUSY;
1269 splx(s);
1270 }
1271 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1272 }
1273 }
1274 ssp->ss_create = time.tv_sec;
1275 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1276 ssp->ss_sumsum =
1277 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1278 free(datap, M_SEGMENT);
1279 #ifdef DIAGNOSTIC
1280 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1281 panic("lfs_writeseg: No diskspace for summary");
1282 #endif
1283 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1284
1285 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1286
1287 /*
1288 * When we simply write the blocks we lose a rotation for every block
1289 * written. To avoid this problem, we allocate memory in chunks, copy
1290 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1291 * largest size I/O devices can handle.
1292 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1293 * and brelse the buffer (which will move them to the LRU list). Add
1294 * the B_CALL flag to the buffer header so we can count I/O's for the
1295 * checkpoints and so we can release the allocated memory.
1296 *
1297 * XXX
1298 * This should be removed if the new virtual memory system allows us to
1299 * easily make the buffers contiguous in kernel memory and if that's
1300 * fast enough.
1301 */
1302
1303 #define CHUNKSIZE MAXPHYS
1304
1305 if(devvp==NULL)
1306 panic("devvp is NULL");
1307 for (bpp = sp->bpp,i = nblocks; i;) {
1308 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1309 cbp->b_dev = i_dev;
1310 cbp->b_flags |= B_ASYNC | B_BUSY;
1311 cbp->b_bcount = 0;
1312
1313 #ifdef DIAGNOSTIC
1314 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1315 panic("lfs_writeseg: Segment overwrite");
1316 }
1317 #endif
1318
1319 s = splbio();
1320 if(fs->lfs_iocount >= LFS_THROTTLE) {
1321 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1322 }
1323 ++fs->lfs_iocount;
1324 #ifdef LFS_TRACK_IOS
1325 for(j=0;j<LFS_THROTTLE;j++) {
1326 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1327 fs->lfs_pending[j] = cbp->b_blkno;
1328 break;
1329 }
1330 }
1331 #endif /* LFS_TRACK_IOS */
1332 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1333 bp = *bpp;
1334
1335 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1336 break;
1337
1338 /*
1339 * Fake buffers from the cleaner are marked as B_INVAL.
1340 * We need to copy the data from user space rather than
1341 * from the buffer indicated.
1342 * XXX == what do I do on an error?
1343 */
1344 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1345 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1346 panic("lfs_writeseg: copyin failed [2]");
1347 } else
1348 bcopy(bp->b_data, p, bp->b_bcount);
1349 p += bp->b_bcount;
1350 cbp->b_bcount += bp->b_bcount;
1351 if (bp->b_flags & B_LOCKED) {
1352 --locked_queue_count;
1353 locked_queue_bytes -= bp->b_bufsize;
1354 }
1355 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1356 B_LOCKED | B_GATHERED);
1357 vn = bp->b_vp;
1358 if (bp->b_flags & B_CALL) {
1359 /* if B_CALL, it was created with newbuf */
1360 lfs_freebuf(bp);
1361 } else {
1362 bremfree(bp);
1363 bp->b_flags |= B_DONE;
1364 if(vn)
1365 reassignbuf(bp, vn);
1366 brelse(bp);
1367 }
1368 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1369 bp->b_flags &= ~B_NEEDCOMMIT;
1370 wakeup(bp);
1371 }
1372
1373 bpp++;
1374
1375 /*
1376 * If this is the last block for this vnode, but
1377 * there are other blocks on its dirty list,
1378 * set IN_MODIFIED/IN_CLEANING depending on what
1379 * sort of block. Only do this for our mount point,
1380 * not for, e.g., inode blocks that are attached to
1381 * the devvp.
1382 */
1383 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1384 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1385 vn->v_mount == fs->lfs_ivnode->v_mount)
1386 {
1387 ip = VTOI(vn);
1388 #ifdef DEBUG_LFS
1389 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1390 #endif
1391 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1392 fs->lfs_uinodes++;
1393 if(bp->b_flags & B_CALL)
1394 ip->i_flag |= IN_CLEANING;
1395 else
1396 ip->i_flag |= IN_MODIFIED;
1397 }
1398 }
1399 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1400 wakeup(vn);
1401 }
1402 ++cbp->b_vp->v_numoutput;
1403 splx(s);
1404 /*
1405 * XXXX This is a gross and disgusting hack. Since these
1406 * buffers are physically addressed, they hang off the
1407 * device vnode (devvp). As a result, they have no way
1408 * of getting to the LFS superblock or lfs structure to
1409 * keep track of the number of I/O's pending. So, I am
1410 * going to stuff the fs into the saveaddr field of
1411 * the buffer (yuk).
1412 */
1413 cbp->b_saveaddr = (caddr_t)fs;
1414 vop_strategy_a.a_desc = VDESC(vop_strategy);
1415 vop_strategy_a.a_bp = cbp;
1416 (strategy)(&vop_strategy_a);
1417 }
1418 /*
1419 * XXX
1420 * Vinvalbuf can move locked buffers off the locked queue
1421 * and we have no way of knowing about this. So, after
1422 * doing a big write, we recalculate how many buffers are
1423 * really still left on the locked queue.
1424 */
1425 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1426 wakeup(&locked_queue_count);
1427 if(lfs_dostats) {
1428 ++lfs_stats.psegwrites;
1429 lfs_stats.blocktot += nblocks - 1;
1430 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1431 ++lfs_stats.psyncwrites;
1432 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1433 ++lfs_stats.pcleanwrites;
1434 lfs_stats.cleanblocks += nblocks - 1;
1435 }
1436 }
1437 return (lfs_initseg(fs) || do_again);
1438 }
1439
1440 void
1441 lfs_writesuper(fs, daddr)
1442 struct lfs *fs;
1443 daddr_t daddr;
1444 {
1445 struct buf *bp;
1446 dev_t i_dev;
1447 int (*strategy) __P((void *));
1448 int s;
1449 struct vop_strategy_args vop_strategy_a;
1450
1451 #ifdef LFS_CANNOT_ROLLFW
1452 /*
1453 * If we can write one superblock while another is in
1454 * progress, we risk not having a complete checkpoint if we crash.
1455 * So, block here if a superblock write is in progress.
1456 */
1457 s = splbio();
1458 while(fs->lfs_sbactive) {
1459 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1460 }
1461 fs->lfs_sbactive = daddr;
1462 splx(s);
1463 #endif
1464 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1465 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1466
1467 /* Set timestamp of this version of the superblock */
1468 fs->lfs_tstamp = time.tv_sec;
1469
1470 /* Checksum the superblock and copy it into a buffer. */
1471 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1472 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1473 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1474
1475 bp->b_dev = i_dev;
1476 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1477 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1478 bp->b_iodone = lfs_supercallback;
1479 /* XXX KS - same nasty hack as above */
1480 bp->b_saveaddr = (caddr_t)fs;
1481
1482 vop_strategy_a.a_desc = VDESC(vop_strategy);
1483 vop_strategy_a.a_bp = bp;
1484 s = splbio();
1485 ++bp->b_vp->v_numoutput;
1486 splx(s);
1487 (strategy)(&vop_strategy_a);
1488 }
1489
1490 /*
1491 * Logical block number match routines used when traversing the dirty block
1492 * chain.
1493 */
1494 int
1495 lfs_match_fake(fs, bp)
1496 struct lfs *fs;
1497 struct buf *bp;
1498 {
1499 return (bp->b_flags & B_CALL);
1500 }
1501
1502 int
1503 lfs_match_data(fs, bp)
1504 struct lfs *fs;
1505 struct buf *bp;
1506 {
1507 return (bp->b_lblkno >= 0);
1508 }
1509
1510 int
1511 lfs_match_indir(fs, bp)
1512 struct lfs *fs;
1513 struct buf *bp;
1514 {
1515 int lbn;
1516
1517 lbn = bp->b_lblkno;
1518 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1519 }
1520
1521 int
1522 lfs_match_dindir(fs, bp)
1523 struct lfs *fs;
1524 struct buf *bp;
1525 {
1526 int lbn;
1527
1528 lbn = bp->b_lblkno;
1529 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1530 }
1531
1532 int
1533 lfs_match_tindir(fs, bp)
1534 struct lfs *fs;
1535 struct buf *bp;
1536 {
1537 int lbn;
1538
1539 lbn = bp->b_lblkno;
1540 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1541 }
1542
1543 /*
1544 * XXX - The only buffers that are going to hit these functions are the
1545 * segment write blocks, or the segment summaries, or the superblocks.
1546 *
1547 * All of the above are created by lfs_newbuf, and so do not need to be
1548 * released via brelse.
1549 */
1550 void
1551 lfs_callback(bp)
1552 struct buf *bp;
1553 {
1554 struct lfs *fs;
1555 #ifdef LFS_TRACK_IOS
1556 int j;
1557 #endif
1558
1559 fs = (struct lfs *)bp->b_saveaddr;
1560 #ifdef DIAGNOSTIC
1561 if (fs->lfs_iocount == 0)
1562 panic("lfs_callback: zero iocount\n");
1563 #endif
1564 if (--fs->lfs_iocount < LFS_THROTTLE)
1565 wakeup(&fs->lfs_iocount);
1566 #ifdef LFS_TRACK_IOS
1567 for(j=0;j<LFS_THROTTLE;j++) {
1568 if(fs->lfs_pending[j]==bp->b_blkno) {
1569 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1570 wakeup(&(fs->lfs_pending[j]));
1571 break;
1572 }
1573 }
1574 #endif /* LFS_TRACK_IOS */
1575
1576 lfs_freebuf(bp);
1577 }
1578
1579 void
1580 lfs_supercallback(bp)
1581 struct buf *bp;
1582 {
1583 #ifdef LFS_CANNOT_ROLLFW
1584 struct lfs *fs;
1585
1586 fs = (struct lfs *)bp->b_saveaddr;
1587 fs->lfs_sbactive=NULL;
1588 wakeup(&fs->lfs_sbactive);
1589 #endif
1590 lfs_freebuf(bp);
1591 }
1592
1593 /*
1594 * Shellsort (diminishing increment sort) from Data Structures and
1595 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1596 * see also Knuth Vol. 3, page 84. The increments are selected from
1597 * formula (8), page 95. Roughly O(N^3/2).
1598 */
1599 /*
1600 * This is our own private copy of shellsort because we want to sort
1601 * two parallel arrays (the array of buffer pointers and the array of
1602 * logical block numbers) simultaneously. Note that we cast the array
1603 * of logical block numbers to a unsigned in this routine so that the
1604 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1605 */
1606
1607 void
1608 lfs_shellsort(bp_array, lb_array, nmemb)
1609 struct buf **bp_array;
1610 ufs_daddr_t *lb_array;
1611 register int nmemb;
1612 {
1613 static int __rsshell_increments[] = { 4, 1, 0 };
1614 register int incr, *incrp, t1, t2;
1615 struct buf *bp_temp;
1616 u_long lb_temp;
1617
1618 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1619 for (t1 = incr; t1 < nmemb; ++t1)
1620 for (t2 = t1 - incr; t2 >= 0;)
1621 if (lb_array[t2] > lb_array[t2 + incr]) {
1622 lb_temp = lb_array[t2];
1623 lb_array[t2] = lb_array[t2 + incr];
1624 lb_array[t2 + incr] = lb_temp;
1625 bp_temp = bp_array[t2];
1626 bp_array[t2] = bp_array[t2 + incr];
1627 bp_array[t2 + incr] = bp_temp;
1628 t2 -= incr;
1629 } else
1630 break;
1631 }
1632
1633 /*
1634 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1635 */
1636 int
1637 lfs_vref(vp)
1638 register struct vnode *vp;
1639 {
1640 /*
1641 * If we return 1 here during a flush, we risk vinvalbuf() not
1642 * being able to flush all of the pages from this vnode, which
1643 * will cause it to panic. So, return 0 if a flush is in progress.
1644 */
1645 if (vp->v_flag & VXLOCK) {
1646 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1647 return 0;
1648 }
1649 return(1);
1650 }
1651 return (vget(vp, 0));
1652 }
1653
1654 /*
1655 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1656 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1657 */
1658 void
1659 lfs_vunref(vp)
1660 register struct vnode *vp;
1661 {
1662 /*
1663 * Analogous to lfs_vref, if the node is flushing, fake it.
1664 */
1665 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1666 return;
1667 }
1668
1669 simple_lock(&vp->v_interlock);
1670 #ifdef DIAGNOSTIC
1671 if(vp->v_usecount<=0) {
1672 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1673 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1674 panic("lfs_vunref: v_usecount<0");
1675 }
1676 #endif
1677 vp->v_usecount--;
1678 if (vp->v_usecount > 0) {
1679 simple_unlock(&vp->v_interlock);
1680 return;
1681 }
1682 #ifdef DIAGNOSTIC
1683 if(VOP_ISLOCKED(vp))
1684 panic("lfs_vunref: vnode locked");
1685 #endif
1686 /*
1687 * insert at tail of LRU list
1688 */
1689 simple_lock(&vnode_free_list_slock);
1690 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1691 simple_unlock(&vnode_free_list_slock);
1692 simple_unlock(&vp->v_interlock);
1693 }
1694
1695 /*
1696 * We use this when we have vnodes that were loaded in solely for cleaning.
1697 * There is no reason to believe that these vnodes will be referenced again
1698 * soon, since the cleaning process is unrelated to normal filesystem
1699 * activity. Putting cleaned vnodes at the tail of the list has the effect
1700 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1701 * cleaning at the head of the list, instead.
1702 */
1703 void
1704 lfs_vunref_head(vp)
1705 register struct vnode *vp;
1706 {
1707 simple_lock(&vp->v_interlock);
1708 #ifdef DIAGNOSTIC
1709 if(vp->v_usecount==0) {
1710 panic("lfs_vunref: v_usecount<0");
1711 }
1712 #endif
1713 vp->v_usecount--;
1714 if (vp->v_usecount > 0) {
1715 simple_unlock(&vp->v_interlock);
1716 return;
1717 }
1718 #ifdef DIAGNOSTIC
1719 if(VOP_ISLOCKED(vp))
1720 panic("lfs_vunref_head: vnode locked");
1721 #endif
1722 /*
1723 * insert at head of LRU list
1724 */
1725 simple_lock(&vnode_free_list_slock);
1726 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1727 simple_unlock(&vnode_free_list_slock);
1728 simple_unlock(&vp->v_interlock);
1729 }
1730
1731