lfs_segment.c revision 1.230.2.2 1 /* $NetBSD: lfs_segment.c,v 1.230.2.2 2014/05/18 17:46:21 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.230.2.2 2014/05/18 17:46:21 rmind Exp $");
64
65 #define _VFS_VNODE_PRIVATE /* XXX: check for VI_MARKER, this has to go */
66
67 #ifdef DEBUG
68 # define vndebug(vp, str) do { \
69 if (VTOI(vp)->i_flag & IN_CLEANING) \
70 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
71 VTOI(vp)->i_number, (str), op)); \
72 } while(0)
73 #else
74 # define vndebug(vp, str)
75 #endif
76 #define ivndebug(vp, str) \
77 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
78
79 #if defined(_KERNEL_OPT)
80 #include "opt_ddb.h"
81 #endif
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/namei.h>
86 #include <sys/kernel.h>
87 #include <sys/resourcevar.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/buf.h>
91 #include <sys/proc.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/kauth.h>
95 #include <sys/syslog.h>
96
97 #include <miscfs/specfs/specdev.h>
98 #include <miscfs/fifofs/fifo.h>
99
100 #include <ufs/lfs/ulfs_inode.h>
101 #include <ufs/lfs/ulfsmount.h>
102 #include <ufs/lfs/ulfs_extern.h>
103
104 #include <ufs/lfs/lfs.h>
105 #include <ufs/lfs/lfs_kernel.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 #include <uvm/uvm.h>
109 #include <uvm/uvm_extern.h>
110
111 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
112
113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
114 static void lfs_free_aiodone(struct buf *);
115 static void lfs_super_aiodone(struct buf *);
116 static void lfs_cluster_aiodone(struct buf *);
117 static void lfs_cluster_callback(struct buf *);
118
119 /*
120 * Determine if it's OK to start a partial in this segment, or if we need
121 * to go on to a new segment.
122 */
123 #define LFS_PARTIAL_FITS(fs) \
124 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
125 (fs)->lfs_frag)
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 fs->lfs_nclean < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 /* XXX ondisk32 */
140 void lfs_shellsort(struct buf **, int32_t *, int, int);
141 void lfs_supercallback(struct buf *);
142 void lfs_updatemeta(struct segment *);
143 void lfs_writesuper(struct lfs *, daddr_t);
144 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
145 struct segment *sp, int dirops);
146
147 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
148 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
149 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
150 int lfs_dirvcount = 0; /* # active dirops */
151
152 /* Statistics Counters */
153 int lfs_dostats = 1;
154 struct lfs_stats lfs_stats;
155
156 /* op values to lfs_writevnodes */
157 #define VN_REG 0
158 #define VN_DIROP 1
159 #define VN_EMPTY 2
160 #define VN_CLEAN 3
161
162 /*
163 * XXX KS - Set modification time on the Ifile, so the cleaner can
164 * read the fs mod time off of it. We don't set IN_UPDATE here,
165 * since we don't really need this to be flushed to disk (and in any
166 * case that wouldn't happen to the Ifile until we checkpoint).
167 */
168 void
169 lfs_imtime(struct lfs *fs)
170 {
171 struct timespec ts;
172 struct inode *ip;
173
174 ASSERT_MAYBE_SEGLOCK(fs);
175 vfs_timestamp(&ts);
176 ip = VTOI(fs->lfs_ivnode);
177 ip->i_ffs1_mtime = ts.tv_sec;
178 ip->i_ffs1_mtimensec = ts.tv_nsec;
179 }
180
181 /*
182 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
183 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
184 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
185 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
186 */
187
188 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
189
190 int
191 lfs_vflush(struct vnode *vp)
192 {
193 struct inode *ip;
194 struct lfs *fs;
195 struct segment *sp;
196 struct buf *bp, *nbp, *tbp, *tnbp;
197 int error;
198 int flushed;
199 int relock;
200
201 ip = VTOI(vp);
202 fs = VFSTOULFS(vp->v_mount)->um_lfs;
203 relock = 0;
204
205 top:
206 KASSERT(mutex_owned(vp->v_interlock) == false);
207 KASSERT(mutex_owned(&lfs_lock) == false);
208 KASSERT(mutex_owned(&bufcache_lock) == false);
209 ASSERT_NO_SEGLOCK(fs);
210 if (ip->i_flag & IN_CLEANING) {
211 ivndebug(vp,"vflush/in_cleaning");
212 mutex_enter(&lfs_lock);
213 LFS_CLR_UINO(ip, IN_CLEANING);
214 LFS_SET_UINO(ip, IN_MODIFIED);
215 mutex_exit(&lfs_lock);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 mutex_enter(vp->v_interlock);
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 for (off = lfs_lblktosize(fs, bp->b_lblkno);
238 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
239 off += PAGE_SIZE) {
240 pg = uvm_pagelookup(&vp->v_uobj, off);
241 if (pg == NULL)
242 continue;
243 if ((pg->flags & PG_CLEAN) == 0 ||
244 pmap_is_modified(pg)) {
245 fs->lfs_avail += lfs_btofsb(fs,
246 bp->b_bcount);
247 wakeup(&fs->lfs_avail);
248 mutex_exit(vp->v_interlock);
249 lfs_freebuf(fs, bp);
250 mutex_enter(vp->v_interlock);
251 bp = NULL;
252 break;
253 }
254 }
255 }
256 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
257 tbp = tnbp)
258 {
259 tnbp = LIST_NEXT(tbp, b_vnbufs);
260 if (tbp->b_vp == bp->b_vp
261 && tbp->b_lblkno == bp->b_lblkno
262 && tbp != bp)
263 {
264 fs->lfs_avail += lfs_btofsb(fs,
265 bp->b_bcount);
266 wakeup(&fs->lfs_avail);
267 mutex_exit(vp->v_interlock);
268 lfs_freebuf(fs, bp);
269 mutex_enter(vp->v_interlock);
270 bp = NULL;
271 break;
272 }
273 }
274 }
275 } else {
276 mutex_enter(vp->v_interlock);
277 }
278
279 /* If the node is being written, wait until that is done */
280 while (WRITEINPROG(vp)) {
281 ivndebug(vp,"vflush/writeinprog");
282 cv_wait(&vp->v_cv, vp->v_interlock);
283 }
284 error = vdead_check(vp, VDEAD_NOWAIT);
285 mutex_exit(vp->v_interlock);
286
287 /* Protect against deadlock in vinvalbuf() */
288 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
289 if (error != 0) {
290 fs->lfs_reclino = ip->i_number;
291 }
292
293 /* If we're supposed to flush a freed inode, just toss it */
294 if (ip->i_lfs_iflags & LFSI_DELETED) {
295 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
296 ip->i_number));
297 /* Drain v_numoutput */
298 mutex_enter(vp->v_interlock);
299 while (vp->v_numoutput > 0) {
300 cv_wait(&vp->v_cv, vp->v_interlock);
301 }
302 KASSERT(vp->v_numoutput == 0);
303 mutex_exit(vp->v_interlock);
304
305 mutex_enter(&bufcache_lock);
306 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
307 nbp = LIST_NEXT(bp, b_vnbufs);
308
309 KASSERT((bp->b_flags & B_GATHERED) == 0);
310 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
311 fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
312 wakeup(&fs->lfs_avail);
313 }
314 /* Copied from lfs_writeseg */
315 if (bp->b_iodone != NULL) {
316 mutex_exit(&bufcache_lock);
317 biodone(bp);
318 mutex_enter(&bufcache_lock);
319 } else {
320 bremfree(bp);
321 LFS_UNLOCK_BUF(bp);
322 mutex_enter(vp->v_interlock);
323 bp->b_flags &= ~(B_READ | B_GATHERED);
324 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
325 bp->b_error = 0;
326 reassignbuf(bp, vp);
327 mutex_exit(vp->v_interlock);
328 brelse(bp, 0);
329 }
330 }
331 mutex_exit(&bufcache_lock);
332 LFS_CLR_UINO(ip, IN_CLEANING);
333 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
334 ip->i_flag &= ~IN_ALLMOD;
335 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
336 ip->i_number));
337 lfs_segunlock(fs);
338
339 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
340
341 return 0;
342 }
343
344 fs->lfs_flushvp = vp;
345 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
346 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
347 fs->lfs_flushvp = NULL;
348 KASSERT(fs->lfs_flushvp_fakevref == 0);
349 lfs_segunlock(fs);
350
351 /* Make sure that any pending buffers get written */
352 mutex_enter(vp->v_interlock);
353 while (vp->v_numoutput > 0) {
354 cv_wait(&vp->v_cv, vp->v_interlock);
355 }
356 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
357 KASSERT(vp->v_numoutput == 0);
358 mutex_exit(vp->v_interlock);
359
360 return error;
361 }
362 sp = fs->lfs_sp;
363
364 flushed = 0;
365 if (VPISEMPTY(vp)) {
366 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
367 ++flushed;
368 } else if ((ip->i_flag & IN_CLEANING) &&
369 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
370 ivndebug(vp,"vflush/clean");
371 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
372 ++flushed;
373 } else if (lfs_dostats) {
374 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
375 ++lfs_stats.vflush_invoked;
376 ivndebug(vp,"vflush");
377 }
378
379 #ifdef DIAGNOSTIC
380 if (vp->v_uflag & VU_DIROP) {
381 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
382 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
383 }
384 #endif
385
386 do {
387 #ifdef DEBUG
388 int loopcount = 0;
389 #endif
390 do {
391 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
392 relock = lfs_writefile(fs, sp, vp);
393 if (relock && vp != fs->lfs_ivnode) {
394 /*
395 * Might have to wait for the
396 * cleaner to run; but we're
397 * still not done with this vnode.
398 * XXX we can do better than this.
399 */
400 KDASSERT(ip->i_number != LFS_IFILE_INUM);
401 lfs_writeinode(fs, sp, ip);
402 mutex_enter(&lfs_lock);
403 LFS_SET_UINO(ip, IN_MODIFIED);
404 mutex_exit(&lfs_lock);
405 lfs_writeseg(fs, sp);
406 lfs_segunlock(fs);
407 lfs_segunlock_relock(fs);
408 goto top;
409 }
410 }
411 /*
412 * If we begin a new segment in the middle of writing
413 * the Ifile, it creates an inconsistent checkpoint,
414 * since the Ifile information for the new segment
415 * is not up-to-date. Take care of this here by
416 * sending the Ifile through again in case there
417 * are newly dirtied blocks. But wait, there's more!
418 * This second Ifile write could *also* cross a segment
419 * boundary, if the first one was large. The second
420 * one is guaranteed to be no more than 8 blocks,
421 * though (two segment blocks and supporting indirects)
422 * so the third write *will not* cross the boundary.
423 */
424 if (vp == fs->lfs_ivnode) {
425 lfs_writefile(fs, sp, vp);
426 lfs_writefile(fs, sp, vp);
427 }
428 #ifdef DEBUG
429 if (++loopcount > 2)
430 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
431 #endif
432 } while (lfs_writeinode(fs, sp, ip));
433 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
434
435 if (lfs_dostats) {
436 ++lfs_stats.nwrites;
437 if (sp->seg_flags & SEGM_SYNC)
438 ++lfs_stats.nsync_writes;
439 if (sp->seg_flags & SEGM_CKP)
440 ++lfs_stats.ncheckpoints;
441 }
442 /*
443 * If we were called from somewhere that has already held the seglock
444 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
445 * the write to complete because we are still locked.
446 * Since lfs_vflush() must return the vnode with no dirty buffers,
447 * we must explicitly wait, if that is the case.
448 *
449 * We compare the iocount against 1, not 0, because it is
450 * artificially incremented by lfs_seglock().
451 */
452 mutex_enter(&lfs_lock);
453 if (fs->lfs_seglock > 1) {
454 while (fs->lfs_iocount > 1)
455 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
456 "lfs_vflush", 0, &lfs_lock);
457 }
458 mutex_exit(&lfs_lock);
459
460 lfs_segunlock(fs);
461
462 /* Wait for these buffers to be recovered by aiodoned */
463 mutex_enter(vp->v_interlock);
464 while (vp->v_numoutput > 0) {
465 cv_wait(&vp->v_cv, vp->v_interlock);
466 }
467 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
468 KASSERT(vp->v_numoutput == 0);
469 mutex_exit(vp->v_interlock);
470
471 fs->lfs_flushvp = NULL;
472 KASSERT(fs->lfs_flushvp_fakevref == 0);
473
474 return (0);
475 }
476
477 int
478 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
479 {
480 struct inode *ip;
481 struct vnode *vp;
482 int inodes_written = 0, only_cleaning;
483 int error = 0;
484
485 ASSERT_SEGLOCK(fs);
486 loop:
487 /* start at last (newest) vnode. */
488 mutex_enter(&mntvnode_lock);
489 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
490 /*
491 * If the vnode that we are about to sync is no longer
492 * associated with this mount point, start over.
493 */
494 if (vp->v_mount != mp) {
495 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
496 /*
497 * After this, pages might be busy
498 * due to our own previous putpages.
499 * Start actual segment write here to avoid deadlock.
500 * If we were just writing one segment and we've done
501 * that, break out.
502 */
503 mutex_exit(&mntvnode_lock);
504 if (lfs_writeseg(fs, sp) &&
505 (sp->seg_flags & SEGM_SINGLE) &&
506 fs->lfs_curseg != fs->lfs_startseg) {
507 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
508 break;
509 }
510 goto loop;
511 }
512
513 mutex_enter(vp->v_interlock);
514 if (vp->v_type == VNON || (vp->v_iflag & VI_MARKER) ||
515 vdead_check(vp, VDEAD_NOWAIT) != 0) {
516 mutex_exit(vp->v_interlock);
517 continue;
518 }
519
520 ip = VTOI(vp);
521 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
522 (op != VN_DIROP && op != VN_CLEAN &&
523 (vp->v_uflag & VU_DIROP))) {
524 mutex_exit(vp->v_interlock);
525 vndebug(vp,"dirop");
526 continue;
527 }
528
529 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
530 mutex_exit(vp->v_interlock);
531 vndebug(vp,"empty");
532 continue;
533 }
534
535 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
536 && vp != fs->lfs_flushvp
537 && !(ip->i_flag & IN_CLEANING)) {
538 mutex_exit(vp->v_interlock);
539 vndebug(vp,"cleaning");
540 continue;
541 }
542
543 mutex_exit(&mntvnode_lock);
544 if (lfs_vref(vp)) {
545 vndebug(vp,"vref");
546 mutex_enter(&mntvnode_lock);
547 continue;
548 }
549
550 only_cleaning = 0;
551 /*
552 * Write the inode/file if dirty and it's not the IFILE.
553 */
554 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
555 only_cleaning =
556 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
557
558 if (ip->i_number != LFS_IFILE_INUM) {
559 error = lfs_writefile(fs, sp, vp);
560 if (error) {
561 lfs_vunref(vp);
562 if (error == EAGAIN) {
563 /*
564 * This error from lfs_putpages
565 * indicates we need to drop
566 * the segment lock and start
567 * over after the cleaner has
568 * had a chance to run.
569 */
570 lfs_writeinode(fs, sp, ip);
571 lfs_writeseg(fs, sp);
572 if (!VPISEMPTY(vp) &&
573 !WRITEINPROG(vp) &&
574 !(ip->i_flag & IN_ALLMOD)) {
575 mutex_enter(&lfs_lock);
576 LFS_SET_UINO(ip, IN_MODIFIED);
577 mutex_exit(&lfs_lock);
578 }
579 mutex_enter(&mntvnode_lock);
580 break;
581 }
582 error = 0; /* XXX not quite right */
583 mutex_enter(&mntvnode_lock);
584 continue;
585 }
586
587 if (!VPISEMPTY(vp)) {
588 if (WRITEINPROG(vp)) {
589 ivndebug(vp,"writevnodes/write2");
590 } else if (!(ip->i_flag & IN_ALLMOD)) {
591 mutex_enter(&lfs_lock);
592 LFS_SET_UINO(ip, IN_MODIFIED);
593 mutex_exit(&lfs_lock);
594 }
595 }
596 (void) lfs_writeinode(fs, sp, ip);
597 inodes_written++;
598 }
599 }
600
601 if (lfs_clean_vnhead && only_cleaning)
602 lfs_vunref_head(vp);
603 else
604 lfs_vunref(vp);
605
606 mutex_enter(&mntvnode_lock);
607 }
608 mutex_exit(&mntvnode_lock);
609 return error;
610 }
611
612 /*
613 * Do a checkpoint.
614 */
615 int
616 lfs_segwrite(struct mount *mp, int flags)
617 {
618 struct buf *bp;
619 struct inode *ip;
620 struct lfs *fs;
621 struct segment *sp;
622 struct vnode *vp;
623 SEGUSE *segusep;
624 int do_ckp, did_ckp, error;
625 unsigned n, segleft, maxseg, sn, i, curseg;
626 int writer_set = 0;
627 int dirty;
628 int redo;
629 int um_error;
630
631 fs = VFSTOULFS(mp)->um_lfs;
632 ASSERT_MAYBE_SEGLOCK(fs);
633
634 if (fs->lfs_ronly)
635 return EROFS;
636
637 lfs_imtime(fs);
638
639 /*
640 * Allocate a segment structure and enough space to hold pointers to
641 * the maximum possible number of buffers which can be described in a
642 * single summary block.
643 */
644 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
645
646 /* We can't do a partial write and checkpoint at the same time. */
647 if (do_ckp)
648 flags &= ~SEGM_SINGLE;
649
650 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
651 sp = fs->lfs_sp;
652 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
653 do_ckp = 1;
654
655 /*
656 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
657 * in which case we have to flush *all* buffers off of this vnode.
658 * We don't care about other nodes, but write any non-dirop nodes
659 * anyway in anticipation of another getnewvnode().
660 *
661 * If we're cleaning we only write cleaning and ifile blocks, and
662 * no dirops, since otherwise we'd risk corruption in a crash.
663 */
664 if (sp->seg_flags & SEGM_CLEAN)
665 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
666 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
667 do {
668 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
669 if ((sp->seg_flags & SEGM_SINGLE) &&
670 fs->lfs_curseg != fs->lfs_startseg) {
671 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
672 break;
673 }
674
675 if (do_ckp || fs->lfs_dirops == 0) {
676 if (!writer_set) {
677 lfs_writer_enter(fs, "lfs writer");
678 writer_set = 1;
679 }
680 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
681 if (um_error == 0)
682 um_error = error;
683 /* In case writevnodes errored out */
684 lfs_flush_dirops(fs);
685 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
686 lfs_finalize_fs_seguse(fs);
687 }
688 if (do_ckp && um_error) {
689 lfs_segunlock_relock(fs);
690 sp = fs->lfs_sp;
691 }
692 } while (do_ckp && um_error != 0);
693 }
694
695 /*
696 * If we are doing a checkpoint, mark everything since the
697 * last checkpoint as no longer ACTIVE.
698 */
699 if (do_ckp || fs->lfs_doifile) {
700 segleft = fs->lfs_nseg;
701 curseg = 0;
702 for (n = 0; n < fs->lfs_segtabsz; n++) {
703 dirty = 0;
704 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
705 fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
706 panic("lfs_segwrite: ifile read");
707 segusep = (SEGUSE *)bp->b_data;
708 maxseg = min(segleft, fs->lfs_sepb);
709 for (i = 0; i < maxseg; i++) {
710 sn = curseg + i;
711 if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
712 segusep->su_flags & SEGUSE_ACTIVE) {
713 segusep->su_flags &= ~SEGUSE_ACTIVE;
714 --fs->lfs_nactive;
715 ++dirty;
716 }
717 fs->lfs_suflags[fs->lfs_activesb][sn] =
718 segusep->su_flags;
719 if (fs->lfs_version > 1)
720 ++segusep;
721 else
722 segusep = (SEGUSE *)
723 ((SEGUSE_V1 *)segusep + 1);
724 }
725
726 if (dirty)
727 error = LFS_BWRITE_LOG(bp); /* Ifile */
728 else
729 brelse(bp, 0);
730 segleft -= fs->lfs_sepb;
731 curseg += fs->lfs_sepb;
732 }
733 }
734
735 KASSERT(LFS_SEGLOCK_HELD(fs));
736
737 did_ckp = 0;
738 if (do_ckp || fs->lfs_doifile) {
739 vp = fs->lfs_ivnode;
740 #ifdef DEBUG
741 int loopcount = 0;
742 #endif
743 do {
744 #ifdef DEBUG
745 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
746 #endif
747 mutex_enter(&lfs_lock);
748 fs->lfs_flags &= ~LFS_IFDIRTY;
749 mutex_exit(&lfs_lock);
750
751 ip = VTOI(vp);
752
753 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
754 /*
755 * Ifile has no pages, so we don't need
756 * to check error return here.
757 */
758 lfs_writefile(fs, sp, vp);
759 /*
760 * Ensure the Ifile takes the current segment
761 * into account. See comment in lfs_vflush.
762 */
763 lfs_writefile(fs, sp, vp);
764 lfs_writefile(fs, sp, vp);
765 }
766
767 if (ip->i_flag & IN_ALLMOD)
768 ++did_ckp;
769 #if 0
770 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
771 #else
772 redo = lfs_writeinode(fs, sp, ip);
773 #endif
774 redo += lfs_writeseg(fs, sp);
775 mutex_enter(&lfs_lock);
776 redo += (fs->lfs_flags & LFS_IFDIRTY);
777 mutex_exit(&lfs_lock);
778 #ifdef DEBUG
779 if (++loopcount > 2)
780 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
781 loopcount);
782 #endif
783 } while (redo && do_ckp);
784
785 /*
786 * Unless we are unmounting, the Ifile may continue to have
787 * dirty blocks even after a checkpoint, due to changes to
788 * inodes' atime. If we're checkpointing, it's "impossible"
789 * for other parts of the Ifile to be dirty after the loop
790 * above, since we hold the segment lock.
791 */
792 mutex_enter(vp->v_interlock);
793 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
794 LFS_CLR_UINO(ip, IN_ALLMOD);
795 }
796 #ifdef DIAGNOSTIC
797 else if (do_ckp) {
798 int do_panic = 0;
799 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
800 if (bp->b_lblkno < fs->lfs_cleansz +
801 fs->lfs_segtabsz &&
802 !(bp->b_flags & B_GATHERED)) {
803 printf("ifile lbn %ld still dirty (flags %lx)\n",
804 (long)bp->b_lblkno,
805 (long)bp->b_flags);
806 ++do_panic;
807 }
808 }
809 if (do_panic)
810 panic("dirty blocks");
811 }
812 #endif
813 mutex_exit(vp->v_interlock);
814 } else {
815 (void) lfs_writeseg(fs, sp);
816 }
817
818 /* Note Ifile no longer needs to be written */
819 fs->lfs_doifile = 0;
820 if (writer_set)
821 lfs_writer_leave(fs);
822
823 /*
824 * If we didn't write the Ifile, we didn't really do anything.
825 * That means that (1) there is a checkpoint on disk and (2)
826 * nothing has changed since it was written.
827 *
828 * Take the flags off of the segment so that lfs_segunlock
829 * doesn't have to write the superblock either.
830 */
831 if (do_ckp && !did_ckp) {
832 sp->seg_flags &= ~SEGM_CKP;
833 }
834
835 if (lfs_dostats) {
836 ++lfs_stats.nwrites;
837 if (sp->seg_flags & SEGM_SYNC)
838 ++lfs_stats.nsync_writes;
839 if (sp->seg_flags & SEGM_CKP)
840 ++lfs_stats.ncheckpoints;
841 }
842 lfs_segunlock(fs);
843 return (0);
844 }
845
846 /*
847 * Write the dirty blocks associated with a vnode.
848 */
849 int
850 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
851 {
852 struct inode *ip;
853 int i, frag;
854 int error;
855
856 ASSERT_SEGLOCK(fs);
857 error = 0;
858 ip = VTOI(vp);
859
860 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
861
862 if (vp->v_uflag & VU_DIROP)
863 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
864
865 if (sp->seg_flags & SEGM_CLEAN) {
866 lfs_gather(fs, sp, vp, lfs_match_fake);
867 /*
868 * For a file being flushed, we need to write *all* blocks.
869 * This means writing the cleaning blocks first, and then
870 * immediately following with any non-cleaning blocks.
871 * The same is true of the Ifile since checkpoints assume
872 * that all valid Ifile blocks are written.
873 */
874 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
875 lfs_gather(fs, sp, vp, lfs_match_data);
876 /*
877 * Don't call VOP_PUTPAGES: if we're flushing,
878 * we've already done it, and the Ifile doesn't
879 * use the page cache.
880 */
881 }
882 } else {
883 lfs_gather(fs, sp, vp, lfs_match_data);
884 /*
885 * If we're flushing, we've already called VOP_PUTPAGES
886 * so don't do it again. Otherwise, we want to write
887 * everything we've got.
888 */
889 if (!IS_FLUSHING(fs, vp)) {
890 mutex_enter(vp->v_interlock);
891 error = VOP_PUTPAGES(vp, 0, 0,
892 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
893 }
894 }
895
896 /*
897 * It may not be necessary to write the meta-data blocks at this point,
898 * as the roll-forward recovery code should be able to reconstruct the
899 * list.
900 *
901 * We have to write them anyway, though, under two conditions: (1) the
902 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
903 * checkpointing.
904 *
905 * BUT if we are cleaning, we might have indirect blocks that refer to
906 * new blocks not being written yet, in addition to fragments being
907 * moved out of a cleaned segment. If that is the case, don't
908 * write the indirect blocks, or the finfo will have a small block
909 * in the middle of it!
910 * XXX in this case isn't the inode size wrong too?
911 */
912 frag = 0;
913 if (sp->seg_flags & SEGM_CLEAN) {
914 for (i = 0; i < ULFS_NDADDR; i++)
915 if (ip->i_lfs_fragsize[i] > 0 &&
916 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
917 ++frag;
918 }
919 #ifdef DIAGNOSTIC
920 if (frag > 1)
921 panic("lfs_writefile: more than one fragment!");
922 #endif
923 if (IS_FLUSHING(fs, vp) ||
924 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
925 lfs_gather(fs, sp, vp, lfs_match_indir);
926 lfs_gather(fs, sp, vp, lfs_match_dindir);
927 lfs_gather(fs, sp, vp, lfs_match_tindir);
928 }
929 lfs_release_finfo(fs);
930
931 return error;
932 }
933
934 /*
935 * Update segment accounting to reflect this inode's change of address.
936 */
937 static int
938 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
939 {
940 struct buf *bp;
941 daddr_t daddr;
942 IFILE *ifp;
943 SEGUSE *sup;
944 ino_t ino;
945 int redo_ifile;
946 u_int32_t sn;
947
948 redo_ifile = 0;
949
950 /*
951 * If updating the ifile, update the super-block. Update the disk
952 * address and access times for this inode in the ifile.
953 */
954 ino = ip->i_number;
955 if (ino == LFS_IFILE_INUM) {
956 daddr = fs->lfs_idaddr;
957 fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
958 } else {
959 LFS_IENTRY(ifp, fs, ino, bp);
960 daddr = ifp->if_daddr;
961 ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
962 (void)LFS_BWRITE_LOG(bp); /* Ifile */
963 }
964
965 /*
966 * If this is the Ifile and lfs_offset is set to the first block
967 * in the segment, dirty the new segment's accounting block
968 * (XXX should already be dirty?) and tell the caller to do it again.
969 */
970 if (ip->i_number == LFS_IFILE_INUM) {
971 sn = lfs_dtosn(fs, fs->lfs_offset);
972 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
973 fs->lfs_offset) {
974 LFS_SEGENTRY(sup, fs, sn, bp);
975 KASSERT(bp->b_oflags & BO_DELWRI);
976 LFS_WRITESEGENTRY(sup, fs, sn, bp);
977 /* fs->lfs_flags |= LFS_IFDIRTY; */
978 redo_ifile |= 1;
979 }
980 }
981
982 /*
983 * The inode's last address should not be in the current partial
984 * segment, except under exceptional circumstances (lfs_writevnodes
985 * had to start over, and in the meantime more blocks were written
986 * to a vnode). Both inodes will be accounted to this segment
987 * in lfs_writeseg so we need to subtract the earlier version
988 * here anyway. The segment count can temporarily dip below
989 * zero here; keep track of how many duplicates we have in
990 * "dupino" so we don't panic below.
991 */
992 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
993 ++sp->ndupino;
994 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
995 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
996 (long long)daddr, sp->ndupino));
997 }
998 /*
999 * Account the inode: it no longer belongs to its former segment,
1000 * though it will not belong to the new segment until that segment
1001 * is actually written.
1002 */
1003 if (daddr != LFS_UNUSED_DADDR) {
1004 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1005 #ifdef DIAGNOSTIC
1006 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1007 #endif
1008 LFS_SEGENTRY(sup, fs, oldsn, bp);
1009 #ifdef DIAGNOSTIC
1010 if (sup->su_nbytes +
1011 sizeof (struct ulfs1_dinode) * ndupino
1012 < sizeof (struct ulfs1_dinode)) {
1013 printf("lfs_writeinode: negative bytes "
1014 "(segment %" PRIu32 " short by %d, "
1015 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1016 ", daddr=%" PRId64 ", su_nbytes=%u, "
1017 "ndupino=%d)\n",
1018 lfs_dtosn(fs, daddr),
1019 (int)sizeof (struct ulfs1_dinode) *
1020 (1 - sp->ndupino) - sup->su_nbytes,
1021 oldsn, sp->seg_number, daddr,
1022 (unsigned int)sup->su_nbytes,
1023 sp->ndupino);
1024 panic("lfs_writeinode: negative bytes");
1025 sup->su_nbytes = sizeof (struct ulfs1_dinode);
1026 }
1027 #endif
1028 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1029 lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
1030 sup->su_nbytes -= sizeof (struct ulfs1_dinode);
1031 redo_ifile |=
1032 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1033 if (redo_ifile) {
1034 mutex_enter(&lfs_lock);
1035 fs->lfs_flags |= LFS_IFDIRTY;
1036 mutex_exit(&lfs_lock);
1037 /* Don't double-account */
1038 fs->lfs_idaddr = 0x0;
1039 }
1040 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1041 }
1042
1043 return redo_ifile;
1044 }
1045
1046 int
1047 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1048 {
1049 struct buf *bp;
1050 struct ulfs1_dinode *cdp;
1051 struct vnode *vp = ITOV(ip);
1052 daddr_t daddr;
1053 int32_t *daddrp; /* XXX ondisk32 */
1054 int i, ndx;
1055 int redo_ifile = 0;
1056 int gotblk = 0;
1057 int count;
1058
1059 ASSERT_SEGLOCK(fs);
1060 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1061 return (0);
1062
1063 /* Can't write ifile when writer is not set */
1064 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1065 (sp->seg_flags & SEGM_CLEAN));
1066
1067 /*
1068 * If this is the Ifile, see if writing it here will generate a
1069 * temporary misaccounting. If it will, do the accounting and write
1070 * the blocks, postponing the inode write until the accounting is
1071 * solid.
1072 */
1073 count = 0;
1074 while (vp == fs->lfs_ivnode) {
1075 int redo = 0;
1076
1077 if (sp->idp == NULL && sp->ibp == NULL &&
1078 (sp->seg_bytes_left < fs->lfs_ibsize ||
1079 sp->sum_bytes_left < sizeof(int32_t))) {
1080 (void) lfs_writeseg(fs, sp);
1081 continue;
1082 }
1083
1084 /* Look for dirty Ifile blocks */
1085 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1086 if (!(bp->b_flags & B_GATHERED)) {
1087 redo = 1;
1088 break;
1089 }
1090 }
1091
1092 if (redo == 0)
1093 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1094 if (redo == 0)
1095 break;
1096
1097 if (sp->idp) {
1098 sp->idp->di_inumber = 0;
1099 sp->idp = NULL;
1100 }
1101 ++count;
1102 if (count > 2)
1103 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1104 lfs_writefile(fs, sp, fs->lfs_ivnode);
1105 }
1106
1107 /* Allocate a new inode block if necessary. */
1108 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1109 sp->ibp == NULL) {
1110 /* Allocate a new segment if necessary. */
1111 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1112 sp->sum_bytes_left < sizeof(int32_t))
1113 (void) lfs_writeseg(fs, sp);
1114
1115 /* Get next inode block. */
1116 daddr = fs->lfs_offset;
1117 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
1118 sp->ibp = *sp->cbpp++ =
1119 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1120 LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
1121 gotblk++;
1122
1123 /* Zero out inode numbers */
1124 for (i = 0; i < LFS_INOPB(fs); ++i)
1125 ((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1126 0;
1127
1128 ++sp->start_bpp;
1129 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
1130 /* Set remaining space counters. */
1131 sp->seg_bytes_left -= fs->lfs_ibsize;
1132 sp->sum_bytes_left -= sizeof(int32_t);
1133 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1134 sp->ninodes / LFS_INOPB(fs) - 1;
1135 ((int32_t *)(sp->segsum))[ndx] = daddr;
1136 }
1137
1138 /* Check VU_DIROP in case there is a new file with no data blocks */
1139 if (vp->v_uflag & VU_DIROP)
1140 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1141
1142 /* Update the inode times and copy the inode onto the inode page. */
1143 /* XXX kludge --- don't redirty the ifile just to put times on it */
1144 if (ip->i_number != LFS_IFILE_INUM)
1145 LFS_ITIMES(ip, NULL, NULL, NULL);
1146
1147 /*
1148 * If this is the Ifile, and we've already written the Ifile in this
1149 * partial segment, just overwrite it (it's not on disk yet) and
1150 * continue.
1151 *
1152 * XXX we know that the bp that we get the second time around has
1153 * already been gathered.
1154 */
1155 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1156 *(sp->idp) = *ip->i_din.ffs1_din;
1157 ip->i_lfs_osize = ip->i_size;
1158 return 0;
1159 }
1160
1161 bp = sp->ibp;
1162 cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
1163 *cdp = *ip->i_din.ffs1_din;
1164
1165 /*
1166 * This inode is on its way to disk; clear its VU_DIROP status when
1167 * the write is complete.
1168 */
1169 if (vp->v_uflag & VU_DIROP) {
1170 if (!(sp->seg_flags & SEGM_CLEAN))
1171 ip->i_flag |= IN_CDIROP;
1172 else {
1173 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1174 }
1175 }
1176
1177 /*
1178 * If cleaning, link counts and directory file sizes cannot change,
1179 * since those would be directory operations---even if the file
1180 * we are writing is marked VU_DIROP we should write the old values.
1181 * If we're not cleaning, of course, update the values so we get
1182 * current values the next time we clean.
1183 */
1184 if (sp->seg_flags & SEGM_CLEAN) {
1185 if (vp->v_uflag & VU_DIROP) {
1186 cdp->di_nlink = ip->i_lfs_odnlink;
1187 /* if (vp->v_type == VDIR) */
1188 cdp->di_size = ip->i_lfs_osize;
1189 }
1190 } else {
1191 ip->i_lfs_odnlink = cdp->di_nlink;
1192 ip->i_lfs_osize = ip->i_size;
1193 }
1194
1195
1196 /* We can finish the segment accounting for truncations now */
1197 lfs_finalize_ino_seguse(fs, ip);
1198
1199 /*
1200 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1201 * addresses to disk; possibly change the on-disk record of
1202 * the inode size, either by reverting to the previous size
1203 * (in the case of cleaning) or by verifying the inode's block
1204 * holdings (in the case of files being allocated as they are being
1205 * written).
1206 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1207 * XXX count on disk wrong by the same amount. We should be
1208 * XXX able to "borrow" from lfs_avail and return it after the
1209 * XXX Ifile is written. See also in lfs_writeseg.
1210 */
1211
1212 /* Check file size based on highest allocated block */
1213 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1214 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1215 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1216 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1217 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1218 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1219 }
1220 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1221 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1222 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1223 ip->i_ffs1_blocks, fs->lfs_offset));
1224 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
1225 daddrp++) {
1226 if (*daddrp == UNWRITTEN) {
1227 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1228 *daddrp = 0;
1229 }
1230 }
1231 }
1232
1233 #ifdef DIAGNOSTIC
1234 /*
1235 * Check dinode held blocks against dinode size.
1236 * This should be identical to the check in lfs_vget().
1237 */
1238 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1239 i < ULFS_NDADDR; i++) {
1240 KASSERT(i >= 0);
1241 if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
1242 continue;
1243 if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
1244 (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
1245 continue;
1246 if (cdp->di_db[i] != 0) {
1247 # ifdef DEBUG
1248 lfs_dump_dinode(cdp);
1249 # endif
1250 panic("writing inconsistent inode");
1251 }
1252 }
1253 #endif /* DIAGNOSTIC */
1254
1255 if (ip->i_flag & IN_CLEANING)
1256 LFS_CLR_UINO(ip, IN_CLEANING);
1257 else {
1258 /* XXX IN_ALLMOD */
1259 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1260 IN_UPDATE | IN_MODIFY);
1261 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1262 LFS_CLR_UINO(ip, IN_MODIFIED);
1263 else {
1264 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1265 "blks=%d, eff=%d\n", ip->i_number,
1266 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1267 }
1268 }
1269
1270 if (ip->i_number == LFS_IFILE_INUM) {
1271 /* We know sp->idp == NULL */
1272 sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
1273 (sp->ninodes % LFS_INOPB(fs));
1274
1275 /* Not dirty any more */
1276 mutex_enter(&lfs_lock);
1277 fs->lfs_flags &= ~LFS_IFDIRTY;
1278 mutex_exit(&lfs_lock);
1279 }
1280
1281 if (gotblk) {
1282 mutex_enter(&bufcache_lock);
1283 LFS_LOCK_BUF(bp);
1284 brelsel(bp, 0);
1285 mutex_exit(&bufcache_lock);
1286 }
1287
1288 /* Increment inode count in segment summary block. */
1289 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1290
1291 /* If this page is full, set flag to allocate a new page. */
1292 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1293 sp->ibp = NULL;
1294
1295 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1296
1297 KASSERT(redo_ifile == 0);
1298 return (redo_ifile);
1299 }
1300
1301 int
1302 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1303 {
1304 struct lfs *fs;
1305 int vers;
1306 int j, blksinblk;
1307
1308 ASSERT_SEGLOCK(sp->fs);
1309 /*
1310 * If full, finish this segment. We may be doing I/O, so
1311 * release and reacquire the splbio().
1312 */
1313 #ifdef DIAGNOSTIC
1314 if (sp->vp == NULL)
1315 panic ("lfs_gatherblock: Null vp in segment");
1316 #endif
1317 fs = sp->fs;
1318 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1319 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1320 sp->seg_bytes_left < bp->b_bcount) {
1321 if (mptr)
1322 mutex_exit(mptr);
1323 lfs_updatemeta(sp);
1324
1325 vers = sp->fip->fi_version;
1326 (void) lfs_writeseg(fs, sp);
1327
1328 /* Add the current file to the segment summary. */
1329 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1330
1331 if (mptr)
1332 mutex_enter(mptr);
1333 return (1);
1334 }
1335
1336 if (bp->b_flags & B_GATHERED) {
1337 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1338 " lbn %" PRId64 "\n",
1339 sp->fip->fi_ino, bp->b_lblkno));
1340 return (0);
1341 }
1342
1343 /* Insert into the buffer list, update the FINFO block. */
1344 bp->b_flags |= B_GATHERED;
1345
1346 *sp->cbpp++ = bp;
1347 for (j = 0; j < blksinblk; j++) {
1348 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1349 /* This block's accounting moves from lfs_favail to lfs_avail */
1350 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1351 }
1352
1353 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1354 sp->seg_bytes_left -= bp->b_bcount;
1355 return (0);
1356 }
1357
1358 int
1359 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1360 int (*match)(struct lfs *, struct buf *))
1361 {
1362 struct buf *bp, *nbp;
1363 int count = 0;
1364
1365 ASSERT_SEGLOCK(fs);
1366 if (vp->v_type == VBLK)
1367 return 0;
1368 KASSERT(sp->vp == NULL);
1369 sp->vp = vp;
1370 mutex_enter(&bufcache_lock);
1371
1372 #ifndef LFS_NO_BACKBUF_HACK
1373 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1374 # define BUF_OFFSET \
1375 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1376 # define BACK_BUF(BP) \
1377 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1378 # define BEG_OF_LIST \
1379 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1380
1381 loop:
1382 /* Find last buffer. */
1383 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1384 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1385 bp = LIST_NEXT(bp, b_vnbufs))
1386 /* nothing */;
1387 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1388 nbp = BACK_BUF(bp);
1389 #else /* LFS_NO_BACKBUF_HACK */
1390 loop:
1391 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1392 nbp = LIST_NEXT(bp, b_vnbufs);
1393 #endif /* LFS_NO_BACKBUF_HACK */
1394 if ((bp->b_cflags & BC_BUSY) != 0 ||
1395 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1396 #ifdef DEBUG
1397 if (vp == fs->lfs_ivnode &&
1398 (bp->b_cflags & BC_BUSY) != 0 &&
1399 (bp->b_flags & B_GATHERED) == 0)
1400 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1401 PRId64 " busy (%x) at 0x%x",
1402 bp->b_lblkno, bp->b_flags,
1403 (unsigned)fs->lfs_offset);
1404 #endif
1405 continue;
1406 }
1407 #ifdef DIAGNOSTIC
1408 # ifdef LFS_USE_B_INVAL
1409 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1410 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1411 " is BC_INVAL\n", bp->b_lblkno));
1412 VOP_PRINT(bp->b_vp);
1413 }
1414 # endif /* LFS_USE_B_INVAL */
1415 if (!(bp->b_oflags & BO_DELWRI))
1416 panic("lfs_gather: bp not BO_DELWRI");
1417 if (!(bp->b_flags & B_LOCKED)) {
1418 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1419 " blk %" PRId64 " not B_LOCKED\n",
1420 bp->b_lblkno,
1421 LFS_DBTOFSB(fs, bp->b_blkno)));
1422 VOP_PRINT(bp->b_vp);
1423 panic("lfs_gather: bp not B_LOCKED");
1424 }
1425 #endif
1426 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1427 goto loop;
1428 }
1429 count++;
1430 }
1431 mutex_exit(&bufcache_lock);
1432 lfs_updatemeta(sp);
1433 KASSERT(sp->vp == vp);
1434 sp->vp = NULL;
1435 return count;
1436 }
1437
1438 #if DEBUG
1439 # define DEBUG_OOFF(n) do { \
1440 if (ooff == 0) { \
1441 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1442 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1443 ", was 0x0 (or %" PRId64 ")\n", \
1444 (n), ip->i_number, lbn, ndaddr, daddr)); \
1445 } \
1446 } while (0)
1447 #else
1448 # define DEBUG_OOFF(n)
1449 #endif
1450
1451 /*
1452 * Change the given block's address to ndaddr, finding its previous
1453 * location using ulfs_bmaparray().
1454 *
1455 * Account for this change in the segment table.
1456 *
1457 * called with sp == NULL by roll-forwarding code.
1458 */
1459 void
1460 lfs_update_single(struct lfs *fs, struct segment *sp,
1461 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1462 {
1463 SEGUSE *sup;
1464 struct buf *bp;
1465 struct indir a[ULFS_NIADDR + 2], *ap;
1466 struct inode *ip;
1467 daddr_t daddr, ooff;
1468 int num, error;
1469 int bb, osize, obb;
1470
1471 ASSERT_SEGLOCK(fs);
1472 KASSERT(sp == NULL || sp->vp == vp);
1473 ip = VTOI(vp);
1474
1475 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1476 if (error)
1477 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1478
1479 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1480 KASSERT(daddr <= LFS_MAX_DADDR);
1481 if (daddr > 0)
1482 daddr = LFS_DBTOFSB(fs, daddr);
1483
1484 bb = lfs_numfrags(fs, size);
1485 switch (num) {
1486 case 0:
1487 ooff = ip->i_ffs1_db[lbn];
1488 DEBUG_OOFF(0);
1489 if (ooff == UNWRITTEN)
1490 ip->i_ffs1_blocks += bb;
1491 else {
1492 /* possible fragment truncation or extension */
1493 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1494 ip->i_ffs1_blocks += (bb - obb);
1495 }
1496 ip->i_ffs1_db[lbn] = ndaddr;
1497 break;
1498 case 1:
1499 ooff = ip->i_ffs1_ib[a[0].in_off];
1500 DEBUG_OOFF(1);
1501 if (ooff == UNWRITTEN)
1502 ip->i_ffs1_blocks += bb;
1503 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1504 break;
1505 default:
1506 ap = &a[num - 1];
1507 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1508 B_MODIFY, &bp))
1509 panic("lfs_updatemeta: bread bno %" PRId64,
1510 ap->in_lbn);
1511
1512 /* XXX ondisk32 */
1513 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1514 DEBUG_OOFF(num);
1515 if (ooff == UNWRITTEN)
1516 ip->i_ffs1_blocks += bb;
1517 /* XXX ondisk32 */
1518 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1519 (void) VOP_BWRITE(bp->b_vp, bp);
1520 }
1521
1522 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1523
1524 /* Update hiblk when extending the file */
1525 if (lbn > ip->i_lfs_hiblk)
1526 ip->i_lfs_hiblk = lbn;
1527
1528 /*
1529 * Though we'd rather it couldn't, this *can* happen right now
1530 * if cleaning blocks and regular blocks coexist.
1531 */
1532 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1533
1534 /*
1535 * Update segment usage information, based on old size
1536 * and location.
1537 */
1538 if (daddr > 0) {
1539 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1540 #ifdef DIAGNOSTIC
1541 int ndupino;
1542
1543 if (sp && sp->seg_number == oldsn) {
1544 ndupino = sp->ndupino;
1545 } else {
1546 ndupino = 0;
1547 }
1548 #endif
1549 KASSERT(oldsn < fs->lfs_nseg);
1550 if (lbn >= 0 && lbn < ULFS_NDADDR)
1551 osize = ip->i_lfs_fragsize[lbn];
1552 else
1553 osize = fs->lfs_bsize;
1554 LFS_SEGENTRY(sup, fs, oldsn, bp);
1555 #ifdef DIAGNOSTIC
1556 if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
1557 < osize) {
1558 printf("lfs_updatemeta: negative bytes "
1559 "(segment %" PRIu32 " short by %" PRId64
1560 ")\n", lfs_dtosn(fs, daddr),
1561 (int64_t)osize -
1562 (sizeof (struct ulfs1_dinode) * ndupino +
1563 sup->su_nbytes));
1564 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1565 ", addr = 0x%" PRIx64 "\n",
1566 (unsigned long long)ip->i_number, lbn, daddr);
1567 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1568 panic("lfs_updatemeta: negative bytes");
1569 sup->su_nbytes = osize -
1570 sizeof (struct ulfs1_dinode) * ndupino;
1571 }
1572 #endif
1573 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1574 " db 0x%" PRIx64 "\n",
1575 lfs_dtosn(fs, daddr), osize,
1576 ip->i_number, lbn, daddr));
1577 sup->su_nbytes -= osize;
1578 if (!(bp->b_flags & B_GATHERED)) {
1579 mutex_enter(&lfs_lock);
1580 fs->lfs_flags |= LFS_IFDIRTY;
1581 mutex_exit(&lfs_lock);
1582 }
1583 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1584 }
1585 /*
1586 * Now that this block has a new address, and its old
1587 * segment no longer owns it, we can forget about its
1588 * old size.
1589 */
1590 if (lbn >= 0 && lbn < ULFS_NDADDR)
1591 ip->i_lfs_fragsize[lbn] = size;
1592 }
1593
1594 /*
1595 * Update the metadata that points to the blocks listed in the FINFO
1596 * array.
1597 */
1598 void
1599 lfs_updatemeta(struct segment *sp)
1600 {
1601 struct buf *sbp;
1602 struct lfs *fs;
1603 struct vnode *vp;
1604 daddr_t lbn;
1605 int i, nblocks, num;
1606 int bb;
1607 int bytesleft, size;
1608
1609 ASSERT_SEGLOCK(sp->fs);
1610 vp = sp->vp;
1611 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1612 KASSERT(nblocks >= 0);
1613 KASSERT(vp != NULL);
1614 if (nblocks == 0)
1615 return;
1616
1617 /*
1618 * This count may be high due to oversize blocks from lfs_gop_write.
1619 * Correct for this. (XXX we should be able to keep track of these.)
1620 */
1621 fs = sp->fs;
1622 for (i = 0; i < nblocks; i++) {
1623 if (sp->start_bpp[i] == NULL) {
1624 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1625 nblocks = i;
1626 break;
1627 }
1628 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1629 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1630 nblocks -= num - 1;
1631 }
1632
1633 KASSERT(vp->v_type == VREG ||
1634 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1635 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1636
1637 /*
1638 * Sort the blocks.
1639 *
1640 * We have to sort even if the blocks come from the
1641 * cleaner, because there might be other pending blocks on the
1642 * same inode...and if we don't sort, and there are fragments
1643 * present, blocks may be written in the wrong place.
1644 */
1645 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1646
1647 /*
1648 * Record the length of the last block in case it's a fragment.
1649 * If there are indirect blocks present, they sort last. An
1650 * indirect block will be lfs_bsize and its presence indicates
1651 * that you cannot have fragments.
1652 *
1653 * XXX This last is a lie. A cleaned fragment can coexist with
1654 * XXX a later indirect block. This will continue to be
1655 * XXX true until lfs_markv is fixed to do everything with
1656 * XXX fake blocks (including fake inodes and fake indirect blocks).
1657 */
1658 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1659 fs->lfs_bmask) + 1;
1660
1661 /*
1662 * Assign disk addresses, and update references to the logical
1663 * block and the segment usage information.
1664 */
1665 for (i = nblocks; i--; ++sp->start_bpp) {
1666 sbp = *sp->start_bpp;
1667 lbn = *sp->start_lbp;
1668 KASSERT(sbp->b_lblkno == lbn);
1669
1670 sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
1671
1672 /*
1673 * If we write a frag in the wrong place, the cleaner won't
1674 * be able to correctly identify its size later, and the
1675 * segment will be uncleanable. (Even worse, it will assume
1676 * that the indirect block that actually ends the list
1677 * is of a smaller size!)
1678 */
1679 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1680 panic("lfs_updatemeta: fragment is not last block");
1681
1682 /*
1683 * For each subblock in this possibly oversized block,
1684 * update its address on disk.
1685 */
1686 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1687 KASSERT(vp == sbp->b_vp);
1688 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1689 bytesleft -= fs->lfs_bsize) {
1690 size = MIN(bytesleft, fs->lfs_bsize);
1691 bb = lfs_numfrags(fs, size);
1692 lbn = *sp->start_lbp++;
1693 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1694 size);
1695 fs->lfs_offset += bb;
1696 }
1697
1698 }
1699
1700 /* This inode has been modified */
1701 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1702 }
1703
1704 /*
1705 * Move lfs_offset to a segment earlier than sn.
1706 */
1707 int
1708 lfs_rewind(struct lfs *fs, int newsn)
1709 {
1710 int sn, osn, isdirty;
1711 struct buf *bp;
1712 SEGUSE *sup;
1713
1714 ASSERT_SEGLOCK(fs);
1715
1716 osn = lfs_dtosn(fs, fs->lfs_offset);
1717 if (osn < newsn)
1718 return 0;
1719
1720 /* lfs_avail eats the remaining space in this segment */
1721 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1722
1723 /* Find a low-numbered segment */
1724 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1725 LFS_SEGENTRY(sup, fs, sn, bp);
1726 isdirty = sup->su_flags & SEGUSE_DIRTY;
1727 brelse(bp, 0);
1728
1729 if (!isdirty)
1730 break;
1731 }
1732 if (sn == fs->lfs_nseg)
1733 panic("lfs_rewind: no clean segments");
1734 if (newsn >= 0 && sn >= newsn)
1735 return ENOENT;
1736 fs->lfs_nextseg = sn;
1737 lfs_newseg(fs);
1738 fs->lfs_offset = fs->lfs_curseg;
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * Start a new partial segment.
1745 *
1746 * Return 1 when we entered to a new segment.
1747 * Otherwise, return 0.
1748 */
1749 int
1750 lfs_initseg(struct lfs *fs)
1751 {
1752 struct segment *sp = fs->lfs_sp;
1753 SEGSUM *ssp;
1754 struct buf *sbp; /* buffer for SEGSUM */
1755 int repeat = 0; /* return value */
1756
1757 ASSERT_SEGLOCK(fs);
1758 /* Advance to the next segment. */
1759 if (!LFS_PARTIAL_FITS(fs)) {
1760 SEGUSE *sup;
1761 struct buf *bp;
1762
1763 /* lfs_avail eats the remaining space */
1764 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1765 fs->lfs_curseg);
1766 /* Wake up any cleaning procs waiting on this file system. */
1767 lfs_wakeup_cleaner(fs);
1768 lfs_newseg(fs);
1769 repeat = 1;
1770 fs->lfs_offset = fs->lfs_curseg;
1771
1772 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1773 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
1774
1775 /*
1776 * If the segment contains a superblock, update the offset
1777 * and summary address to skip over it.
1778 */
1779 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1780 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1781 fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
1782 sp->seg_bytes_left -= LFS_SBPAD;
1783 }
1784 brelse(bp, 0);
1785 /* Segment zero could also contain the labelpad */
1786 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1787 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD)) {
1788 fs->lfs_offset +=
1789 lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1790 sp->seg_bytes_left -=
1791 LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_start);
1792 }
1793 } else {
1794 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1795 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
1796 (fs->lfs_offset - fs->lfs_curseg));
1797 }
1798 fs->lfs_lastpseg = fs->lfs_offset;
1799
1800 /* Record first address of this partial segment */
1801 if (sp->seg_flags & SEGM_CLEAN) {
1802 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1803 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1804 /* "1" is the artificial inc in lfs_seglock */
1805 mutex_enter(&lfs_lock);
1806 while (fs->lfs_iocount > 1) {
1807 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1808 "lfs_initseg", 0, &lfs_lock);
1809 }
1810 mutex_exit(&lfs_lock);
1811 fs->lfs_cleanind = 0;
1812 }
1813 }
1814
1815 sp->fs = fs;
1816 sp->ibp = NULL;
1817 sp->idp = NULL;
1818 sp->ninodes = 0;
1819 sp->ndupino = 0;
1820
1821 sp->cbpp = sp->bpp;
1822
1823 /* Get a new buffer for SEGSUM */
1824 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1825 LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1826
1827 /* ... and enter it into the buffer list. */
1828 *sp->cbpp = sbp;
1829 sp->cbpp++;
1830 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
1831
1832 sp->start_bpp = sp->cbpp;
1833
1834 /* Set point to SEGSUM, initialize it. */
1835 ssp = sp->segsum = sbp->b_data;
1836 memset(ssp, 0, fs->lfs_sumsize);
1837 ssp->ss_next = fs->lfs_nextseg;
1838 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1839 ssp->ss_magic = SS_MAGIC;
1840
1841 /* Set pointer to first FINFO, initialize it. */
1842 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1843 sp->fip->fi_nblocks = 0;
1844 sp->start_lbp = &sp->fip->fi_blocks[0];
1845 sp->fip->fi_lastlength = 0;
1846
1847 sp->seg_bytes_left -= fs->lfs_sumsize;
1848 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1849
1850 return (repeat);
1851 }
1852
1853 /*
1854 * Remove SEGUSE_INVAL from all segments.
1855 */
1856 void
1857 lfs_unset_inval_all(struct lfs *fs)
1858 {
1859 SEGUSE *sup;
1860 struct buf *bp;
1861 int i;
1862
1863 for (i = 0; i < fs->lfs_nseg; i++) {
1864 LFS_SEGENTRY(sup, fs, i, bp);
1865 if (sup->su_flags & SEGUSE_INVAL) {
1866 sup->su_flags &= ~SEGUSE_INVAL;
1867 LFS_WRITESEGENTRY(sup, fs, i, bp);
1868 } else
1869 brelse(bp, 0);
1870 }
1871 }
1872
1873 /*
1874 * Return the next segment to write.
1875 */
1876 void
1877 lfs_newseg(struct lfs *fs)
1878 {
1879 CLEANERINFO *cip;
1880 SEGUSE *sup;
1881 struct buf *bp;
1882 int curseg, isdirty, sn, skip_inval;
1883
1884 ASSERT_SEGLOCK(fs);
1885
1886 /* Honor LFCNWRAPSTOP */
1887 mutex_enter(&lfs_lock);
1888 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1889 if (fs->lfs_wrappass) {
1890 log(LOG_NOTICE, "%s: wrappass=%d\n",
1891 fs->lfs_fsmnt, fs->lfs_wrappass);
1892 fs->lfs_wrappass = 0;
1893 break;
1894 }
1895 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1896 wakeup(&fs->lfs_nowrap);
1897 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1898 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1899 &lfs_lock);
1900 }
1901 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1902 mutex_exit(&lfs_lock);
1903
1904 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1905 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1906 lfs_dtosn(fs, fs->lfs_nextseg)));
1907 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1908 sup->su_nbytes = 0;
1909 sup->su_nsums = 0;
1910 sup->su_ninos = 0;
1911 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1912
1913 LFS_CLEANERINFO(cip, fs, bp);
1914 --cip->clean;
1915 ++cip->dirty;
1916 fs->lfs_nclean = cip->clean;
1917 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1918
1919 fs->lfs_lastseg = fs->lfs_curseg;
1920 fs->lfs_curseg = fs->lfs_nextseg;
1921 skip_inval = 1;
1922 for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1923 sn = (sn + 1) % fs->lfs_nseg;
1924
1925 if (sn == curseg) {
1926 if (skip_inval)
1927 skip_inval = 0;
1928 else
1929 panic("lfs_nextseg: no clean segments");
1930 }
1931 LFS_SEGENTRY(sup, fs, sn, bp);
1932 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1933 /* Check SEGUSE_EMPTY as we go along */
1934 if (isdirty && sup->su_nbytes == 0 &&
1935 !(sup->su_flags & SEGUSE_EMPTY))
1936 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1937 else
1938 brelse(bp, 0);
1939
1940 if (!isdirty)
1941 break;
1942 }
1943 if (skip_inval == 0)
1944 lfs_unset_inval_all(fs);
1945
1946 ++fs->lfs_nactive;
1947 fs->lfs_nextseg = lfs_sntod(fs, sn);
1948 if (lfs_dostats) {
1949 ++lfs_stats.segsused;
1950 }
1951 }
1952
1953 static struct buf *
1954 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1955 int n)
1956 {
1957 struct lfs_cluster *cl;
1958 struct buf **bpp, *bp;
1959
1960 ASSERT_SEGLOCK(fs);
1961 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1962 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1963 memset(cl, 0, sizeof(*cl));
1964 cl->fs = fs;
1965 cl->bpp = bpp;
1966 cl->bufcount = 0;
1967 cl->bufsize = 0;
1968
1969 /* If this segment is being written synchronously, note that */
1970 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1971 cl->flags |= LFS_CL_SYNC;
1972 cl->seg = fs->lfs_sp;
1973 ++cl->seg->seg_iocount;
1974 }
1975
1976 /* Get an empty buffer header, or maybe one with something on it */
1977 bp = getiobuf(vp, true);
1978 bp->b_dev = NODEV;
1979 bp->b_blkno = bp->b_lblkno = addr;
1980 bp->b_iodone = lfs_cluster_callback;
1981 bp->b_private = cl;
1982
1983 return bp;
1984 }
1985
1986 int
1987 lfs_writeseg(struct lfs *fs, struct segment *sp)
1988 {
1989 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1990 SEGUSE *sup;
1991 SEGSUM *ssp;
1992 int i;
1993 int do_again, nblocks, byteoffset;
1994 size_t el_size;
1995 struct lfs_cluster *cl;
1996 u_short ninos;
1997 struct vnode *devvp;
1998 char *p = NULL;
1999 struct vnode *vp;
2000 int32_t *daddrp; /* XXX ondisk32 */
2001 int changed;
2002 u_int32_t sum;
2003 #ifdef DEBUG
2004 FINFO *fip;
2005 int findex;
2006 #endif
2007
2008 ASSERT_SEGLOCK(fs);
2009
2010 ssp = (SEGSUM *)sp->segsum;
2011
2012 /*
2013 * If there are no buffers other than the segment summary to write,
2014 * don't do anything. If we are the end of a dirop sequence, however,
2015 * write the empty segment summary anyway, to help out the
2016 * roll-forward agent.
2017 */
2018 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2019 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2020 return 0;
2021 }
2022
2023 /* Note if partial segment is being written by the cleaner */
2024 if (sp->seg_flags & SEGM_CLEAN)
2025 ssp->ss_flags |= SS_CLEAN;
2026
2027 /* Note if we are writing to reclaim */
2028 if (sp->seg_flags & SEGM_RECLAIM) {
2029 ssp->ss_flags |= SS_RECLAIM;
2030 ssp->ss_reclino = fs->lfs_reclino;
2031 }
2032
2033 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2034
2035 /* Update the segment usage information. */
2036 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2037
2038 /* Loop through all blocks, except the segment summary. */
2039 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2040 if ((*bpp)->b_vp != devvp) {
2041 sup->su_nbytes += (*bpp)->b_bcount;
2042 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2043 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2044 sp->seg_number, (*bpp)->b_bcount,
2045 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2046 (*bpp)->b_blkno));
2047 }
2048 }
2049
2050 #ifdef DEBUG
2051 /* Check for zero-length and zero-version FINFO entries. */
2052 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2053 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2054 KDASSERT(fip->fi_nblocks > 0);
2055 KDASSERT(fip->fi_version > 0);
2056 fip = (FINFO *)((char *)fip + FINFOSIZE +
2057 sizeof(int32_t) * fip->fi_nblocks);
2058 }
2059 #endif /* DEBUG */
2060
2061 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2062 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2063 sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
2064 ssp->ss_ninos));
2065 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
2066 /* sup->su_nbytes += fs->lfs_sumsize; */
2067 if (fs->lfs_version == 1)
2068 sup->su_olastmod = time_second;
2069 else
2070 sup->su_lastmod = time_second;
2071 sup->su_ninos += ninos;
2072 ++sup->su_nsums;
2073 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
2074
2075 do_again = !(bp->b_flags & B_GATHERED);
2076 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2077
2078 /*
2079 * Mark blocks B_BUSY, to prevent then from being changed between
2080 * the checksum computation and the actual write.
2081 *
2082 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2083 * there are any, replace them with copies that have UNASSIGNED
2084 * instead.
2085 */
2086 mutex_enter(&bufcache_lock);
2087 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2088 ++bpp;
2089 bp = *bpp;
2090 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2091 bp->b_cflags |= BC_BUSY;
2092 continue;
2093 }
2094
2095 while (bp->b_cflags & BC_BUSY) {
2096 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2097 " data summary corruption for ino %d, lbn %"
2098 PRId64 "\n",
2099 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2100 bp->b_cflags |= BC_WANTED;
2101 cv_wait(&bp->b_busy, &bufcache_lock);
2102 }
2103 bp->b_cflags |= BC_BUSY;
2104 mutex_exit(&bufcache_lock);
2105 unbusybp = NULL;
2106
2107 /*
2108 * Check and replace indirect block UNWRITTEN bogosity.
2109 * XXX See comment in lfs_writefile.
2110 */
2111 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2112 VTOI(bp->b_vp)->i_ffs1_blocks !=
2113 VTOI(bp->b_vp)->i_lfs_effnblks) {
2114 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2115 VTOI(bp->b_vp)->i_number,
2116 VTOI(bp->b_vp)->i_lfs_effnblks,
2117 VTOI(bp->b_vp)->i_ffs1_blocks));
2118 /* Make a copy we'll make changes to */
2119 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2120 bp->b_bcount, LFS_NB_IBLOCK);
2121 newbp->b_blkno = bp->b_blkno;
2122 memcpy(newbp->b_data, bp->b_data,
2123 newbp->b_bcount);
2124
2125 changed = 0;
2126 /* XXX ondisk32 */
2127 for (daddrp = (int32_t *)(newbp->b_data);
2128 daddrp < (int32_t *)((char *)newbp->b_data +
2129 newbp->b_bcount); daddrp++) {
2130 if (*daddrp == UNWRITTEN) {
2131 ++changed;
2132 *daddrp = 0;
2133 }
2134 }
2135 /*
2136 * Get rid of the old buffer. Don't mark it clean,
2137 * though, if it still has dirty data on it.
2138 */
2139 if (changed) {
2140 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2141 " bp = %p newbp = %p\n", changed, bp,
2142 newbp));
2143 *bpp = newbp;
2144 bp->b_flags &= ~B_GATHERED;
2145 bp->b_error = 0;
2146 if (bp->b_iodone != NULL) {
2147 DLOG((DLOG_SEG, "lfs_writeseg: "
2148 "indir bp should not be B_CALL\n"));
2149 biodone(bp);
2150 bp = NULL;
2151 } else {
2152 /* Still on free list, leave it there */
2153 unbusybp = bp;
2154 /*
2155 * We have to re-decrement lfs_avail
2156 * since this block is going to come
2157 * back around to us in the next
2158 * segment.
2159 */
2160 fs->lfs_avail -=
2161 lfs_btofsb(fs, bp->b_bcount);
2162 }
2163 } else {
2164 lfs_freebuf(fs, newbp);
2165 }
2166 }
2167 mutex_enter(&bufcache_lock);
2168 if (unbusybp != NULL) {
2169 unbusybp->b_cflags &= ~BC_BUSY;
2170 if (unbusybp->b_cflags & BC_WANTED)
2171 cv_broadcast(&bp->b_busy);
2172 }
2173 }
2174 mutex_exit(&bufcache_lock);
2175
2176 /*
2177 * Compute checksum across data and then across summary; the first
2178 * block (the summary block) is skipped. Set the create time here
2179 * so that it's guaranteed to be later than the inode mod times.
2180 */
2181 sum = 0;
2182 if (fs->lfs_version == 1)
2183 el_size = sizeof(u_long);
2184 else
2185 el_size = sizeof(u_int32_t);
2186 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2187 ++bpp;
2188 /* Loop through gop_write cluster blocks */
2189 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2190 byteoffset += fs->lfs_bsize) {
2191 #ifdef LFS_USE_B_INVAL
2192 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2193 (*bpp)->b_iodone != NULL) {
2194 if (copyin((void *)(*bpp)->b_saveaddr +
2195 byteoffset, dp, el_size)) {
2196 panic("lfs_writeseg: copyin failed [1]:"
2197 " ino %d blk %" PRId64,
2198 VTOI((*bpp)->b_vp)->i_number,
2199 (*bpp)->b_lblkno);
2200 }
2201 } else
2202 #endif /* LFS_USE_B_INVAL */
2203 {
2204 sum = lfs_cksum_part((char *)
2205 (*bpp)->b_data + byteoffset, el_size, sum);
2206 }
2207 }
2208 }
2209 if (fs->lfs_version == 1)
2210 ssp->ss_ocreate = time_second;
2211 else {
2212 ssp->ss_create = time_second;
2213 ssp->ss_serial = ++fs->lfs_serial;
2214 ssp->ss_ident = fs->lfs_ident;
2215 }
2216 ssp->ss_datasum = lfs_cksum_fold(sum);
2217 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2218 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2219
2220 mutex_enter(&lfs_lock);
2221 fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2222 lfs_btofsb(fs, fs->lfs_sumsize));
2223 fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2224 lfs_btofsb(fs, fs->lfs_sumsize));
2225 mutex_exit(&lfs_lock);
2226
2227 /*
2228 * When we simply write the blocks we lose a rotation for every block
2229 * written. To avoid this problem, we cluster the buffers into a
2230 * chunk and write the chunk. MAXPHYS is the largest size I/O
2231 * devices can handle, use that for the size of the chunks.
2232 *
2233 * Blocks that are already clusters (from GOP_WRITE), however, we
2234 * don't bother to copy into other clusters.
2235 */
2236
2237 #define CHUNKSIZE MAXPHYS
2238
2239 if (devvp == NULL)
2240 panic("devvp is NULL");
2241 for (bpp = sp->bpp, i = nblocks; i;) {
2242 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2243 cl = cbp->b_private;
2244
2245 cbp->b_flags |= B_ASYNC;
2246 cbp->b_cflags |= BC_BUSY;
2247 cbp->b_bcount = 0;
2248
2249 #if defined(DEBUG) && defined(DIAGNOSTIC)
2250 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2251 / sizeof(int32_t)) {
2252 panic("lfs_writeseg: real bpp overwrite");
2253 }
2254 if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
2255 panic("lfs_writeseg: theoretical bpp overwrite");
2256 }
2257 #endif
2258
2259 /*
2260 * Construct the cluster.
2261 */
2262 mutex_enter(&lfs_lock);
2263 ++fs->lfs_iocount;
2264 mutex_exit(&lfs_lock);
2265 while (i && cbp->b_bcount < CHUNKSIZE) {
2266 bp = *bpp;
2267
2268 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2269 break;
2270 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2271 break;
2272
2273 /* Clusters from GOP_WRITE are expedited */
2274 if (bp->b_bcount > fs->lfs_bsize) {
2275 if (cbp->b_bcount > 0)
2276 /* Put in its own buffer */
2277 break;
2278 else {
2279 cbp->b_data = bp->b_data;
2280 }
2281 } else if (cbp->b_bcount == 0) {
2282 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2283 LFS_NB_CLUSTER);
2284 cl->flags |= LFS_CL_MALLOC;
2285 }
2286 #ifdef DIAGNOSTIC
2287 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2288 btodb(bp->b_bcount - 1))) !=
2289 sp->seg_number) {
2290 printf("blk size %d daddr %" PRIx64
2291 " not in seg %d\n",
2292 bp->b_bcount, bp->b_blkno,
2293 sp->seg_number);
2294 panic("segment overwrite");
2295 }
2296 #endif
2297
2298 #ifdef LFS_USE_B_INVAL
2299 /*
2300 * Fake buffers from the cleaner are marked as B_INVAL.
2301 * We need to copy the data from user space rather than
2302 * from the buffer indicated.
2303 * XXX == what do I do on an error?
2304 */
2305 if ((bp->b_cflags & BC_INVAL) != 0 &&
2306 bp->b_iodone != NULL) {
2307 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2308 panic("lfs_writeseg: "
2309 "copyin failed [2]");
2310 } else
2311 #endif /* LFS_USE_B_INVAL */
2312 if (cl->flags & LFS_CL_MALLOC) {
2313 /* copy data into our cluster. */
2314 memcpy(p, bp->b_data, bp->b_bcount);
2315 p += bp->b_bcount;
2316 }
2317
2318 cbp->b_bcount += bp->b_bcount;
2319 cl->bufsize += bp->b_bcount;
2320
2321 bp->b_flags &= ~B_READ;
2322 bp->b_error = 0;
2323 cl->bpp[cl->bufcount++] = bp;
2324
2325 vp = bp->b_vp;
2326 mutex_enter(&bufcache_lock);
2327 mutex_enter(vp->v_interlock);
2328 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2329 reassignbuf(bp, vp);
2330 vp->v_numoutput++;
2331 mutex_exit(vp->v_interlock);
2332 mutex_exit(&bufcache_lock);
2333
2334 bpp++;
2335 i--;
2336 }
2337 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2338 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2339 else
2340 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2341 mutex_enter(devvp->v_interlock);
2342 devvp->v_numoutput++;
2343 mutex_exit(devvp->v_interlock);
2344 VOP_STRATEGY(devvp, cbp);
2345 curlwp->l_ru.ru_oublock++;
2346 }
2347
2348 if (lfs_dostats) {
2349 ++lfs_stats.psegwrites;
2350 lfs_stats.blocktot += nblocks - 1;
2351 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2352 ++lfs_stats.psyncwrites;
2353 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2354 ++lfs_stats.pcleanwrites;
2355 lfs_stats.cleanblocks += nblocks - 1;
2356 }
2357 }
2358
2359 return (lfs_initseg(fs) || do_again);
2360 }
2361
2362 void
2363 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2364 {
2365 struct buf *bp;
2366 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2367 int s;
2368
2369 ASSERT_MAYBE_SEGLOCK(fs);
2370 #ifdef DIAGNOSTIC
2371 KASSERT(fs->lfs_magic == LFS_MAGIC);
2372 #endif
2373 /*
2374 * If we can write one superblock while another is in
2375 * progress, we risk not having a complete checkpoint if we crash.
2376 * So, block here if a superblock write is in progress.
2377 */
2378 mutex_enter(&lfs_lock);
2379 s = splbio();
2380 while (fs->lfs_sbactive) {
2381 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2382 &lfs_lock);
2383 }
2384 fs->lfs_sbactive = daddr;
2385 splx(s);
2386 mutex_exit(&lfs_lock);
2387
2388 /* Set timestamp of this version of the superblock */
2389 if (fs->lfs_version == 1)
2390 fs->lfs_otstamp = time_second;
2391 fs->lfs_tstamp = time_second;
2392
2393 /* Checksum the superblock and copy it into a buffer. */
2394 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2395 bp = lfs_newbuf(fs, devvp,
2396 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2397 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2398 LFS_SBPAD - sizeof(struct dlfs));
2399 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2400
2401 bp->b_cflags |= BC_BUSY;
2402 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2403 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2404 bp->b_error = 0;
2405 bp->b_iodone = lfs_supercallback;
2406
2407 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2408 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2409 else
2410 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2411 curlwp->l_ru.ru_oublock++;
2412
2413 mutex_enter(devvp->v_interlock);
2414 devvp->v_numoutput++;
2415 mutex_exit(devvp->v_interlock);
2416
2417 mutex_enter(&lfs_lock);
2418 ++fs->lfs_iocount;
2419 mutex_exit(&lfs_lock);
2420 VOP_STRATEGY(devvp, bp);
2421 }
2422
2423 /*
2424 * Logical block number match routines used when traversing the dirty block
2425 * chain.
2426 */
2427 int
2428 lfs_match_fake(struct lfs *fs, struct buf *bp)
2429 {
2430
2431 ASSERT_SEGLOCK(fs);
2432 return LFS_IS_MALLOC_BUF(bp);
2433 }
2434
2435 #if 0
2436 int
2437 lfs_match_real(struct lfs *fs, struct buf *bp)
2438 {
2439
2440 ASSERT_SEGLOCK(fs);
2441 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2442 }
2443 #endif
2444
2445 int
2446 lfs_match_data(struct lfs *fs, struct buf *bp)
2447 {
2448
2449 ASSERT_SEGLOCK(fs);
2450 return (bp->b_lblkno >= 0);
2451 }
2452
2453 int
2454 lfs_match_indir(struct lfs *fs, struct buf *bp)
2455 {
2456 daddr_t lbn;
2457
2458 ASSERT_SEGLOCK(fs);
2459 lbn = bp->b_lblkno;
2460 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2461 }
2462
2463 int
2464 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2465 {
2466 daddr_t lbn;
2467
2468 ASSERT_SEGLOCK(fs);
2469 lbn = bp->b_lblkno;
2470 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2471 }
2472
2473 int
2474 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2475 {
2476 daddr_t lbn;
2477
2478 ASSERT_SEGLOCK(fs);
2479 lbn = bp->b_lblkno;
2480 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2481 }
2482
2483 static void
2484 lfs_free_aiodone(struct buf *bp)
2485 {
2486 struct lfs *fs;
2487
2488 KERNEL_LOCK(1, curlwp);
2489 fs = bp->b_private;
2490 ASSERT_NO_SEGLOCK(fs);
2491 lfs_freebuf(fs, bp);
2492 KERNEL_UNLOCK_LAST(curlwp);
2493 }
2494
2495 static void
2496 lfs_super_aiodone(struct buf *bp)
2497 {
2498 struct lfs *fs;
2499
2500 KERNEL_LOCK(1, curlwp);
2501 fs = bp->b_private;
2502 ASSERT_NO_SEGLOCK(fs);
2503 mutex_enter(&lfs_lock);
2504 fs->lfs_sbactive = 0;
2505 if (--fs->lfs_iocount <= 1)
2506 wakeup(&fs->lfs_iocount);
2507 wakeup(&fs->lfs_sbactive);
2508 mutex_exit(&lfs_lock);
2509 lfs_freebuf(fs, bp);
2510 KERNEL_UNLOCK_LAST(curlwp);
2511 }
2512
2513 static void
2514 lfs_cluster_aiodone(struct buf *bp)
2515 {
2516 struct lfs_cluster *cl;
2517 struct lfs *fs;
2518 struct buf *tbp, *fbp;
2519 struct vnode *vp, *devvp, *ovp;
2520 struct inode *ip;
2521 int error;
2522
2523 KERNEL_LOCK(1, curlwp);
2524
2525 error = bp->b_error;
2526 cl = bp->b_private;
2527 fs = cl->fs;
2528 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2529 ASSERT_NO_SEGLOCK(fs);
2530
2531 /* Put the pages back, and release the buffer */
2532 while (cl->bufcount--) {
2533 tbp = cl->bpp[cl->bufcount];
2534 KASSERT(tbp->b_cflags & BC_BUSY);
2535 if (error) {
2536 tbp->b_error = error;
2537 }
2538
2539 /*
2540 * We're done with tbp. If it has not been re-dirtied since
2541 * the cluster was written, free it. Otherwise, keep it on
2542 * the locked list to be written again.
2543 */
2544 vp = tbp->b_vp;
2545
2546 tbp->b_flags &= ~B_GATHERED;
2547
2548 LFS_BCLEAN_LOG(fs, tbp);
2549
2550 mutex_enter(&bufcache_lock);
2551 if (tbp->b_iodone == NULL) {
2552 KASSERT(tbp->b_flags & B_LOCKED);
2553 bremfree(tbp);
2554 if (vp) {
2555 mutex_enter(vp->v_interlock);
2556 reassignbuf(tbp, vp);
2557 mutex_exit(vp->v_interlock);
2558 }
2559 tbp->b_flags |= B_ASYNC; /* for biodone */
2560 }
2561
2562 if (((tbp->b_flags | tbp->b_oflags) &
2563 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2564 LFS_UNLOCK_BUF(tbp);
2565
2566 if (tbp->b_oflags & BO_DONE) {
2567 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2568 cl->bufcount, (long)tbp->b_flags));
2569 }
2570
2571 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2572 /*
2573 * A buffer from the page daemon.
2574 * We use the same iodone as it does,
2575 * so we must manually disassociate its
2576 * buffers from the vp.
2577 */
2578 if ((ovp = tbp->b_vp) != NULL) {
2579 /* This is just silly */
2580 mutex_enter(ovp->v_interlock);
2581 brelvp(tbp);
2582 mutex_exit(ovp->v_interlock);
2583 tbp->b_vp = vp;
2584 tbp->b_objlock = vp->v_interlock;
2585 }
2586 /* Put it back the way it was */
2587 tbp->b_flags |= B_ASYNC;
2588 /* Master buffers have BC_AGE */
2589 if (tbp->b_private == tbp)
2590 tbp->b_cflags |= BC_AGE;
2591 }
2592 mutex_exit(&bufcache_lock);
2593
2594 biodone(tbp);
2595
2596 /*
2597 * If this is the last block for this vnode, but
2598 * there are other blocks on its dirty list,
2599 * set IN_MODIFIED/IN_CLEANING depending on what
2600 * sort of block. Only do this for our mount point,
2601 * not for, e.g., inode blocks that are attached to
2602 * the devvp.
2603 * XXX KS - Shouldn't we set *both* if both types
2604 * of blocks are present (traverse the dirty list?)
2605 */
2606 mutex_enter(vp->v_interlock);
2607 mutex_enter(&lfs_lock);
2608 if (vp != devvp && vp->v_numoutput == 0 &&
2609 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2610 ip = VTOI(vp);
2611 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2612 ip->i_number));
2613 if (LFS_IS_MALLOC_BUF(fbp))
2614 LFS_SET_UINO(ip, IN_CLEANING);
2615 else
2616 LFS_SET_UINO(ip, IN_MODIFIED);
2617 }
2618 cv_broadcast(&vp->v_cv);
2619 mutex_exit(&lfs_lock);
2620 mutex_exit(vp->v_interlock);
2621 }
2622
2623 /* Fix up the cluster buffer, and release it */
2624 if (cl->flags & LFS_CL_MALLOC)
2625 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2626 putiobuf(bp);
2627
2628 /* Note i/o done */
2629 if (cl->flags & LFS_CL_SYNC) {
2630 if (--cl->seg->seg_iocount == 0)
2631 wakeup(&cl->seg->seg_iocount);
2632 }
2633 mutex_enter(&lfs_lock);
2634 #ifdef DIAGNOSTIC
2635 if (fs->lfs_iocount == 0)
2636 panic("lfs_cluster_aiodone: zero iocount");
2637 #endif
2638 if (--fs->lfs_iocount <= 1)
2639 wakeup(&fs->lfs_iocount);
2640 mutex_exit(&lfs_lock);
2641
2642 KERNEL_UNLOCK_LAST(curlwp);
2643
2644 pool_put(&fs->lfs_bpppool, cl->bpp);
2645 cl->bpp = NULL;
2646 pool_put(&fs->lfs_clpool, cl);
2647 }
2648
2649 static void
2650 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2651 {
2652 /* reset b_iodone for when this is a single-buf i/o. */
2653 bp->b_iodone = aiodone;
2654
2655 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2656 }
2657
2658 static void
2659 lfs_cluster_callback(struct buf *bp)
2660 {
2661
2662 lfs_generic_callback(bp, lfs_cluster_aiodone);
2663 }
2664
2665 void
2666 lfs_supercallback(struct buf *bp)
2667 {
2668
2669 lfs_generic_callback(bp, lfs_super_aiodone);
2670 }
2671
2672 /*
2673 * The only buffers that are going to hit these functions are the
2674 * segment write blocks, or the segment summaries, or the superblocks.
2675 *
2676 * All of the above are created by lfs_newbuf, and so do not need to be
2677 * released via brelse.
2678 */
2679 void
2680 lfs_callback(struct buf *bp)
2681 {
2682
2683 lfs_generic_callback(bp, lfs_free_aiodone);
2684 }
2685
2686 /*
2687 * Shellsort (diminishing increment sort) from Data Structures and
2688 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2689 * see also Knuth Vol. 3, page 84. The increments are selected from
2690 * formula (8), page 95. Roughly O(N^3/2).
2691 */
2692 /*
2693 * This is our own private copy of shellsort because we want to sort
2694 * two parallel arrays (the array of buffer pointers and the array of
2695 * logical block numbers) simultaneously. Note that we cast the array
2696 * of logical block numbers to a unsigned in this routine so that the
2697 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2698 */
2699
2700 void
2701 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2702 {
2703 static int __rsshell_increments[] = { 4, 1, 0 };
2704 int incr, *incrp, t1, t2;
2705 struct buf *bp_temp;
2706
2707 #ifdef DEBUG
2708 incr = 0;
2709 for (t1 = 0; t1 < nmemb; t1++) {
2710 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2711 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2712 /* dump before panic */
2713 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2714 nmemb, size);
2715 incr = 0;
2716 for (t1 = 0; t1 < nmemb; t1++) {
2717 const struct buf *bp = bp_array[t1];
2718
2719 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2720 PRIu64 "\n", t1,
2721 (uint64_t)bp->b_bcount,
2722 (uint64_t)bp->b_lblkno);
2723 printf("lbns:");
2724 for (t2 = 0; t2 * size < bp->b_bcount;
2725 t2++) {
2726 printf(" %" PRId32,
2727 lb_array[incr++]);
2728 }
2729 printf("\n");
2730 }
2731 panic("lfs_shellsort: inconsistent input");
2732 }
2733 }
2734 }
2735 #endif
2736
2737 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2738 for (t1 = incr; t1 < nmemb; ++t1)
2739 for (t2 = t1 - incr; t2 >= 0;)
2740 if ((u_int32_t)bp_array[t2]->b_lblkno >
2741 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2742 bp_temp = bp_array[t2];
2743 bp_array[t2] = bp_array[t2 + incr];
2744 bp_array[t2 + incr] = bp_temp;
2745 t2 -= incr;
2746 } else
2747 break;
2748
2749 /* Reform the list of logical blocks */
2750 incr = 0;
2751 for (t1 = 0; t1 < nmemb; t1++) {
2752 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2753 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2754 }
2755 }
2756 }
2757
2758 /*
2759 * Call vget with LK_NOWAIT. If we are the one who is dead,
2760 * however, we must press on. Just fake success in that case.
2761 */
2762 int
2763 lfs_vref(struct vnode *vp)
2764 {
2765 struct lfs *fs;
2766
2767 KASSERT(mutex_owned(vp->v_interlock));
2768
2769 fs = VTOI(vp)->i_lfs;
2770
2771 ASSERT_MAYBE_SEGLOCK(fs);
2772
2773 /*
2774 * If we return 1 here during a flush, we risk vinvalbuf() not
2775 * being able to flush all of the pages from this vnode, which
2776 * will cause it to panic. So, return 0 if a flush is in progress.
2777 */
2778 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2779 ++fs->lfs_flushvp_fakevref;
2780 mutex_exit(vp->v_interlock);
2781 return 0;
2782 }
2783
2784 return vget(vp, LK_NOWAIT);
2785 }
2786
2787 /*
2788 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2789 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2790 */
2791 void
2792 lfs_vunref(struct vnode *vp)
2793 {
2794 struct lfs *fs;
2795
2796 fs = VTOI(vp)->i_lfs;
2797 ASSERT_MAYBE_SEGLOCK(fs);
2798
2799 /*
2800 * Analogous to lfs_vref, if the node is flushing, fake it.
2801 */
2802 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2803 --fs->lfs_flushvp_fakevref;
2804 return;
2805 }
2806
2807 /* does not call inactive XXX sure it does XXX */
2808 vrele(vp);
2809 }
2810
2811 /*
2812 * We use this when we have vnodes that were loaded in solely for cleaning.
2813 * There is no reason to believe that these vnodes will be referenced again
2814 * soon, since the cleaning process is unrelated to normal filesystem
2815 * activity. Putting cleaned vnodes at the tail of the list has the effect
2816 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2817 * cleaning at the head of the list, instead.
2818 */
2819 void
2820 lfs_vunref_head(struct vnode *vp)
2821 {
2822
2823 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2824
2825 /* does not call inactive XXX sure it does XXX,
2826 inserts non-held vnode at head of freelist */
2827 vrele(vp);
2828 }
2829
2830
2831 /*
2832 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2833 * point at uninitialized space.
2834 */
2835 void
2836 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2837 {
2838 struct segment *sp = fs->lfs_sp;
2839
2840 KASSERT(vers > 0);
2841
2842 if (sp->seg_bytes_left < fs->lfs_bsize ||
2843 sp->sum_bytes_left < sizeof(struct finfo))
2844 (void) lfs_writeseg(fs, fs->lfs_sp);
2845
2846 sp->sum_bytes_left -= FINFOSIZE;
2847 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2848 sp->fip->fi_nblocks = 0;
2849 sp->fip->fi_ino = ino;
2850 sp->fip->fi_version = vers;
2851 }
2852
2853 /*
2854 * Release the FINFO entry, either clearing out an unused entry or
2855 * advancing us to the next available entry.
2856 */
2857 void
2858 lfs_release_finfo(struct lfs *fs)
2859 {
2860 struct segment *sp = fs->lfs_sp;
2861
2862 if (sp->fip->fi_nblocks != 0) {
2863 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2864 sizeof(int32_t) * sp->fip->fi_nblocks);
2865 sp->start_lbp = &sp->fip->fi_blocks[0];
2866 } else {
2867 sp->sum_bytes_left += FINFOSIZE;
2868 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2869 }
2870 }
2871