lfs_segment.c revision 1.231 1 /* $NetBSD: lfs_segment.c,v 1.231 2013/07/28 01:05:52 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.231 2013/07/28 01:05:52 dholland Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_kernel.h>
104 #include <ufs/lfs/lfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110
111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
112 static void lfs_free_aiodone(struct buf *);
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116
117 /*
118 * Determine if it's OK to start a partial in this segment, or if we need
119 * to go on to a new segment.
120 */
121 #define LFS_PARTIAL_FITS(fs) \
122 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
123 (fs)->lfs_frag)
124
125 /*
126 * Figure out whether we should do a checkpoint write or go ahead with
127 * an ordinary write.
128 */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130 ((flags & SEGM_CLEAN) == 0 && \
131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
132 (flags & SEGM_CKP) || \
133 fs->lfs_nclean < LFS_MAX_ACTIVE)))
134
135 int lfs_match_fake(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
146 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
147 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
148 int lfs_dirvcount = 0; /* # active dirops */
149
150 /* Statistics Counters */
151 int lfs_dostats = 1;
152 struct lfs_stats lfs_stats;
153
154 /* op values to lfs_writevnodes */
155 #define VN_REG 0
156 #define VN_DIROP 1
157 #define VN_EMPTY 2
158 #define VN_CLEAN 3
159
160 /*
161 * XXX KS - Set modification time on the Ifile, so the cleaner can
162 * read the fs mod time off of it. We don't set IN_UPDATE here,
163 * since we don't really need this to be flushed to disk (and in any
164 * case that wouldn't happen to the Ifile until we checkpoint).
165 */
166 void
167 lfs_imtime(struct lfs *fs)
168 {
169 struct timespec ts;
170 struct inode *ip;
171
172 ASSERT_MAYBE_SEGLOCK(fs);
173 vfs_timestamp(&ts);
174 ip = VTOI(fs->lfs_ivnode);
175 ip->i_ffs1_mtime = ts.tv_sec;
176 ip->i_ffs1_mtimensec = ts.tv_nsec;
177 }
178
179 /*
180 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
182 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
183 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
184 */
185
186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
187
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 struct inode *ip;
192 struct lfs *fs;
193 struct segment *sp;
194 struct buf *bp, *nbp, *tbp, *tnbp;
195 int error;
196 int flushed;
197 int relock;
198 int loopcount;
199
200 ip = VTOI(vp);
201 fs = VFSTOULFS(vp->v_mount)->um_lfs;
202 relock = 0;
203
204 top:
205 KASSERT(mutex_owned(vp->v_interlock) == false);
206 KASSERT(mutex_owned(&lfs_lock) == false);
207 KASSERT(mutex_owned(&bufcache_lock) == false);
208 ASSERT_NO_SEGLOCK(fs);
209 if (ip->i_flag & IN_CLEANING) {
210 ivndebug(vp,"vflush/in_cleaning");
211 mutex_enter(&lfs_lock);
212 LFS_CLR_UINO(ip, IN_CLEANING);
213 LFS_SET_UINO(ip, IN_MODIFIED);
214 mutex_exit(&lfs_lock);
215
216 /*
217 * Toss any cleaning buffers that have real counterparts
218 * to avoid losing new data.
219 */
220 mutex_enter(vp->v_interlock);
221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 nbp = LIST_NEXT(bp, b_vnbufs);
223 if (!LFS_IS_MALLOC_BUF(bp))
224 continue;
225 /*
226 * Look for pages matching the range covered
227 * by cleaning blocks. It's okay if more dirty
228 * pages appear, so long as none disappear out
229 * from under us.
230 */
231 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 vp != fs->lfs_ivnode) {
233 struct vm_page *pg;
234 voff_t off;
235
236 for (off = lfs_lblktosize(fs, bp->b_lblkno);
237 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
238 off += PAGE_SIZE) {
239 pg = uvm_pagelookup(&vp->v_uobj, off);
240 if (pg == NULL)
241 continue;
242 if ((pg->flags & PG_CLEAN) == 0 ||
243 pmap_is_modified(pg)) {
244 fs->lfs_avail += lfs_btofsb(fs,
245 bp->b_bcount);
246 wakeup(&fs->lfs_avail);
247 mutex_exit(vp->v_interlock);
248 lfs_freebuf(fs, bp);
249 mutex_enter(vp->v_interlock);
250 bp = NULL;
251 break;
252 }
253 }
254 }
255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 tbp = tnbp)
257 {
258 tnbp = LIST_NEXT(tbp, b_vnbufs);
259 if (tbp->b_vp == bp->b_vp
260 && tbp->b_lblkno == bp->b_lblkno
261 && tbp != bp)
262 {
263 fs->lfs_avail += lfs_btofsb(fs,
264 bp->b_bcount);
265 wakeup(&fs->lfs_avail);
266 mutex_exit(vp->v_interlock);
267 lfs_freebuf(fs, bp);
268 mutex_enter(vp->v_interlock);
269 bp = NULL;
270 break;
271 }
272 }
273 }
274 } else {
275 mutex_enter(vp->v_interlock);
276 }
277
278 /* If the node is being written, wait until that is done */
279 while (WRITEINPROG(vp)) {
280 ivndebug(vp,"vflush/writeinprog");
281 cv_wait(&vp->v_cv, vp->v_interlock);
282 }
283 mutex_exit(vp->v_interlock);
284
285 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 lfs_seglock(fs, SEGM_SYNC | ((vp->v_iflag & VI_XLOCK) ? SEGM_RECLAIM : 0));
287 if (vp->v_iflag & VI_XLOCK) {
288 fs->lfs_reclino = ip->i_number;
289 }
290
291 /* If we're supposed to flush a freed inode, just toss it */
292 if (ip->i_lfs_iflags & LFSI_DELETED) {
293 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
294 ip->i_number));
295 /* Drain v_numoutput */
296 mutex_enter(vp->v_interlock);
297 while (vp->v_numoutput > 0) {
298 cv_wait(&vp->v_cv, vp->v_interlock);
299 }
300 KASSERT(vp->v_numoutput == 0);
301 mutex_exit(vp->v_interlock);
302
303 mutex_enter(&bufcache_lock);
304 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
305 nbp = LIST_NEXT(bp, b_vnbufs);
306
307 KASSERT((bp->b_flags & B_GATHERED) == 0);
308 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
309 fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
310 wakeup(&fs->lfs_avail);
311 }
312 /* Copied from lfs_writeseg */
313 if (bp->b_iodone != NULL) {
314 mutex_exit(&bufcache_lock);
315 biodone(bp);
316 mutex_enter(&bufcache_lock);
317 } else {
318 bremfree(bp);
319 LFS_UNLOCK_BUF(bp);
320 mutex_enter(vp->v_interlock);
321 bp->b_flags &= ~(B_READ | B_GATHERED);
322 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
323 bp->b_error = 0;
324 reassignbuf(bp, vp);
325 mutex_exit(vp->v_interlock);
326 brelse(bp, 0);
327 }
328 }
329 mutex_exit(&bufcache_lock);
330 LFS_CLR_UINO(ip, IN_CLEANING);
331 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
332 ip->i_flag &= ~IN_ALLMOD;
333 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
334 ip->i_number));
335 lfs_segunlock(fs);
336
337 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
338
339 return 0;
340 }
341
342 fs->lfs_flushvp = vp;
343 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
344 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
345 fs->lfs_flushvp = NULL;
346 KASSERT(fs->lfs_flushvp_fakevref == 0);
347 lfs_segunlock(fs);
348
349 /* Make sure that any pending buffers get written */
350 mutex_enter(vp->v_interlock);
351 while (vp->v_numoutput > 0) {
352 cv_wait(&vp->v_cv, vp->v_interlock);
353 }
354 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
355 KASSERT(vp->v_numoutput == 0);
356 mutex_exit(vp->v_interlock);
357
358 return error;
359 }
360 sp = fs->lfs_sp;
361
362 flushed = 0;
363 if (VPISEMPTY(vp)) {
364 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
365 ++flushed;
366 } else if ((ip->i_flag & IN_CLEANING) &&
367 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
368 ivndebug(vp,"vflush/clean");
369 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
370 ++flushed;
371 } else if (lfs_dostats) {
372 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
373 ++lfs_stats.vflush_invoked;
374 ivndebug(vp,"vflush");
375 }
376
377 #ifdef DIAGNOSTIC
378 if (vp->v_uflag & VU_DIROP) {
379 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
380 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
381 }
382 #endif
383
384 do {
385 loopcount = 0;
386 do {
387 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
388 relock = lfs_writefile(fs, sp, vp);
389 if (relock && vp != fs->lfs_ivnode) {
390 /*
391 * Might have to wait for the
392 * cleaner to run; but we're
393 * still not done with this vnode.
394 * XXX we can do better than this.
395 */
396 KDASSERT(ip->i_number != LFS_IFILE_INUM);
397 lfs_writeinode(fs, sp, ip);
398 mutex_enter(&lfs_lock);
399 LFS_SET_UINO(ip, IN_MODIFIED);
400 mutex_exit(&lfs_lock);
401 lfs_writeseg(fs, sp);
402 lfs_segunlock(fs);
403 lfs_segunlock_relock(fs);
404 goto top;
405 }
406 }
407 /*
408 * If we begin a new segment in the middle of writing
409 * the Ifile, it creates an inconsistent checkpoint,
410 * since the Ifile information for the new segment
411 * is not up-to-date. Take care of this here by
412 * sending the Ifile through again in case there
413 * are newly dirtied blocks. But wait, there's more!
414 * This second Ifile write could *also* cross a segment
415 * boundary, if the first one was large. The second
416 * one is guaranteed to be no more than 8 blocks,
417 * though (two segment blocks and supporting indirects)
418 * so the third write *will not* cross the boundary.
419 */
420 if (vp == fs->lfs_ivnode) {
421 lfs_writefile(fs, sp, vp);
422 lfs_writefile(fs, sp, vp);
423 }
424 #ifdef DEBUG
425 if (++loopcount > 2)
426 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
427 #endif
428 } while (lfs_writeinode(fs, sp, ip));
429 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
430
431 if (lfs_dostats) {
432 ++lfs_stats.nwrites;
433 if (sp->seg_flags & SEGM_SYNC)
434 ++lfs_stats.nsync_writes;
435 if (sp->seg_flags & SEGM_CKP)
436 ++lfs_stats.ncheckpoints;
437 }
438 /*
439 * If we were called from somewhere that has already held the seglock
440 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
441 * the write to complete because we are still locked.
442 * Since lfs_vflush() must return the vnode with no dirty buffers,
443 * we must explicitly wait, if that is the case.
444 *
445 * We compare the iocount against 1, not 0, because it is
446 * artificially incremented by lfs_seglock().
447 */
448 mutex_enter(&lfs_lock);
449 if (fs->lfs_seglock > 1) {
450 while (fs->lfs_iocount > 1)
451 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
452 "lfs_vflush", 0, &lfs_lock);
453 }
454 mutex_exit(&lfs_lock);
455
456 lfs_segunlock(fs);
457
458 /* Wait for these buffers to be recovered by aiodoned */
459 mutex_enter(vp->v_interlock);
460 while (vp->v_numoutput > 0) {
461 cv_wait(&vp->v_cv, vp->v_interlock);
462 }
463 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
464 KASSERT(vp->v_numoutput == 0);
465 mutex_exit(vp->v_interlock);
466
467 fs->lfs_flushvp = NULL;
468 KASSERT(fs->lfs_flushvp_fakevref == 0);
469
470 return (0);
471 }
472
473 int
474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
475 {
476 struct inode *ip;
477 struct vnode *vp;
478 int inodes_written = 0, only_cleaning;
479 int error = 0;
480
481 ASSERT_SEGLOCK(fs);
482 loop:
483 /* start at last (newest) vnode. */
484 mutex_enter(&mntvnode_lock);
485 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
486 /*
487 * If the vnode that we are about to sync is no longer
488 * associated with this mount point, start over.
489 */
490 if (vp->v_mount != mp) {
491 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
492 /*
493 * After this, pages might be busy
494 * due to our own previous putpages.
495 * Start actual segment write here to avoid deadlock.
496 * If we were just writing one segment and we've done
497 * that, break out.
498 */
499 mutex_exit(&mntvnode_lock);
500 if (lfs_writeseg(fs, sp) &&
501 (sp->seg_flags & SEGM_SINGLE) &&
502 fs->lfs_curseg != fs->lfs_startseg) {
503 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
504 break;
505 }
506 goto loop;
507 }
508
509 mutex_enter(vp->v_interlock);
510 if (vp->v_type == VNON || vismarker(vp) ||
511 (vp->v_iflag & VI_CLEAN) != 0) {
512 mutex_exit(vp->v_interlock);
513 continue;
514 }
515
516 ip = VTOI(vp);
517 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
518 (op != VN_DIROP && op != VN_CLEAN &&
519 (vp->v_uflag & VU_DIROP))) {
520 mutex_exit(vp->v_interlock);
521 vndebug(vp,"dirop");
522 continue;
523 }
524
525 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 mutex_exit(vp->v_interlock);
527 vndebug(vp,"empty");
528 continue;
529 }
530
531 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
532 && vp != fs->lfs_flushvp
533 && !(ip->i_flag & IN_CLEANING)) {
534 mutex_exit(vp->v_interlock);
535 vndebug(vp,"cleaning");
536 continue;
537 }
538
539 mutex_exit(&mntvnode_lock);
540 if (lfs_vref(vp)) {
541 vndebug(vp,"vref");
542 mutex_enter(&mntvnode_lock);
543 continue;
544 }
545
546 only_cleaning = 0;
547 /*
548 * Write the inode/file if dirty and it's not the IFILE.
549 */
550 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
551 only_cleaning =
552 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
553
554 if (ip->i_number != LFS_IFILE_INUM) {
555 error = lfs_writefile(fs, sp, vp);
556 if (error) {
557 lfs_vunref(vp);
558 if (error == EAGAIN) {
559 /*
560 * This error from lfs_putpages
561 * indicates we need to drop
562 * the segment lock and start
563 * over after the cleaner has
564 * had a chance to run.
565 */
566 lfs_writeinode(fs, sp, ip);
567 lfs_writeseg(fs, sp);
568 if (!VPISEMPTY(vp) &&
569 !WRITEINPROG(vp) &&
570 !(ip->i_flag & IN_ALLMOD)) {
571 mutex_enter(&lfs_lock);
572 LFS_SET_UINO(ip, IN_MODIFIED);
573 mutex_exit(&lfs_lock);
574 }
575 mutex_enter(&mntvnode_lock);
576 break;
577 }
578 error = 0; /* XXX not quite right */
579 mutex_enter(&mntvnode_lock);
580 continue;
581 }
582
583 if (!VPISEMPTY(vp)) {
584 if (WRITEINPROG(vp)) {
585 ivndebug(vp,"writevnodes/write2");
586 } else if (!(ip->i_flag & IN_ALLMOD)) {
587 mutex_enter(&lfs_lock);
588 LFS_SET_UINO(ip, IN_MODIFIED);
589 mutex_exit(&lfs_lock);
590 }
591 }
592 (void) lfs_writeinode(fs, sp, ip);
593 inodes_written++;
594 }
595 }
596
597 if (lfs_clean_vnhead && only_cleaning)
598 lfs_vunref_head(vp);
599 else
600 lfs_vunref(vp);
601
602 mutex_enter(&mntvnode_lock);
603 }
604 mutex_exit(&mntvnode_lock);
605 return error;
606 }
607
608 /*
609 * Do a checkpoint.
610 */
611 int
612 lfs_segwrite(struct mount *mp, int flags)
613 {
614 struct buf *bp;
615 struct inode *ip;
616 struct lfs *fs;
617 struct segment *sp;
618 struct vnode *vp;
619 SEGUSE *segusep;
620 int do_ckp, did_ckp, error;
621 unsigned n, segleft, maxseg, sn, i, curseg;
622 int writer_set = 0;
623 int dirty;
624 int redo;
625 int um_error;
626 int loopcount;
627
628 fs = VFSTOULFS(mp)->um_lfs;
629 ASSERT_MAYBE_SEGLOCK(fs);
630
631 if (fs->lfs_ronly)
632 return EROFS;
633
634 lfs_imtime(fs);
635
636 /*
637 * Allocate a segment structure and enough space to hold pointers to
638 * the maximum possible number of buffers which can be described in a
639 * single summary block.
640 */
641 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
642
643 /* We can't do a partial write and checkpoint at the same time. */
644 if (do_ckp)
645 flags &= ~SEGM_SINGLE;
646
647 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
648 sp = fs->lfs_sp;
649 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
650 do_ckp = 1;
651
652 /*
653 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
654 * in which case we have to flush *all* buffers off of this vnode.
655 * We don't care about other nodes, but write any non-dirop nodes
656 * anyway in anticipation of another getnewvnode().
657 *
658 * If we're cleaning we only write cleaning and ifile blocks, and
659 * no dirops, since otherwise we'd risk corruption in a crash.
660 */
661 if (sp->seg_flags & SEGM_CLEAN)
662 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
663 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
664 do {
665 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
666 if ((sp->seg_flags & SEGM_SINGLE) &&
667 fs->lfs_curseg != fs->lfs_startseg) {
668 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
669 break;
670 }
671
672 if (do_ckp || fs->lfs_dirops == 0) {
673 if (!writer_set) {
674 lfs_writer_enter(fs, "lfs writer");
675 writer_set = 1;
676 }
677 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
678 if (um_error == 0)
679 um_error = error;
680 /* In case writevnodes errored out */
681 lfs_flush_dirops(fs);
682 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
683 lfs_finalize_fs_seguse(fs);
684 }
685 if (do_ckp && um_error) {
686 lfs_segunlock_relock(fs);
687 sp = fs->lfs_sp;
688 }
689 } while (do_ckp && um_error != 0);
690 }
691
692 /*
693 * If we are doing a checkpoint, mark everything since the
694 * last checkpoint as no longer ACTIVE.
695 */
696 if (do_ckp || fs->lfs_doifile) {
697 segleft = fs->lfs_nseg;
698 curseg = 0;
699 for (n = 0; n < fs->lfs_segtabsz; n++) {
700 dirty = 0;
701 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
702 fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
703 panic("lfs_segwrite: ifile read");
704 segusep = (SEGUSE *)bp->b_data;
705 maxseg = min(segleft, fs->lfs_sepb);
706 for (i = 0; i < maxseg; i++) {
707 sn = curseg + i;
708 if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
709 segusep->su_flags & SEGUSE_ACTIVE) {
710 segusep->su_flags &= ~SEGUSE_ACTIVE;
711 --fs->lfs_nactive;
712 ++dirty;
713 }
714 fs->lfs_suflags[fs->lfs_activesb][sn] =
715 segusep->su_flags;
716 if (fs->lfs_version > 1)
717 ++segusep;
718 else
719 segusep = (SEGUSE *)
720 ((SEGUSE_V1 *)segusep + 1);
721 }
722
723 if (dirty)
724 error = LFS_BWRITE_LOG(bp); /* Ifile */
725 else
726 brelse(bp, 0);
727 segleft -= fs->lfs_sepb;
728 curseg += fs->lfs_sepb;
729 }
730 }
731
732 KASSERT(LFS_SEGLOCK_HELD(fs));
733
734 did_ckp = 0;
735 if (do_ckp || fs->lfs_doifile) {
736 vp = fs->lfs_ivnode;
737 loopcount = 0;
738 do {
739 #ifdef DEBUG
740 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
741 #endif
742 mutex_enter(&lfs_lock);
743 fs->lfs_flags &= ~LFS_IFDIRTY;
744 mutex_exit(&lfs_lock);
745
746 ip = VTOI(vp);
747
748 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
749 /*
750 * Ifile has no pages, so we don't need
751 * to check error return here.
752 */
753 lfs_writefile(fs, sp, vp);
754 /*
755 * Ensure the Ifile takes the current segment
756 * into account. See comment in lfs_vflush.
757 */
758 lfs_writefile(fs, sp, vp);
759 lfs_writefile(fs, sp, vp);
760 }
761
762 if (ip->i_flag & IN_ALLMOD)
763 ++did_ckp;
764 #if 0
765 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
766 #else
767 redo = lfs_writeinode(fs, sp, ip);
768 #endif
769 redo += lfs_writeseg(fs, sp);
770 mutex_enter(&lfs_lock);
771 redo += (fs->lfs_flags & LFS_IFDIRTY);
772 mutex_exit(&lfs_lock);
773 #ifdef DEBUG
774 if (++loopcount > 2)
775 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
776 loopcount);
777 #endif
778 } while (redo && do_ckp);
779
780 /*
781 * Unless we are unmounting, the Ifile may continue to have
782 * dirty blocks even after a checkpoint, due to changes to
783 * inodes' atime. If we're checkpointing, it's "impossible"
784 * for other parts of the Ifile to be dirty after the loop
785 * above, since we hold the segment lock.
786 */
787 mutex_enter(vp->v_interlock);
788 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
789 LFS_CLR_UINO(ip, IN_ALLMOD);
790 }
791 #ifdef DIAGNOSTIC
792 else if (do_ckp) {
793 int do_panic = 0;
794 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
795 if (bp->b_lblkno < fs->lfs_cleansz +
796 fs->lfs_segtabsz &&
797 !(bp->b_flags & B_GATHERED)) {
798 printf("ifile lbn %ld still dirty (flags %lx)\n",
799 (long)bp->b_lblkno,
800 (long)bp->b_flags);
801 ++do_panic;
802 }
803 }
804 if (do_panic)
805 panic("dirty blocks");
806 }
807 #endif
808 mutex_exit(vp->v_interlock);
809 } else {
810 (void) lfs_writeseg(fs, sp);
811 }
812
813 /* Note Ifile no longer needs to be written */
814 fs->lfs_doifile = 0;
815 if (writer_set)
816 lfs_writer_leave(fs);
817
818 /*
819 * If we didn't write the Ifile, we didn't really do anything.
820 * That means that (1) there is a checkpoint on disk and (2)
821 * nothing has changed since it was written.
822 *
823 * Take the flags off of the segment so that lfs_segunlock
824 * doesn't have to write the superblock either.
825 */
826 if (do_ckp && !did_ckp) {
827 sp->seg_flags &= ~SEGM_CKP;
828 }
829
830 if (lfs_dostats) {
831 ++lfs_stats.nwrites;
832 if (sp->seg_flags & SEGM_SYNC)
833 ++lfs_stats.nsync_writes;
834 if (sp->seg_flags & SEGM_CKP)
835 ++lfs_stats.ncheckpoints;
836 }
837 lfs_segunlock(fs);
838 return (0);
839 }
840
841 /*
842 * Write the dirty blocks associated with a vnode.
843 */
844 int
845 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
846 {
847 struct finfo *fip;
848 struct inode *ip;
849 int i, frag;
850 int error;
851
852 ASSERT_SEGLOCK(fs);
853 error = 0;
854 ip = VTOI(vp);
855
856 fip = sp->fip;
857 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
858
859 if (vp->v_uflag & VU_DIROP)
860 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
861
862 if (sp->seg_flags & SEGM_CLEAN) {
863 lfs_gather(fs, sp, vp, lfs_match_fake);
864 /*
865 * For a file being flushed, we need to write *all* blocks.
866 * This means writing the cleaning blocks first, and then
867 * immediately following with any non-cleaning blocks.
868 * The same is true of the Ifile since checkpoints assume
869 * that all valid Ifile blocks are written.
870 */
871 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
872 lfs_gather(fs, sp, vp, lfs_match_data);
873 /*
874 * Don't call VOP_PUTPAGES: if we're flushing,
875 * we've already done it, and the Ifile doesn't
876 * use the page cache.
877 */
878 }
879 } else {
880 lfs_gather(fs, sp, vp, lfs_match_data);
881 /*
882 * If we're flushing, we've already called VOP_PUTPAGES
883 * so don't do it again. Otherwise, we want to write
884 * everything we've got.
885 */
886 if (!IS_FLUSHING(fs, vp)) {
887 mutex_enter(vp->v_interlock);
888 error = VOP_PUTPAGES(vp, 0, 0,
889 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
890 }
891 }
892
893 /*
894 * It may not be necessary to write the meta-data blocks at this point,
895 * as the roll-forward recovery code should be able to reconstruct the
896 * list.
897 *
898 * We have to write them anyway, though, under two conditions: (1) the
899 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
900 * checkpointing.
901 *
902 * BUT if we are cleaning, we might have indirect blocks that refer to
903 * new blocks not being written yet, in addition to fragments being
904 * moved out of a cleaned segment. If that is the case, don't
905 * write the indirect blocks, or the finfo will have a small block
906 * in the middle of it!
907 * XXX in this case isn't the inode size wrong too?
908 */
909 frag = 0;
910 if (sp->seg_flags & SEGM_CLEAN) {
911 for (i = 0; i < ULFS_NDADDR; i++)
912 if (ip->i_lfs_fragsize[i] > 0 &&
913 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
914 ++frag;
915 }
916 #ifdef DIAGNOSTIC
917 if (frag > 1)
918 panic("lfs_writefile: more than one fragment!");
919 #endif
920 if (IS_FLUSHING(fs, vp) ||
921 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
922 lfs_gather(fs, sp, vp, lfs_match_indir);
923 lfs_gather(fs, sp, vp, lfs_match_dindir);
924 lfs_gather(fs, sp, vp, lfs_match_tindir);
925 }
926 fip = sp->fip;
927 lfs_release_finfo(fs);
928
929 return error;
930 }
931
932 /*
933 * Update segment accounting to reflect this inode's change of address.
934 */
935 static int
936 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
937 {
938 struct buf *bp;
939 daddr_t daddr;
940 IFILE *ifp;
941 SEGUSE *sup;
942 ino_t ino;
943 int redo_ifile, error;
944 u_int32_t sn;
945
946 redo_ifile = 0;
947
948 /*
949 * If updating the ifile, update the super-block. Update the disk
950 * address and access times for this inode in the ifile.
951 */
952 ino = ip->i_number;
953 if (ino == LFS_IFILE_INUM) {
954 daddr = fs->lfs_idaddr;
955 fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
956 } else {
957 LFS_IENTRY(ifp, fs, ino, bp);
958 daddr = ifp->if_daddr;
959 ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
960 error = LFS_BWRITE_LOG(bp); /* Ifile */
961 }
962
963 /*
964 * If this is the Ifile and lfs_offset is set to the first block
965 * in the segment, dirty the new segment's accounting block
966 * (XXX should already be dirty?) and tell the caller to do it again.
967 */
968 if (ip->i_number == LFS_IFILE_INUM) {
969 sn = lfs_dtosn(fs, fs->lfs_offset);
970 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
971 fs->lfs_offset) {
972 LFS_SEGENTRY(sup, fs, sn, bp);
973 KASSERT(bp->b_oflags & BO_DELWRI);
974 LFS_WRITESEGENTRY(sup, fs, sn, bp);
975 /* fs->lfs_flags |= LFS_IFDIRTY; */
976 redo_ifile |= 1;
977 }
978 }
979
980 /*
981 * The inode's last address should not be in the current partial
982 * segment, except under exceptional circumstances (lfs_writevnodes
983 * had to start over, and in the meantime more blocks were written
984 * to a vnode). Both inodes will be accounted to this segment
985 * in lfs_writeseg so we need to subtract the earlier version
986 * here anyway. The segment count can temporarily dip below
987 * zero here; keep track of how many duplicates we have in
988 * "dupino" so we don't panic below.
989 */
990 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
991 ++sp->ndupino;
992 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
993 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
994 (long long)daddr, sp->ndupino));
995 }
996 /*
997 * Account the inode: it no longer belongs to its former segment,
998 * though it will not belong to the new segment until that segment
999 * is actually written.
1000 */
1001 if (daddr != LFS_UNUSED_DADDR) {
1002 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1003 #ifdef DIAGNOSTIC
1004 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1005 #endif
1006 LFS_SEGENTRY(sup, fs, oldsn, bp);
1007 #ifdef DIAGNOSTIC
1008 if (sup->su_nbytes +
1009 sizeof (struct ulfs1_dinode) * ndupino
1010 < sizeof (struct ulfs1_dinode)) {
1011 printf("lfs_writeinode: negative bytes "
1012 "(segment %" PRIu32 " short by %d, "
1013 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1014 ", daddr=%" PRId64 ", su_nbytes=%u, "
1015 "ndupino=%d)\n",
1016 lfs_dtosn(fs, daddr),
1017 (int)sizeof (struct ulfs1_dinode) *
1018 (1 - sp->ndupino) - sup->su_nbytes,
1019 oldsn, sp->seg_number, daddr,
1020 (unsigned int)sup->su_nbytes,
1021 sp->ndupino);
1022 panic("lfs_writeinode: negative bytes");
1023 sup->su_nbytes = sizeof (struct ulfs1_dinode);
1024 }
1025 #endif
1026 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1027 lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
1028 sup->su_nbytes -= sizeof (struct ulfs1_dinode);
1029 redo_ifile |=
1030 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1031 if (redo_ifile) {
1032 mutex_enter(&lfs_lock);
1033 fs->lfs_flags |= LFS_IFDIRTY;
1034 mutex_exit(&lfs_lock);
1035 /* Don't double-account */
1036 fs->lfs_idaddr = 0x0;
1037 }
1038 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1039 }
1040
1041 return redo_ifile;
1042 }
1043
1044 int
1045 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1046 {
1047 struct buf *bp;
1048 struct ulfs1_dinode *cdp;
1049 struct vnode *vp = ITOV(ip);
1050 daddr_t daddr;
1051 int32_t *daddrp; /* XXX ondisk32 */
1052 int i, ndx;
1053 int redo_ifile = 0;
1054 int gotblk = 0;
1055 int count;
1056
1057 ASSERT_SEGLOCK(fs);
1058 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1059 return (0);
1060
1061 /* Can't write ifile when writer is not set */
1062 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1063 (sp->seg_flags & SEGM_CLEAN));
1064
1065 /*
1066 * If this is the Ifile, see if writing it here will generate a
1067 * temporary misaccounting. If it will, do the accounting and write
1068 * the blocks, postponing the inode write until the accounting is
1069 * solid.
1070 */
1071 count = 0;
1072 while (vp == fs->lfs_ivnode) {
1073 int redo = 0;
1074
1075 if (sp->idp == NULL && sp->ibp == NULL &&
1076 (sp->seg_bytes_left < fs->lfs_ibsize ||
1077 sp->sum_bytes_left < sizeof(int32_t))) {
1078 (void) lfs_writeseg(fs, sp);
1079 continue;
1080 }
1081
1082 /* Look for dirty Ifile blocks */
1083 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1084 if (!(bp->b_flags & B_GATHERED)) {
1085 redo = 1;
1086 break;
1087 }
1088 }
1089
1090 if (redo == 0)
1091 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1092 if (redo == 0)
1093 break;
1094
1095 if (sp->idp) {
1096 sp->idp->di_inumber = 0;
1097 sp->idp = NULL;
1098 }
1099 ++count;
1100 if (count > 2)
1101 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1102 lfs_writefile(fs, sp, fs->lfs_ivnode);
1103 }
1104
1105 /* Allocate a new inode block if necessary. */
1106 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1107 sp->ibp == NULL) {
1108 /* Allocate a new segment if necessary. */
1109 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1110 sp->sum_bytes_left < sizeof(int32_t))
1111 (void) lfs_writeseg(fs, sp);
1112
1113 /* Get next inode block. */
1114 daddr = fs->lfs_offset;
1115 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
1116 sp->ibp = *sp->cbpp++ =
1117 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1118 LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
1119 gotblk++;
1120
1121 /* Zero out inode numbers */
1122 for (i = 0; i < LFS_INOPB(fs); ++i)
1123 ((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1124 0;
1125
1126 ++sp->start_bpp;
1127 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
1128 /* Set remaining space counters. */
1129 sp->seg_bytes_left -= fs->lfs_ibsize;
1130 sp->sum_bytes_left -= sizeof(int32_t);
1131 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1132 sp->ninodes / LFS_INOPB(fs) - 1;
1133 ((int32_t *)(sp->segsum))[ndx] = daddr;
1134 }
1135
1136 /* Check VU_DIROP in case there is a new file with no data blocks */
1137 if (vp->v_uflag & VU_DIROP)
1138 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1139
1140 /* Update the inode times and copy the inode onto the inode page. */
1141 /* XXX kludge --- don't redirty the ifile just to put times on it */
1142 if (ip->i_number != LFS_IFILE_INUM)
1143 LFS_ITIMES(ip, NULL, NULL, NULL);
1144
1145 /*
1146 * If this is the Ifile, and we've already written the Ifile in this
1147 * partial segment, just overwrite it (it's not on disk yet) and
1148 * continue.
1149 *
1150 * XXX we know that the bp that we get the second time around has
1151 * already been gathered.
1152 */
1153 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1154 *(sp->idp) = *ip->i_din.ffs1_din;
1155 ip->i_lfs_osize = ip->i_size;
1156 return 0;
1157 }
1158
1159 bp = sp->ibp;
1160 cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
1161 *cdp = *ip->i_din.ffs1_din;
1162
1163 /*
1164 * This inode is on its way to disk; clear its VU_DIROP status when
1165 * the write is complete.
1166 */
1167 if (vp->v_uflag & VU_DIROP) {
1168 if (!(sp->seg_flags & SEGM_CLEAN))
1169 ip->i_flag |= IN_CDIROP;
1170 else {
1171 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1172 }
1173 }
1174
1175 /*
1176 * If cleaning, link counts and directory file sizes cannot change,
1177 * since those would be directory operations---even if the file
1178 * we are writing is marked VU_DIROP we should write the old values.
1179 * If we're not cleaning, of course, update the values so we get
1180 * current values the next time we clean.
1181 */
1182 if (sp->seg_flags & SEGM_CLEAN) {
1183 if (vp->v_uflag & VU_DIROP) {
1184 cdp->di_nlink = ip->i_lfs_odnlink;
1185 /* if (vp->v_type == VDIR) */
1186 cdp->di_size = ip->i_lfs_osize;
1187 }
1188 } else {
1189 ip->i_lfs_odnlink = cdp->di_nlink;
1190 ip->i_lfs_osize = ip->i_size;
1191 }
1192
1193
1194 /* We can finish the segment accounting for truncations now */
1195 lfs_finalize_ino_seguse(fs, ip);
1196
1197 /*
1198 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1199 * addresses to disk; possibly change the on-disk record of
1200 * the inode size, either by reverting to the previous size
1201 * (in the case of cleaning) or by verifying the inode's block
1202 * holdings (in the case of files being allocated as they are being
1203 * written).
1204 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1205 * XXX count on disk wrong by the same amount. We should be
1206 * XXX able to "borrow" from lfs_avail and return it after the
1207 * XXX Ifile is written. See also in lfs_writeseg.
1208 */
1209
1210 /* Check file size based on highest allocated block */
1211 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1212 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1213 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1214 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1215 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1216 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1217 }
1218 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1219 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1220 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1221 ip->i_ffs1_blocks, fs->lfs_offset));
1222 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
1223 daddrp++) {
1224 if (*daddrp == UNWRITTEN) {
1225 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1226 *daddrp = 0;
1227 }
1228 }
1229 }
1230
1231 #ifdef DIAGNOSTIC
1232 /*
1233 * Check dinode held blocks against dinode size.
1234 * This should be identical to the check in lfs_vget().
1235 */
1236 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1237 i < ULFS_NDADDR; i++) {
1238 KASSERT(i >= 0);
1239 if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
1240 continue;
1241 if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
1242 (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
1243 continue;
1244 if (cdp->di_db[i] != 0) {
1245 # ifdef DEBUG
1246 lfs_dump_dinode(cdp);
1247 # endif
1248 panic("writing inconsistent inode");
1249 }
1250 }
1251 #endif /* DIAGNOSTIC */
1252
1253 if (ip->i_flag & IN_CLEANING)
1254 LFS_CLR_UINO(ip, IN_CLEANING);
1255 else {
1256 /* XXX IN_ALLMOD */
1257 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1258 IN_UPDATE | IN_MODIFY);
1259 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1260 LFS_CLR_UINO(ip, IN_MODIFIED);
1261 else {
1262 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1263 "blks=%d, eff=%d\n", ip->i_number,
1264 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1265 }
1266 }
1267
1268 if (ip->i_number == LFS_IFILE_INUM) {
1269 /* We know sp->idp == NULL */
1270 sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
1271 (sp->ninodes % LFS_INOPB(fs));
1272
1273 /* Not dirty any more */
1274 mutex_enter(&lfs_lock);
1275 fs->lfs_flags &= ~LFS_IFDIRTY;
1276 mutex_exit(&lfs_lock);
1277 }
1278
1279 if (gotblk) {
1280 mutex_enter(&bufcache_lock);
1281 LFS_LOCK_BUF(bp);
1282 brelsel(bp, 0);
1283 mutex_exit(&bufcache_lock);
1284 }
1285
1286 /* Increment inode count in segment summary block. */
1287 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1288
1289 /* If this page is full, set flag to allocate a new page. */
1290 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1291 sp->ibp = NULL;
1292
1293 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1294
1295 KASSERT(redo_ifile == 0);
1296 return (redo_ifile);
1297 }
1298
1299 int
1300 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1301 {
1302 struct lfs *fs;
1303 int vers;
1304 int j, blksinblk;
1305
1306 ASSERT_SEGLOCK(sp->fs);
1307 /*
1308 * If full, finish this segment. We may be doing I/O, so
1309 * release and reacquire the splbio().
1310 */
1311 #ifdef DIAGNOSTIC
1312 if (sp->vp == NULL)
1313 panic ("lfs_gatherblock: Null vp in segment");
1314 #endif
1315 fs = sp->fs;
1316 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1317 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1318 sp->seg_bytes_left < bp->b_bcount) {
1319 if (mptr)
1320 mutex_exit(mptr);
1321 lfs_updatemeta(sp);
1322
1323 vers = sp->fip->fi_version;
1324 (void) lfs_writeseg(fs, sp);
1325
1326 /* Add the current file to the segment summary. */
1327 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1328
1329 if (mptr)
1330 mutex_enter(mptr);
1331 return (1);
1332 }
1333
1334 if (bp->b_flags & B_GATHERED) {
1335 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1336 " lbn %" PRId64 "\n",
1337 sp->fip->fi_ino, bp->b_lblkno));
1338 return (0);
1339 }
1340
1341 /* Insert into the buffer list, update the FINFO block. */
1342 bp->b_flags |= B_GATHERED;
1343
1344 *sp->cbpp++ = bp;
1345 for (j = 0; j < blksinblk; j++) {
1346 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1347 /* This block's accounting moves from lfs_favail to lfs_avail */
1348 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1349 }
1350
1351 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1352 sp->seg_bytes_left -= bp->b_bcount;
1353 return (0);
1354 }
1355
1356 int
1357 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1358 int (*match)(struct lfs *, struct buf *))
1359 {
1360 struct buf *bp, *nbp;
1361 int count = 0;
1362
1363 ASSERT_SEGLOCK(fs);
1364 if (vp->v_type == VBLK)
1365 return 0;
1366 KASSERT(sp->vp == NULL);
1367 sp->vp = vp;
1368 mutex_enter(&bufcache_lock);
1369
1370 #ifndef LFS_NO_BACKBUF_HACK
1371 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1372 # define BUF_OFFSET \
1373 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1374 # define BACK_BUF(BP) \
1375 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1376 # define BEG_OF_LIST \
1377 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1378
1379 loop:
1380 /* Find last buffer. */
1381 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1382 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1383 bp = LIST_NEXT(bp, b_vnbufs))
1384 /* nothing */;
1385 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1386 nbp = BACK_BUF(bp);
1387 #else /* LFS_NO_BACKBUF_HACK */
1388 loop:
1389 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1390 nbp = LIST_NEXT(bp, b_vnbufs);
1391 #endif /* LFS_NO_BACKBUF_HACK */
1392 if ((bp->b_cflags & BC_BUSY) != 0 ||
1393 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1394 #ifdef DEBUG
1395 if (vp == fs->lfs_ivnode &&
1396 (bp->b_cflags & BC_BUSY) != 0 &&
1397 (bp->b_flags & B_GATHERED) == 0)
1398 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1399 PRId64 " busy (%x) at 0x%x",
1400 bp->b_lblkno, bp->b_flags,
1401 (unsigned)fs->lfs_offset);
1402 #endif
1403 continue;
1404 }
1405 #ifdef DIAGNOSTIC
1406 # ifdef LFS_USE_B_INVAL
1407 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1408 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1409 " is BC_INVAL\n", bp->b_lblkno));
1410 VOP_PRINT(bp->b_vp);
1411 }
1412 # endif /* LFS_USE_B_INVAL */
1413 if (!(bp->b_oflags & BO_DELWRI))
1414 panic("lfs_gather: bp not BO_DELWRI");
1415 if (!(bp->b_flags & B_LOCKED)) {
1416 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1417 " blk %" PRId64 " not B_LOCKED\n",
1418 bp->b_lblkno,
1419 LFS_DBTOFSB(fs, bp->b_blkno)));
1420 VOP_PRINT(bp->b_vp);
1421 panic("lfs_gather: bp not B_LOCKED");
1422 }
1423 #endif
1424 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1425 goto loop;
1426 }
1427 count++;
1428 }
1429 mutex_exit(&bufcache_lock);
1430 lfs_updatemeta(sp);
1431 KASSERT(sp->vp == vp);
1432 sp->vp = NULL;
1433 return count;
1434 }
1435
1436 #if DEBUG
1437 # define DEBUG_OOFF(n) do { \
1438 if (ooff == 0) { \
1439 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1440 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1441 ", was 0x0 (or %" PRId64 ")\n", \
1442 (n), ip->i_number, lbn, ndaddr, daddr)); \
1443 } \
1444 } while (0)
1445 #else
1446 # define DEBUG_OOFF(n)
1447 #endif
1448
1449 /*
1450 * Change the given block's address to ndaddr, finding its previous
1451 * location using ulfs_bmaparray().
1452 *
1453 * Account for this change in the segment table.
1454 *
1455 * called with sp == NULL by roll-forwarding code.
1456 */
1457 void
1458 lfs_update_single(struct lfs *fs, struct segment *sp,
1459 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1460 {
1461 SEGUSE *sup;
1462 struct buf *bp;
1463 struct indir a[ULFS_NIADDR + 2], *ap;
1464 struct inode *ip;
1465 daddr_t daddr, ooff;
1466 int num, error;
1467 int bb, osize, obb;
1468
1469 ASSERT_SEGLOCK(fs);
1470 KASSERT(sp == NULL || sp->vp == vp);
1471 ip = VTOI(vp);
1472
1473 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1474 if (error)
1475 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1476
1477 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1478 KASSERT(daddr <= LFS_MAX_DADDR);
1479 if (daddr > 0)
1480 daddr = LFS_DBTOFSB(fs, daddr);
1481
1482 bb = lfs_numfrags(fs, size);
1483 switch (num) {
1484 case 0:
1485 ooff = ip->i_ffs1_db[lbn];
1486 DEBUG_OOFF(0);
1487 if (ooff == UNWRITTEN)
1488 ip->i_ffs1_blocks += bb;
1489 else {
1490 /* possible fragment truncation or extension */
1491 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1492 ip->i_ffs1_blocks += (bb - obb);
1493 }
1494 ip->i_ffs1_db[lbn] = ndaddr;
1495 break;
1496 case 1:
1497 ooff = ip->i_ffs1_ib[a[0].in_off];
1498 DEBUG_OOFF(1);
1499 if (ooff == UNWRITTEN)
1500 ip->i_ffs1_blocks += bb;
1501 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1502 break;
1503 default:
1504 ap = &a[num - 1];
1505 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1506 B_MODIFY, &bp))
1507 panic("lfs_updatemeta: bread bno %" PRId64,
1508 ap->in_lbn);
1509
1510 /* XXX ondisk32 */
1511 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1512 DEBUG_OOFF(num);
1513 if (ooff == UNWRITTEN)
1514 ip->i_ffs1_blocks += bb;
1515 /* XXX ondisk32 */
1516 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1517 (void) VOP_BWRITE(bp->b_vp, bp);
1518 }
1519
1520 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1521
1522 /* Update hiblk when extending the file */
1523 if (lbn > ip->i_lfs_hiblk)
1524 ip->i_lfs_hiblk = lbn;
1525
1526 /*
1527 * Though we'd rather it couldn't, this *can* happen right now
1528 * if cleaning blocks and regular blocks coexist.
1529 */
1530 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1531
1532 /*
1533 * Update segment usage information, based on old size
1534 * and location.
1535 */
1536 if (daddr > 0) {
1537 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1538 #ifdef DIAGNOSTIC
1539 int ndupino;
1540
1541 if (sp && sp->seg_number == oldsn) {
1542 ndupino = sp->ndupino;
1543 } else {
1544 ndupino = 0;
1545 }
1546 #endif
1547 KASSERT(oldsn < fs->lfs_nseg);
1548 if (lbn >= 0 && lbn < ULFS_NDADDR)
1549 osize = ip->i_lfs_fragsize[lbn];
1550 else
1551 osize = fs->lfs_bsize;
1552 LFS_SEGENTRY(sup, fs, oldsn, bp);
1553 #ifdef DIAGNOSTIC
1554 if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
1555 < osize) {
1556 printf("lfs_updatemeta: negative bytes "
1557 "(segment %" PRIu32 " short by %" PRId64
1558 ")\n", lfs_dtosn(fs, daddr),
1559 (int64_t)osize -
1560 (sizeof (struct ulfs1_dinode) * ndupino +
1561 sup->su_nbytes));
1562 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1563 ", addr = 0x%" PRIx64 "\n",
1564 (unsigned long long)ip->i_number, lbn, daddr);
1565 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1566 panic("lfs_updatemeta: negative bytes");
1567 sup->su_nbytes = osize -
1568 sizeof (struct ulfs1_dinode) * ndupino;
1569 }
1570 #endif
1571 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1572 " db 0x%" PRIx64 "\n",
1573 lfs_dtosn(fs, daddr), osize,
1574 ip->i_number, lbn, daddr));
1575 sup->su_nbytes -= osize;
1576 if (!(bp->b_flags & B_GATHERED)) {
1577 mutex_enter(&lfs_lock);
1578 fs->lfs_flags |= LFS_IFDIRTY;
1579 mutex_exit(&lfs_lock);
1580 }
1581 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1582 }
1583 /*
1584 * Now that this block has a new address, and its old
1585 * segment no longer owns it, we can forget about its
1586 * old size.
1587 */
1588 if (lbn >= 0 && lbn < ULFS_NDADDR)
1589 ip->i_lfs_fragsize[lbn] = size;
1590 }
1591
1592 /*
1593 * Update the metadata that points to the blocks listed in the FINFO
1594 * array.
1595 */
1596 void
1597 lfs_updatemeta(struct segment *sp)
1598 {
1599 struct buf *sbp;
1600 struct lfs *fs;
1601 struct vnode *vp;
1602 daddr_t lbn;
1603 int i, nblocks, num;
1604 int bb;
1605 int bytesleft, size;
1606
1607 ASSERT_SEGLOCK(sp->fs);
1608 vp = sp->vp;
1609 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1610 KASSERT(nblocks >= 0);
1611 KASSERT(vp != NULL);
1612 if (nblocks == 0)
1613 return;
1614
1615 /*
1616 * This count may be high due to oversize blocks from lfs_gop_write.
1617 * Correct for this. (XXX we should be able to keep track of these.)
1618 */
1619 fs = sp->fs;
1620 for (i = 0; i < nblocks; i++) {
1621 if (sp->start_bpp[i] == NULL) {
1622 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1623 nblocks = i;
1624 break;
1625 }
1626 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1627 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1628 nblocks -= num - 1;
1629 }
1630
1631 KASSERT(vp->v_type == VREG ||
1632 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1633 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1634
1635 /*
1636 * Sort the blocks.
1637 *
1638 * We have to sort even if the blocks come from the
1639 * cleaner, because there might be other pending blocks on the
1640 * same inode...and if we don't sort, and there are fragments
1641 * present, blocks may be written in the wrong place.
1642 */
1643 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1644
1645 /*
1646 * Record the length of the last block in case it's a fragment.
1647 * If there are indirect blocks present, they sort last. An
1648 * indirect block will be lfs_bsize and its presence indicates
1649 * that you cannot have fragments.
1650 *
1651 * XXX This last is a lie. A cleaned fragment can coexist with
1652 * XXX a later indirect block. This will continue to be
1653 * XXX true until lfs_markv is fixed to do everything with
1654 * XXX fake blocks (including fake inodes and fake indirect blocks).
1655 */
1656 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1657 fs->lfs_bmask) + 1;
1658
1659 /*
1660 * Assign disk addresses, and update references to the logical
1661 * block and the segment usage information.
1662 */
1663 for (i = nblocks; i--; ++sp->start_bpp) {
1664 sbp = *sp->start_bpp;
1665 lbn = *sp->start_lbp;
1666 KASSERT(sbp->b_lblkno == lbn);
1667
1668 sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
1669
1670 /*
1671 * If we write a frag in the wrong place, the cleaner won't
1672 * be able to correctly identify its size later, and the
1673 * segment will be uncleanable. (Even worse, it will assume
1674 * that the indirect block that actually ends the list
1675 * is of a smaller size!)
1676 */
1677 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1678 panic("lfs_updatemeta: fragment is not last block");
1679
1680 /*
1681 * For each subblock in this possibly oversized block,
1682 * update its address on disk.
1683 */
1684 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1685 KASSERT(vp == sbp->b_vp);
1686 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1687 bytesleft -= fs->lfs_bsize) {
1688 size = MIN(bytesleft, fs->lfs_bsize);
1689 bb = lfs_numfrags(fs, size);
1690 lbn = *sp->start_lbp++;
1691 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1692 size);
1693 fs->lfs_offset += bb;
1694 }
1695
1696 }
1697
1698 /* This inode has been modified */
1699 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1700 }
1701
1702 /*
1703 * Move lfs_offset to a segment earlier than sn.
1704 */
1705 int
1706 lfs_rewind(struct lfs *fs, int newsn)
1707 {
1708 int sn, osn, isdirty;
1709 struct buf *bp;
1710 SEGUSE *sup;
1711
1712 ASSERT_SEGLOCK(fs);
1713
1714 osn = lfs_dtosn(fs, fs->lfs_offset);
1715 if (osn < newsn)
1716 return 0;
1717
1718 /* lfs_avail eats the remaining space in this segment */
1719 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1720
1721 /* Find a low-numbered segment */
1722 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1723 LFS_SEGENTRY(sup, fs, sn, bp);
1724 isdirty = sup->su_flags & SEGUSE_DIRTY;
1725 brelse(bp, 0);
1726
1727 if (!isdirty)
1728 break;
1729 }
1730 if (sn == fs->lfs_nseg)
1731 panic("lfs_rewind: no clean segments");
1732 if (newsn >= 0 && sn >= newsn)
1733 return ENOENT;
1734 fs->lfs_nextseg = sn;
1735 lfs_newseg(fs);
1736 fs->lfs_offset = fs->lfs_curseg;
1737
1738 return 0;
1739 }
1740
1741 /*
1742 * Start a new partial segment.
1743 *
1744 * Return 1 when we entered to a new segment.
1745 * Otherwise, return 0.
1746 */
1747 int
1748 lfs_initseg(struct lfs *fs)
1749 {
1750 struct segment *sp = fs->lfs_sp;
1751 SEGSUM *ssp;
1752 struct buf *sbp; /* buffer for SEGSUM */
1753 int repeat = 0; /* return value */
1754
1755 ASSERT_SEGLOCK(fs);
1756 /* Advance to the next segment. */
1757 if (!LFS_PARTIAL_FITS(fs)) {
1758 SEGUSE *sup;
1759 struct buf *bp;
1760
1761 /* lfs_avail eats the remaining space */
1762 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1763 fs->lfs_curseg);
1764 /* Wake up any cleaning procs waiting on this file system. */
1765 lfs_wakeup_cleaner(fs);
1766 lfs_newseg(fs);
1767 repeat = 1;
1768 fs->lfs_offset = fs->lfs_curseg;
1769
1770 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1771 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
1772
1773 /*
1774 * If the segment contains a superblock, update the offset
1775 * and summary address to skip over it.
1776 */
1777 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1778 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1779 fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
1780 sp->seg_bytes_left -= LFS_SBPAD;
1781 }
1782 brelse(bp, 0);
1783 /* Segment zero could also contain the labelpad */
1784 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1785 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD)) {
1786 fs->lfs_offset +=
1787 lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1788 sp->seg_bytes_left -=
1789 LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_start);
1790 }
1791 } else {
1792 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1793 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
1794 (fs->lfs_offset - fs->lfs_curseg));
1795 }
1796 fs->lfs_lastpseg = fs->lfs_offset;
1797
1798 /* Record first address of this partial segment */
1799 if (sp->seg_flags & SEGM_CLEAN) {
1800 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1801 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1802 /* "1" is the artificial inc in lfs_seglock */
1803 mutex_enter(&lfs_lock);
1804 while (fs->lfs_iocount > 1) {
1805 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1806 "lfs_initseg", 0, &lfs_lock);
1807 }
1808 mutex_exit(&lfs_lock);
1809 fs->lfs_cleanind = 0;
1810 }
1811 }
1812
1813 sp->fs = fs;
1814 sp->ibp = NULL;
1815 sp->idp = NULL;
1816 sp->ninodes = 0;
1817 sp->ndupino = 0;
1818
1819 sp->cbpp = sp->bpp;
1820
1821 /* Get a new buffer for SEGSUM */
1822 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1823 LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1824
1825 /* ... and enter it into the buffer list. */
1826 *sp->cbpp = sbp;
1827 sp->cbpp++;
1828 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
1829
1830 sp->start_bpp = sp->cbpp;
1831
1832 /* Set point to SEGSUM, initialize it. */
1833 ssp = sp->segsum = sbp->b_data;
1834 memset(ssp, 0, fs->lfs_sumsize);
1835 ssp->ss_next = fs->lfs_nextseg;
1836 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1837 ssp->ss_magic = SS_MAGIC;
1838
1839 /* Set pointer to first FINFO, initialize it. */
1840 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1841 sp->fip->fi_nblocks = 0;
1842 sp->start_lbp = &sp->fip->fi_blocks[0];
1843 sp->fip->fi_lastlength = 0;
1844
1845 sp->seg_bytes_left -= fs->lfs_sumsize;
1846 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1847
1848 return (repeat);
1849 }
1850
1851 /*
1852 * Remove SEGUSE_INVAL from all segments.
1853 */
1854 void
1855 lfs_unset_inval_all(struct lfs *fs)
1856 {
1857 SEGUSE *sup;
1858 struct buf *bp;
1859 int i;
1860
1861 for (i = 0; i < fs->lfs_nseg; i++) {
1862 LFS_SEGENTRY(sup, fs, i, bp);
1863 if (sup->su_flags & SEGUSE_INVAL) {
1864 sup->su_flags &= ~SEGUSE_INVAL;
1865 LFS_WRITESEGENTRY(sup, fs, i, bp);
1866 } else
1867 brelse(bp, 0);
1868 }
1869 }
1870
1871 /*
1872 * Return the next segment to write.
1873 */
1874 void
1875 lfs_newseg(struct lfs *fs)
1876 {
1877 CLEANERINFO *cip;
1878 SEGUSE *sup;
1879 struct buf *bp;
1880 int curseg, isdirty, sn, skip_inval;
1881
1882 ASSERT_SEGLOCK(fs);
1883
1884 /* Honor LFCNWRAPSTOP */
1885 mutex_enter(&lfs_lock);
1886 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1887 if (fs->lfs_wrappass) {
1888 log(LOG_NOTICE, "%s: wrappass=%d\n",
1889 fs->lfs_fsmnt, fs->lfs_wrappass);
1890 fs->lfs_wrappass = 0;
1891 break;
1892 }
1893 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1894 wakeup(&fs->lfs_nowrap);
1895 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1896 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1897 &lfs_lock);
1898 }
1899 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1900 mutex_exit(&lfs_lock);
1901
1902 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1903 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1904 lfs_dtosn(fs, fs->lfs_nextseg)));
1905 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1906 sup->su_nbytes = 0;
1907 sup->su_nsums = 0;
1908 sup->su_ninos = 0;
1909 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1910
1911 LFS_CLEANERINFO(cip, fs, bp);
1912 --cip->clean;
1913 ++cip->dirty;
1914 fs->lfs_nclean = cip->clean;
1915 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1916
1917 fs->lfs_lastseg = fs->lfs_curseg;
1918 fs->lfs_curseg = fs->lfs_nextseg;
1919 skip_inval = 1;
1920 for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1921 sn = (sn + 1) % fs->lfs_nseg;
1922
1923 if (sn == curseg) {
1924 if (skip_inval)
1925 skip_inval = 0;
1926 else
1927 panic("lfs_nextseg: no clean segments");
1928 }
1929 LFS_SEGENTRY(sup, fs, sn, bp);
1930 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1931 /* Check SEGUSE_EMPTY as we go along */
1932 if (isdirty && sup->su_nbytes == 0 &&
1933 !(sup->su_flags & SEGUSE_EMPTY))
1934 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1935 else
1936 brelse(bp, 0);
1937
1938 if (!isdirty)
1939 break;
1940 }
1941 if (skip_inval == 0)
1942 lfs_unset_inval_all(fs);
1943
1944 ++fs->lfs_nactive;
1945 fs->lfs_nextseg = lfs_sntod(fs, sn);
1946 if (lfs_dostats) {
1947 ++lfs_stats.segsused;
1948 }
1949 }
1950
1951 static struct buf *
1952 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1953 int n)
1954 {
1955 struct lfs_cluster *cl;
1956 struct buf **bpp, *bp;
1957
1958 ASSERT_SEGLOCK(fs);
1959 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1960 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1961 memset(cl, 0, sizeof(*cl));
1962 cl->fs = fs;
1963 cl->bpp = bpp;
1964 cl->bufcount = 0;
1965 cl->bufsize = 0;
1966
1967 /* If this segment is being written synchronously, note that */
1968 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1969 cl->flags |= LFS_CL_SYNC;
1970 cl->seg = fs->lfs_sp;
1971 ++cl->seg->seg_iocount;
1972 }
1973
1974 /* Get an empty buffer header, or maybe one with something on it */
1975 bp = getiobuf(vp, true);
1976 bp->b_dev = NODEV;
1977 bp->b_blkno = bp->b_lblkno = addr;
1978 bp->b_iodone = lfs_cluster_callback;
1979 bp->b_private = cl;
1980
1981 return bp;
1982 }
1983
1984 int
1985 lfs_writeseg(struct lfs *fs, struct segment *sp)
1986 {
1987 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1988 SEGUSE *sup;
1989 SEGSUM *ssp;
1990 int i;
1991 int do_again, nblocks, byteoffset;
1992 size_t el_size;
1993 struct lfs_cluster *cl;
1994 u_short ninos;
1995 struct vnode *devvp;
1996 char *p = NULL;
1997 struct vnode *vp;
1998 int32_t *daddrp; /* XXX ondisk32 */
1999 int changed;
2000 u_int32_t sum;
2001 #ifdef DEBUG
2002 FINFO *fip;
2003 int findex;
2004 #endif
2005
2006 ASSERT_SEGLOCK(fs);
2007
2008 ssp = (SEGSUM *)sp->segsum;
2009
2010 /*
2011 * If there are no buffers other than the segment summary to write,
2012 * don't do anything. If we are the end of a dirop sequence, however,
2013 * write the empty segment summary anyway, to help out the
2014 * roll-forward agent.
2015 */
2016 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2017 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2018 return 0;
2019 }
2020
2021 /* Note if partial segment is being written by the cleaner */
2022 if (sp->seg_flags & SEGM_CLEAN)
2023 ssp->ss_flags |= SS_CLEAN;
2024
2025 /* Note if we are writing to reclaim */
2026 if (sp->seg_flags & SEGM_RECLAIM) {
2027 ssp->ss_flags |= SS_RECLAIM;
2028 ssp->ss_reclino = fs->lfs_reclino;
2029 }
2030
2031 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2032
2033 /* Update the segment usage information. */
2034 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2035
2036 /* Loop through all blocks, except the segment summary. */
2037 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2038 if ((*bpp)->b_vp != devvp) {
2039 sup->su_nbytes += (*bpp)->b_bcount;
2040 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2041 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2042 sp->seg_number, (*bpp)->b_bcount,
2043 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2044 (*bpp)->b_blkno));
2045 }
2046 }
2047
2048 #ifdef DEBUG
2049 /* Check for zero-length and zero-version FINFO entries. */
2050 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2051 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2052 KDASSERT(fip->fi_nblocks > 0);
2053 KDASSERT(fip->fi_version > 0);
2054 fip = (FINFO *)((char *)fip + FINFOSIZE +
2055 sizeof(int32_t) * fip->fi_nblocks);
2056 }
2057 #endif /* DEBUG */
2058
2059 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2060 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2061 sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
2062 ssp->ss_ninos));
2063 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
2064 /* sup->su_nbytes += fs->lfs_sumsize; */
2065 if (fs->lfs_version == 1)
2066 sup->su_olastmod = time_second;
2067 else
2068 sup->su_lastmod = time_second;
2069 sup->su_ninos += ninos;
2070 ++sup->su_nsums;
2071 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
2072
2073 do_again = !(bp->b_flags & B_GATHERED);
2074 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2075
2076 /*
2077 * Mark blocks B_BUSY, to prevent then from being changed between
2078 * the checksum computation and the actual write.
2079 *
2080 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2081 * there are any, replace them with copies that have UNASSIGNED
2082 * instead.
2083 */
2084 mutex_enter(&bufcache_lock);
2085 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2086 ++bpp;
2087 bp = *bpp;
2088 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2089 bp->b_cflags |= BC_BUSY;
2090 continue;
2091 }
2092
2093 while (bp->b_cflags & BC_BUSY) {
2094 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2095 " data summary corruption for ino %d, lbn %"
2096 PRId64 "\n",
2097 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2098 bp->b_cflags |= BC_WANTED;
2099 cv_wait(&bp->b_busy, &bufcache_lock);
2100 }
2101 bp->b_cflags |= BC_BUSY;
2102 mutex_exit(&bufcache_lock);
2103 unbusybp = NULL;
2104
2105 /*
2106 * Check and replace indirect block UNWRITTEN bogosity.
2107 * XXX See comment in lfs_writefile.
2108 */
2109 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2110 VTOI(bp->b_vp)->i_ffs1_blocks !=
2111 VTOI(bp->b_vp)->i_lfs_effnblks) {
2112 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2113 VTOI(bp->b_vp)->i_number,
2114 VTOI(bp->b_vp)->i_lfs_effnblks,
2115 VTOI(bp->b_vp)->i_ffs1_blocks));
2116 /* Make a copy we'll make changes to */
2117 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2118 bp->b_bcount, LFS_NB_IBLOCK);
2119 newbp->b_blkno = bp->b_blkno;
2120 memcpy(newbp->b_data, bp->b_data,
2121 newbp->b_bcount);
2122
2123 changed = 0;
2124 /* XXX ondisk32 */
2125 for (daddrp = (int32_t *)(newbp->b_data);
2126 daddrp < (int32_t *)((char *)newbp->b_data +
2127 newbp->b_bcount); daddrp++) {
2128 if (*daddrp == UNWRITTEN) {
2129 ++changed;
2130 *daddrp = 0;
2131 }
2132 }
2133 /*
2134 * Get rid of the old buffer. Don't mark it clean,
2135 * though, if it still has dirty data on it.
2136 */
2137 if (changed) {
2138 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2139 " bp = %p newbp = %p\n", changed, bp,
2140 newbp));
2141 *bpp = newbp;
2142 bp->b_flags &= ~B_GATHERED;
2143 bp->b_error = 0;
2144 if (bp->b_iodone != NULL) {
2145 DLOG((DLOG_SEG, "lfs_writeseg: "
2146 "indir bp should not be B_CALL\n"));
2147 biodone(bp);
2148 bp = NULL;
2149 } else {
2150 /* Still on free list, leave it there */
2151 unbusybp = bp;
2152 /*
2153 * We have to re-decrement lfs_avail
2154 * since this block is going to come
2155 * back around to us in the next
2156 * segment.
2157 */
2158 fs->lfs_avail -=
2159 lfs_btofsb(fs, bp->b_bcount);
2160 }
2161 } else {
2162 lfs_freebuf(fs, newbp);
2163 }
2164 }
2165 mutex_enter(&bufcache_lock);
2166 if (unbusybp != NULL) {
2167 unbusybp->b_cflags &= ~BC_BUSY;
2168 if (unbusybp->b_cflags & BC_WANTED)
2169 cv_broadcast(&bp->b_busy);
2170 }
2171 }
2172 mutex_exit(&bufcache_lock);
2173
2174 /*
2175 * Compute checksum across data and then across summary; the first
2176 * block (the summary block) is skipped. Set the create time here
2177 * so that it's guaranteed to be later than the inode mod times.
2178 */
2179 sum = 0;
2180 if (fs->lfs_version == 1)
2181 el_size = sizeof(u_long);
2182 else
2183 el_size = sizeof(u_int32_t);
2184 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2185 ++bpp;
2186 /* Loop through gop_write cluster blocks */
2187 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2188 byteoffset += fs->lfs_bsize) {
2189 #ifdef LFS_USE_B_INVAL
2190 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2191 (*bpp)->b_iodone != NULL) {
2192 if (copyin((void *)(*bpp)->b_saveaddr +
2193 byteoffset, dp, el_size)) {
2194 panic("lfs_writeseg: copyin failed [1]:"
2195 " ino %d blk %" PRId64,
2196 VTOI((*bpp)->b_vp)->i_number,
2197 (*bpp)->b_lblkno);
2198 }
2199 } else
2200 #endif /* LFS_USE_B_INVAL */
2201 {
2202 sum = lfs_cksum_part((char *)
2203 (*bpp)->b_data + byteoffset, el_size, sum);
2204 }
2205 }
2206 }
2207 if (fs->lfs_version == 1)
2208 ssp->ss_ocreate = time_second;
2209 else {
2210 ssp->ss_create = time_second;
2211 ssp->ss_serial = ++fs->lfs_serial;
2212 ssp->ss_ident = fs->lfs_ident;
2213 }
2214 ssp->ss_datasum = lfs_cksum_fold(sum);
2215 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2216 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2217
2218 mutex_enter(&lfs_lock);
2219 fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2220 lfs_btofsb(fs, fs->lfs_sumsize));
2221 fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2222 lfs_btofsb(fs, fs->lfs_sumsize));
2223 mutex_exit(&lfs_lock);
2224
2225 /*
2226 * When we simply write the blocks we lose a rotation for every block
2227 * written. To avoid this problem, we cluster the buffers into a
2228 * chunk and write the chunk. MAXPHYS is the largest size I/O
2229 * devices can handle, use that for the size of the chunks.
2230 *
2231 * Blocks that are already clusters (from GOP_WRITE), however, we
2232 * don't bother to copy into other clusters.
2233 */
2234
2235 #define CHUNKSIZE MAXPHYS
2236
2237 if (devvp == NULL)
2238 panic("devvp is NULL");
2239 for (bpp = sp->bpp, i = nblocks; i;) {
2240 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2241 cl = cbp->b_private;
2242
2243 cbp->b_flags |= B_ASYNC;
2244 cbp->b_cflags |= BC_BUSY;
2245 cbp->b_bcount = 0;
2246
2247 #if defined(DEBUG) && defined(DIAGNOSTIC)
2248 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2249 / sizeof(int32_t)) {
2250 panic("lfs_writeseg: real bpp overwrite");
2251 }
2252 if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
2253 panic("lfs_writeseg: theoretical bpp overwrite");
2254 }
2255 #endif
2256
2257 /*
2258 * Construct the cluster.
2259 */
2260 mutex_enter(&lfs_lock);
2261 ++fs->lfs_iocount;
2262 mutex_exit(&lfs_lock);
2263 while (i && cbp->b_bcount < CHUNKSIZE) {
2264 bp = *bpp;
2265
2266 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2267 break;
2268 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2269 break;
2270
2271 /* Clusters from GOP_WRITE are expedited */
2272 if (bp->b_bcount > fs->lfs_bsize) {
2273 if (cbp->b_bcount > 0)
2274 /* Put in its own buffer */
2275 break;
2276 else {
2277 cbp->b_data = bp->b_data;
2278 }
2279 } else if (cbp->b_bcount == 0) {
2280 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2281 LFS_NB_CLUSTER);
2282 cl->flags |= LFS_CL_MALLOC;
2283 }
2284 #ifdef DIAGNOSTIC
2285 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2286 btodb(bp->b_bcount - 1))) !=
2287 sp->seg_number) {
2288 printf("blk size %d daddr %" PRIx64
2289 " not in seg %d\n",
2290 bp->b_bcount, bp->b_blkno,
2291 sp->seg_number);
2292 panic("segment overwrite");
2293 }
2294 #endif
2295
2296 #ifdef LFS_USE_B_INVAL
2297 /*
2298 * Fake buffers from the cleaner are marked as B_INVAL.
2299 * We need to copy the data from user space rather than
2300 * from the buffer indicated.
2301 * XXX == what do I do on an error?
2302 */
2303 if ((bp->b_cflags & BC_INVAL) != 0 &&
2304 bp->b_iodone != NULL) {
2305 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2306 panic("lfs_writeseg: "
2307 "copyin failed [2]");
2308 } else
2309 #endif /* LFS_USE_B_INVAL */
2310 if (cl->flags & LFS_CL_MALLOC) {
2311 /* copy data into our cluster. */
2312 memcpy(p, bp->b_data, bp->b_bcount);
2313 p += bp->b_bcount;
2314 }
2315
2316 cbp->b_bcount += bp->b_bcount;
2317 cl->bufsize += bp->b_bcount;
2318
2319 bp->b_flags &= ~B_READ;
2320 bp->b_error = 0;
2321 cl->bpp[cl->bufcount++] = bp;
2322
2323 vp = bp->b_vp;
2324 mutex_enter(&bufcache_lock);
2325 mutex_enter(vp->v_interlock);
2326 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2327 reassignbuf(bp, vp);
2328 vp->v_numoutput++;
2329 mutex_exit(vp->v_interlock);
2330 mutex_exit(&bufcache_lock);
2331
2332 bpp++;
2333 i--;
2334 }
2335 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2336 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2337 else
2338 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2339 mutex_enter(devvp->v_interlock);
2340 devvp->v_numoutput++;
2341 mutex_exit(devvp->v_interlock);
2342 VOP_STRATEGY(devvp, cbp);
2343 curlwp->l_ru.ru_oublock++;
2344 }
2345
2346 if (lfs_dostats) {
2347 ++lfs_stats.psegwrites;
2348 lfs_stats.blocktot += nblocks - 1;
2349 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2350 ++lfs_stats.psyncwrites;
2351 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2352 ++lfs_stats.pcleanwrites;
2353 lfs_stats.cleanblocks += nblocks - 1;
2354 }
2355 }
2356
2357 return (lfs_initseg(fs) || do_again);
2358 }
2359
2360 void
2361 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2362 {
2363 struct buf *bp;
2364 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2365 int s;
2366
2367 ASSERT_MAYBE_SEGLOCK(fs);
2368 #ifdef DIAGNOSTIC
2369 KASSERT(fs->lfs_magic == LFS_MAGIC);
2370 #endif
2371 /*
2372 * If we can write one superblock while another is in
2373 * progress, we risk not having a complete checkpoint if we crash.
2374 * So, block here if a superblock write is in progress.
2375 */
2376 mutex_enter(&lfs_lock);
2377 s = splbio();
2378 while (fs->lfs_sbactive) {
2379 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2380 &lfs_lock);
2381 }
2382 fs->lfs_sbactive = daddr;
2383 splx(s);
2384 mutex_exit(&lfs_lock);
2385
2386 /* Set timestamp of this version of the superblock */
2387 if (fs->lfs_version == 1)
2388 fs->lfs_otstamp = time_second;
2389 fs->lfs_tstamp = time_second;
2390
2391 /* Checksum the superblock and copy it into a buffer. */
2392 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2393 bp = lfs_newbuf(fs, devvp,
2394 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2395 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2396 LFS_SBPAD - sizeof(struct dlfs));
2397 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2398
2399 bp->b_cflags |= BC_BUSY;
2400 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2401 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2402 bp->b_error = 0;
2403 bp->b_iodone = lfs_supercallback;
2404
2405 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2406 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2407 else
2408 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2409 curlwp->l_ru.ru_oublock++;
2410
2411 mutex_enter(devvp->v_interlock);
2412 devvp->v_numoutput++;
2413 mutex_exit(devvp->v_interlock);
2414
2415 mutex_enter(&lfs_lock);
2416 ++fs->lfs_iocount;
2417 mutex_exit(&lfs_lock);
2418 VOP_STRATEGY(devvp, bp);
2419 }
2420
2421 /*
2422 * Logical block number match routines used when traversing the dirty block
2423 * chain.
2424 */
2425 int
2426 lfs_match_fake(struct lfs *fs, struct buf *bp)
2427 {
2428
2429 ASSERT_SEGLOCK(fs);
2430 return LFS_IS_MALLOC_BUF(bp);
2431 }
2432
2433 #if 0
2434 int
2435 lfs_match_real(struct lfs *fs, struct buf *bp)
2436 {
2437
2438 ASSERT_SEGLOCK(fs);
2439 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2440 }
2441 #endif
2442
2443 int
2444 lfs_match_data(struct lfs *fs, struct buf *bp)
2445 {
2446
2447 ASSERT_SEGLOCK(fs);
2448 return (bp->b_lblkno >= 0);
2449 }
2450
2451 int
2452 lfs_match_indir(struct lfs *fs, struct buf *bp)
2453 {
2454 daddr_t lbn;
2455
2456 ASSERT_SEGLOCK(fs);
2457 lbn = bp->b_lblkno;
2458 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2459 }
2460
2461 int
2462 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2463 {
2464 daddr_t lbn;
2465
2466 ASSERT_SEGLOCK(fs);
2467 lbn = bp->b_lblkno;
2468 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2469 }
2470
2471 int
2472 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2473 {
2474 daddr_t lbn;
2475
2476 ASSERT_SEGLOCK(fs);
2477 lbn = bp->b_lblkno;
2478 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2479 }
2480
2481 static void
2482 lfs_free_aiodone(struct buf *bp)
2483 {
2484 struct lfs *fs;
2485
2486 KERNEL_LOCK(1, curlwp);
2487 fs = bp->b_private;
2488 ASSERT_NO_SEGLOCK(fs);
2489 lfs_freebuf(fs, bp);
2490 KERNEL_UNLOCK_LAST(curlwp);
2491 }
2492
2493 static void
2494 lfs_super_aiodone(struct buf *bp)
2495 {
2496 struct lfs *fs;
2497
2498 KERNEL_LOCK(1, curlwp);
2499 fs = bp->b_private;
2500 ASSERT_NO_SEGLOCK(fs);
2501 mutex_enter(&lfs_lock);
2502 fs->lfs_sbactive = 0;
2503 if (--fs->lfs_iocount <= 1)
2504 wakeup(&fs->lfs_iocount);
2505 wakeup(&fs->lfs_sbactive);
2506 mutex_exit(&lfs_lock);
2507 lfs_freebuf(fs, bp);
2508 KERNEL_UNLOCK_LAST(curlwp);
2509 }
2510
2511 static void
2512 lfs_cluster_aiodone(struct buf *bp)
2513 {
2514 struct lfs_cluster *cl;
2515 struct lfs *fs;
2516 struct buf *tbp, *fbp;
2517 struct vnode *vp, *devvp, *ovp;
2518 struct inode *ip;
2519 int error;
2520
2521 KERNEL_LOCK(1, curlwp);
2522
2523 error = bp->b_error;
2524 cl = bp->b_private;
2525 fs = cl->fs;
2526 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2527 ASSERT_NO_SEGLOCK(fs);
2528
2529 /* Put the pages back, and release the buffer */
2530 while (cl->bufcount--) {
2531 tbp = cl->bpp[cl->bufcount];
2532 KASSERT(tbp->b_cflags & BC_BUSY);
2533 if (error) {
2534 tbp->b_error = error;
2535 }
2536
2537 /*
2538 * We're done with tbp. If it has not been re-dirtied since
2539 * the cluster was written, free it. Otherwise, keep it on
2540 * the locked list to be written again.
2541 */
2542 vp = tbp->b_vp;
2543
2544 tbp->b_flags &= ~B_GATHERED;
2545
2546 LFS_BCLEAN_LOG(fs, tbp);
2547
2548 mutex_enter(&bufcache_lock);
2549 if (tbp->b_iodone == NULL) {
2550 KASSERT(tbp->b_flags & B_LOCKED);
2551 bremfree(tbp);
2552 if (vp) {
2553 mutex_enter(vp->v_interlock);
2554 reassignbuf(tbp, vp);
2555 mutex_exit(vp->v_interlock);
2556 }
2557 tbp->b_flags |= B_ASYNC; /* for biodone */
2558 }
2559
2560 if (((tbp->b_flags | tbp->b_oflags) &
2561 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2562 LFS_UNLOCK_BUF(tbp);
2563
2564 if (tbp->b_oflags & BO_DONE) {
2565 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2566 cl->bufcount, (long)tbp->b_flags));
2567 }
2568
2569 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2570 /*
2571 * A buffer from the page daemon.
2572 * We use the same iodone as it does,
2573 * so we must manually disassociate its
2574 * buffers from the vp.
2575 */
2576 if ((ovp = tbp->b_vp) != NULL) {
2577 /* This is just silly */
2578 mutex_enter(ovp->v_interlock);
2579 brelvp(tbp);
2580 mutex_exit(ovp->v_interlock);
2581 tbp->b_vp = vp;
2582 tbp->b_objlock = vp->v_interlock;
2583 }
2584 /* Put it back the way it was */
2585 tbp->b_flags |= B_ASYNC;
2586 /* Master buffers have BC_AGE */
2587 if (tbp->b_private == tbp)
2588 tbp->b_cflags |= BC_AGE;
2589 }
2590 mutex_exit(&bufcache_lock);
2591
2592 biodone(tbp);
2593
2594 /*
2595 * If this is the last block for this vnode, but
2596 * there are other blocks on its dirty list,
2597 * set IN_MODIFIED/IN_CLEANING depending on what
2598 * sort of block. Only do this for our mount point,
2599 * not for, e.g., inode blocks that are attached to
2600 * the devvp.
2601 * XXX KS - Shouldn't we set *both* if both types
2602 * of blocks are present (traverse the dirty list?)
2603 */
2604 mutex_enter(vp->v_interlock);
2605 mutex_enter(&lfs_lock);
2606 if (vp != devvp && vp->v_numoutput == 0 &&
2607 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2608 ip = VTOI(vp);
2609 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2610 ip->i_number));
2611 if (LFS_IS_MALLOC_BUF(fbp))
2612 LFS_SET_UINO(ip, IN_CLEANING);
2613 else
2614 LFS_SET_UINO(ip, IN_MODIFIED);
2615 }
2616 cv_broadcast(&vp->v_cv);
2617 mutex_exit(&lfs_lock);
2618 mutex_exit(vp->v_interlock);
2619 }
2620
2621 /* Fix up the cluster buffer, and release it */
2622 if (cl->flags & LFS_CL_MALLOC)
2623 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2624 putiobuf(bp);
2625
2626 /* Note i/o done */
2627 if (cl->flags & LFS_CL_SYNC) {
2628 if (--cl->seg->seg_iocount == 0)
2629 wakeup(&cl->seg->seg_iocount);
2630 }
2631 mutex_enter(&lfs_lock);
2632 #ifdef DIAGNOSTIC
2633 if (fs->lfs_iocount == 0)
2634 panic("lfs_cluster_aiodone: zero iocount");
2635 #endif
2636 if (--fs->lfs_iocount <= 1)
2637 wakeup(&fs->lfs_iocount);
2638 mutex_exit(&lfs_lock);
2639
2640 KERNEL_UNLOCK_LAST(curlwp);
2641
2642 pool_put(&fs->lfs_bpppool, cl->bpp);
2643 cl->bpp = NULL;
2644 pool_put(&fs->lfs_clpool, cl);
2645 }
2646
2647 static void
2648 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2649 {
2650 /* reset b_iodone for when this is a single-buf i/o. */
2651 bp->b_iodone = aiodone;
2652
2653 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2654 }
2655
2656 static void
2657 lfs_cluster_callback(struct buf *bp)
2658 {
2659
2660 lfs_generic_callback(bp, lfs_cluster_aiodone);
2661 }
2662
2663 void
2664 lfs_supercallback(struct buf *bp)
2665 {
2666
2667 lfs_generic_callback(bp, lfs_super_aiodone);
2668 }
2669
2670 /*
2671 * The only buffers that are going to hit these functions are the
2672 * segment write blocks, or the segment summaries, or the superblocks.
2673 *
2674 * All of the above are created by lfs_newbuf, and so do not need to be
2675 * released via brelse.
2676 */
2677 void
2678 lfs_callback(struct buf *bp)
2679 {
2680
2681 lfs_generic_callback(bp, lfs_free_aiodone);
2682 }
2683
2684 /*
2685 * Shellsort (diminishing increment sort) from Data Structures and
2686 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2687 * see also Knuth Vol. 3, page 84. The increments are selected from
2688 * formula (8), page 95. Roughly O(N^3/2).
2689 */
2690 /*
2691 * This is our own private copy of shellsort because we want to sort
2692 * two parallel arrays (the array of buffer pointers and the array of
2693 * logical block numbers) simultaneously. Note that we cast the array
2694 * of logical block numbers to a unsigned in this routine so that the
2695 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2696 */
2697
2698 void
2699 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2700 {
2701 static int __rsshell_increments[] = { 4, 1, 0 };
2702 int incr, *incrp, t1, t2;
2703 struct buf *bp_temp;
2704
2705 #ifdef DEBUG
2706 incr = 0;
2707 for (t1 = 0; t1 < nmemb; t1++) {
2708 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2709 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2710 /* dump before panic */
2711 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2712 nmemb, size);
2713 incr = 0;
2714 for (t1 = 0; t1 < nmemb; t1++) {
2715 const struct buf *bp = bp_array[t1];
2716
2717 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2718 PRIu64 "\n", t1,
2719 (uint64_t)bp->b_bcount,
2720 (uint64_t)bp->b_lblkno);
2721 printf("lbns:");
2722 for (t2 = 0; t2 * size < bp->b_bcount;
2723 t2++) {
2724 printf(" %" PRId32,
2725 lb_array[incr++]);
2726 }
2727 printf("\n");
2728 }
2729 panic("lfs_shellsort: inconsistent input");
2730 }
2731 }
2732 }
2733 #endif
2734
2735 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2736 for (t1 = incr; t1 < nmemb; ++t1)
2737 for (t2 = t1 - incr; t2 >= 0;)
2738 if ((u_int32_t)bp_array[t2]->b_lblkno >
2739 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2740 bp_temp = bp_array[t2];
2741 bp_array[t2] = bp_array[t2 + incr];
2742 bp_array[t2 + incr] = bp_temp;
2743 t2 -= incr;
2744 } else
2745 break;
2746
2747 /* Reform the list of logical blocks */
2748 incr = 0;
2749 for (t1 = 0; t1 < nmemb; t1++) {
2750 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2751 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2752 }
2753 }
2754 }
2755
2756 /*
2757 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2758 * however, we must press on. Just fake success in that case.
2759 */
2760 int
2761 lfs_vref(struct vnode *vp)
2762 {
2763 struct lfs *fs;
2764
2765 KASSERT(mutex_owned(vp->v_interlock));
2766
2767 fs = VTOI(vp)->i_lfs;
2768
2769 ASSERT_MAYBE_SEGLOCK(fs);
2770
2771 /*
2772 * If we return 1 here during a flush, we risk vinvalbuf() not
2773 * being able to flush all of the pages from this vnode, which
2774 * will cause it to panic. So, return 0 if a flush is in progress.
2775 */
2776 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2777 ++fs->lfs_flushvp_fakevref;
2778 mutex_exit(vp->v_interlock);
2779 return 0;
2780 }
2781
2782 return vget(vp, LK_NOWAIT);
2783 }
2784
2785 /*
2786 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2787 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2788 */
2789 void
2790 lfs_vunref(struct vnode *vp)
2791 {
2792 struct lfs *fs;
2793
2794 fs = VTOI(vp)->i_lfs;
2795 ASSERT_MAYBE_SEGLOCK(fs);
2796
2797 /*
2798 * Analogous to lfs_vref, if the node is flushing, fake it.
2799 */
2800 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2801 --fs->lfs_flushvp_fakevref;
2802 return;
2803 }
2804
2805 /* does not call inactive */
2806 mutex_enter(vp->v_interlock);
2807 vrelel(vp, 0);
2808 }
2809
2810 /*
2811 * We use this when we have vnodes that were loaded in solely for cleaning.
2812 * There is no reason to believe that these vnodes will be referenced again
2813 * soon, since the cleaning process is unrelated to normal filesystem
2814 * activity. Putting cleaned vnodes at the tail of the list has the effect
2815 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2816 * cleaning at the head of the list, instead.
2817 */
2818 void
2819 lfs_vunref_head(struct vnode *vp)
2820 {
2821
2822 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2823
2824 /* does not call inactive, inserts non-held vnode at head of freelist */
2825 mutex_enter(vp->v_interlock);
2826 vrelel(vp, 0);
2827 }
2828
2829
2830 /*
2831 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2832 * point at uninitialized space.
2833 */
2834 void
2835 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2836 {
2837 struct segment *sp = fs->lfs_sp;
2838
2839 KASSERT(vers > 0);
2840
2841 if (sp->seg_bytes_left < fs->lfs_bsize ||
2842 sp->sum_bytes_left < sizeof(struct finfo))
2843 (void) lfs_writeseg(fs, fs->lfs_sp);
2844
2845 sp->sum_bytes_left -= FINFOSIZE;
2846 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2847 sp->fip->fi_nblocks = 0;
2848 sp->fip->fi_ino = ino;
2849 sp->fip->fi_version = vers;
2850 }
2851
2852 /*
2853 * Release the FINFO entry, either clearing out an unused entry or
2854 * advancing us to the next available entry.
2855 */
2856 void
2857 lfs_release_finfo(struct lfs *fs)
2858 {
2859 struct segment *sp = fs->lfs_sp;
2860
2861 if (sp->fip->fi_nblocks != 0) {
2862 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2863 sizeof(int32_t) * sp->fip->fi_nblocks);
2864 sp->start_lbp = &sp->fip->fi_blocks[0];
2865 } else {
2866 sp->sum_bytes_left += FINFOSIZE;
2867 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2868 }
2869 }
2870