Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.231
      1 /*	$NetBSD: lfs_segment.c,v 1.231 2013/07/28 01:05:52 dholland Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1991, 1993
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.231 2013/07/28 01:05:52 dholland Exp $");
     64 
     65 #ifdef DEBUG
     66 # define vndebug(vp, str) do {						\
     67 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     68 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     69 		     VTOI(vp)->i_number, (str), op));			\
     70 } while(0)
     71 #else
     72 # define vndebug(vp, str)
     73 #endif
     74 #define ivndebug(vp, str) \
     75 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     76 
     77 #if defined(_KERNEL_OPT)
     78 #include "opt_ddb.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/namei.h>
     84 #include <sys/kernel.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/file.h>
     87 #include <sys/stat.h>
     88 #include <sys/buf.h>
     89 #include <sys/proc.h>
     90 #include <sys/vnode.h>
     91 #include <sys/mount.h>
     92 #include <sys/kauth.h>
     93 #include <sys/syslog.h>
     94 
     95 #include <miscfs/specfs/specdev.h>
     96 #include <miscfs/fifofs/fifo.h>
     97 
     98 #include <ufs/lfs/ulfs_inode.h>
     99 #include <ufs/lfs/ulfsmount.h>
    100 #include <ufs/lfs/ulfs_extern.h>
    101 
    102 #include <ufs/lfs/lfs.h>
    103 #include <ufs/lfs/lfs_kernel.h>
    104 #include <ufs/lfs/lfs_extern.h>
    105 
    106 #include <uvm/uvm.h>
    107 #include <uvm/uvm_extern.h>
    108 
    109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    110 
    111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    112 static void lfs_free_aiodone(struct buf *);
    113 static void lfs_super_aiodone(struct buf *);
    114 static void lfs_cluster_aiodone(struct buf *);
    115 static void lfs_cluster_callback(struct buf *);
    116 
    117 /*
    118  * Determine if it's OK to start a partial in this segment, or if we need
    119  * to go on to a new segment.
    120  */
    121 #define	LFS_PARTIAL_FITS(fs) \
    122 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    123 	(fs)->lfs_frag)
    124 
    125 /*
    126  * Figure out whether we should do a checkpoint write or go ahead with
    127  * an ordinary write.
    128  */
    129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    130         ((flags & SEGM_CLEAN) == 0 &&					\
    131 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    132 	    (flags & SEGM_CKP) ||					\
    133 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
    134 
    135 int	 lfs_match_fake(struct lfs *, struct buf *);
    136 void	 lfs_newseg(struct lfs *);
    137 /* XXX ondisk32 */
    138 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    139 void	 lfs_supercallback(struct buf *);
    140 void	 lfs_updatemeta(struct segment *);
    141 void	 lfs_writesuper(struct lfs *, daddr_t);
    142 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    143 	    struct segment *sp, int dirops);
    144 
    145 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    146 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    147 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    148 int	lfs_dirvcount = 0;		/* # active dirops */
    149 
    150 /* Statistics Counters */
    151 int lfs_dostats = 1;
    152 struct lfs_stats lfs_stats;
    153 
    154 /* op values to lfs_writevnodes */
    155 #define	VN_REG		0
    156 #define	VN_DIROP	1
    157 #define	VN_EMPTY	2
    158 #define VN_CLEAN	3
    159 
    160 /*
    161  * XXX KS - Set modification time on the Ifile, so the cleaner can
    162  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    163  * since we don't really need this to be flushed to disk (and in any
    164  * case that wouldn't happen to the Ifile until we checkpoint).
    165  */
    166 void
    167 lfs_imtime(struct lfs *fs)
    168 {
    169 	struct timespec ts;
    170 	struct inode *ip;
    171 
    172 	ASSERT_MAYBE_SEGLOCK(fs);
    173 	vfs_timestamp(&ts);
    174 	ip = VTOI(fs->lfs_ivnode);
    175 	ip->i_ffs1_mtime = ts.tv_sec;
    176 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    177 }
    178 
    179 /*
    180  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    181  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    182  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    183  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    184  */
    185 
    186 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    187 
    188 int
    189 lfs_vflush(struct vnode *vp)
    190 {
    191 	struct inode *ip;
    192 	struct lfs *fs;
    193 	struct segment *sp;
    194 	struct buf *bp, *nbp, *tbp, *tnbp;
    195 	int error;
    196 	int flushed;
    197 	int relock;
    198 	int loopcount;
    199 
    200 	ip = VTOI(vp);
    201 	fs = VFSTOULFS(vp->v_mount)->um_lfs;
    202 	relock = 0;
    203 
    204     top:
    205 	KASSERT(mutex_owned(vp->v_interlock) == false);
    206 	KASSERT(mutex_owned(&lfs_lock) == false);
    207 	KASSERT(mutex_owned(&bufcache_lock) == false);
    208 	ASSERT_NO_SEGLOCK(fs);
    209 	if (ip->i_flag & IN_CLEANING) {
    210 		ivndebug(vp,"vflush/in_cleaning");
    211 		mutex_enter(&lfs_lock);
    212 		LFS_CLR_UINO(ip, IN_CLEANING);
    213 		LFS_SET_UINO(ip, IN_MODIFIED);
    214 		mutex_exit(&lfs_lock);
    215 
    216 		/*
    217 		 * Toss any cleaning buffers that have real counterparts
    218 		 * to avoid losing new data.
    219 		 */
    220 		mutex_enter(vp->v_interlock);
    221 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    222 			nbp = LIST_NEXT(bp, b_vnbufs);
    223 			if (!LFS_IS_MALLOC_BUF(bp))
    224 				continue;
    225 			/*
    226 			 * Look for pages matching the range covered
    227 			 * by cleaning blocks.  It's okay if more dirty
    228 			 * pages appear, so long as none disappear out
    229 			 * from under us.
    230 			 */
    231 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    232 			    vp != fs->lfs_ivnode) {
    233 				struct vm_page *pg;
    234 				voff_t off;
    235 
    236 				for (off = lfs_lblktosize(fs, bp->b_lblkno);
    237 				     off < lfs_lblktosize(fs, bp->b_lblkno + 1);
    238 				     off += PAGE_SIZE) {
    239 					pg = uvm_pagelookup(&vp->v_uobj, off);
    240 					if (pg == NULL)
    241 						continue;
    242 					if ((pg->flags & PG_CLEAN) == 0 ||
    243 					    pmap_is_modified(pg)) {
    244 						fs->lfs_avail += lfs_btofsb(fs,
    245 							bp->b_bcount);
    246 						wakeup(&fs->lfs_avail);
    247 						mutex_exit(vp->v_interlock);
    248 						lfs_freebuf(fs, bp);
    249 						mutex_enter(vp->v_interlock);
    250 						bp = NULL;
    251 						break;
    252 					}
    253 				}
    254 			}
    255 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    256 			    tbp = tnbp)
    257 			{
    258 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    259 				if (tbp->b_vp == bp->b_vp
    260 				   && tbp->b_lblkno == bp->b_lblkno
    261 				   && tbp != bp)
    262 				{
    263 					fs->lfs_avail += lfs_btofsb(fs,
    264 						bp->b_bcount);
    265 					wakeup(&fs->lfs_avail);
    266 					mutex_exit(vp->v_interlock);
    267 					lfs_freebuf(fs, bp);
    268 					mutex_enter(vp->v_interlock);
    269 					bp = NULL;
    270 					break;
    271 				}
    272 			}
    273 		}
    274 	} else {
    275 		mutex_enter(vp->v_interlock);
    276 	}
    277 
    278 	/* If the node is being written, wait until that is done */
    279 	while (WRITEINPROG(vp)) {
    280 		ivndebug(vp,"vflush/writeinprog");
    281 		cv_wait(&vp->v_cv, vp->v_interlock);
    282 	}
    283 	mutex_exit(vp->v_interlock);
    284 
    285 	/* Protect against VI_XLOCK deadlock in vinvalbuf() */
    286 	lfs_seglock(fs, SEGM_SYNC | ((vp->v_iflag & VI_XLOCK) ? SEGM_RECLAIM : 0));
    287 	if (vp->v_iflag & VI_XLOCK) {
    288 		fs->lfs_reclino = ip->i_number;
    289 	}
    290 
    291 	/* If we're supposed to flush a freed inode, just toss it */
    292 	if (ip->i_lfs_iflags & LFSI_DELETED) {
    293 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    294 		      ip->i_number));
    295 		/* Drain v_numoutput */
    296 		mutex_enter(vp->v_interlock);
    297 		while (vp->v_numoutput > 0) {
    298 			cv_wait(&vp->v_cv, vp->v_interlock);
    299 		}
    300 		KASSERT(vp->v_numoutput == 0);
    301 		mutex_exit(vp->v_interlock);
    302 
    303 		mutex_enter(&bufcache_lock);
    304 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    305 			nbp = LIST_NEXT(bp, b_vnbufs);
    306 
    307 			KASSERT((bp->b_flags & B_GATHERED) == 0);
    308 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
    309 				fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
    310 				wakeup(&fs->lfs_avail);
    311 			}
    312 			/* Copied from lfs_writeseg */
    313 			if (bp->b_iodone != NULL) {
    314 				mutex_exit(&bufcache_lock);
    315 				biodone(bp);
    316 				mutex_enter(&bufcache_lock);
    317 			} else {
    318 				bremfree(bp);
    319 				LFS_UNLOCK_BUF(bp);
    320 				mutex_enter(vp->v_interlock);
    321 				bp->b_flags &= ~(B_READ | B_GATHERED);
    322 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
    323 				bp->b_error = 0;
    324 				reassignbuf(bp, vp);
    325 				mutex_exit(vp->v_interlock);
    326 				brelse(bp, 0);
    327 			}
    328 		}
    329 		mutex_exit(&bufcache_lock);
    330 		LFS_CLR_UINO(ip, IN_CLEANING);
    331 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    332 		ip->i_flag &= ~IN_ALLMOD;
    333 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    334 		      ip->i_number));
    335 		lfs_segunlock(fs);
    336 
    337 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    338 
    339 		return 0;
    340 	}
    341 
    342 	fs->lfs_flushvp = vp;
    343 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    344 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    345 		fs->lfs_flushvp = NULL;
    346 		KASSERT(fs->lfs_flushvp_fakevref == 0);
    347 		lfs_segunlock(fs);
    348 
    349 		/* Make sure that any pending buffers get written */
    350 		mutex_enter(vp->v_interlock);
    351 		while (vp->v_numoutput > 0) {
    352 			cv_wait(&vp->v_cv, vp->v_interlock);
    353 		}
    354 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    355 		KASSERT(vp->v_numoutput == 0);
    356 		mutex_exit(vp->v_interlock);
    357 
    358 		return error;
    359 	}
    360 	sp = fs->lfs_sp;
    361 
    362 	flushed = 0;
    363 	if (VPISEMPTY(vp)) {
    364 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    365 		++flushed;
    366 	} else if ((ip->i_flag & IN_CLEANING) &&
    367 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    368 		ivndebug(vp,"vflush/clean");
    369 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    370 		++flushed;
    371 	} else if (lfs_dostats) {
    372 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    373 			++lfs_stats.vflush_invoked;
    374 		ivndebug(vp,"vflush");
    375 	}
    376 
    377 #ifdef DIAGNOSTIC
    378 	if (vp->v_uflag & VU_DIROP) {
    379 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
    380 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
    381 	}
    382 #endif
    383 
    384 	do {
    385 		loopcount = 0;
    386 		do {
    387 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    388 				relock = lfs_writefile(fs, sp, vp);
    389 				if (relock && vp != fs->lfs_ivnode) {
    390 					/*
    391 					 * Might have to wait for the
    392 					 * cleaner to run; but we're
    393 					 * still not done with this vnode.
    394 					 * XXX we can do better than this.
    395 					 */
    396 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
    397 					lfs_writeinode(fs, sp, ip);
    398 					mutex_enter(&lfs_lock);
    399 					LFS_SET_UINO(ip, IN_MODIFIED);
    400 					mutex_exit(&lfs_lock);
    401 					lfs_writeseg(fs, sp);
    402 					lfs_segunlock(fs);
    403 					lfs_segunlock_relock(fs);
    404 					goto top;
    405 				}
    406 			}
    407 			/*
    408 			 * If we begin a new segment in the middle of writing
    409 			 * the Ifile, it creates an inconsistent checkpoint,
    410 			 * since the Ifile information for the new segment
    411 			 * is not up-to-date.  Take care of this here by
    412 			 * sending the Ifile through again in case there
    413 			 * are newly dirtied blocks.  But wait, there's more!
    414 			 * This second Ifile write could *also* cross a segment
    415 			 * boundary, if the first one was large.  The second
    416 			 * one is guaranteed to be no more than 8 blocks,
    417 			 * though (two segment blocks and supporting indirects)
    418 			 * so the third write *will not* cross the boundary.
    419 			 */
    420 			if (vp == fs->lfs_ivnode) {
    421 				lfs_writefile(fs, sp, vp);
    422 				lfs_writefile(fs, sp, vp);
    423 			}
    424 #ifdef DEBUG
    425 			if (++loopcount > 2)
    426 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
    427 #endif
    428 		} while (lfs_writeinode(fs, sp, ip));
    429 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    430 
    431 	if (lfs_dostats) {
    432 		++lfs_stats.nwrites;
    433 		if (sp->seg_flags & SEGM_SYNC)
    434 			++lfs_stats.nsync_writes;
    435 		if (sp->seg_flags & SEGM_CKP)
    436 			++lfs_stats.ncheckpoints;
    437 	}
    438 	/*
    439 	 * If we were called from somewhere that has already held the seglock
    440 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    441 	 * the write to complete because we are still locked.
    442 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    443 	 * we must explicitly wait, if that is the case.
    444 	 *
    445 	 * We compare the iocount against 1, not 0, because it is
    446 	 * artificially incremented by lfs_seglock().
    447 	 */
    448 	mutex_enter(&lfs_lock);
    449 	if (fs->lfs_seglock > 1) {
    450 		while (fs->lfs_iocount > 1)
    451 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
    452 				     "lfs_vflush", 0, &lfs_lock);
    453 	}
    454 	mutex_exit(&lfs_lock);
    455 
    456 	lfs_segunlock(fs);
    457 
    458 	/* Wait for these buffers to be recovered by aiodoned */
    459 	mutex_enter(vp->v_interlock);
    460 	while (vp->v_numoutput > 0) {
    461 		cv_wait(&vp->v_cv, vp->v_interlock);
    462 	}
    463 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    464 	KASSERT(vp->v_numoutput == 0);
    465 	mutex_exit(vp->v_interlock);
    466 
    467 	fs->lfs_flushvp = NULL;
    468 	KASSERT(fs->lfs_flushvp_fakevref == 0);
    469 
    470 	return (0);
    471 }
    472 
    473 int
    474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    475 {
    476 	struct inode *ip;
    477 	struct vnode *vp;
    478 	int inodes_written = 0, only_cleaning;
    479 	int error = 0;
    480 
    481 	ASSERT_SEGLOCK(fs);
    482  loop:
    483 	/* start at last (newest) vnode. */
    484 	mutex_enter(&mntvnode_lock);
    485 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
    486 		/*
    487 		 * If the vnode that we are about to sync is no longer
    488 		 * associated with this mount point, start over.
    489 		 */
    490 		if (vp->v_mount != mp) {
    491 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    492 			/*
    493 			 * After this, pages might be busy
    494 			 * due to our own previous putpages.
    495 			 * Start actual segment write here to avoid deadlock.
    496 			 * If we were just writing one segment and we've done
    497 			 * that, break out.
    498 			 */
    499 			mutex_exit(&mntvnode_lock);
    500 			if (lfs_writeseg(fs, sp) &&
    501 			    (sp->seg_flags & SEGM_SINGLE) &&
    502 			    fs->lfs_curseg != fs->lfs_startseg) {
    503 				DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
    504 				break;
    505 			}
    506 			goto loop;
    507 		}
    508 
    509 		mutex_enter(vp->v_interlock);
    510 		if (vp->v_type == VNON || vismarker(vp) ||
    511 		    (vp->v_iflag & VI_CLEAN) != 0) {
    512 			mutex_exit(vp->v_interlock);
    513 			continue;
    514 		}
    515 
    516 		ip = VTOI(vp);
    517 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
    518 		    (op != VN_DIROP && op != VN_CLEAN &&
    519 		    (vp->v_uflag & VU_DIROP))) {
    520 			mutex_exit(vp->v_interlock);
    521 			vndebug(vp,"dirop");
    522 			continue;
    523 		}
    524 
    525 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    526 			mutex_exit(vp->v_interlock);
    527 			vndebug(vp,"empty");
    528 			continue;
    529 		}
    530 
    531 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    532 		   && vp != fs->lfs_flushvp
    533 		   && !(ip->i_flag & IN_CLEANING)) {
    534 			mutex_exit(vp->v_interlock);
    535 			vndebug(vp,"cleaning");
    536 			continue;
    537 		}
    538 
    539 		mutex_exit(&mntvnode_lock);
    540 		if (lfs_vref(vp)) {
    541 			vndebug(vp,"vref");
    542 			mutex_enter(&mntvnode_lock);
    543 			continue;
    544 		}
    545 
    546 		only_cleaning = 0;
    547 		/*
    548 		 * Write the inode/file if dirty and it's not the IFILE.
    549 		 */
    550 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    551 			only_cleaning =
    552 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    553 
    554 			if (ip->i_number != LFS_IFILE_INUM) {
    555 				error = lfs_writefile(fs, sp, vp);
    556 				if (error) {
    557 					lfs_vunref(vp);
    558 					if (error == EAGAIN) {
    559 						/*
    560 						 * This error from lfs_putpages
    561 						 * indicates we need to drop
    562 						 * the segment lock and start
    563 						 * over after the cleaner has
    564 						 * had a chance to run.
    565 						 */
    566 						lfs_writeinode(fs, sp, ip);
    567 						lfs_writeseg(fs, sp);
    568 						if (!VPISEMPTY(vp) &&
    569 						    !WRITEINPROG(vp) &&
    570 						    !(ip->i_flag & IN_ALLMOD)) {
    571 							mutex_enter(&lfs_lock);
    572 							LFS_SET_UINO(ip, IN_MODIFIED);
    573 							mutex_exit(&lfs_lock);
    574 						}
    575 						mutex_enter(&mntvnode_lock);
    576 						break;
    577 					}
    578 					error = 0; /* XXX not quite right */
    579 					mutex_enter(&mntvnode_lock);
    580 					continue;
    581 				}
    582 
    583 				if (!VPISEMPTY(vp)) {
    584 					if (WRITEINPROG(vp)) {
    585 						ivndebug(vp,"writevnodes/write2");
    586 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    587 						mutex_enter(&lfs_lock);
    588 						LFS_SET_UINO(ip, IN_MODIFIED);
    589 						mutex_exit(&lfs_lock);
    590 					}
    591 				}
    592 				(void) lfs_writeinode(fs, sp, ip);
    593 				inodes_written++;
    594 			}
    595 		}
    596 
    597 		if (lfs_clean_vnhead && only_cleaning)
    598 			lfs_vunref_head(vp);
    599 		else
    600 			lfs_vunref(vp);
    601 
    602 		mutex_enter(&mntvnode_lock);
    603 	}
    604 	mutex_exit(&mntvnode_lock);
    605 	return error;
    606 }
    607 
    608 /*
    609  * Do a checkpoint.
    610  */
    611 int
    612 lfs_segwrite(struct mount *mp, int flags)
    613 {
    614 	struct buf *bp;
    615 	struct inode *ip;
    616 	struct lfs *fs;
    617 	struct segment *sp;
    618 	struct vnode *vp;
    619 	SEGUSE *segusep;
    620 	int do_ckp, did_ckp, error;
    621 	unsigned n, segleft, maxseg, sn, i, curseg;
    622 	int writer_set = 0;
    623 	int dirty;
    624 	int redo;
    625 	int um_error;
    626 	int loopcount;
    627 
    628 	fs = VFSTOULFS(mp)->um_lfs;
    629 	ASSERT_MAYBE_SEGLOCK(fs);
    630 
    631 	if (fs->lfs_ronly)
    632 		return EROFS;
    633 
    634 	lfs_imtime(fs);
    635 
    636 	/*
    637 	 * Allocate a segment structure and enough space to hold pointers to
    638 	 * the maximum possible number of buffers which can be described in a
    639 	 * single summary block.
    640 	 */
    641 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    642 
    643 	/* We can't do a partial write and checkpoint at the same time. */
    644 	if (do_ckp)
    645 		flags &= ~SEGM_SINGLE;
    646 
    647 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    648 	sp = fs->lfs_sp;
    649 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
    650 		do_ckp = 1;
    651 
    652 	/*
    653 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    654 	 * in which case we have to flush *all* buffers off of this vnode.
    655 	 * We don't care about other nodes, but write any non-dirop nodes
    656 	 * anyway in anticipation of another getnewvnode().
    657 	 *
    658 	 * If we're cleaning we only write cleaning and ifile blocks, and
    659 	 * no dirops, since otherwise we'd risk corruption in a crash.
    660 	 */
    661 	if (sp->seg_flags & SEGM_CLEAN)
    662 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    663 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    664 		do {
    665 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    666 			if ((sp->seg_flags & SEGM_SINGLE) &&
    667 			    fs->lfs_curseg != fs->lfs_startseg) {
    668 				DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
    669 				break;
    670 			}
    671 
    672 			if (do_ckp || fs->lfs_dirops == 0) {
    673 				if (!writer_set) {
    674 					lfs_writer_enter(fs, "lfs writer");
    675 					writer_set = 1;
    676 				}
    677 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    678 				if (um_error == 0)
    679 					um_error = error;
    680 				/* In case writevnodes errored out */
    681 				lfs_flush_dirops(fs);
    682 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    683 				lfs_finalize_fs_seguse(fs);
    684 			}
    685 			if (do_ckp && um_error) {
    686 				lfs_segunlock_relock(fs);
    687 				sp = fs->lfs_sp;
    688 			}
    689 		} while (do_ckp && um_error != 0);
    690 	}
    691 
    692 	/*
    693 	 * If we are doing a checkpoint, mark everything since the
    694 	 * last checkpoint as no longer ACTIVE.
    695 	 */
    696 	if (do_ckp || fs->lfs_doifile) {
    697 		segleft = fs->lfs_nseg;
    698 		curseg = 0;
    699 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    700 			dirty = 0;
    701 			if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
    702 			    fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
    703 				panic("lfs_segwrite: ifile read");
    704 			segusep = (SEGUSE *)bp->b_data;
    705 			maxseg = min(segleft, fs->lfs_sepb);
    706 			for (i = 0; i < maxseg; i++) {
    707 				sn = curseg + i;
    708 				if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
    709 				    segusep->su_flags & SEGUSE_ACTIVE) {
    710 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    711 					--fs->lfs_nactive;
    712 					++dirty;
    713 				}
    714 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    715 					segusep->su_flags;
    716 				if (fs->lfs_version > 1)
    717 					++segusep;
    718 				else
    719 					segusep = (SEGUSE *)
    720 						((SEGUSE_V1 *)segusep + 1);
    721 			}
    722 
    723 			if (dirty)
    724 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    725 			else
    726 				brelse(bp, 0);
    727 			segleft -= fs->lfs_sepb;
    728 			curseg += fs->lfs_sepb;
    729 		}
    730 	}
    731 
    732 	KASSERT(LFS_SEGLOCK_HELD(fs));
    733 
    734 	did_ckp = 0;
    735 	if (do_ckp || fs->lfs_doifile) {
    736 		vp = fs->lfs_ivnode;
    737 		loopcount = 0;
    738 		do {
    739 #ifdef DEBUG
    740 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    741 #endif
    742 			mutex_enter(&lfs_lock);
    743 			fs->lfs_flags &= ~LFS_IFDIRTY;
    744 			mutex_exit(&lfs_lock);
    745 
    746 			ip = VTOI(vp);
    747 
    748 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    749 				/*
    750 				 * Ifile has no pages, so we don't need
    751 				 * to check error return here.
    752 				 */
    753 				lfs_writefile(fs, sp, vp);
    754 				/*
    755 				 * Ensure the Ifile takes the current segment
    756 				 * into account.  See comment in lfs_vflush.
    757 				 */
    758 				lfs_writefile(fs, sp, vp);
    759 				lfs_writefile(fs, sp, vp);
    760 			}
    761 
    762 			if (ip->i_flag & IN_ALLMOD)
    763 				++did_ckp;
    764 #if 0
    765 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
    766 #else
    767 			redo = lfs_writeinode(fs, sp, ip);
    768 #endif
    769 			redo += lfs_writeseg(fs, sp);
    770 			mutex_enter(&lfs_lock);
    771 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    772 			mutex_exit(&lfs_lock);
    773 #ifdef DEBUG
    774 			if (++loopcount > 2)
    775 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
    776 					loopcount);
    777 #endif
    778 		} while (redo && do_ckp);
    779 
    780 		/*
    781 		 * Unless we are unmounting, the Ifile may continue to have
    782 		 * dirty blocks even after a checkpoint, due to changes to
    783 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    784 		 * for other parts of the Ifile to be dirty after the loop
    785 		 * above, since we hold the segment lock.
    786 		 */
    787 		mutex_enter(vp->v_interlock);
    788 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    789 			LFS_CLR_UINO(ip, IN_ALLMOD);
    790 		}
    791 #ifdef DIAGNOSTIC
    792 		else if (do_ckp) {
    793 			int do_panic = 0;
    794 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    795 				if (bp->b_lblkno < fs->lfs_cleansz +
    796 				    fs->lfs_segtabsz &&
    797 				    !(bp->b_flags & B_GATHERED)) {
    798 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    799 						(long)bp->b_lblkno,
    800 						(long)bp->b_flags);
    801 					++do_panic;
    802 				}
    803 			}
    804 			if (do_panic)
    805 				panic("dirty blocks");
    806 		}
    807 #endif
    808 		mutex_exit(vp->v_interlock);
    809 	} else {
    810 		(void) lfs_writeseg(fs, sp);
    811 	}
    812 
    813 	/* Note Ifile no longer needs to be written */
    814 	fs->lfs_doifile = 0;
    815 	if (writer_set)
    816 		lfs_writer_leave(fs);
    817 
    818 	/*
    819 	 * If we didn't write the Ifile, we didn't really do anything.
    820 	 * That means that (1) there is a checkpoint on disk and (2)
    821 	 * nothing has changed since it was written.
    822 	 *
    823 	 * Take the flags off of the segment so that lfs_segunlock
    824 	 * doesn't have to write the superblock either.
    825 	 */
    826 	if (do_ckp && !did_ckp) {
    827 		sp->seg_flags &= ~SEGM_CKP;
    828 	}
    829 
    830 	if (lfs_dostats) {
    831 		++lfs_stats.nwrites;
    832 		if (sp->seg_flags & SEGM_SYNC)
    833 			++lfs_stats.nsync_writes;
    834 		if (sp->seg_flags & SEGM_CKP)
    835 			++lfs_stats.ncheckpoints;
    836 	}
    837 	lfs_segunlock(fs);
    838 	return (0);
    839 }
    840 
    841 /*
    842  * Write the dirty blocks associated with a vnode.
    843  */
    844 int
    845 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    846 {
    847 	struct finfo *fip;
    848 	struct inode *ip;
    849 	int i, frag;
    850 	int error;
    851 
    852 	ASSERT_SEGLOCK(fs);
    853 	error = 0;
    854 	ip = VTOI(vp);
    855 
    856 	fip = sp->fip;
    857 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
    858 
    859 	if (vp->v_uflag & VU_DIROP)
    860 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    861 
    862 	if (sp->seg_flags & SEGM_CLEAN) {
    863 		lfs_gather(fs, sp, vp, lfs_match_fake);
    864 		/*
    865 		 * For a file being flushed, we need to write *all* blocks.
    866 		 * This means writing the cleaning blocks first, and then
    867 		 * immediately following with any non-cleaning blocks.
    868 		 * The same is true of the Ifile since checkpoints assume
    869 		 * that all valid Ifile blocks are written.
    870 		 */
    871 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
    872 			lfs_gather(fs, sp, vp, lfs_match_data);
    873 			/*
    874 			 * Don't call VOP_PUTPAGES: if we're flushing,
    875 			 * we've already done it, and the Ifile doesn't
    876 			 * use the page cache.
    877 			 */
    878 		}
    879 	} else {
    880 		lfs_gather(fs, sp, vp, lfs_match_data);
    881 		/*
    882 		 * If we're flushing, we've already called VOP_PUTPAGES
    883 		 * so don't do it again.  Otherwise, we want to write
    884 		 * everything we've got.
    885 		 */
    886 		if (!IS_FLUSHING(fs, vp)) {
    887 			mutex_enter(vp->v_interlock);
    888 			error = VOP_PUTPAGES(vp, 0, 0,
    889 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    890 		}
    891 	}
    892 
    893 	/*
    894 	 * It may not be necessary to write the meta-data blocks at this point,
    895 	 * as the roll-forward recovery code should be able to reconstruct the
    896 	 * list.
    897 	 *
    898 	 * We have to write them anyway, though, under two conditions: (1) the
    899 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    900 	 * checkpointing.
    901 	 *
    902 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    903 	 * new blocks not being written yet, in addition to fragments being
    904 	 * moved out of a cleaned segment.  If that is the case, don't
    905 	 * write the indirect blocks, or the finfo will have a small block
    906 	 * in the middle of it!
    907 	 * XXX in this case isn't the inode size wrong too?
    908 	 */
    909 	frag = 0;
    910 	if (sp->seg_flags & SEGM_CLEAN) {
    911 		for (i = 0; i < ULFS_NDADDR; i++)
    912 			if (ip->i_lfs_fragsize[i] > 0 &&
    913 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    914 				++frag;
    915 	}
    916 #ifdef DIAGNOSTIC
    917 	if (frag > 1)
    918 		panic("lfs_writefile: more than one fragment!");
    919 #endif
    920 	if (IS_FLUSHING(fs, vp) ||
    921 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    922 		lfs_gather(fs, sp, vp, lfs_match_indir);
    923 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    924 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    925 	}
    926 	fip = sp->fip;
    927 	lfs_release_finfo(fs);
    928 
    929 	return error;
    930 }
    931 
    932 /*
    933  * Update segment accounting to reflect this inode's change of address.
    934  */
    935 static int
    936 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
    937 {
    938 	struct buf *bp;
    939 	daddr_t daddr;
    940 	IFILE *ifp;
    941 	SEGUSE *sup;
    942 	ino_t ino;
    943 	int redo_ifile, error;
    944 	u_int32_t sn;
    945 
    946 	redo_ifile = 0;
    947 
    948 	/*
    949 	 * If updating the ifile, update the super-block.  Update the disk
    950 	 * address and access times for this inode in the ifile.
    951 	 */
    952 	ino = ip->i_number;
    953 	if (ino == LFS_IFILE_INUM) {
    954 		daddr = fs->lfs_idaddr;
    955 		fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
    956 	} else {
    957 		LFS_IENTRY(ifp, fs, ino, bp);
    958 		daddr = ifp->if_daddr;
    959 		ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
    960 		error = LFS_BWRITE_LOG(bp); /* Ifile */
    961 	}
    962 
    963 	/*
    964 	 * If this is the Ifile and lfs_offset is set to the first block
    965 	 * in the segment, dirty the new segment's accounting block
    966 	 * (XXX should already be dirty?) and tell the caller to do it again.
    967 	 */
    968 	if (ip->i_number == LFS_IFILE_INUM) {
    969 		sn = lfs_dtosn(fs, fs->lfs_offset);
    970 		if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
    971 		    fs->lfs_offset) {
    972 			LFS_SEGENTRY(sup, fs, sn, bp);
    973 			KASSERT(bp->b_oflags & BO_DELWRI);
    974 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
    975 			/* fs->lfs_flags |= LFS_IFDIRTY; */
    976 			redo_ifile |= 1;
    977 		}
    978 	}
    979 
    980 	/*
    981 	 * The inode's last address should not be in the current partial
    982 	 * segment, except under exceptional circumstances (lfs_writevnodes
    983 	 * had to start over, and in the meantime more blocks were written
    984 	 * to a vnode).	 Both inodes will be accounted to this segment
    985 	 * in lfs_writeseg so we need to subtract the earlier version
    986 	 * here anyway.	 The segment count can temporarily dip below
    987 	 * zero here; keep track of how many duplicates we have in
    988 	 * "dupino" so we don't panic below.
    989 	 */
    990 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
    991 		++sp->ndupino;
    992 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
    993 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
    994 		      (long long)daddr, sp->ndupino));
    995 	}
    996 	/*
    997 	 * Account the inode: it no longer belongs to its former segment,
    998 	 * though it will not belong to the new segment until that segment
    999 	 * is actually written.
   1000 	 */
   1001 	if (daddr != LFS_UNUSED_DADDR) {
   1002 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
   1003 #ifdef DIAGNOSTIC
   1004 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1005 #endif
   1006 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1007 #ifdef DIAGNOSTIC
   1008 		if (sup->su_nbytes +
   1009 		    sizeof (struct ulfs1_dinode) * ndupino
   1010 		      < sizeof (struct ulfs1_dinode)) {
   1011 			printf("lfs_writeinode: negative bytes "
   1012 			       "(segment %" PRIu32 " short by %d, "
   1013 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1014 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1015 			       "ndupino=%d)\n",
   1016 			       lfs_dtosn(fs, daddr),
   1017 			       (int)sizeof (struct ulfs1_dinode) *
   1018 				   (1 - sp->ndupino) - sup->su_nbytes,
   1019 			       oldsn, sp->seg_number, daddr,
   1020 			       (unsigned int)sup->su_nbytes,
   1021 			       sp->ndupino);
   1022 			panic("lfs_writeinode: negative bytes");
   1023 			sup->su_nbytes = sizeof (struct ulfs1_dinode);
   1024 		}
   1025 #endif
   1026 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1027 		      lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
   1028 		sup->su_nbytes -= sizeof (struct ulfs1_dinode);
   1029 		redo_ifile |=
   1030 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1031 		if (redo_ifile) {
   1032 			mutex_enter(&lfs_lock);
   1033 			fs->lfs_flags |= LFS_IFDIRTY;
   1034 			mutex_exit(&lfs_lock);
   1035 			/* Don't double-account */
   1036 			fs->lfs_idaddr = 0x0;
   1037 		}
   1038 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1039 	}
   1040 
   1041 	return redo_ifile;
   1042 }
   1043 
   1044 int
   1045 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
   1046 {
   1047 	struct buf *bp;
   1048 	struct ulfs1_dinode *cdp;
   1049 	struct vnode *vp = ITOV(ip);
   1050 	daddr_t daddr;
   1051 	int32_t *daddrp;	/* XXX ondisk32 */
   1052 	int i, ndx;
   1053 	int redo_ifile = 0;
   1054 	int gotblk = 0;
   1055 	int count;
   1056 
   1057 	ASSERT_SEGLOCK(fs);
   1058 	if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
   1059 		return (0);
   1060 
   1061 	/* Can't write ifile when writer is not set */
   1062 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
   1063 		(sp->seg_flags & SEGM_CLEAN));
   1064 
   1065 	/*
   1066 	 * If this is the Ifile, see if writing it here will generate a
   1067 	 * temporary misaccounting.  If it will, do the accounting and write
   1068 	 * the blocks, postponing the inode write until the accounting is
   1069 	 * solid.
   1070 	 */
   1071 	count = 0;
   1072 	while (vp == fs->lfs_ivnode) {
   1073 		int redo = 0;
   1074 
   1075 		if (sp->idp == NULL && sp->ibp == NULL &&
   1076 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
   1077 		     sp->sum_bytes_left < sizeof(int32_t))) {
   1078 			(void) lfs_writeseg(fs, sp);
   1079 			continue;
   1080 		}
   1081 
   1082 		/* Look for dirty Ifile blocks */
   1083 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
   1084 			if (!(bp->b_flags & B_GATHERED)) {
   1085 				redo = 1;
   1086 				break;
   1087 			}
   1088 		}
   1089 
   1090 		if (redo == 0)
   1091 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
   1092 		if (redo == 0)
   1093 			break;
   1094 
   1095 		if (sp->idp) {
   1096 			sp->idp->di_inumber = 0;
   1097 			sp->idp = NULL;
   1098 		}
   1099 		++count;
   1100 		if (count > 2)
   1101 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
   1102 		lfs_writefile(fs, sp, fs->lfs_ivnode);
   1103 	}
   1104 
   1105 	/* Allocate a new inode block if necessary. */
   1106 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
   1107 	    sp->ibp == NULL) {
   1108 		/* Allocate a new segment if necessary. */
   1109 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
   1110 		    sp->sum_bytes_left < sizeof(int32_t))
   1111 			(void) lfs_writeseg(fs, sp);
   1112 
   1113 		/* Get next inode block. */
   1114 		daddr = fs->lfs_offset;
   1115 		fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
   1116 		sp->ibp = *sp->cbpp++ =
   1117 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
   1118 			    LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
   1119 		gotblk++;
   1120 
   1121 		/* Zero out inode numbers */
   1122 		for (i = 0; i < LFS_INOPB(fs); ++i)
   1123 			((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
   1124 			    0;
   1125 
   1126 		++sp->start_bpp;
   1127 		fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
   1128 		/* Set remaining space counters. */
   1129 		sp->seg_bytes_left -= fs->lfs_ibsize;
   1130 		sp->sum_bytes_left -= sizeof(int32_t);
   1131 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
   1132 			sp->ninodes / LFS_INOPB(fs) - 1;
   1133 		((int32_t *)(sp->segsum))[ndx] = daddr;
   1134 	}
   1135 
   1136 	/* Check VU_DIROP in case there is a new file with no data blocks */
   1137 	if (vp->v_uflag & VU_DIROP)
   1138 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   1139 
   1140 	/* Update the inode times and copy the inode onto the inode page. */
   1141 	/* XXX kludge --- don't redirty the ifile just to put times on it */
   1142 	if (ip->i_number != LFS_IFILE_INUM)
   1143 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1144 
   1145 	/*
   1146 	 * If this is the Ifile, and we've already written the Ifile in this
   1147 	 * partial segment, just overwrite it (it's not on disk yet) and
   1148 	 * continue.
   1149 	 *
   1150 	 * XXX we know that the bp that we get the second time around has
   1151 	 * already been gathered.
   1152 	 */
   1153 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
   1154 		*(sp->idp) = *ip->i_din.ffs1_din;
   1155 		ip->i_lfs_osize = ip->i_size;
   1156 		return 0;
   1157 	}
   1158 
   1159 	bp = sp->ibp;
   1160 	cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
   1161 	*cdp = *ip->i_din.ffs1_din;
   1162 
   1163 	/*
   1164 	 * This inode is on its way to disk; clear its VU_DIROP status when
   1165 	 * the write is complete.
   1166 	 */
   1167 	if (vp->v_uflag & VU_DIROP) {
   1168 		if (!(sp->seg_flags & SEGM_CLEAN))
   1169 			ip->i_flag |= IN_CDIROP;
   1170 		else {
   1171 			DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
   1172 		}
   1173 	}
   1174 
   1175 	/*
   1176 	 * If cleaning, link counts and directory file sizes cannot change,
   1177 	 * since those would be directory operations---even if the file
   1178 	 * we are writing is marked VU_DIROP we should write the old values.
   1179 	 * If we're not cleaning, of course, update the values so we get
   1180 	 * current values the next time we clean.
   1181 	 */
   1182 	if (sp->seg_flags & SEGM_CLEAN) {
   1183 		if (vp->v_uflag & VU_DIROP) {
   1184 			cdp->di_nlink = ip->i_lfs_odnlink;
   1185 			/* if (vp->v_type == VDIR) */
   1186 			cdp->di_size = ip->i_lfs_osize;
   1187 		}
   1188 	} else {
   1189 		ip->i_lfs_odnlink = cdp->di_nlink;
   1190 		ip->i_lfs_osize = ip->i_size;
   1191 	}
   1192 
   1193 
   1194 	/* We can finish the segment accounting for truncations now */
   1195 	lfs_finalize_ino_seguse(fs, ip);
   1196 
   1197 	/*
   1198 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
   1199 	 * addresses to disk; possibly change the on-disk record of
   1200 	 * the inode size, either by reverting to the previous size
   1201 	 * (in the case of cleaning) or by verifying the inode's block
   1202 	 * holdings (in the case of files being allocated as they are being
   1203 	 * written).
   1204 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
   1205 	 * XXX count on disk wrong by the same amount.	We should be
   1206 	 * XXX able to "borrow" from lfs_avail and return it after the
   1207 	 * XXX Ifile is written.  See also in lfs_writeseg.
   1208 	 */
   1209 
   1210 	/* Check file size based on highest allocated block */
   1211 	if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
   1212 	     (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
   1213 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
   1214 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
   1215 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
   1216 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
   1217 	}
   1218 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
   1219 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
   1220 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
   1221 		      ip->i_ffs1_blocks, fs->lfs_offset));
   1222 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
   1223 		     daddrp++) {
   1224 			if (*daddrp == UNWRITTEN) {
   1225 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
   1226 				*daddrp = 0;
   1227 			}
   1228 		}
   1229 	}
   1230 
   1231 #ifdef DIAGNOSTIC
   1232 	/*
   1233 	 * Check dinode held blocks against dinode size.
   1234 	 * This should be identical to the check in lfs_vget().
   1235 	 */
   1236 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1237 	     i < ULFS_NDADDR; i++) {
   1238 		KASSERT(i >= 0);
   1239 		if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
   1240 			continue;
   1241 		if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
   1242 		     (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
   1243 			continue;
   1244 		if (cdp->di_db[i] != 0) {
   1245 # ifdef DEBUG
   1246 			lfs_dump_dinode(cdp);
   1247 # endif
   1248 			panic("writing inconsistent inode");
   1249 		}
   1250 	}
   1251 #endif /* DIAGNOSTIC */
   1252 
   1253 	if (ip->i_flag & IN_CLEANING)
   1254 		LFS_CLR_UINO(ip, IN_CLEANING);
   1255 	else {
   1256 		/* XXX IN_ALLMOD */
   1257 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1258 			     IN_UPDATE | IN_MODIFY);
   1259 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1260 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1261 		else {
   1262 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
   1263 			    "blks=%d, eff=%d\n", ip->i_number,
   1264 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
   1265 		}
   1266 	}
   1267 
   1268 	if (ip->i_number == LFS_IFILE_INUM) {
   1269 		/* We know sp->idp == NULL */
   1270 		sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
   1271 			(sp->ninodes % LFS_INOPB(fs));
   1272 
   1273 		/* Not dirty any more */
   1274 		mutex_enter(&lfs_lock);
   1275 		fs->lfs_flags &= ~LFS_IFDIRTY;
   1276 		mutex_exit(&lfs_lock);
   1277 	}
   1278 
   1279 	if (gotblk) {
   1280 		mutex_enter(&bufcache_lock);
   1281 		LFS_LOCK_BUF(bp);
   1282 		brelsel(bp, 0);
   1283 		mutex_exit(&bufcache_lock);
   1284 	}
   1285 
   1286 	/* Increment inode count in segment summary block. */
   1287 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1288 
   1289 	/* If this page is full, set flag to allocate a new page. */
   1290 	if (++sp->ninodes % LFS_INOPB(fs) == 0)
   1291 		sp->ibp = NULL;
   1292 
   1293 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
   1294 
   1295 	KASSERT(redo_ifile == 0);
   1296 	return (redo_ifile);
   1297 }
   1298 
   1299 int
   1300 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
   1301 {
   1302 	struct lfs *fs;
   1303 	int vers;
   1304 	int j, blksinblk;
   1305 
   1306 	ASSERT_SEGLOCK(sp->fs);
   1307 	/*
   1308 	 * If full, finish this segment.  We may be doing I/O, so
   1309 	 * release and reacquire the splbio().
   1310 	 */
   1311 #ifdef DIAGNOSTIC
   1312 	if (sp->vp == NULL)
   1313 		panic ("lfs_gatherblock: Null vp in segment");
   1314 #endif
   1315 	fs = sp->fs;
   1316 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1317 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1318 	    sp->seg_bytes_left < bp->b_bcount) {
   1319 		if (mptr)
   1320 			mutex_exit(mptr);
   1321 		lfs_updatemeta(sp);
   1322 
   1323 		vers = sp->fip->fi_version;
   1324 		(void) lfs_writeseg(fs, sp);
   1325 
   1326 		/* Add the current file to the segment summary. */
   1327 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
   1328 
   1329 		if (mptr)
   1330 			mutex_enter(mptr);
   1331 		return (1);
   1332 	}
   1333 
   1334 	if (bp->b_flags & B_GATHERED) {
   1335 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1336 		      " lbn %" PRId64 "\n",
   1337 		      sp->fip->fi_ino, bp->b_lblkno));
   1338 		return (0);
   1339 	}
   1340 
   1341 	/* Insert into the buffer list, update the FINFO block. */
   1342 	bp->b_flags |= B_GATHERED;
   1343 
   1344 	*sp->cbpp++ = bp;
   1345 	for (j = 0; j < blksinblk; j++) {
   1346 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1347 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1348 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1349 	}
   1350 
   1351 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1352 	sp->seg_bytes_left -= bp->b_bcount;
   1353 	return (0);
   1354 }
   1355 
   1356 int
   1357 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1358     int (*match)(struct lfs *, struct buf *))
   1359 {
   1360 	struct buf *bp, *nbp;
   1361 	int count = 0;
   1362 
   1363 	ASSERT_SEGLOCK(fs);
   1364 	if (vp->v_type == VBLK)
   1365 		return 0;
   1366 	KASSERT(sp->vp == NULL);
   1367 	sp->vp = vp;
   1368 	mutex_enter(&bufcache_lock);
   1369 
   1370 #ifndef LFS_NO_BACKBUF_HACK
   1371 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1372 # define	BUF_OFFSET	\
   1373 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
   1374 # define	BACK_BUF(BP)	\
   1375 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1376 # define	BEG_OF_LIST	\
   1377 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1378 
   1379 loop:
   1380 	/* Find last buffer. */
   1381 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1382 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1383 	     bp = LIST_NEXT(bp, b_vnbufs))
   1384 		/* nothing */;
   1385 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1386 		nbp = BACK_BUF(bp);
   1387 #else /* LFS_NO_BACKBUF_HACK */
   1388 loop:
   1389 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1390 		nbp = LIST_NEXT(bp, b_vnbufs);
   1391 #endif /* LFS_NO_BACKBUF_HACK */
   1392 		if ((bp->b_cflags & BC_BUSY) != 0 ||
   1393 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
   1394 #ifdef DEBUG
   1395 			if (vp == fs->lfs_ivnode &&
   1396 			    (bp->b_cflags & BC_BUSY) != 0 &&
   1397 			    (bp->b_flags & B_GATHERED) == 0)
   1398 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
   1399 				      PRId64 " busy (%x) at 0x%x",
   1400 				      bp->b_lblkno, bp->b_flags,
   1401 				      (unsigned)fs->lfs_offset);
   1402 #endif
   1403 			continue;
   1404 		}
   1405 #ifdef DIAGNOSTIC
   1406 # ifdef LFS_USE_B_INVAL
   1407 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
   1408 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1409 			      " is BC_INVAL\n", bp->b_lblkno));
   1410 			VOP_PRINT(bp->b_vp);
   1411 		}
   1412 # endif /* LFS_USE_B_INVAL */
   1413 		if (!(bp->b_oflags & BO_DELWRI))
   1414 			panic("lfs_gather: bp not BO_DELWRI");
   1415 		if (!(bp->b_flags & B_LOCKED)) {
   1416 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1417 			      " blk %" PRId64 " not B_LOCKED\n",
   1418 			      bp->b_lblkno,
   1419 			      LFS_DBTOFSB(fs, bp->b_blkno)));
   1420 			VOP_PRINT(bp->b_vp);
   1421 			panic("lfs_gather: bp not B_LOCKED");
   1422 		}
   1423 #endif
   1424 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
   1425 			goto loop;
   1426 		}
   1427 		count++;
   1428 	}
   1429 	mutex_exit(&bufcache_lock);
   1430 	lfs_updatemeta(sp);
   1431 	KASSERT(sp->vp == vp);
   1432 	sp->vp = NULL;
   1433 	return count;
   1434 }
   1435 
   1436 #if DEBUG
   1437 # define DEBUG_OOFF(n) do {						\
   1438 	if (ooff == 0) {						\
   1439 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1440 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1441 			", was 0x0 (or %" PRId64 ")\n",			\
   1442 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1443 	}								\
   1444 } while (0)
   1445 #else
   1446 # define DEBUG_OOFF(n)
   1447 #endif
   1448 
   1449 /*
   1450  * Change the given block's address to ndaddr, finding its previous
   1451  * location using ulfs_bmaparray().
   1452  *
   1453  * Account for this change in the segment table.
   1454  *
   1455  * called with sp == NULL by roll-forwarding code.
   1456  */
   1457 void
   1458 lfs_update_single(struct lfs *fs, struct segment *sp,
   1459     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
   1460 {
   1461 	SEGUSE *sup;
   1462 	struct buf *bp;
   1463 	struct indir a[ULFS_NIADDR + 2], *ap;
   1464 	struct inode *ip;
   1465 	daddr_t daddr, ooff;
   1466 	int num, error;
   1467 	int bb, osize, obb;
   1468 
   1469 	ASSERT_SEGLOCK(fs);
   1470 	KASSERT(sp == NULL || sp->vp == vp);
   1471 	ip = VTOI(vp);
   1472 
   1473 	error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1474 	if (error)
   1475 		panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
   1476 
   1477 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1478 	KASSERT(daddr <= LFS_MAX_DADDR);
   1479 	if (daddr > 0)
   1480 		daddr = LFS_DBTOFSB(fs, daddr);
   1481 
   1482 	bb = lfs_numfrags(fs, size);
   1483 	switch (num) {
   1484 	    case 0:
   1485 		    ooff = ip->i_ffs1_db[lbn];
   1486 		    DEBUG_OOFF(0);
   1487 		    if (ooff == UNWRITTEN)
   1488 			    ip->i_ffs1_blocks += bb;
   1489 		    else {
   1490 			    /* possible fragment truncation or extension */
   1491 			    obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1492 			    ip->i_ffs1_blocks += (bb - obb);
   1493 		    }
   1494 		    ip->i_ffs1_db[lbn] = ndaddr;
   1495 		    break;
   1496 	    case 1:
   1497 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1498 		    DEBUG_OOFF(1);
   1499 		    if (ooff == UNWRITTEN)
   1500 			    ip->i_ffs1_blocks += bb;
   1501 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1502 		    break;
   1503 	    default:
   1504 		    ap = &a[num - 1];
   1505 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
   1506 			B_MODIFY, &bp))
   1507 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1508 				  ap->in_lbn);
   1509 
   1510 		    /* XXX ondisk32 */
   1511 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1512 		    DEBUG_OOFF(num);
   1513 		    if (ooff == UNWRITTEN)
   1514 			    ip->i_ffs1_blocks += bb;
   1515 		    /* XXX ondisk32 */
   1516 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1517 		    (void) VOP_BWRITE(bp->b_vp, bp);
   1518 	}
   1519 
   1520 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1521 
   1522 	/* Update hiblk when extending the file */
   1523 	if (lbn > ip->i_lfs_hiblk)
   1524 		ip->i_lfs_hiblk = lbn;
   1525 
   1526 	/*
   1527 	 * Though we'd rather it couldn't, this *can* happen right now
   1528 	 * if cleaning blocks and regular blocks coexist.
   1529 	 */
   1530 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1531 
   1532 	/*
   1533 	 * Update segment usage information, based on old size
   1534 	 * and location.
   1535 	 */
   1536 	if (daddr > 0) {
   1537 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
   1538 #ifdef DIAGNOSTIC
   1539 		int ndupino;
   1540 
   1541 		if (sp && sp->seg_number == oldsn) {
   1542 			ndupino = sp->ndupino;
   1543 		} else {
   1544 			ndupino = 0;
   1545 		}
   1546 #endif
   1547 		KASSERT(oldsn < fs->lfs_nseg);
   1548 		if (lbn >= 0 && lbn < ULFS_NDADDR)
   1549 			osize = ip->i_lfs_fragsize[lbn];
   1550 		else
   1551 			osize = fs->lfs_bsize;
   1552 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1553 #ifdef DIAGNOSTIC
   1554 		if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
   1555 		    < osize) {
   1556 			printf("lfs_updatemeta: negative bytes "
   1557 			       "(segment %" PRIu32 " short by %" PRId64
   1558 			       ")\n", lfs_dtosn(fs, daddr),
   1559 			       (int64_t)osize -
   1560 			       (sizeof (struct ulfs1_dinode) * ndupino +
   1561 				sup->su_nbytes));
   1562 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1563 			       ", addr = 0x%" PRIx64 "\n",
   1564 			       (unsigned long long)ip->i_number, lbn, daddr);
   1565 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1566 			panic("lfs_updatemeta: negative bytes");
   1567 			sup->su_nbytes = osize -
   1568 			    sizeof (struct ulfs1_dinode) * ndupino;
   1569 		}
   1570 #endif
   1571 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1572 		      " db 0x%" PRIx64 "\n",
   1573 		      lfs_dtosn(fs, daddr), osize,
   1574 		      ip->i_number, lbn, daddr));
   1575 		sup->su_nbytes -= osize;
   1576 		if (!(bp->b_flags & B_GATHERED)) {
   1577 			mutex_enter(&lfs_lock);
   1578 			fs->lfs_flags |= LFS_IFDIRTY;
   1579 			mutex_exit(&lfs_lock);
   1580 		}
   1581 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1582 	}
   1583 	/*
   1584 	 * Now that this block has a new address, and its old
   1585 	 * segment no longer owns it, we can forget about its
   1586 	 * old size.
   1587 	 */
   1588 	if (lbn >= 0 && lbn < ULFS_NDADDR)
   1589 		ip->i_lfs_fragsize[lbn] = size;
   1590 }
   1591 
   1592 /*
   1593  * Update the metadata that points to the blocks listed in the FINFO
   1594  * array.
   1595  */
   1596 void
   1597 lfs_updatemeta(struct segment *sp)
   1598 {
   1599 	struct buf *sbp;
   1600 	struct lfs *fs;
   1601 	struct vnode *vp;
   1602 	daddr_t lbn;
   1603 	int i, nblocks, num;
   1604 	int bb;
   1605 	int bytesleft, size;
   1606 
   1607 	ASSERT_SEGLOCK(sp->fs);
   1608 	vp = sp->vp;
   1609 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1610 	KASSERT(nblocks >= 0);
   1611 	KASSERT(vp != NULL);
   1612 	if (nblocks == 0)
   1613 		return;
   1614 
   1615 	/*
   1616 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1617 	 * Correct for this. (XXX we should be able to keep track of these.)
   1618 	 */
   1619 	fs = sp->fs;
   1620 	for (i = 0; i < nblocks; i++) {
   1621 		if (sp->start_bpp[i] == NULL) {
   1622 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1623 			nblocks = i;
   1624 			break;
   1625 		}
   1626 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1627 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1628 		nblocks -= num - 1;
   1629 	}
   1630 
   1631 	KASSERT(vp->v_type == VREG ||
   1632 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1633 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1634 
   1635 	/*
   1636 	 * Sort the blocks.
   1637 	 *
   1638 	 * We have to sort even if the blocks come from the
   1639 	 * cleaner, because there might be other pending blocks on the
   1640 	 * same inode...and if we don't sort, and there are fragments
   1641 	 * present, blocks may be written in the wrong place.
   1642 	 */
   1643 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1644 
   1645 	/*
   1646 	 * Record the length of the last block in case it's a fragment.
   1647 	 * If there are indirect blocks present, they sort last.  An
   1648 	 * indirect block will be lfs_bsize and its presence indicates
   1649 	 * that you cannot have fragments.
   1650 	 *
   1651 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1652 	 * XXX a later indirect block.	This will continue to be
   1653 	 * XXX true until lfs_markv is fixed to do everything with
   1654 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1655 	 */
   1656 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1657 		fs->lfs_bmask) + 1;
   1658 
   1659 	/*
   1660 	 * Assign disk addresses, and update references to the logical
   1661 	 * block and the segment usage information.
   1662 	 */
   1663 	for (i = nblocks; i--; ++sp->start_bpp) {
   1664 		sbp = *sp->start_bpp;
   1665 		lbn = *sp->start_lbp;
   1666 		KASSERT(sbp->b_lblkno == lbn);
   1667 
   1668 		sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
   1669 
   1670 		/*
   1671 		 * If we write a frag in the wrong place, the cleaner won't
   1672 		 * be able to correctly identify its size later, and the
   1673 		 * segment will be uncleanable.	 (Even worse, it will assume
   1674 		 * that the indirect block that actually ends the list
   1675 		 * is of a smaller size!)
   1676 		 */
   1677 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1678 			panic("lfs_updatemeta: fragment is not last block");
   1679 
   1680 		/*
   1681 		 * For each subblock in this possibly oversized block,
   1682 		 * update its address on disk.
   1683 		 */
   1684 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1685 		KASSERT(vp == sbp->b_vp);
   1686 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1687 		     bytesleft -= fs->lfs_bsize) {
   1688 			size = MIN(bytesleft, fs->lfs_bsize);
   1689 			bb = lfs_numfrags(fs, size);
   1690 			lbn = *sp->start_lbp++;
   1691 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1692 			    size);
   1693 			fs->lfs_offset += bb;
   1694 		}
   1695 
   1696 	}
   1697 
   1698 	/* This inode has been modified */
   1699 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
   1700 }
   1701 
   1702 /*
   1703  * Move lfs_offset to a segment earlier than sn.
   1704  */
   1705 int
   1706 lfs_rewind(struct lfs *fs, int newsn)
   1707 {
   1708 	int sn, osn, isdirty;
   1709 	struct buf *bp;
   1710 	SEGUSE *sup;
   1711 
   1712 	ASSERT_SEGLOCK(fs);
   1713 
   1714 	osn = lfs_dtosn(fs, fs->lfs_offset);
   1715 	if (osn < newsn)
   1716 		return 0;
   1717 
   1718 	/* lfs_avail eats the remaining space in this segment */
   1719 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1720 
   1721 	/* Find a low-numbered segment */
   1722 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1723 		LFS_SEGENTRY(sup, fs, sn, bp);
   1724 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1725 		brelse(bp, 0);
   1726 
   1727 		if (!isdirty)
   1728 			break;
   1729 	}
   1730 	if (sn == fs->lfs_nseg)
   1731 		panic("lfs_rewind: no clean segments");
   1732 	if (newsn >= 0 && sn >= newsn)
   1733 		return ENOENT;
   1734 	fs->lfs_nextseg = sn;
   1735 	lfs_newseg(fs);
   1736 	fs->lfs_offset = fs->lfs_curseg;
   1737 
   1738 	return 0;
   1739 }
   1740 
   1741 /*
   1742  * Start a new partial segment.
   1743  *
   1744  * Return 1 when we entered to a new segment.
   1745  * Otherwise, return 0.
   1746  */
   1747 int
   1748 lfs_initseg(struct lfs *fs)
   1749 {
   1750 	struct segment *sp = fs->lfs_sp;
   1751 	SEGSUM *ssp;
   1752 	struct buf *sbp;	/* buffer for SEGSUM */
   1753 	int repeat = 0;		/* return value */
   1754 
   1755 	ASSERT_SEGLOCK(fs);
   1756 	/* Advance to the next segment. */
   1757 	if (!LFS_PARTIAL_FITS(fs)) {
   1758 		SEGUSE *sup;
   1759 		struct buf *bp;
   1760 
   1761 		/* lfs_avail eats the remaining space */
   1762 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1763 						   fs->lfs_curseg);
   1764 		/* Wake up any cleaning procs waiting on this file system. */
   1765 		lfs_wakeup_cleaner(fs);
   1766 		lfs_newseg(fs);
   1767 		repeat = 1;
   1768 		fs->lfs_offset = fs->lfs_curseg;
   1769 
   1770 		sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
   1771 		sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
   1772 
   1773 		/*
   1774 		 * If the segment contains a superblock, update the offset
   1775 		 * and summary address to skip over it.
   1776 		 */
   1777 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1778 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1779 			fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
   1780 			sp->seg_bytes_left -= LFS_SBPAD;
   1781 		}
   1782 		brelse(bp, 0);
   1783 		/* Segment zero could also contain the labelpad */
   1784 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1785 		    fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD)) {
   1786 			fs->lfs_offset +=
   1787 			    lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1788 			sp->seg_bytes_left -=
   1789 			    LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_start);
   1790 		}
   1791 	} else {
   1792 		sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
   1793 		sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
   1794 				      (fs->lfs_offset - fs->lfs_curseg));
   1795 	}
   1796 	fs->lfs_lastpseg = fs->lfs_offset;
   1797 
   1798 	/* Record first address of this partial segment */
   1799 	if (sp->seg_flags & SEGM_CLEAN) {
   1800 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1801 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1802 			/* "1" is the artificial inc in lfs_seglock */
   1803 			mutex_enter(&lfs_lock);
   1804 			while (fs->lfs_iocount > 1) {
   1805 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
   1806 				    "lfs_initseg", 0, &lfs_lock);
   1807 			}
   1808 			mutex_exit(&lfs_lock);
   1809 			fs->lfs_cleanind = 0;
   1810 		}
   1811 	}
   1812 
   1813 	sp->fs = fs;
   1814 	sp->ibp = NULL;
   1815 	sp->idp = NULL;
   1816 	sp->ninodes = 0;
   1817 	sp->ndupino = 0;
   1818 
   1819 	sp->cbpp = sp->bpp;
   1820 
   1821 	/* Get a new buffer for SEGSUM */
   1822 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1823 	    LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1824 
   1825 	/* ... and enter it into the buffer list. */
   1826 	*sp->cbpp = sbp;
   1827 	sp->cbpp++;
   1828 	fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
   1829 
   1830 	sp->start_bpp = sp->cbpp;
   1831 
   1832 	/* Set point to SEGSUM, initialize it. */
   1833 	ssp = sp->segsum = sbp->b_data;
   1834 	memset(ssp, 0, fs->lfs_sumsize);
   1835 	ssp->ss_next = fs->lfs_nextseg;
   1836 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1837 	ssp->ss_magic = SS_MAGIC;
   1838 
   1839 	/* Set pointer to first FINFO, initialize it. */
   1840 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
   1841 	sp->fip->fi_nblocks = 0;
   1842 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1843 	sp->fip->fi_lastlength = 0;
   1844 
   1845 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1846 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1847 
   1848 	return (repeat);
   1849 }
   1850 
   1851 /*
   1852  * Remove SEGUSE_INVAL from all segments.
   1853  */
   1854 void
   1855 lfs_unset_inval_all(struct lfs *fs)
   1856 {
   1857 	SEGUSE *sup;
   1858 	struct buf *bp;
   1859 	int i;
   1860 
   1861 	for (i = 0; i < fs->lfs_nseg; i++) {
   1862 		LFS_SEGENTRY(sup, fs, i, bp);
   1863 		if (sup->su_flags & SEGUSE_INVAL) {
   1864 			sup->su_flags &= ~SEGUSE_INVAL;
   1865 			LFS_WRITESEGENTRY(sup, fs, i, bp);
   1866 		} else
   1867 			brelse(bp, 0);
   1868 	}
   1869 }
   1870 
   1871 /*
   1872  * Return the next segment to write.
   1873  */
   1874 void
   1875 lfs_newseg(struct lfs *fs)
   1876 {
   1877 	CLEANERINFO *cip;
   1878 	SEGUSE *sup;
   1879 	struct buf *bp;
   1880 	int curseg, isdirty, sn, skip_inval;
   1881 
   1882 	ASSERT_SEGLOCK(fs);
   1883 
   1884 	/* Honor LFCNWRAPSTOP */
   1885 	mutex_enter(&lfs_lock);
   1886 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
   1887 		if (fs->lfs_wrappass) {
   1888 			log(LOG_NOTICE, "%s: wrappass=%d\n",
   1889 				fs->lfs_fsmnt, fs->lfs_wrappass);
   1890 			fs->lfs_wrappass = 0;
   1891 			break;
   1892 		}
   1893 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
   1894 		wakeup(&fs->lfs_nowrap);
   1895 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
   1896 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
   1897 			&lfs_lock);
   1898 	}
   1899 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
   1900 	mutex_exit(&lfs_lock);
   1901 
   1902 	LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
   1903 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1904 	      lfs_dtosn(fs, fs->lfs_nextseg)));
   1905 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1906 	sup->su_nbytes = 0;
   1907 	sup->su_nsums = 0;
   1908 	sup->su_ninos = 0;
   1909 	LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
   1910 
   1911 	LFS_CLEANERINFO(cip, fs, bp);
   1912 	--cip->clean;
   1913 	++cip->dirty;
   1914 	fs->lfs_nclean = cip->clean;
   1915 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1916 
   1917 	fs->lfs_lastseg = fs->lfs_curseg;
   1918 	fs->lfs_curseg = fs->lfs_nextseg;
   1919 	skip_inval = 1;
   1920 	for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1921 		sn = (sn + 1) % fs->lfs_nseg;
   1922 
   1923 		if (sn == curseg) {
   1924 			if (skip_inval)
   1925 				skip_inval = 0;
   1926 			else
   1927 				panic("lfs_nextseg: no clean segments");
   1928 		}
   1929 		LFS_SEGENTRY(sup, fs, sn, bp);
   1930 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1931 		/* Check SEGUSE_EMPTY as we go along */
   1932 		if (isdirty && sup->su_nbytes == 0 &&
   1933 		    !(sup->su_flags & SEGUSE_EMPTY))
   1934 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1935 		else
   1936 			brelse(bp, 0);
   1937 
   1938 		if (!isdirty)
   1939 			break;
   1940 	}
   1941 	if (skip_inval == 0)
   1942 		lfs_unset_inval_all(fs);
   1943 
   1944 	++fs->lfs_nactive;
   1945 	fs->lfs_nextseg = lfs_sntod(fs, sn);
   1946 	if (lfs_dostats) {
   1947 		++lfs_stats.segsused;
   1948 	}
   1949 }
   1950 
   1951 static struct buf *
   1952 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
   1953     int n)
   1954 {
   1955 	struct lfs_cluster *cl;
   1956 	struct buf **bpp, *bp;
   1957 
   1958 	ASSERT_SEGLOCK(fs);
   1959 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1960 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1961 	memset(cl, 0, sizeof(*cl));
   1962 	cl->fs = fs;
   1963 	cl->bpp = bpp;
   1964 	cl->bufcount = 0;
   1965 	cl->bufsize = 0;
   1966 
   1967 	/* If this segment is being written synchronously, note that */
   1968 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1969 		cl->flags |= LFS_CL_SYNC;
   1970 		cl->seg = fs->lfs_sp;
   1971 		++cl->seg->seg_iocount;
   1972 	}
   1973 
   1974 	/* Get an empty buffer header, or maybe one with something on it */
   1975 	bp = getiobuf(vp, true);
   1976 	bp->b_dev = NODEV;
   1977 	bp->b_blkno = bp->b_lblkno = addr;
   1978 	bp->b_iodone = lfs_cluster_callback;
   1979 	bp->b_private = cl;
   1980 
   1981 	return bp;
   1982 }
   1983 
   1984 int
   1985 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1986 {
   1987 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
   1988 	SEGUSE *sup;
   1989 	SEGSUM *ssp;
   1990 	int i;
   1991 	int do_again, nblocks, byteoffset;
   1992 	size_t el_size;
   1993 	struct lfs_cluster *cl;
   1994 	u_short ninos;
   1995 	struct vnode *devvp;
   1996 	char *p = NULL;
   1997 	struct vnode *vp;
   1998 	int32_t *daddrp;	/* XXX ondisk32 */
   1999 	int changed;
   2000 	u_int32_t sum;
   2001 #ifdef DEBUG
   2002 	FINFO *fip;
   2003 	int findex;
   2004 #endif
   2005 
   2006 	ASSERT_SEGLOCK(fs);
   2007 
   2008 	ssp = (SEGSUM *)sp->segsum;
   2009 
   2010 	/*
   2011 	 * If there are no buffers other than the segment summary to write,
   2012 	 * don't do anything.  If we are the end of a dirop sequence, however,
   2013 	 * write the empty segment summary anyway, to help out the
   2014 	 * roll-forward agent.
   2015 	 */
   2016 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
   2017 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
   2018 			return 0;
   2019 	}
   2020 
   2021 	/* Note if partial segment is being written by the cleaner */
   2022 	if (sp->seg_flags & SEGM_CLEAN)
   2023 		ssp->ss_flags |= SS_CLEAN;
   2024 
   2025 	/* Note if we are writing to reclaim */
   2026 	if (sp->seg_flags & SEGM_RECLAIM) {
   2027 		ssp->ss_flags |= SS_RECLAIM;
   2028 		ssp->ss_reclino = fs->lfs_reclino;
   2029 	}
   2030 
   2031 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2032 
   2033 	/* Update the segment usage information. */
   2034 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   2035 
   2036 	/* Loop through all blocks, except the segment summary. */
   2037 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   2038 		if ((*bpp)->b_vp != devvp) {
   2039 			sup->su_nbytes += (*bpp)->b_bcount;
   2040 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   2041 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   2042 			      sp->seg_number, (*bpp)->b_bcount,
   2043 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   2044 			      (*bpp)->b_blkno));
   2045 		}
   2046 	}
   2047 
   2048 #ifdef DEBUG
   2049 	/* Check for zero-length and zero-version FINFO entries. */
   2050 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
   2051 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
   2052 		KDASSERT(fip->fi_nblocks > 0);
   2053 		KDASSERT(fip->fi_version > 0);
   2054 		fip = (FINFO *)((char *)fip + FINFOSIZE +
   2055 			sizeof(int32_t) * fip->fi_nblocks);
   2056 	}
   2057 #endif /* DEBUG */
   2058 
   2059 	ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
   2060 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   2061 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
   2062 	      ssp->ss_ninos));
   2063 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
   2064 	/* sup->su_nbytes += fs->lfs_sumsize; */
   2065 	if (fs->lfs_version == 1)
   2066 		sup->su_olastmod = time_second;
   2067 	else
   2068 		sup->su_lastmod = time_second;
   2069 	sup->su_ninos += ninos;
   2070 	++sup->su_nsums;
   2071 	fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
   2072 
   2073 	do_again = !(bp->b_flags & B_GATHERED);
   2074 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   2075 
   2076 	/*
   2077 	 * Mark blocks B_BUSY, to prevent then from being changed between
   2078 	 * the checksum computation and the actual write.
   2079 	 *
   2080 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   2081 	 * there are any, replace them with copies that have UNASSIGNED
   2082 	 * instead.
   2083 	 */
   2084 	mutex_enter(&bufcache_lock);
   2085 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   2086 		++bpp;
   2087 		bp = *bpp;
   2088 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
   2089 			bp->b_cflags |= BC_BUSY;
   2090 			continue;
   2091 		}
   2092 
   2093 		while (bp->b_cflags & BC_BUSY) {
   2094 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   2095 			      " data summary corruption for ino %d, lbn %"
   2096 			      PRId64 "\n",
   2097 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   2098 			bp->b_cflags |= BC_WANTED;
   2099 			cv_wait(&bp->b_busy, &bufcache_lock);
   2100 		}
   2101 		bp->b_cflags |= BC_BUSY;
   2102 		mutex_exit(&bufcache_lock);
   2103 		unbusybp = NULL;
   2104 
   2105 		/*
   2106 		 * Check and replace indirect block UNWRITTEN bogosity.
   2107 		 * XXX See comment in lfs_writefile.
   2108 		 */
   2109 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   2110 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   2111 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   2112 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   2113 			      VTOI(bp->b_vp)->i_number,
   2114 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   2115 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   2116 			/* Make a copy we'll make changes to */
   2117 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   2118 					   bp->b_bcount, LFS_NB_IBLOCK);
   2119 			newbp->b_blkno = bp->b_blkno;
   2120 			memcpy(newbp->b_data, bp->b_data,
   2121 			       newbp->b_bcount);
   2122 
   2123 			changed = 0;
   2124 			/* XXX ondisk32 */
   2125 			for (daddrp = (int32_t *)(newbp->b_data);
   2126 			     daddrp < (int32_t *)((char *)newbp->b_data +
   2127 						  newbp->b_bcount); daddrp++) {
   2128 				if (*daddrp == UNWRITTEN) {
   2129 					++changed;
   2130 					*daddrp = 0;
   2131 				}
   2132 			}
   2133 			/*
   2134 			 * Get rid of the old buffer.  Don't mark it clean,
   2135 			 * though, if it still has dirty data on it.
   2136 			 */
   2137 			if (changed) {
   2138 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   2139 				      " bp = %p newbp = %p\n", changed, bp,
   2140 				      newbp));
   2141 				*bpp = newbp;
   2142 				bp->b_flags &= ~B_GATHERED;
   2143 				bp->b_error = 0;
   2144 				if (bp->b_iodone != NULL) {
   2145 					DLOG((DLOG_SEG, "lfs_writeseg: "
   2146 					      "indir bp should not be B_CALL\n"));
   2147 					biodone(bp);
   2148 					bp = NULL;
   2149 				} else {
   2150 					/* Still on free list, leave it there */
   2151 					unbusybp = bp;
   2152 					/*
   2153 					 * We have to re-decrement lfs_avail
   2154 					 * since this block is going to come
   2155 					 * back around to us in the next
   2156 					 * segment.
   2157 					 */
   2158 					fs->lfs_avail -=
   2159 					    lfs_btofsb(fs, bp->b_bcount);
   2160 				}
   2161 			} else {
   2162 				lfs_freebuf(fs, newbp);
   2163 			}
   2164 		}
   2165 		mutex_enter(&bufcache_lock);
   2166 		if (unbusybp != NULL) {
   2167 			unbusybp->b_cflags &= ~BC_BUSY;
   2168 			if (unbusybp->b_cflags & BC_WANTED)
   2169 				cv_broadcast(&bp->b_busy);
   2170 		}
   2171 	}
   2172 	mutex_exit(&bufcache_lock);
   2173 
   2174 	/*
   2175 	 * Compute checksum across data and then across summary; the first
   2176 	 * block (the summary block) is skipped.  Set the create time here
   2177 	 * so that it's guaranteed to be later than the inode mod times.
   2178 	 */
   2179 	sum = 0;
   2180 	if (fs->lfs_version == 1)
   2181 		el_size = sizeof(u_long);
   2182 	else
   2183 		el_size = sizeof(u_int32_t);
   2184 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   2185 		++bpp;
   2186 		/* Loop through gop_write cluster blocks */
   2187 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   2188 		     byteoffset += fs->lfs_bsize) {
   2189 #ifdef LFS_USE_B_INVAL
   2190 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
   2191 			    (*bpp)->b_iodone != NULL) {
   2192 				if (copyin((void *)(*bpp)->b_saveaddr +
   2193 					   byteoffset, dp, el_size)) {
   2194 					panic("lfs_writeseg: copyin failed [1]:"
   2195 						" ino %d blk %" PRId64,
   2196 						VTOI((*bpp)->b_vp)->i_number,
   2197 						(*bpp)->b_lblkno);
   2198 				}
   2199 			} else
   2200 #endif /* LFS_USE_B_INVAL */
   2201 			{
   2202 				sum = lfs_cksum_part((char *)
   2203 				    (*bpp)->b_data + byteoffset, el_size, sum);
   2204 			}
   2205 		}
   2206 	}
   2207 	if (fs->lfs_version == 1)
   2208 		ssp->ss_ocreate = time_second;
   2209 	else {
   2210 		ssp->ss_create = time_second;
   2211 		ssp->ss_serial = ++fs->lfs_serial;
   2212 		ssp->ss_ident  = fs->lfs_ident;
   2213 	}
   2214 	ssp->ss_datasum = lfs_cksum_fold(sum);
   2215 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   2216 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   2217 
   2218 	mutex_enter(&lfs_lock);
   2219 	fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
   2220 			  lfs_btofsb(fs, fs->lfs_sumsize));
   2221 	fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
   2222 			  lfs_btofsb(fs, fs->lfs_sumsize));
   2223 	mutex_exit(&lfs_lock);
   2224 
   2225 	/*
   2226 	 * When we simply write the blocks we lose a rotation for every block
   2227 	 * written.  To avoid this problem, we cluster the buffers into a
   2228 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   2229 	 * devices can handle, use that for the size of the chunks.
   2230 	 *
   2231 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   2232 	 * don't bother to copy into other clusters.
   2233 	 */
   2234 
   2235 #define CHUNKSIZE MAXPHYS
   2236 
   2237 	if (devvp == NULL)
   2238 		panic("devvp is NULL");
   2239 	for (bpp = sp->bpp, i = nblocks; i;) {
   2240 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2241 		cl = cbp->b_private;
   2242 
   2243 		cbp->b_flags |= B_ASYNC;
   2244 		cbp->b_cflags |= BC_BUSY;
   2245 		cbp->b_bcount = 0;
   2246 
   2247 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2248 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2249 		    / sizeof(int32_t)) {
   2250 			panic("lfs_writeseg: real bpp overwrite");
   2251 		}
   2252 		if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
   2253 			panic("lfs_writeseg: theoretical bpp overwrite");
   2254 		}
   2255 #endif
   2256 
   2257 		/*
   2258 		 * Construct the cluster.
   2259 		 */
   2260 		mutex_enter(&lfs_lock);
   2261 		++fs->lfs_iocount;
   2262 		mutex_exit(&lfs_lock);
   2263 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2264 			bp = *bpp;
   2265 
   2266 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2267 				break;
   2268 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2269 				break;
   2270 
   2271 			/* Clusters from GOP_WRITE are expedited */
   2272 			if (bp->b_bcount > fs->lfs_bsize) {
   2273 				if (cbp->b_bcount > 0)
   2274 					/* Put in its own buffer */
   2275 					break;
   2276 				else {
   2277 					cbp->b_data = bp->b_data;
   2278 				}
   2279 			} else if (cbp->b_bcount == 0) {
   2280 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2281 							     LFS_NB_CLUSTER);
   2282 				cl->flags |= LFS_CL_MALLOC;
   2283 			}
   2284 #ifdef DIAGNOSTIC
   2285 			if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
   2286 					      btodb(bp->b_bcount - 1))) !=
   2287 			    sp->seg_number) {
   2288 				printf("blk size %d daddr %" PRIx64
   2289 				    " not in seg %d\n",
   2290 				    bp->b_bcount, bp->b_blkno,
   2291 				    sp->seg_number);
   2292 				panic("segment overwrite");
   2293 			}
   2294 #endif
   2295 
   2296 #ifdef LFS_USE_B_INVAL
   2297 			/*
   2298 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2299 			 * We need to copy the data from user space rather than
   2300 			 * from the buffer indicated.
   2301 			 * XXX == what do I do on an error?
   2302 			 */
   2303 			if ((bp->b_cflags & BC_INVAL) != 0 &&
   2304 			    bp->b_iodone != NULL) {
   2305 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2306 					panic("lfs_writeseg: "
   2307 					    "copyin failed [2]");
   2308 			} else
   2309 #endif /* LFS_USE_B_INVAL */
   2310 			if (cl->flags & LFS_CL_MALLOC) {
   2311 				/* copy data into our cluster. */
   2312 				memcpy(p, bp->b_data, bp->b_bcount);
   2313 				p += bp->b_bcount;
   2314 			}
   2315 
   2316 			cbp->b_bcount += bp->b_bcount;
   2317 			cl->bufsize += bp->b_bcount;
   2318 
   2319 			bp->b_flags &= ~B_READ;
   2320 			bp->b_error = 0;
   2321 			cl->bpp[cl->bufcount++] = bp;
   2322 
   2323 			vp = bp->b_vp;
   2324 			mutex_enter(&bufcache_lock);
   2325 			mutex_enter(vp->v_interlock);
   2326 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
   2327 			reassignbuf(bp, vp);
   2328 			vp->v_numoutput++;
   2329 			mutex_exit(vp->v_interlock);
   2330 			mutex_exit(&bufcache_lock);
   2331 
   2332 			bpp++;
   2333 			i--;
   2334 		}
   2335 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2336 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2337 		else
   2338 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2339 		mutex_enter(devvp->v_interlock);
   2340 		devvp->v_numoutput++;
   2341 		mutex_exit(devvp->v_interlock);
   2342 		VOP_STRATEGY(devvp, cbp);
   2343 		curlwp->l_ru.ru_oublock++;
   2344 	}
   2345 
   2346 	if (lfs_dostats) {
   2347 		++lfs_stats.psegwrites;
   2348 		lfs_stats.blocktot += nblocks - 1;
   2349 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2350 			++lfs_stats.psyncwrites;
   2351 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2352 			++lfs_stats.pcleanwrites;
   2353 			lfs_stats.cleanblocks += nblocks - 1;
   2354 		}
   2355 	}
   2356 
   2357 	return (lfs_initseg(fs) || do_again);
   2358 }
   2359 
   2360 void
   2361 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2362 {
   2363 	struct buf *bp;
   2364 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2365 	int s;
   2366 
   2367 	ASSERT_MAYBE_SEGLOCK(fs);
   2368 #ifdef DIAGNOSTIC
   2369 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2370 #endif
   2371 	/*
   2372 	 * If we can write one superblock while another is in
   2373 	 * progress, we risk not having a complete checkpoint if we crash.
   2374 	 * So, block here if a superblock write is in progress.
   2375 	 */
   2376 	mutex_enter(&lfs_lock);
   2377 	s = splbio();
   2378 	while (fs->lfs_sbactive) {
   2379 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2380 			&lfs_lock);
   2381 	}
   2382 	fs->lfs_sbactive = daddr;
   2383 	splx(s);
   2384 	mutex_exit(&lfs_lock);
   2385 
   2386 	/* Set timestamp of this version of the superblock */
   2387 	if (fs->lfs_version == 1)
   2388 		fs->lfs_otstamp = time_second;
   2389 	fs->lfs_tstamp = time_second;
   2390 
   2391 	/* Checksum the superblock and copy it into a buffer. */
   2392 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2393 	bp = lfs_newbuf(fs, devvp,
   2394 	    LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2395 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
   2396 	    LFS_SBPAD - sizeof(struct dlfs));
   2397 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2398 
   2399 	bp->b_cflags |= BC_BUSY;
   2400 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
   2401 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
   2402 	bp->b_error = 0;
   2403 	bp->b_iodone = lfs_supercallback;
   2404 
   2405 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2406 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2407 	else
   2408 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2409 	curlwp->l_ru.ru_oublock++;
   2410 
   2411 	mutex_enter(devvp->v_interlock);
   2412 	devvp->v_numoutput++;
   2413 	mutex_exit(devvp->v_interlock);
   2414 
   2415 	mutex_enter(&lfs_lock);
   2416 	++fs->lfs_iocount;
   2417 	mutex_exit(&lfs_lock);
   2418 	VOP_STRATEGY(devvp, bp);
   2419 }
   2420 
   2421 /*
   2422  * Logical block number match routines used when traversing the dirty block
   2423  * chain.
   2424  */
   2425 int
   2426 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2427 {
   2428 
   2429 	ASSERT_SEGLOCK(fs);
   2430 	return LFS_IS_MALLOC_BUF(bp);
   2431 }
   2432 
   2433 #if 0
   2434 int
   2435 lfs_match_real(struct lfs *fs, struct buf *bp)
   2436 {
   2437 
   2438 	ASSERT_SEGLOCK(fs);
   2439 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2440 }
   2441 #endif
   2442 
   2443 int
   2444 lfs_match_data(struct lfs *fs, struct buf *bp)
   2445 {
   2446 
   2447 	ASSERT_SEGLOCK(fs);
   2448 	return (bp->b_lblkno >= 0);
   2449 }
   2450 
   2451 int
   2452 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2453 {
   2454 	daddr_t lbn;
   2455 
   2456 	ASSERT_SEGLOCK(fs);
   2457 	lbn = bp->b_lblkno;
   2458 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
   2459 }
   2460 
   2461 int
   2462 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2463 {
   2464 	daddr_t lbn;
   2465 
   2466 	ASSERT_SEGLOCK(fs);
   2467 	lbn = bp->b_lblkno;
   2468 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
   2469 }
   2470 
   2471 int
   2472 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2473 {
   2474 	daddr_t lbn;
   2475 
   2476 	ASSERT_SEGLOCK(fs);
   2477 	lbn = bp->b_lblkno;
   2478 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
   2479 }
   2480 
   2481 static void
   2482 lfs_free_aiodone(struct buf *bp)
   2483 {
   2484 	struct lfs *fs;
   2485 
   2486 	KERNEL_LOCK(1, curlwp);
   2487 	fs = bp->b_private;
   2488 	ASSERT_NO_SEGLOCK(fs);
   2489 	lfs_freebuf(fs, bp);
   2490 	KERNEL_UNLOCK_LAST(curlwp);
   2491 }
   2492 
   2493 static void
   2494 lfs_super_aiodone(struct buf *bp)
   2495 {
   2496 	struct lfs *fs;
   2497 
   2498 	KERNEL_LOCK(1, curlwp);
   2499 	fs = bp->b_private;
   2500 	ASSERT_NO_SEGLOCK(fs);
   2501 	mutex_enter(&lfs_lock);
   2502 	fs->lfs_sbactive = 0;
   2503 	if (--fs->lfs_iocount <= 1)
   2504 		wakeup(&fs->lfs_iocount);
   2505 	wakeup(&fs->lfs_sbactive);
   2506 	mutex_exit(&lfs_lock);
   2507 	lfs_freebuf(fs, bp);
   2508 	KERNEL_UNLOCK_LAST(curlwp);
   2509 }
   2510 
   2511 static void
   2512 lfs_cluster_aiodone(struct buf *bp)
   2513 {
   2514 	struct lfs_cluster *cl;
   2515 	struct lfs *fs;
   2516 	struct buf *tbp, *fbp;
   2517 	struct vnode *vp, *devvp, *ovp;
   2518 	struct inode *ip;
   2519 	int error;
   2520 
   2521 	KERNEL_LOCK(1, curlwp);
   2522 
   2523 	error = bp->b_error;
   2524 	cl = bp->b_private;
   2525 	fs = cl->fs;
   2526 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2527 	ASSERT_NO_SEGLOCK(fs);
   2528 
   2529 	/* Put the pages back, and release the buffer */
   2530 	while (cl->bufcount--) {
   2531 		tbp = cl->bpp[cl->bufcount];
   2532 		KASSERT(tbp->b_cflags & BC_BUSY);
   2533 		if (error) {
   2534 			tbp->b_error = error;
   2535 		}
   2536 
   2537 		/*
   2538 		 * We're done with tbp.	 If it has not been re-dirtied since
   2539 		 * the cluster was written, free it.  Otherwise, keep it on
   2540 		 * the locked list to be written again.
   2541 		 */
   2542 		vp = tbp->b_vp;
   2543 
   2544 		tbp->b_flags &= ~B_GATHERED;
   2545 
   2546 		LFS_BCLEAN_LOG(fs, tbp);
   2547 
   2548 		mutex_enter(&bufcache_lock);
   2549 		if (tbp->b_iodone == NULL) {
   2550 			KASSERT(tbp->b_flags & B_LOCKED);
   2551 			bremfree(tbp);
   2552 			if (vp) {
   2553 				mutex_enter(vp->v_interlock);
   2554 				reassignbuf(tbp, vp);
   2555 				mutex_exit(vp->v_interlock);
   2556 			}
   2557 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2558 		}
   2559 
   2560 		if (((tbp->b_flags | tbp->b_oflags) &
   2561 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
   2562 			LFS_UNLOCK_BUF(tbp);
   2563 
   2564 		if (tbp->b_oflags & BO_DONE) {
   2565 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2566 				cl->bufcount, (long)tbp->b_flags));
   2567 		}
   2568 
   2569 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
   2570 			/*
   2571 			 * A buffer from the page daemon.
   2572 			 * We use the same iodone as it does,
   2573 			 * so we must manually disassociate its
   2574 			 * buffers from the vp.
   2575 			 */
   2576 			if ((ovp = tbp->b_vp) != NULL) {
   2577 				/* This is just silly */
   2578 				mutex_enter(ovp->v_interlock);
   2579 				brelvp(tbp);
   2580 				mutex_exit(ovp->v_interlock);
   2581 				tbp->b_vp = vp;
   2582 				tbp->b_objlock = vp->v_interlock;
   2583 			}
   2584 			/* Put it back the way it was */
   2585 			tbp->b_flags |= B_ASYNC;
   2586 			/* Master buffers have BC_AGE */
   2587 			if (tbp->b_private == tbp)
   2588 				tbp->b_cflags |= BC_AGE;
   2589 		}
   2590 		mutex_exit(&bufcache_lock);
   2591 
   2592 		biodone(tbp);
   2593 
   2594 		/*
   2595 		 * If this is the last block for this vnode, but
   2596 		 * there are other blocks on its dirty list,
   2597 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2598 		 * sort of block.  Only do this for our mount point,
   2599 		 * not for, e.g., inode blocks that are attached to
   2600 		 * the devvp.
   2601 		 * XXX KS - Shouldn't we set *both* if both types
   2602 		 * of blocks are present (traverse the dirty list?)
   2603 		 */
   2604 		mutex_enter(vp->v_interlock);
   2605 		mutex_enter(&lfs_lock);
   2606 		if (vp != devvp && vp->v_numoutput == 0 &&
   2607 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2608 			ip = VTOI(vp);
   2609 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2610 			       ip->i_number));
   2611 			if (LFS_IS_MALLOC_BUF(fbp))
   2612 				LFS_SET_UINO(ip, IN_CLEANING);
   2613 			else
   2614 				LFS_SET_UINO(ip, IN_MODIFIED);
   2615 		}
   2616 		cv_broadcast(&vp->v_cv);
   2617 		mutex_exit(&lfs_lock);
   2618 		mutex_exit(vp->v_interlock);
   2619 	}
   2620 
   2621 	/* Fix up the cluster buffer, and release it */
   2622 	if (cl->flags & LFS_CL_MALLOC)
   2623 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2624 	putiobuf(bp);
   2625 
   2626 	/* Note i/o done */
   2627 	if (cl->flags & LFS_CL_SYNC) {
   2628 		if (--cl->seg->seg_iocount == 0)
   2629 			wakeup(&cl->seg->seg_iocount);
   2630 	}
   2631 	mutex_enter(&lfs_lock);
   2632 #ifdef DIAGNOSTIC
   2633 	if (fs->lfs_iocount == 0)
   2634 		panic("lfs_cluster_aiodone: zero iocount");
   2635 #endif
   2636 	if (--fs->lfs_iocount <= 1)
   2637 		wakeup(&fs->lfs_iocount);
   2638 	mutex_exit(&lfs_lock);
   2639 
   2640 	KERNEL_UNLOCK_LAST(curlwp);
   2641 
   2642 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2643 	cl->bpp = NULL;
   2644 	pool_put(&fs->lfs_clpool, cl);
   2645 }
   2646 
   2647 static void
   2648 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2649 {
   2650 	/* reset b_iodone for when this is a single-buf i/o. */
   2651 	bp->b_iodone = aiodone;
   2652 
   2653 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
   2654 }
   2655 
   2656 static void
   2657 lfs_cluster_callback(struct buf *bp)
   2658 {
   2659 
   2660 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2661 }
   2662 
   2663 void
   2664 lfs_supercallback(struct buf *bp)
   2665 {
   2666 
   2667 	lfs_generic_callback(bp, lfs_super_aiodone);
   2668 }
   2669 
   2670 /*
   2671  * The only buffers that are going to hit these functions are the
   2672  * segment write blocks, or the segment summaries, or the superblocks.
   2673  *
   2674  * All of the above are created by lfs_newbuf, and so do not need to be
   2675  * released via brelse.
   2676  */
   2677 void
   2678 lfs_callback(struct buf *bp)
   2679 {
   2680 
   2681 	lfs_generic_callback(bp, lfs_free_aiodone);
   2682 }
   2683 
   2684 /*
   2685  * Shellsort (diminishing increment sort) from Data Structures and
   2686  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2687  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2688  * formula (8), page 95.  Roughly O(N^3/2).
   2689  */
   2690 /*
   2691  * This is our own private copy of shellsort because we want to sort
   2692  * two parallel arrays (the array of buffer pointers and the array of
   2693  * logical block numbers) simultaneously.  Note that we cast the array
   2694  * of logical block numbers to a unsigned in this routine so that the
   2695  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2696  */
   2697 
   2698 void
   2699 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2700 {
   2701 	static int __rsshell_increments[] = { 4, 1, 0 };
   2702 	int incr, *incrp, t1, t2;
   2703 	struct buf *bp_temp;
   2704 
   2705 #ifdef DEBUG
   2706 	incr = 0;
   2707 	for (t1 = 0; t1 < nmemb; t1++) {
   2708 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2709 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2710 				/* dump before panic */
   2711 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2712 				    nmemb, size);
   2713 				incr = 0;
   2714 				for (t1 = 0; t1 < nmemb; t1++) {
   2715 					const struct buf *bp = bp_array[t1];
   2716 
   2717 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2718 					    PRIu64 "\n", t1,
   2719 					    (uint64_t)bp->b_bcount,
   2720 					    (uint64_t)bp->b_lblkno);
   2721 					printf("lbns:");
   2722 					for (t2 = 0; t2 * size < bp->b_bcount;
   2723 					    t2++) {
   2724 						printf(" %" PRId32,
   2725 						    lb_array[incr++]);
   2726 					}
   2727 					printf("\n");
   2728 				}
   2729 				panic("lfs_shellsort: inconsistent input");
   2730 			}
   2731 		}
   2732 	}
   2733 #endif
   2734 
   2735 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2736 		for (t1 = incr; t1 < nmemb; ++t1)
   2737 			for (t2 = t1 - incr; t2 >= 0;)
   2738 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2739 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2740 					bp_temp = bp_array[t2];
   2741 					bp_array[t2] = bp_array[t2 + incr];
   2742 					bp_array[t2 + incr] = bp_temp;
   2743 					t2 -= incr;
   2744 				} else
   2745 					break;
   2746 
   2747 	/* Reform the list of logical blocks */
   2748 	incr = 0;
   2749 	for (t1 = 0; t1 < nmemb; t1++) {
   2750 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2751 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2752 		}
   2753 	}
   2754 }
   2755 
   2756 /*
   2757  * Call vget with LK_NOWAIT.  If we are the one who holds VI_XLOCK,
   2758  * however, we must press on.  Just fake success in that case.
   2759  */
   2760 int
   2761 lfs_vref(struct vnode *vp)
   2762 {
   2763 	struct lfs *fs;
   2764 
   2765 	KASSERT(mutex_owned(vp->v_interlock));
   2766 
   2767 	fs = VTOI(vp)->i_lfs;
   2768 
   2769 	ASSERT_MAYBE_SEGLOCK(fs);
   2770 
   2771 	/*
   2772 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2773 	 * being able to flush all of the pages from this vnode, which
   2774 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2775 	 */
   2776 	if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2777  		++fs->lfs_flushvp_fakevref;
   2778 		mutex_exit(vp->v_interlock);
   2779  		return 0;
   2780  	}
   2781 
   2782 	return vget(vp, LK_NOWAIT);
   2783 }
   2784 
   2785 /*
   2786  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2787  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2788  */
   2789 void
   2790 lfs_vunref(struct vnode *vp)
   2791 {
   2792 	struct lfs *fs;
   2793 
   2794 	fs = VTOI(vp)->i_lfs;
   2795 	ASSERT_MAYBE_SEGLOCK(fs);
   2796 
   2797 	/*
   2798 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2799 	 */
   2800 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
   2801 		--fs->lfs_flushvp_fakevref;
   2802 		return;
   2803 	}
   2804 
   2805 	/* does not call inactive */
   2806 	mutex_enter(vp->v_interlock);
   2807 	vrelel(vp, 0);
   2808 }
   2809 
   2810 /*
   2811  * We use this when we have vnodes that were loaded in solely for cleaning.
   2812  * There is no reason to believe that these vnodes will be referenced again
   2813  * soon, since the cleaning process is unrelated to normal filesystem
   2814  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2815  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2816  * cleaning at the head of the list, instead.
   2817  */
   2818 void
   2819 lfs_vunref_head(struct vnode *vp)
   2820 {
   2821 
   2822 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2823 
   2824 	/* does not call inactive, inserts non-held vnode at head of freelist */
   2825 	mutex_enter(vp->v_interlock);
   2826 	vrelel(vp, 0);
   2827 }
   2828 
   2829 
   2830 /*
   2831  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
   2832  * point at uninitialized space.
   2833  */
   2834 void
   2835 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
   2836 {
   2837 	struct segment *sp = fs->lfs_sp;
   2838 
   2839 	KASSERT(vers > 0);
   2840 
   2841 	if (sp->seg_bytes_left < fs->lfs_bsize ||
   2842 	    sp->sum_bytes_left < sizeof(struct finfo))
   2843 		(void) lfs_writeseg(fs, fs->lfs_sp);
   2844 
   2845 	sp->sum_bytes_left -= FINFOSIZE;
   2846 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2847 	sp->fip->fi_nblocks = 0;
   2848 	sp->fip->fi_ino = ino;
   2849 	sp->fip->fi_version = vers;
   2850 }
   2851 
   2852 /*
   2853  * Release the FINFO entry, either clearing out an unused entry or
   2854  * advancing us to the next available entry.
   2855  */
   2856 void
   2857 lfs_release_finfo(struct lfs *fs)
   2858 {
   2859 	struct segment *sp = fs->lfs_sp;
   2860 
   2861 	if (sp->fip->fi_nblocks != 0) {
   2862 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
   2863 			sizeof(int32_t) * sp->fip->fi_nblocks);
   2864 		sp->start_lbp = &sp->fip->fi_blocks[0];
   2865 	} else {
   2866 		sp->sum_bytes_left += FINFOSIZE;
   2867 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2868 	}
   2869 }
   2870