lfs_segment.c revision 1.232 1 /* $NetBSD: lfs_segment.c,v 1.232 2013/10/17 21:01:08 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.232 2013/10/17 21:01:08 christos Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_kernel.h>
104 #include <ufs/lfs/lfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110
111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
112 static void lfs_free_aiodone(struct buf *);
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116
117 /*
118 * Determine if it's OK to start a partial in this segment, or if we need
119 * to go on to a new segment.
120 */
121 #define LFS_PARTIAL_FITS(fs) \
122 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
123 (fs)->lfs_frag)
124
125 /*
126 * Figure out whether we should do a checkpoint write or go ahead with
127 * an ordinary write.
128 */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130 ((flags & SEGM_CLEAN) == 0 && \
131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
132 (flags & SEGM_CKP) || \
133 fs->lfs_nclean < LFS_MAX_ACTIVE)))
134
135 int lfs_match_fake(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void lfs_shellsort(struct buf **, int32_t *, int, int);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
146 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
147 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
148 int lfs_dirvcount = 0; /* # active dirops */
149
150 /* Statistics Counters */
151 int lfs_dostats = 1;
152 struct lfs_stats lfs_stats;
153
154 /* op values to lfs_writevnodes */
155 #define VN_REG 0
156 #define VN_DIROP 1
157 #define VN_EMPTY 2
158 #define VN_CLEAN 3
159
160 /*
161 * XXX KS - Set modification time on the Ifile, so the cleaner can
162 * read the fs mod time off of it. We don't set IN_UPDATE here,
163 * since we don't really need this to be flushed to disk (and in any
164 * case that wouldn't happen to the Ifile until we checkpoint).
165 */
166 void
167 lfs_imtime(struct lfs *fs)
168 {
169 struct timespec ts;
170 struct inode *ip;
171
172 ASSERT_MAYBE_SEGLOCK(fs);
173 vfs_timestamp(&ts);
174 ip = VTOI(fs->lfs_ivnode);
175 ip->i_ffs1_mtime = ts.tv_sec;
176 ip->i_ffs1_mtimensec = ts.tv_nsec;
177 }
178
179 /*
180 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
182 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
183 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
184 */
185
186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
187
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 struct inode *ip;
192 struct lfs *fs;
193 struct segment *sp;
194 struct buf *bp, *nbp, *tbp, *tnbp;
195 int error;
196 int flushed;
197 int relock;
198
199 ip = VTOI(vp);
200 fs = VFSTOULFS(vp->v_mount)->um_lfs;
201 relock = 0;
202
203 top:
204 KASSERT(mutex_owned(vp->v_interlock) == false);
205 KASSERT(mutex_owned(&lfs_lock) == false);
206 KASSERT(mutex_owned(&bufcache_lock) == false);
207 ASSERT_NO_SEGLOCK(fs);
208 if (ip->i_flag & IN_CLEANING) {
209 ivndebug(vp,"vflush/in_cleaning");
210 mutex_enter(&lfs_lock);
211 LFS_CLR_UINO(ip, IN_CLEANING);
212 LFS_SET_UINO(ip, IN_MODIFIED);
213 mutex_exit(&lfs_lock);
214
215 /*
216 * Toss any cleaning buffers that have real counterparts
217 * to avoid losing new data.
218 */
219 mutex_enter(vp->v_interlock);
220 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
221 nbp = LIST_NEXT(bp, b_vnbufs);
222 if (!LFS_IS_MALLOC_BUF(bp))
223 continue;
224 /*
225 * Look for pages matching the range covered
226 * by cleaning blocks. It's okay if more dirty
227 * pages appear, so long as none disappear out
228 * from under us.
229 */
230 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
231 vp != fs->lfs_ivnode) {
232 struct vm_page *pg;
233 voff_t off;
234
235 for (off = lfs_lblktosize(fs, bp->b_lblkno);
236 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
237 off += PAGE_SIZE) {
238 pg = uvm_pagelookup(&vp->v_uobj, off);
239 if (pg == NULL)
240 continue;
241 if ((pg->flags & PG_CLEAN) == 0 ||
242 pmap_is_modified(pg)) {
243 fs->lfs_avail += lfs_btofsb(fs,
244 bp->b_bcount);
245 wakeup(&fs->lfs_avail);
246 mutex_exit(vp->v_interlock);
247 lfs_freebuf(fs, bp);
248 mutex_enter(vp->v_interlock);
249 bp = NULL;
250 break;
251 }
252 }
253 }
254 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
255 tbp = tnbp)
256 {
257 tnbp = LIST_NEXT(tbp, b_vnbufs);
258 if (tbp->b_vp == bp->b_vp
259 && tbp->b_lblkno == bp->b_lblkno
260 && tbp != bp)
261 {
262 fs->lfs_avail += lfs_btofsb(fs,
263 bp->b_bcount);
264 wakeup(&fs->lfs_avail);
265 mutex_exit(vp->v_interlock);
266 lfs_freebuf(fs, bp);
267 mutex_enter(vp->v_interlock);
268 bp = NULL;
269 break;
270 }
271 }
272 }
273 } else {
274 mutex_enter(vp->v_interlock);
275 }
276
277 /* If the node is being written, wait until that is done */
278 while (WRITEINPROG(vp)) {
279 ivndebug(vp,"vflush/writeinprog");
280 cv_wait(&vp->v_cv, vp->v_interlock);
281 }
282 mutex_exit(vp->v_interlock);
283
284 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
285 lfs_seglock(fs, SEGM_SYNC | ((vp->v_iflag & VI_XLOCK) ? SEGM_RECLAIM : 0));
286 if (vp->v_iflag & VI_XLOCK) {
287 fs->lfs_reclino = ip->i_number;
288 }
289
290 /* If we're supposed to flush a freed inode, just toss it */
291 if (ip->i_lfs_iflags & LFSI_DELETED) {
292 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
293 ip->i_number));
294 /* Drain v_numoutput */
295 mutex_enter(vp->v_interlock);
296 while (vp->v_numoutput > 0) {
297 cv_wait(&vp->v_cv, vp->v_interlock);
298 }
299 KASSERT(vp->v_numoutput == 0);
300 mutex_exit(vp->v_interlock);
301
302 mutex_enter(&bufcache_lock);
303 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
304 nbp = LIST_NEXT(bp, b_vnbufs);
305
306 KASSERT((bp->b_flags & B_GATHERED) == 0);
307 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
308 fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
309 wakeup(&fs->lfs_avail);
310 }
311 /* Copied from lfs_writeseg */
312 if (bp->b_iodone != NULL) {
313 mutex_exit(&bufcache_lock);
314 biodone(bp);
315 mutex_enter(&bufcache_lock);
316 } else {
317 bremfree(bp);
318 LFS_UNLOCK_BUF(bp);
319 mutex_enter(vp->v_interlock);
320 bp->b_flags &= ~(B_READ | B_GATHERED);
321 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
322 bp->b_error = 0;
323 reassignbuf(bp, vp);
324 mutex_exit(vp->v_interlock);
325 brelse(bp, 0);
326 }
327 }
328 mutex_exit(&bufcache_lock);
329 LFS_CLR_UINO(ip, IN_CLEANING);
330 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
331 ip->i_flag &= ~IN_ALLMOD;
332 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
333 ip->i_number));
334 lfs_segunlock(fs);
335
336 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
337
338 return 0;
339 }
340
341 fs->lfs_flushvp = vp;
342 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
343 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
344 fs->lfs_flushvp = NULL;
345 KASSERT(fs->lfs_flushvp_fakevref == 0);
346 lfs_segunlock(fs);
347
348 /* Make sure that any pending buffers get written */
349 mutex_enter(vp->v_interlock);
350 while (vp->v_numoutput > 0) {
351 cv_wait(&vp->v_cv, vp->v_interlock);
352 }
353 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
354 KASSERT(vp->v_numoutput == 0);
355 mutex_exit(vp->v_interlock);
356
357 return error;
358 }
359 sp = fs->lfs_sp;
360
361 flushed = 0;
362 if (VPISEMPTY(vp)) {
363 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
364 ++flushed;
365 } else if ((ip->i_flag & IN_CLEANING) &&
366 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
367 ivndebug(vp,"vflush/clean");
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
369 ++flushed;
370 } else if (lfs_dostats) {
371 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
372 ++lfs_stats.vflush_invoked;
373 ivndebug(vp,"vflush");
374 }
375
376 #ifdef DIAGNOSTIC
377 if (vp->v_uflag & VU_DIROP) {
378 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
379 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
380 }
381 #endif
382
383 do {
384 #ifdef DEBUG
385 int loopcount = 0;
386 #endif
387 do {
388 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
389 relock = lfs_writefile(fs, sp, vp);
390 if (relock && vp != fs->lfs_ivnode) {
391 /*
392 * Might have to wait for the
393 * cleaner to run; but we're
394 * still not done with this vnode.
395 * XXX we can do better than this.
396 */
397 KDASSERT(ip->i_number != LFS_IFILE_INUM);
398 lfs_writeinode(fs, sp, ip);
399 mutex_enter(&lfs_lock);
400 LFS_SET_UINO(ip, IN_MODIFIED);
401 mutex_exit(&lfs_lock);
402 lfs_writeseg(fs, sp);
403 lfs_segunlock(fs);
404 lfs_segunlock_relock(fs);
405 goto top;
406 }
407 }
408 /*
409 * If we begin a new segment in the middle of writing
410 * the Ifile, it creates an inconsistent checkpoint,
411 * since the Ifile information for the new segment
412 * is not up-to-date. Take care of this here by
413 * sending the Ifile through again in case there
414 * are newly dirtied blocks. But wait, there's more!
415 * This second Ifile write could *also* cross a segment
416 * boundary, if the first one was large. The second
417 * one is guaranteed to be no more than 8 blocks,
418 * though (two segment blocks and supporting indirects)
419 * so the third write *will not* cross the boundary.
420 */
421 if (vp == fs->lfs_ivnode) {
422 lfs_writefile(fs, sp, vp);
423 lfs_writefile(fs, sp, vp);
424 }
425 #ifdef DEBUG
426 if (++loopcount > 2)
427 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
428 #endif
429 } while (lfs_writeinode(fs, sp, ip));
430 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
431
432 if (lfs_dostats) {
433 ++lfs_stats.nwrites;
434 if (sp->seg_flags & SEGM_SYNC)
435 ++lfs_stats.nsync_writes;
436 if (sp->seg_flags & SEGM_CKP)
437 ++lfs_stats.ncheckpoints;
438 }
439 /*
440 * If we were called from somewhere that has already held the seglock
441 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
442 * the write to complete because we are still locked.
443 * Since lfs_vflush() must return the vnode with no dirty buffers,
444 * we must explicitly wait, if that is the case.
445 *
446 * We compare the iocount against 1, not 0, because it is
447 * artificially incremented by lfs_seglock().
448 */
449 mutex_enter(&lfs_lock);
450 if (fs->lfs_seglock > 1) {
451 while (fs->lfs_iocount > 1)
452 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
453 "lfs_vflush", 0, &lfs_lock);
454 }
455 mutex_exit(&lfs_lock);
456
457 lfs_segunlock(fs);
458
459 /* Wait for these buffers to be recovered by aiodoned */
460 mutex_enter(vp->v_interlock);
461 while (vp->v_numoutput > 0) {
462 cv_wait(&vp->v_cv, vp->v_interlock);
463 }
464 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
465 KASSERT(vp->v_numoutput == 0);
466 mutex_exit(vp->v_interlock);
467
468 fs->lfs_flushvp = NULL;
469 KASSERT(fs->lfs_flushvp_fakevref == 0);
470
471 return (0);
472 }
473
474 int
475 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
476 {
477 struct inode *ip;
478 struct vnode *vp;
479 int inodes_written = 0, only_cleaning;
480 int error = 0;
481
482 ASSERT_SEGLOCK(fs);
483 loop:
484 /* start at last (newest) vnode. */
485 mutex_enter(&mntvnode_lock);
486 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
487 /*
488 * If the vnode that we are about to sync is no longer
489 * associated with this mount point, start over.
490 */
491 if (vp->v_mount != mp) {
492 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
493 /*
494 * After this, pages might be busy
495 * due to our own previous putpages.
496 * Start actual segment write here to avoid deadlock.
497 * If we were just writing one segment and we've done
498 * that, break out.
499 */
500 mutex_exit(&mntvnode_lock);
501 if (lfs_writeseg(fs, sp) &&
502 (sp->seg_flags & SEGM_SINGLE) &&
503 fs->lfs_curseg != fs->lfs_startseg) {
504 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
505 break;
506 }
507 goto loop;
508 }
509
510 mutex_enter(vp->v_interlock);
511 if (vp->v_type == VNON || vismarker(vp) ||
512 (vp->v_iflag & VI_CLEAN) != 0) {
513 mutex_exit(vp->v_interlock);
514 continue;
515 }
516
517 ip = VTOI(vp);
518 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
519 (op != VN_DIROP && op != VN_CLEAN &&
520 (vp->v_uflag & VU_DIROP))) {
521 mutex_exit(vp->v_interlock);
522 vndebug(vp,"dirop");
523 continue;
524 }
525
526 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
527 mutex_exit(vp->v_interlock);
528 vndebug(vp,"empty");
529 continue;
530 }
531
532 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
533 && vp != fs->lfs_flushvp
534 && !(ip->i_flag & IN_CLEANING)) {
535 mutex_exit(vp->v_interlock);
536 vndebug(vp,"cleaning");
537 continue;
538 }
539
540 mutex_exit(&mntvnode_lock);
541 if (lfs_vref(vp)) {
542 vndebug(vp,"vref");
543 mutex_enter(&mntvnode_lock);
544 continue;
545 }
546
547 only_cleaning = 0;
548 /*
549 * Write the inode/file if dirty and it's not the IFILE.
550 */
551 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
552 only_cleaning =
553 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
554
555 if (ip->i_number != LFS_IFILE_INUM) {
556 error = lfs_writefile(fs, sp, vp);
557 if (error) {
558 lfs_vunref(vp);
559 if (error == EAGAIN) {
560 /*
561 * This error from lfs_putpages
562 * indicates we need to drop
563 * the segment lock and start
564 * over after the cleaner has
565 * had a chance to run.
566 */
567 lfs_writeinode(fs, sp, ip);
568 lfs_writeseg(fs, sp);
569 if (!VPISEMPTY(vp) &&
570 !WRITEINPROG(vp) &&
571 !(ip->i_flag & IN_ALLMOD)) {
572 mutex_enter(&lfs_lock);
573 LFS_SET_UINO(ip, IN_MODIFIED);
574 mutex_exit(&lfs_lock);
575 }
576 mutex_enter(&mntvnode_lock);
577 break;
578 }
579 error = 0; /* XXX not quite right */
580 mutex_enter(&mntvnode_lock);
581 continue;
582 }
583
584 if (!VPISEMPTY(vp)) {
585 if (WRITEINPROG(vp)) {
586 ivndebug(vp,"writevnodes/write2");
587 } else if (!(ip->i_flag & IN_ALLMOD)) {
588 mutex_enter(&lfs_lock);
589 LFS_SET_UINO(ip, IN_MODIFIED);
590 mutex_exit(&lfs_lock);
591 }
592 }
593 (void) lfs_writeinode(fs, sp, ip);
594 inodes_written++;
595 }
596 }
597
598 if (lfs_clean_vnhead && only_cleaning)
599 lfs_vunref_head(vp);
600 else
601 lfs_vunref(vp);
602
603 mutex_enter(&mntvnode_lock);
604 }
605 mutex_exit(&mntvnode_lock);
606 return error;
607 }
608
609 /*
610 * Do a checkpoint.
611 */
612 int
613 lfs_segwrite(struct mount *mp, int flags)
614 {
615 struct buf *bp;
616 struct inode *ip;
617 struct lfs *fs;
618 struct segment *sp;
619 struct vnode *vp;
620 SEGUSE *segusep;
621 int do_ckp, did_ckp, error;
622 unsigned n, segleft, maxseg, sn, i, curseg;
623 int writer_set = 0;
624 int dirty;
625 int redo;
626 int um_error;
627
628 fs = VFSTOULFS(mp)->um_lfs;
629 ASSERT_MAYBE_SEGLOCK(fs);
630
631 if (fs->lfs_ronly)
632 return EROFS;
633
634 lfs_imtime(fs);
635
636 /*
637 * Allocate a segment structure and enough space to hold pointers to
638 * the maximum possible number of buffers which can be described in a
639 * single summary block.
640 */
641 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
642
643 /* We can't do a partial write and checkpoint at the same time. */
644 if (do_ckp)
645 flags &= ~SEGM_SINGLE;
646
647 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
648 sp = fs->lfs_sp;
649 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
650 do_ckp = 1;
651
652 /*
653 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
654 * in which case we have to flush *all* buffers off of this vnode.
655 * We don't care about other nodes, but write any non-dirop nodes
656 * anyway in anticipation of another getnewvnode().
657 *
658 * If we're cleaning we only write cleaning and ifile blocks, and
659 * no dirops, since otherwise we'd risk corruption in a crash.
660 */
661 if (sp->seg_flags & SEGM_CLEAN)
662 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
663 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
664 do {
665 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
666 if ((sp->seg_flags & SEGM_SINGLE) &&
667 fs->lfs_curseg != fs->lfs_startseg) {
668 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
669 break;
670 }
671
672 if (do_ckp || fs->lfs_dirops == 0) {
673 if (!writer_set) {
674 lfs_writer_enter(fs, "lfs writer");
675 writer_set = 1;
676 }
677 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
678 if (um_error == 0)
679 um_error = error;
680 /* In case writevnodes errored out */
681 lfs_flush_dirops(fs);
682 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
683 lfs_finalize_fs_seguse(fs);
684 }
685 if (do_ckp && um_error) {
686 lfs_segunlock_relock(fs);
687 sp = fs->lfs_sp;
688 }
689 } while (do_ckp && um_error != 0);
690 }
691
692 /*
693 * If we are doing a checkpoint, mark everything since the
694 * last checkpoint as no longer ACTIVE.
695 */
696 if (do_ckp || fs->lfs_doifile) {
697 segleft = fs->lfs_nseg;
698 curseg = 0;
699 for (n = 0; n < fs->lfs_segtabsz; n++) {
700 dirty = 0;
701 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
702 fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
703 panic("lfs_segwrite: ifile read");
704 segusep = (SEGUSE *)bp->b_data;
705 maxseg = min(segleft, fs->lfs_sepb);
706 for (i = 0; i < maxseg; i++) {
707 sn = curseg + i;
708 if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
709 segusep->su_flags & SEGUSE_ACTIVE) {
710 segusep->su_flags &= ~SEGUSE_ACTIVE;
711 --fs->lfs_nactive;
712 ++dirty;
713 }
714 fs->lfs_suflags[fs->lfs_activesb][sn] =
715 segusep->su_flags;
716 if (fs->lfs_version > 1)
717 ++segusep;
718 else
719 segusep = (SEGUSE *)
720 ((SEGUSE_V1 *)segusep + 1);
721 }
722
723 if (dirty)
724 error = LFS_BWRITE_LOG(bp); /* Ifile */
725 else
726 brelse(bp, 0);
727 segleft -= fs->lfs_sepb;
728 curseg += fs->lfs_sepb;
729 }
730 }
731
732 KASSERT(LFS_SEGLOCK_HELD(fs));
733
734 did_ckp = 0;
735 if (do_ckp || fs->lfs_doifile) {
736 vp = fs->lfs_ivnode;
737 #ifdef DEBUG
738 int loopcount = 0;
739 #endif
740 do {
741 #ifdef DEBUG
742 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
743 #endif
744 mutex_enter(&lfs_lock);
745 fs->lfs_flags &= ~LFS_IFDIRTY;
746 mutex_exit(&lfs_lock);
747
748 ip = VTOI(vp);
749
750 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
751 /*
752 * Ifile has no pages, so we don't need
753 * to check error return here.
754 */
755 lfs_writefile(fs, sp, vp);
756 /*
757 * Ensure the Ifile takes the current segment
758 * into account. See comment in lfs_vflush.
759 */
760 lfs_writefile(fs, sp, vp);
761 lfs_writefile(fs, sp, vp);
762 }
763
764 if (ip->i_flag & IN_ALLMOD)
765 ++did_ckp;
766 #if 0
767 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
768 #else
769 redo = lfs_writeinode(fs, sp, ip);
770 #endif
771 redo += lfs_writeseg(fs, sp);
772 mutex_enter(&lfs_lock);
773 redo += (fs->lfs_flags & LFS_IFDIRTY);
774 mutex_exit(&lfs_lock);
775 #ifdef DEBUG
776 if (++loopcount > 2)
777 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
778 loopcount);
779 #endif
780 } while (redo && do_ckp);
781
782 /*
783 * Unless we are unmounting, the Ifile may continue to have
784 * dirty blocks even after a checkpoint, due to changes to
785 * inodes' atime. If we're checkpointing, it's "impossible"
786 * for other parts of the Ifile to be dirty after the loop
787 * above, since we hold the segment lock.
788 */
789 mutex_enter(vp->v_interlock);
790 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
791 LFS_CLR_UINO(ip, IN_ALLMOD);
792 }
793 #ifdef DIAGNOSTIC
794 else if (do_ckp) {
795 int do_panic = 0;
796 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
797 if (bp->b_lblkno < fs->lfs_cleansz +
798 fs->lfs_segtabsz &&
799 !(bp->b_flags & B_GATHERED)) {
800 printf("ifile lbn %ld still dirty (flags %lx)\n",
801 (long)bp->b_lblkno,
802 (long)bp->b_flags);
803 ++do_panic;
804 }
805 }
806 if (do_panic)
807 panic("dirty blocks");
808 }
809 #endif
810 mutex_exit(vp->v_interlock);
811 } else {
812 (void) lfs_writeseg(fs, sp);
813 }
814
815 /* Note Ifile no longer needs to be written */
816 fs->lfs_doifile = 0;
817 if (writer_set)
818 lfs_writer_leave(fs);
819
820 /*
821 * If we didn't write the Ifile, we didn't really do anything.
822 * That means that (1) there is a checkpoint on disk and (2)
823 * nothing has changed since it was written.
824 *
825 * Take the flags off of the segment so that lfs_segunlock
826 * doesn't have to write the superblock either.
827 */
828 if (do_ckp && !did_ckp) {
829 sp->seg_flags &= ~SEGM_CKP;
830 }
831
832 if (lfs_dostats) {
833 ++lfs_stats.nwrites;
834 if (sp->seg_flags & SEGM_SYNC)
835 ++lfs_stats.nsync_writes;
836 if (sp->seg_flags & SEGM_CKP)
837 ++lfs_stats.ncheckpoints;
838 }
839 lfs_segunlock(fs);
840 return (0);
841 }
842
843 /*
844 * Write the dirty blocks associated with a vnode.
845 */
846 int
847 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
848 {
849 struct inode *ip;
850 int i, frag;
851 int error;
852
853 ASSERT_SEGLOCK(fs);
854 error = 0;
855 ip = VTOI(vp);
856
857 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
858
859 if (vp->v_uflag & VU_DIROP)
860 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
861
862 if (sp->seg_flags & SEGM_CLEAN) {
863 lfs_gather(fs, sp, vp, lfs_match_fake);
864 /*
865 * For a file being flushed, we need to write *all* blocks.
866 * This means writing the cleaning blocks first, and then
867 * immediately following with any non-cleaning blocks.
868 * The same is true of the Ifile since checkpoints assume
869 * that all valid Ifile blocks are written.
870 */
871 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
872 lfs_gather(fs, sp, vp, lfs_match_data);
873 /*
874 * Don't call VOP_PUTPAGES: if we're flushing,
875 * we've already done it, and the Ifile doesn't
876 * use the page cache.
877 */
878 }
879 } else {
880 lfs_gather(fs, sp, vp, lfs_match_data);
881 /*
882 * If we're flushing, we've already called VOP_PUTPAGES
883 * so don't do it again. Otherwise, we want to write
884 * everything we've got.
885 */
886 if (!IS_FLUSHING(fs, vp)) {
887 mutex_enter(vp->v_interlock);
888 error = VOP_PUTPAGES(vp, 0, 0,
889 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
890 }
891 }
892
893 /*
894 * It may not be necessary to write the meta-data blocks at this point,
895 * as the roll-forward recovery code should be able to reconstruct the
896 * list.
897 *
898 * We have to write them anyway, though, under two conditions: (1) the
899 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
900 * checkpointing.
901 *
902 * BUT if we are cleaning, we might have indirect blocks that refer to
903 * new blocks not being written yet, in addition to fragments being
904 * moved out of a cleaned segment. If that is the case, don't
905 * write the indirect blocks, or the finfo will have a small block
906 * in the middle of it!
907 * XXX in this case isn't the inode size wrong too?
908 */
909 frag = 0;
910 if (sp->seg_flags & SEGM_CLEAN) {
911 for (i = 0; i < ULFS_NDADDR; i++)
912 if (ip->i_lfs_fragsize[i] > 0 &&
913 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
914 ++frag;
915 }
916 #ifdef DIAGNOSTIC
917 if (frag > 1)
918 panic("lfs_writefile: more than one fragment!");
919 #endif
920 if (IS_FLUSHING(fs, vp) ||
921 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
922 lfs_gather(fs, sp, vp, lfs_match_indir);
923 lfs_gather(fs, sp, vp, lfs_match_dindir);
924 lfs_gather(fs, sp, vp, lfs_match_tindir);
925 }
926 lfs_release_finfo(fs);
927
928 return error;
929 }
930
931 /*
932 * Update segment accounting to reflect this inode's change of address.
933 */
934 static int
935 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
936 {
937 struct buf *bp;
938 daddr_t daddr;
939 IFILE *ifp;
940 SEGUSE *sup;
941 ino_t ino;
942 int redo_ifile;
943 u_int32_t sn;
944
945 redo_ifile = 0;
946
947 /*
948 * If updating the ifile, update the super-block. Update the disk
949 * address and access times for this inode in the ifile.
950 */
951 ino = ip->i_number;
952 if (ino == LFS_IFILE_INUM) {
953 daddr = fs->lfs_idaddr;
954 fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
955 } else {
956 LFS_IENTRY(ifp, fs, ino, bp);
957 daddr = ifp->if_daddr;
958 ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
959 (void)LFS_BWRITE_LOG(bp); /* Ifile */
960 }
961
962 /*
963 * If this is the Ifile and lfs_offset is set to the first block
964 * in the segment, dirty the new segment's accounting block
965 * (XXX should already be dirty?) and tell the caller to do it again.
966 */
967 if (ip->i_number == LFS_IFILE_INUM) {
968 sn = lfs_dtosn(fs, fs->lfs_offset);
969 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
970 fs->lfs_offset) {
971 LFS_SEGENTRY(sup, fs, sn, bp);
972 KASSERT(bp->b_oflags & BO_DELWRI);
973 LFS_WRITESEGENTRY(sup, fs, sn, bp);
974 /* fs->lfs_flags |= LFS_IFDIRTY; */
975 redo_ifile |= 1;
976 }
977 }
978
979 /*
980 * The inode's last address should not be in the current partial
981 * segment, except under exceptional circumstances (lfs_writevnodes
982 * had to start over, and in the meantime more blocks were written
983 * to a vnode). Both inodes will be accounted to this segment
984 * in lfs_writeseg so we need to subtract the earlier version
985 * here anyway. The segment count can temporarily dip below
986 * zero here; keep track of how many duplicates we have in
987 * "dupino" so we don't panic below.
988 */
989 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
990 ++sp->ndupino;
991 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
992 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
993 (long long)daddr, sp->ndupino));
994 }
995 /*
996 * Account the inode: it no longer belongs to its former segment,
997 * though it will not belong to the new segment until that segment
998 * is actually written.
999 */
1000 if (daddr != LFS_UNUSED_DADDR) {
1001 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1002 #ifdef DIAGNOSTIC
1003 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1004 #endif
1005 LFS_SEGENTRY(sup, fs, oldsn, bp);
1006 #ifdef DIAGNOSTIC
1007 if (sup->su_nbytes +
1008 sizeof (struct ulfs1_dinode) * ndupino
1009 < sizeof (struct ulfs1_dinode)) {
1010 printf("lfs_writeinode: negative bytes "
1011 "(segment %" PRIu32 " short by %d, "
1012 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1013 ", daddr=%" PRId64 ", su_nbytes=%u, "
1014 "ndupino=%d)\n",
1015 lfs_dtosn(fs, daddr),
1016 (int)sizeof (struct ulfs1_dinode) *
1017 (1 - sp->ndupino) - sup->su_nbytes,
1018 oldsn, sp->seg_number, daddr,
1019 (unsigned int)sup->su_nbytes,
1020 sp->ndupino);
1021 panic("lfs_writeinode: negative bytes");
1022 sup->su_nbytes = sizeof (struct ulfs1_dinode);
1023 }
1024 #endif
1025 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1026 lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
1027 sup->su_nbytes -= sizeof (struct ulfs1_dinode);
1028 redo_ifile |=
1029 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1030 if (redo_ifile) {
1031 mutex_enter(&lfs_lock);
1032 fs->lfs_flags |= LFS_IFDIRTY;
1033 mutex_exit(&lfs_lock);
1034 /* Don't double-account */
1035 fs->lfs_idaddr = 0x0;
1036 }
1037 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1038 }
1039
1040 return redo_ifile;
1041 }
1042
1043 int
1044 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1045 {
1046 struct buf *bp;
1047 struct ulfs1_dinode *cdp;
1048 struct vnode *vp = ITOV(ip);
1049 daddr_t daddr;
1050 int32_t *daddrp; /* XXX ondisk32 */
1051 int i, ndx;
1052 int redo_ifile = 0;
1053 int gotblk = 0;
1054 int count;
1055
1056 ASSERT_SEGLOCK(fs);
1057 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1058 return (0);
1059
1060 /* Can't write ifile when writer is not set */
1061 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1062 (sp->seg_flags & SEGM_CLEAN));
1063
1064 /*
1065 * If this is the Ifile, see if writing it here will generate a
1066 * temporary misaccounting. If it will, do the accounting and write
1067 * the blocks, postponing the inode write until the accounting is
1068 * solid.
1069 */
1070 count = 0;
1071 while (vp == fs->lfs_ivnode) {
1072 int redo = 0;
1073
1074 if (sp->idp == NULL && sp->ibp == NULL &&
1075 (sp->seg_bytes_left < fs->lfs_ibsize ||
1076 sp->sum_bytes_left < sizeof(int32_t))) {
1077 (void) lfs_writeseg(fs, sp);
1078 continue;
1079 }
1080
1081 /* Look for dirty Ifile blocks */
1082 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1083 if (!(bp->b_flags & B_GATHERED)) {
1084 redo = 1;
1085 break;
1086 }
1087 }
1088
1089 if (redo == 0)
1090 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1091 if (redo == 0)
1092 break;
1093
1094 if (sp->idp) {
1095 sp->idp->di_inumber = 0;
1096 sp->idp = NULL;
1097 }
1098 ++count;
1099 if (count > 2)
1100 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1101 lfs_writefile(fs, sp, fs->lfs_ivnode);
1102 }
1103
1104 /* Allocate a new inode block if necessary. */
1105 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1106 sp->ibp == NULL) {
1107 /* Allocate a new segment if necessary. */
1108 if (sp->seg_bytes_left < fs->lfs_ibsize ||
1109 sp->sum_bytes_left < sizeof(int32_t))
1110 (void) lfs_writeseg(fs, sp);
1111
1112 /* Get next inode block. */
1113 daddr = fs->lfs_offset;
1114 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
1115 sp->ibp = *sp->cbpp++ =
1116 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1117 LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
1118 gotblk++;
1119
1120 /* Zero out inode numbers */
1121 for (i = 0; i < LFS_INOPB(fs); ++i)
1122 ((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1123 0;
1124
1125 ++sp->start_bpp;
1126 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
1127 /* Set remaining space counters. */
1128 sp->seg_bytes_left -= fs->lfs_ibsize;
1129 sp->sum_bytes_left -= sizeof(int32_t);
1130 ndx = fs->lfs_sumsize / sizeof(int32_t) -
1131 sp->ninodes / LFS_INOPB(fs) - 1;
1132 ((int32_t *)(sp->segsum))[ndx] = daddr;
1133 }
1134
1135 /* Check VU_DIROP in case there is a new file with no data blocks */
1136 if (vp->v_uflag & VU_DIROP)
1137 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1138
1139 /* Update the inode times and copy the inode onto the inode page. */
1140 /* XXX kludge --- don't redirty the ifile just to put times on it */
1141 if (ip->i_number != LFS_IFILE_INUM)
1142 LFS_ITIMES(ip, NULL, NULL, NULL);
1143
1144 /*
1145 * If this is the Ifile, and we've already written the Ifile in this
1146 * partial segment, just overwrite it (it's not on disk yet) and
1147 * continue.
1148 *
1149 * XXX we know that the bp that we get the second time around has
1150 * already been gathered.
1151 */
1152 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1153 *(sp->idp) = *ip->i_din.ffs1_din;
1154 ip->i_lfs_osize = ip->i_size;
1155 return 0;
1156 }
1157
1158 bp = sp->ibp;
1159 cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
1160 *cdp = *ip->i_din.ffs1_din;
1161
1162 /*
1163 * This inode is on its way to disk; clear its VU_DIROP status when
1164 * the write is complete.
1165 */
1166 if (vp->v_uflag & VU_DIROP) {
1167 if (!(sp->seg_flags & SEGM_CLEAN))
1168 ip->i_flag |= IN_CDIROP;
1169 else {
1170 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1171 }
1172 }
1173
1174 /*
1175 * If cleaning, link counts and directory file sizes cannot change,
1176 * since those would be directory operations---even if the file
1177 * we are writing is marked VU_DIROP we should write the old values.
1178 * If we're not cleaning, of course, update the values so we get
1179 * current values the next time we clean.
1180 */
1181 if (sp->seg_flags & SEGM_CLEAN) {
1182 if (vp->v_uflag & VU_DIROP) {
1183 cdp->di_nlink = ip->i_lfs_odnlink;
1184 /* if (vp->v_type == VDIR) */
1185 cdp->di_size = ip->i_lfs_osize;
1186 }
1187 } else {
1188 ip->i_lfs_odnlink = cdp->di_nlink;
1189 ip->i_lfs_osize = ip->i_size;
1190 }
1191
1192
1193 /* We can finish the segment accounting for truncations now */
1194 lfs_finalize_ino_seguse(fs, ip);
1195
1196 /*
1197 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1198 * addresses to disk; possibly change the on-disk record of
1199 * the inode size, either by reverting to the previous size
1200 * (in the case of cleaning) or by verifying the inode's block
1201 * holdings (in the case of files being allocated as they are being
1202 * written).
1203 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1204 * XXX count on disk wrong by the same amount. We should be
1205 * XXX able to "borrow" from lfs_avail and return it after the
1206 * XXX Ifile is written. See also in lfs_writeseg.
1207 */
1208
1209 /* Check file size based on highest allocated block */
1210 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1211 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1212 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1213 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1214 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1215 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1216 }
1217 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1218 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1219 " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1220 ip->i_ffs1_blocks, fs->lfs_offset));
1221 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
1222 daddrp++) {
1223 if (*daddrp == UNWRITTEN) {
1224 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1225 *daddrp = 0;
1226 }
1227 }
1228 }
1229
1230 #ifdef DIAGNOSTIC
1231 /*
1232 * Check dinode held blocks against dinode size.
1233 * This should be identical to the check in lfs_vget().
1234 */
1235 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1236 i < ULFS_NDADDR; i++) {
1237 KASSERT(i >= 0);
1238 if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
1239 continue;
1240 if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
1241 (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
1242 continue;
1243 if (cdp->di_db[i] != 0) {
1244 # ifdef DEBUG
1245 lfs_dump_dinode(cdp);
1246 # endif
1247 panic("writing inconsistent inode");
1248 }
1249 }
1250 #endif /* DIAGNOSTIC */
1251
1252 if (ip->i_flag & IN_CLEANING)
1253 LFS_CLR_UINO(ip, IN_CLEANING);
1254 else {
1255 /* XXX IN_ALLMOD */
1256 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1257 IN_UPDATE | IN_MODIFY);
1258 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1259 LFS_CLR_UINO(ip, IN_MODIFIED);
1260 else {
1261 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1262 "blks=%d, eff=%d\n", ip->i_number,
1263 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1264 }
1265 }
1266
1267 if (ip->i_number == LFS_IFILE_INUM) {
1268 /* We know sp->idp == NULL */
1269 sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
1270 (sp->ninodes % LFS_INOPB(fs));
1271
1272 /* Not dirty any more */
1273 mutex_enter(&lfs_lock);
1274 fs->lfs_flags &= ~LFS_IFDIRTY;
1275 mutex_exit(&lfs_lock);
1276 }
1277
1278 if (gotblk) {
1279 mutex_enter(&bufcache_lock);
1280 LFS_LOCK_BUF(bp);
1281 brelsel(bp, 0);
1282 mutex_exit(&bufcache_lock);
1283 }
1284
1285 /* Increment inode count in segment summary block. */
1286 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1287
1288 /* If this page is full, set flag to allocate a new page. */
1289 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1290 sp->ibp = NULL;
1291
1292 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1293
1294 KASSERT(redo_ifile == 0);
1295 return (redo_ifile);
1296 }
1297
1298 int
1299 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1300 {
1301 struct lfs *fs;
1302 int vers;
1303 int j, blksinblk;
1304
1305 ASSERT_SEGLOCK(sp->fs);
1306 /*
1307 * If full, finish this segment. We may be doing I/O, so
1308 * release and reacquire the splbio().
1309 */
1310 #ifdef DIAGNOSTIC
1311 if (sp->vp == NULL)
1312 panic ("lfs_gatherblock: Null vp in segment");
1313 #endif
1314 fs = sp->fs;
1315 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1316 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1317 sp->seg_bytes_left < bp->b_bcount) {
1318 if (mptr)
1319 mutex_exit(mptr);
1320 lfs_updatemeta(sp);
1321
1322 vers = sp->fip->fi_version;
1323 (void) lfs_writeseg(fs, sp);
1324
1325 /* Add the current file to the segment summary. */
1326 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1327
1328 if (mptr)
1329 mutex_enter(mptr);
1330 return (1);
1331 }
1332
1333 if (bp->b_flags & B_GATHERED) {
1334 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1335 " lbn %" PRId64 "\n",
1336 sp->fip->fi_ino, bp->b_lblkno));
1337 return (0);
1338 }
1339
1340 /* Insert into the buffer list, update the FINFO block. */
1341 bp->b_flags |= B_GATHERED;
1342
1343 *sp->cbpp++ = bp;
1344 for (j = 0; j < blksinblk; j++) {
1345 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1346 /* This block's accounting moves from lfs_favail to lfs_avail */
1347 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1348 }
1349
1350 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1351 sp->seg_bytes_left -= bp->b_bcount;
1352 return (0);
1353 }
1354
1355 int
1356 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1357 int (*match)(struct lfs *, struct buf *))
1358 {
1359 struct buf *bp, *nbp;
1360 int count = 0;
1361
1362 ASSERT_SEGLOCK(fs);
1363 if (vp->v_type == VBLK)
1364 return 0;
1365 KASSERT(sp->vp == NULL);
1366 sp->vp = vp;
1367 mutex_enter(&bufcache_lock);
1368
1369 #ifndef LFS_NO_BACKBUF_HACK
1370 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1371 # define BUF_OFFSET \
1372 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1373 # define BACK_BUF(BP) \
1374 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1375 # define BEG_OF_LIST \
1376 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1377
1378 loop:
1379 /* Find last buffer. */
1380 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1381 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1382 bp = LIST_NEXT(bp, b_vnbufs))
1383 /* nothing */;
1384 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1385 nbp = BACK_BUF(bp);
1386 #else /* LFS_NO_BACKBUF_HACK */
1387 loop:
1388 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1389 nbp = LIST_NEXT(bp, b_vnbufs);
1390 #endif /* LFS_NO_BACKBUF_HACK */
1391 if ((bp->b_cflags & BC_BUSY) != 0 ||
1392 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1393 #ifdef DEBUG
1394 if (vp == fs->lfs_ivnode &&
1395 (bp->b_cflags & BC_BUSY) != 0 &&
1396 (bp->b_flags & B_GATHERED) == 0)
1397 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1398 PRId64 " busy (%x) at 0x%x",
1399 bp->b_lblkno, bp->b_flags,
1400 (unsigned)fs->lfs_offset);
1401 #endif
1402 continue;
1403 }
1404 #ifdef DIAGNOSTIC
1405 # ifdef LFS_USE_B_INVAL
1406 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1407 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1408 " is BC_INVAL\n", bp->b_lblkno));
1409 VOP_PRINT(bp->b_vp);
1410 }
1411 # endif /* LFS_USE_B_INVAL */
1412 if (!(bp->b_oflags & BO_DELWRI))
1413 panic("lfs_gather: bp not BO_DELWRI");
1414 if (!(bp->b_flags & B_LOCKED)) {
1415 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1416 " blk %" PRId64 " not B_LOCKED\n",
1417 bp->b_lblkno,
1418 LFS_DBTOFSB(fs, bp->b_blkno)));
1419 VOP_PRINT(bp->b_vp);
1420 panic("lfs_gather: bp not B_LOCKED");
1421 }
1422 #endif
1423 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1424 goto loop;
1425 }
1426 count++;
1427 }
1428 mutex_exit(&bufcache_lock);
1429 lfs_updatemeta(sp);
1430 KASSERT(sp->vp == vp);
1431 sp->vp = NULL;
1432 return count;
1433 }
1434
1435 #if DEBUG
1436 # define DEBUG_OOFF(n) do { \
1437 if (ooff == 0) { \
1438 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1439 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1440 ", was 0x0 (or %" PRId64 ")\n", \
1441 (n), ip->i_number, lbn, ndaddr, daddr)); \
1442 } \
1443 } while (0)
1444 #else
1445 # define DEBUG_OOFF(n)
1446 #endif
1447
1448 /*
1449 * Change the given block's address to ndaddr, finding its previous
1450 * location using ulfs_bmaparray().
1451 *
1452 * Account for this change in the segment table.
1453 *
1454 * called with sp == NULL by roll-forwarding code.
1455 */
1456 void
1457 lfs_update_single(struct lfs *fs, struct segment *sp,
1458 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1459 {
1460 SEGUSE *sup;
1461 struct buf *bp;
1462 struct indir a[ULFS_NIADDR + 2], *ap;
1463 struct inode *ip;
1464 daddr_t daddr, ooff;
1465 int num, error;
1466 int bb, osize, obb;
1467
1468 ASSERT_SEGLOCK(fs);
1469 KASSERT(sp == NULL || sp->vp == vp);
1470 ip = VTOI(vp);
1471
1472 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1473 if (error)
1474 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1475
1476 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1477 KASSERT(daddr <= LFS_MAX_DADDR);
1478 if (daddr > 0)
1479 daddr = LFS_DBTOFSB(fs, daddr);
1480
1481 bb = lfs_numfrags(fs, size);
1482 switch (num) {
1483 case 0:
1484 ooff = ip->i_ffs1_db[lbn];
1485 DEBUG_OOFF(0);
1486 if (ooff == UNWRITTEN)
1487 ip->i_ffs1_blocks += bb;
1488 else {
1489 /* possible fragment truncation or extension */
1490 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1491 ip->i_ffs1_blocks += (bb - obb);
1492 }
1493 ip->i_ffs1_db[lbn] = ndaddr;
1494 break;
1495 case 1:
1496 ooff = ip->i_ffs1_ib[a[0].in_off];
1497 DEBUG_OOFF(1);
1498 if (ooff == UNWRITTEN)
1499 ip->i_ffs1_blocks += bb;
1500 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1501 break;
1502 default:
1503 ap = &a[num - 1];
1504 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1505 B_MODIFY, &bp))
1506 panic("lfs_updatemeta: bread bno %" PRId64,
1507 ap->in_lbn);
1508
1509 /* XXX ondisk32 */
1510 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1511 DEBUG_OOFF(num);
1512 if (ooff == UNWRITTEN)
1513 ip->i_ffs1_blocks += bb;
1514 /* XXX ondisk32 */
1515 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1516 (void) VOP_BWRITE(bp->b_vp, bp);
1517 }
1518
1519 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1520
1521 /* Update hiblk when extending the file */
1522 if (lbn > ip->i_lfs_hiblk)
1523 ip->i_lfs_hiblk = lbn;
1524
1525 /*
1526 * Though we'd rather it couldn't, this *can* happen right now
1527 * if cleaning blocks and regular blocks coexist.
1528 */
1529 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1530
1531 /*
1532 * Update segment usage information, based on old size
1533 * and location.
1534 */
1535 if (daddr > 0) {
1536 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1537 #ifdef DIAGNOSTIC
1538 int ndupino;
1539
1540 if (sp && sp->seg_number == oldsn) {
1541 ndupino = sp->ndupino;
1542 } else {
1543 ndupino = 0;
1544 }
1545 #endif
1546 KASSERT(oldsn < fs->lfs_nseg);
1547 if (lbn >= 0 && lbn < ULFS_NDADDR)
1548 osize = ip->i_lfs_fragsize[lbn];
1549 else
1550 osize = fs->lfs_bsize;
1551 LFS_SEGENTRY(sup, fs, oldsn, bp);
1552 #ifdef DIAGNOSTIC
1553 if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
1554 < osize) {
1555 printf("lfs_updatemeta: negative bytes "
1556 "(segment %" PRIu32 " short by %" PRId64
1557 ")\n", lfs_dtosn(fs, daddr),
1558 (int64_t)osize -
1559 (sizeof (struct ulfs1_dinode) * ndupino +
1560 sup->su_nbytes));
1561 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1562 ", addr = 0x%" PRIx64 "\n",
1563 (unsigned long long)ip->i_number, lbn, daddr);
1564 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1565 panic("lfs_updatemeta: negative bytes");
1566 sup->su_nbytes = osize -
1567 sizeof (struct ulfs1_dinode) * ndupino;
1568 }
1569 #endif
1570 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1571 " db 0x%" PRIx64 "\n",
1572 lfs_dtosn(fs, daddr), osize,
1573 ip->i_number, lbn, daddr));
1574 sup->su_nbytes -= osize;
1575 if (!(bp->b_flags & B_GATHERED)) {
1576 mutex_enter(&lfs_lock);
1577 fs->lfs_flags |= LFS_IFDIRTY;
1578 mutex_exit(&lfs_lock);
1579 }
1580 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1581 }
1582 /*
1583 * Now that this block has a new address, and its old
1584 * segment no longer owns it, we can forget about its
1585 * old size.
1586 */
1587 if (lbn >= 0 && lbn < ULFS_NDADDR)
1588 ip->i_lfs_fragsize[lbn] = size;
1589 }
1590
1591 /*
1592 * Update the metadata that points to the blocks listed in the FINFO
1593 * array.
1594 */
1595 void
1596 lfs_updatemeta(struct segment *sp)
1597 {
1598 struct buf *sbp;
1599 struct lfs *fs;
1600 struct vnode *vp;
1601 daddr_t lbn;
1602 int i, nblocks, num;
1603 int bb;
1604 int bytesleft, size;
1605
1606 ASSERT_SEGLOCK(sp->fs);
1607 vp = sp->vp;
1608 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1609 KASSERT(nblocks >= 0);
1610 KASSERT(vp != NULL);
1611 if (nblocks == 0)
1612 return;
1613
1614 /*
1615 * This count may be high due to oversize blocks from lfs_gop_write.
1616 * Correct for this. (XXX we should be able to keep track of these.)
1617 */
1618 fs = sp->fs;
1619 for (i = 0; i < nblocks; i++) {
1620 if (sp->start_bpp[i] == NULL) {
1621 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1622 nblocks = i;
1623 break;
1624 }
1625 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1626 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1627 nblocks -= num - 1;
1628 }
1629
1630 KASSERT(vp->v_type == VREG ||
1631 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1632 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1633
1634 /*
1635 * Sort the blocks.
1636 *
1637 * We have to sort even if the blocks come from the
1638 * cleaner, because there might be other pending blocks on the
1639 * same inode...and if we don't sort, and there are fragments
1640 * present, blocks may be written in the wrong place.
1641 */
1642 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1643
1644 /*
1645 * Record the length of the last block in case it's a fragment.
1646 * If there are indirect blocks present, they sort last. An
1647 * indirect block will be lfs_bsize and its presence indicates
1648 * that you cannot have fragments.
1649 *
1650 * XXX This last is a lie. A cleaned fragment can coexist with
1651 * XXX a later indirect block. This will continue to be
1652 * XXX true until lfs_markv is fixed to do everything with
1653 * XXX fake blocks (including fake inodes and fake indirect blocks).
1654 */
1655 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1656 fs->lfs_bmask) + 1;
1657
1658 /*
1659 * Assign disk addresses, and update references to the logical
1660 * block and the segment usage information.
1661 */
1662 for (i = nblocks; i--; ++sp->start_bpp) {
1663 sbp = *sp->start_bpp;
1664 lbn = *sp->start_lbp;
1665 KASSERT(sbp->b_lblkno == lbn);
1666
1667 sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
1668
1669 /*
1670 * If we write a frag in the wrong place, the cleaner won't
1671 * be able to correctly identify its size later, and the
1672 * segment will be uncleanable. (Even worse, it will assume
1673 * that the indirect block that actually ends the list
1674 * is of a smaller size!)
1675 */
1676 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1677 panic("lfs_updatemeta: fragment is not last block");
1678
1679 /*
1680 * For each subblock in this possibly oversized block,
1681 * update its address on disk.
1682 */
1683 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1684 KASSERT(vp == sbp->b_vp);
1685 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1686 bytesleft -= fs->lfs_bsize) {
1687 size = MIN(bytesleft, fs->lfs_bsize);
1688 bb = lfs_numfrags(fs, size);
1689 lbn = *sp->start_lbp++;
1690 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1691 size);
1692 fs->lfs_offset += bb;
1693 }
1694
1695 }
1696
1697 /* This inode has been modified */
1698 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1699 }
1700
1701 /*
1702 * Move lfs_offset to a segment earlier than sn.
1703 */
1704 int
1705 lfs_rewind(struct lfs *fs, int newsn)
1706 {
1707 int sn, osn, isdirty;
1708 struct buf *bp;
1709 SEGUSE *sup;
1710
1711 ASSERT_SEGLOCK(fs);
1712
1713 osn = lfs_dtosn(fs, fs->lfs_offset);
1714 if (osn < newsn)
1715 return 0;
1716
1717 /* lfs_avail eats the remaining space in this segment */
1718 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1719
1720 /* Find a low-numbered segment */
1721 for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1722 LFS_SEGENTRY(sup, fs, sn, bp);
1723 isdirty = sup->su_flags & SEGUSE_DIRTY;
1724 brelse(bp, 0);
1725
1726 if (!isdirty)
1727 break;
1728 }
1729 if (sn == fs->lfs_nseg)
1730 panic("lfs_rewind: no clean segments");
1731 if (newsn >= 0 && sn >= newsn)
1732 return ENOENT;
1733 fs->lfs_nextseg = sn;
1734 lfs_newseg(fs);
1735 fs->lfs_offset = fs->lfs_curseg;
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Start a new partial segment.
1742 *
1743 * Return 1 when we entered to a new segment.
1744 * Otherwise, return 0.
1745 */
1746 int
1747 lfs_initseg(struct lfs *fs)
1748 {
1749 struct segment *sp = fs->lfs_sp;
1750 SEGSUM *ssp;
1751 struct buf *sbp; /* buffer for SEGSUM */
1752 int repeat = 0; /* return value */
1753
1754 ASSERT_SEGLOCK(fs);
1755 /* Advance to the next segment. */
1756 if (!LFS_PARTIAL_FITS(fs)) {
1757 SEGUSE *sup;
1758 struct buf *bp;
1759
1760 /* lfs_avail eats the remaining space */
1761 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1762 fs->lfs_curseg);
1763 /* Wake up any cleaning procs waiting on this file system. */
1764 lfs_wakeup_cleaner(fs);
1765 lfs_newseg(fs);
1766 repeat = 1;
1767 fs->lfs_offset = fs->lfs_curseg;
1768
1769 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1770 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
1771
1772 /*
1773 * If the segment contains a superblock, update the offset
1774 * and summary address to skip over it.
1775 */
1776 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1777 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1778 fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
1779 sp->seg_bytes_left -= LFS_SBPAD;
1780 }
1781 brelse(bp, 0);
1782 /* Segment zero could also contain the labelpad */
1783 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1784 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD)) {
1785 fs->lfs_offset +=
1786 lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1787 sp->seg_bytes_left -=
1788 LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_start);
1789 }
1790 } else {
1791 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
1792 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
1793 (fs->lfs_offset - fs->lfs_curseg));
1794 }
1795 fs->lfs_lastpseg = fs->lfs_offset;
1796
1797 /* Record first address of this partial segment */
1798 if (sp->seg_flags & SEGM_CLEAN) {
1799 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1800 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1801 /* "1" is the artificial inc in lfs_seglock */
1802 mutex_enter(&lfs_lock);
1803 while (fs->lfs_iocount > 1) {
1804 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1805 "lfs_initseg", 0, &lfs_lock);
1806 }
1807 mutex_exit(&lfs_lock);
1808 fs->lfs_cleanind = 0;
1809 }
1810 }
1811
1812 sp->fs = fs;
1813 sp->ibp = NULL;
1814 sp->idp = NULL;
1815 sp->ninodes = 0;
1816 sp->ndupino = 0;
1817
1818 sp->cbpp = sp->bpp;
1819
1820 /* Get a new buffer for SEGSUM */
1821 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1822 LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1823
1824 /* ... and enter it into the buffer list. */
1825 *sp->cbpp = sbp;
1826 sp->cbpp++;
1827 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
1828
1829 sp->start_bpp = sp->cbpp;
1830
1831 /* Set point to SEGSUM, initialize it. */
1832 ssp = sp->segsum = sbp->b_data;
1833 memset(ssp, 0, fs->lfs_sumsize);
1834 ssp->ss_next = fs->lfs_nextseg;
1835 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1836 ssp->ss_magic = SS_MAGIC;
1837
1838 /* Set pointer to first FINFO, initialize it. */
1839 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1840 sp->fip->fi_nblocks = 0;
1841 sp->start_lbp = &sp->fip->fi_blocks[0];
1842 sp->fip->fi_lastlength = 0;
1843
1844 sp->seg_bytes_left -= fs->lfs_sumsize;
1845 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1846
1847 return (repeat);
1848 }
1849
1850 /*
1851 * Remove SEGUSE_INVAL from all segments.
1852 */
1853 void
1854 lfs_unset_inval_all(struct lfs *fs)
1855 {
1856 SEGUSE *sup;
1857 struct buf *bp;
1858 int i;
1859
1860 for (i = 0; i < fs->lfs_nseg; i++) {
1861 LFS_SEGENTRY(sup, fs, i, bp);
1862 if (sup->su_flags & SEGUSE_INVAL) {
1863 sup->su_flags &= ~SEGUSE_INVAL;
1864 LFS_WRITESEGENTRY(sup, fs, i, bp);
1865 } else
1866 brelse(bp, 0);
1867 }
1868 }
1869
1870 /*
1871 * Return the next segment to write.
1872 */
1873 void
1874 lfs_newseg(struct lfs *fs)
1875 {
1876 CLEANERINFO *cip;
1877 SEGUSE *sup;
1878 struct buf *bp;
1879 int curseg, isdirty, sn, skip_inval;
1880
1881 ASSERT_SEGLOCK(fs);
1882
1883 /* Honor LFCNWRAPSTOP */
1884 mutex_enter(&lfs_lock);
1885 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1886 if (fs->lfs_wrappass) {
1887 log(LOG_NOTICE, "%s: wrappass=%d\n",
1888 fs->lfs_fsmnt, fs->lfs_wrappass);
1889 fs->lfs_wrappass = 0;
1890 break;
1891 }
1892 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1893 wakeup(&fs->lfs_nowrap);
1894 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1895 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1896 &lfs_lock);
1897 }
1898 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1899 mutex_exit(&lfs_lock);
1900
1901 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1902 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1903 lfs_dtosn(fs, fs->lfs_nextseg)));
1904 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1905 sup->su_nbytes = 0;
1906 sup->su_nsums = 0;
1907 sup->su_ninos = 0;
1908 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
1909
1910 LFS_CLEANERINFO(cip, fs, bp);
1911 --cip->clean;
1912 ++cip->dirty;
1913 fs->lfs_nclean = cip->clean;
1914 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1915
1916 fs->lfs_lastseg = fs->lfs_curseg;
1917 fs->lfs_curseg = fs->lfs_nextseg;
1918 skip_inval = 1;
1919 for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1920 sn = (sn + 1) % fs->lfs_nseg;
1921
1922 if (sn == curseg) {
1923 if (skip_inval)
1924 skip_inval = 0;
1925 else
1926 panic("lfs_nextseg: no clean segments");
1927 }
1928 LFS_SEGENTRY(sup, fs, sn, bp);
1929 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1930 /* Check SEGUSE_EMPTY as we go along */
1931 if (isdirty && sup->su_nbytes == 0 &&
1932 !(sup->su_flags & SEGUSE_EMPTY))
1933 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1934 else
1935 brelse(bp, 0);
1936
1937 if (!isdirty)
1938 break;
1939 }
1940 if (skip_inval == 0)
1941 lfs_unset_inval_all(fs);
1942
1943 ++fs->lfs_nactive;
1944 fs->lfs_nextseg = lfs_sntod(fs, sn);
1945 if (lfs_dostats) {
1946 ++lfs_stats.segsused;
1947 }
1948 }
1949
1950 static struct buf *
1951 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1952 int n)
1953 {
1954 struct lfs_cluster *cl;
1955 struct buf **bpp, *bp;
1956
1957 ASSERT_SEGLOCK(fs);
1958 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1959 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1960 memset(cl, 0, sizeof(*cl));
1961 cl->fs = fs;
1962 cl->bpp = bpp;
1963 cl->bufcount = 0;
1964 cl->bufsize = 0;
1965
1966 /* If this segment is being written synchronously, note that */
1967 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1968 cl->flags |= LFS_CL_SYNC;
1969 cl->seg = fs->lfs_sp;
1970 ++cl->seg->seg_iocount;
1971 }
1972
1973 /* Get an empty buffer header, or maybe one with something on it */
1974 bp = getiobuf(vp, true);
1975 bp->b_dev = NODEV;
1976 bp->b_blkno = bp->b_lblkno = addr;
1977 bp->b_iodone = lfs_cluster_callback;
1978 bp->b_private = cl;
1979
1980 return bp;
1981 }
1982
1983 int
1984 lfs_writeseg(struct lfs *fs, struct segment *sp)
1985 {
1986 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1987 SEGUSE *sup;
1988 SEGSUM *ssp;
1989 int i;
1990 int do_again, nblocks, byteoffset;
1991 size_t el_size;
1992 struct lfs_cluster *cl;
1993 u_short ninos;
1994 struct vnode *devvp;
1995 char *p = NULL;
1996 struct vnode *vp;
1997 int32_t *daddrp; /* XXX ondisk32 */
1998 int changed;
1999 u_int32_t sum;
2000 #ifdef DEBUG
2001 FINFO *fip;
2002 int findex;
2003 #endif
2004
2005 ASSERT_SEGLOCK(fs);
2006
2007 ssp = (SEGSUM *)sp->segsum;
2008
2009 /*
2010 * If there are no buffers other than the segment summary to write,
2011 * don't do anything. If we are the end of a dirop sequence, however,
2012 * write the empty segment summary anyway, to help out the
2013 * roll-forward agent.
2014 */
2015 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2016 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2017 return 0;
2018 }
2019
2020 /* Note if partial segment is being written by the cleaner */
2021 if (sp->seg_flags & SEGM_CLEAN)
2022 ssp->ss_flags |= SS_CLEAN;
2023
2024 /* Note if we are writing to reclaim */
2025 if (sp->seg_flags & SEGM_RECLAIM) {
2026 ssp->ss_flags |= SS_RECLAIM;
2027 ssp->ss_reclino = fs->lfs_reclino;
2028 }
2029
2030 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2031
2032 /* Update the segment usage information. */
2033 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2034
2035 /* Loop through all blocks, except the segment summary. */
2036 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2037 if ((*bpp)->b_vp != devvp) {
2038 sup->su_nbytes += (*bpp)->b_bcount;
2039 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2040 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2041 sp->seg_number, (*bpp)->b_bcount,
2042 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2043 (*bpp)->b_blkno));
2044 }
2045 }
2046
2047 #ifdef DEBUG
2048 /* Check for zero-length and zero-version FINFO entries. */
2049 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2050 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2051 KDASSERT(fip->fi_nblocks > 0);
2052 KDASSERT(fip->fi_version > 0);
2053 fip = (FINFO *)((char *)fip + FINFOSIZE +
2054 sizeof(int32_t) * fip->fi_nblocks);
2055 }
2056 #endif /* DEBUG */
2057
2058 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2059 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2060 sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
2061 ssp->ss_ninos));
2062 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
2063 /* sup->su_nbytes += fs->lfs_sumsize; */
2064 if (fs->lfs_version == 1)
2065 sup->su_olastmod = time_second;
2066 else
2067 sup->su_lastmod = time_second;
2068 sup->su_ninos += ninos;
2069 ++sup->su_nsums;
2070 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
2071
2072 do_again = !(bp->b_flags & B_GATHERED);
2073 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2074
2075 /*
2076 * Mark blocks B_BUSY, to prevent then from being changed between
2077 * the checksum computation and the actual write.
2078 *
2079 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2080 * there are any, replace them with copies that have UNASSIGNED
2081 * instead.
2082 */
2083 mutex_enter(&bufcache_lock);
2084 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2085 ++bpp;
2086 bp = *bpp;
2087 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2088 bp->b_cflags |= BC_BUSY;
2089 continue;
2090 }
2091
2092 while (bp->b_cflags & BC_BUSY) {
2093 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2094 " data summary corruption for ino %d, lbn %"
2095 PRId64 "\n",
2096 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2097 bp->b_cflags |= BC_WANTED;
2098 cv_wait(&bp->b_busy, &bufcache_lock);
2099 }
2100 bp->b_cflags |= BC_BUSY;
2101 mutex_exit(&bufcache_lock);
2102 unbusybp = NULL;
2103
2104 /*
2105 * Check and replace indirect block UNWRITTEN bogosity.
2106 * XXX See comment in lfs_writefile.
2107 */
2108 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2109 VTOI(bp->b_vp)->i_ffs1_blocks !=
2110 VTOI(bp->b_vp)->i_lfs_effnblks) {
2111 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2112 VTOI(bp->b_vp)->i_number,
2113 VTOI(bp->b_vp)->i_lfs_effnblks,
2114 VTOI(bp->b_vp)->i_ffs1_blocks));
2115 /* Make a copy we'll make changes to */
2116 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2117 bp->b_bcount, LFS_NB_IBLOCK);
2118 newbp->b_blkno = bp->b_blkno;
2119 memcpy(newbp->b_data, bp->b_data,
2120 newbp->b_bcount);
2121
2122 changed = 0;
2123 /* XXX ondisk32 */
2124 for (daddrp = (int32_t *)(newbp->b_data);
2125 daddrp < (int32_t *)((char *)newbp->b_data +
2126 newbp->b_bcount); daddrp++) {
2127 if (*daddrp == UNWRITTEN) {
2128 ++changed;
2129 *daddrp = 0;
2130 }
2131 }
2132 /*
2133 * Get rid of the old buffer. Don't mark it clean,
2134 * though, if it still has dirty data on it.
2135 */
2136 if (changed) {
2137 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2138 " bp = %p newbp = %p\n", changed, bp,
2139 newbp));
2140 *bpp = newbp;
2141 bp->b_flags &= ~B_GATHERED;
2142 bp->b_error = 0;
2143 if (bp->b_iodone != NULL) {
2144 DLOG((DLOG_SEG, "lfs_writeseg: "
2145 "indir bp should not be B_CALL\n"));
2146 biodone(bp);
2147 bp = NULL;
2148 } else {
2149 /* Still on free list, leave it there */
2150 unbusybp = bp;
2151 /*
2152 * We have to re-decrement lfs_avail
2153 * since this block is going to come
2154 * back around to us in the next
2155 * segment.
2156 */
2157 fs->lfs_avail -=
2158 lfs_btofsb(fs, bp->b_bcount);
2159 }
2160 } else {
2161 lfs_freebuf(fs, newbp);
2162 }
2163 }
2164 mutex_enter(&bufcache_lock);
2165 if (unbusybp != NULL) {
2166 unbusybp->b_cflags &= ~BC_BUSY;
2167 if (unbusybp->b_cflags & BC_WANTED)
2168 cv_broadcast(&bp->b_busy);
2169 }
2170 }
2171 mutex_exit(&bufcache_lock);
2172
2173 /*
2174 * Compute checksum across data and then across summary; the first
2175 * block (the summary block) is skipped. Set the create time here
2176 * so that it's guaranteed to be later than the inode mod times.
2177 */
2178 sum = 0;
2179 if (fs->lfs_version == 1)
2180 el_size = sizeof(u_long);
2181 else
2182 el_size = sizeof(u_int32_t);
2183 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2184 ++bpp;
2185 /* Loop through gop_write cluster blocks */
2186 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2187 byteoffset += fs->lfs_bsize) {
2188 #ifdef LFS_USE_B_INVAL
2189 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2190 (*bpp)->b_iodone != NULL) {
2191 if (copyin((void *)(*bpp)->b_saveaddr +
2192 byteoffset, dp, el_size)) {
2193 panic("lfs_writeseg: copyin failed [1]:"
2194 " ino %d blk %" PRId64,
2195 VTOI((*bpp)->b_vp)->i_number,
2196 (*bpp)->b_lblkno);
2197 }
2198 } else
2199 #endif /* LFS_USE_B_INVAL */
2200 {
2201 sum = lfs_cksum_part((char *)
2202 (*bpp)->b_data + byteoffset, el_size, sum);
2203 }
2204 }
2205 }
2206 if (fs->lfs_version == 1)
2207 ssp->ss_ocreate = time_second;
2208 else {
2209 ssp->ss_create = time_second;
2210 ssp->ss_serial = ++fs->lfs_serial;
2211 ssp->ss_ident = fs->lfs_ident;
2212 }
2213 ssp->ss_datasum = lfs_cksum_fold(sum);
2214 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2215 fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2216
2217 mutex_enter(&lfs_lock);
2218 fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2219 lfs_btofsb(fs, fs->lfs_sumsize));
2220 fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
2221 lfs_btofsb(fs, fs->lfs_sumsize));
2222 mutex_exit(&lfs_lock);
2223
2224 /*
2225 * When we simply write the blocks we lose a rotation for every block
2226 * written. To avoid this problem, we cluster the buffers into a
2227 * chunk and write the chunk. MAXPHYS is the largest size I/O
2228 * devices can handle, use that for the size of the chunks.
2229 *
2230 * Blocks that are already clusters (from GOP_WRITE), however, we
2231 * don't bother to copy into other clusters.
2232 */
2233
2234 #define CHUNKSIZE MAXPHYS
2235
2236 if (devvp == NULL)
2237 panic("devvp is NULL");
2238 for (bpp = sp->bpp, i = nblocks; i;) {
2239 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2240 cl = cbp->b_private;
2241
2242 cbp->b_flags |= B_ASYNC;
2243 cbp->b_cflags |= BC_BUSY;
2244 cbp->b_bcount = 0;
2245
2246 #if defined(DEBUG) && defined(DIAGNOSTIC)
2247 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2248 / sizeof(int32_t)) {
2249 panic("lfs_writeseg: real bpp overwrite");
2250 }
2251 if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
2252 panic("lfs_writeseg: theoretical bpp overwrite");
2253 }
2254 #endif
2255
2256 /*
2257 * Construct the cluster.
2258 */
2259 mutex_enter(&lfs_lock);
2260 ++fs->lfs_iocount;
2261 mutex_exit(&lfs_lock);
2262 while (i && cbp->b_bcount < CHUNKSIZE) {
2263 bp = *bpp;
2264
2265 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2266 break;
2267 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2268 break;
2269
2270 /* Clusters from GOP_WRITE are expedited */
2271 if (bp->b_bcount > fs->lfs_bsize) {
2272 if (cbp->b_bcount > 0)
2273 /* Put in its own buffer */
2274 break;
2275 else {
2276 cbp->b_data = bp->b_data;
2277 }
2278 } else if (cbp->b_bcount == 0) {
2279 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2280 LFS_NB_CLUSTER);
2281 cl->flags |= LFS_CL_MALLOC;
2282 }
2283 #ifdef DIAGNOSTIC
2284 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2285 btodb(bp->b_bcount - 1))) !=
2286 sp->seg_number) {
2287 printf("blk size %d daddr %" PRIx64
2288 " not in seg %d\n",
2289 bp->b_bcount, bp->b_blkno,
2290 sp->seg_number);
2291 panic("segment overwrite");
2292 }
2293 #endif
2294
2295 #ifdef LFS_USE_B_INVAL
2296 /*
2297 * Fake buffers from the cleaner are marked as B_INVAL.
2298 * We need to copy the data from user space rather than
2299 * from the buffer indicated.
2300 * XXX == what do I do on an error?
2301 */
2302 if ((bp->b_cflags & BC_INVAL) != 0 &&
2303 bp->b_iodone != NULL) {
2304 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2305 panic("lfs_writeseg: "
2306 "copyin failed [2]");
2307 } else
2308 #endif /* LFS_USE_B_INVAL */
2309 if (cl->flags & LFS_CL_MALLOC) {
2310 /* copy data into our cluster. */
2311 memcpy(p, bp->b_data, bp->b_bcount);
2312 p += bp->b_bcount;
2313 }
2314
2315 cbp->b_bcount += bp->b_bcount;
2316 cl->bufsize += bp->b_bcount;
2317
2318 bp->b_flags &= ~B_READ;
2319 bp->b_error = 0;
2320 cl->bpp[cl->bufcount++] = bp;
2321
2322 vp = bp->b_vp;
2323 mutex_enter(&bufcache_lock);
2324 mutex_enter(vp->v_interlock);
2325 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2326 reassignbuf(bp, vp);
2327 vp->v_numoutput++;
2328 mutex_exit(vp->v_interlock);
2329 mutex_exit(&bufcache_lock);
2330
2331 bpp++;
2332 i--;
2333 }
2334 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2335 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2336 else
2337 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2338 mutex_enter(devvp->v_interlock);
2339 devvp->v_numoutput++;
2340 mutex_exit(devvp->v_interlock);
2341 VOP_STRATEGY(devvp, cbp);
2342 curlwp->l_ru.ru_oublock++;
2343 }
2344
2345 if (lfs_dostats) {
2346 ++lfs_stats.psegwrites;
2347 lfs_stats.blocktot += nblocks - 1;
2348 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2349 ++lfs_stats.psyncwrites;
2350 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2351 ++lfs_stats.pcleanwrites;
2352 lfs_stats.cleanblocks += nblocks - 1;
2353 }
2354 }
2355
2356 return (lfs_initseg(fs) || do_again);
2357 }
2358
2359 void
2360 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2361 {
2362 struct buf *bp;
2363 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2364 int s;
2365
2366 ASSERT_MAYBE_SEGLOCK(fs);
2367 #ifdef DIAGNOSTIC
2368 KASSERT(fs->lfs_magic == LFS_MAGIC);
2369 #endif
2370 /*
2371 * If we can write one superblock while another is in
2372 * progress, we risk not having a complete checkpoint if we crash.
2373 * So, block here if a superblock write is in progress.
2374 */
2375 mutex_enter(&lfs_lock);
2376 s = splbio();
2377 while (fs->lfs_sbactive) {
2378 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2379 &lfs_lock);
2380 }
2381 fs->lfs_sbactive = daddr;
2382 splx(s);
2383 mutex_exit(&lfs_lock);
2384
2385 /* Set timestamp of this version of the superblock */
2386 if (fs->lfs_version == 1)
2387 fs->lfs_otstamp = time_second;
2388 fs->lfs_tstamp = time_second;
2389
2390 /* Checksum the superblock and copy it into a buffer. */
2391 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2392 bp = lfs_newbuf(fs, devvp,
2393 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2394 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2395 LFS_SBPAD - sizeof(struct dlfs));
2396 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2397
2398 bp->b_cflags |= BC_BUSY;
2399 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2400 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2401 bp->b_error = 0;
2402 bp->b_iodone = lfs_supercallback;
2403
2404 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2405 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2406 else
2407 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2408 curlwp->l_ru.ru_oublock++;
2409
2410 mutex_enter(devvp->v_interlock);
2411 devvp->v_numoutput++;
2412 mutex_exit(devvp->v_interlock);
2413
2414 mutex_enter(&lfs_lock);
2415 ++fs->lfs_iocount;
2416 mutex_exit(&lfs_lock);
2417 VOP_STRATEGY(devvp, bp);
2418 }
2419
2420 /*
2421 * Logical block number match routines used when traversing the dirty block
2422 * chain.
2423 */
2424 int
2425 lfs_match_fake(struct lfs *fs, struct buf *bp)
2426 {
2427
2428 ASSERT_SEGLOCK(fs);
2429 return LFS_IS_MALLOC_BUF(bp);
2430 }
2431
2432 #if 0
2433 int
2434 lfs_match_real(struct lfs *fs, struct buf *bp)
2435 {
2436
2437 ASSERT_SEGLOCK(fs);
2438 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2439 }
2440 #endif
2441
2442 int
2443 lfs_match_data(struct lfs *fs, struct buf *bp)
2444 {
2445
2446 ASSERT_SEGLOCK(fs);
2447 return (bp->b_lblkno >= 0);
2448 }
2449
2450 int
2451 lfs_match_indir(struct lfs *fs, struct buf *bp)
2452 {
2453 daddr_t lbn;
2454
2455 ASSERT_SEGLOCK(fs);
2456 lbn = bp->b_lblkno;
2457 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2458 }
2459
2460 int
2461 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2462 {
2463 daddr_t lbn;
2464
2465 ASSERT_SEGLOCK(fs);
2466 lbn = bp->b_lblkno;
2467 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2468 }
2469
2470 int
2471 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2472 {
2473 daddr_t lbn;
2474
2475 ASSERT_SEGLOCK(fs);
2476 lbn = bp->b_lblkno;
2477 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2478 }
2479
2480 static void
2481 lfs_free_aiodone(struct buf *bp)
2482 {
2483 struct lfs *fs;
2484
2485 KERNEL_LOCK(1, curlwp);
2486 fs = bp->b_private;
2487 ASSERT_NO_SEGLOCK(fs);
2488 lfs_freebuf(fs, bp);
2489 KERNEL_UNLOCK_LAST(curlwp);
2490 }
2491
2492 static void
2493 lfs_super_aiodone(struct buf *bp)
2494 {
2495 struct lfs *fs;
2496
2497 KERNEL_LOCK(1, curlwp);
2498 fs = bp->b_private;
2499 ASSERT_NO_SEGLOCK(fs);
2500 mutex_enter(&lfs_lock);
2501 fs->lfs_sbactive = 0;
2502 if (--fs->lfs_iocount <= 1)
2503 wakeup(&fs->lfs_iocount);
2504 wakeup(&fs->lfs_sbactive);
2505 mutex_exit(&lfs_lock);
2506 lfs_freebuf(fs, bp);
2507 KERNEL_UNLOCK_LAST(curlwp);
2508 }
2509
2510 static void
2511 lfs_cluster_aiodone(struct buf *bp)
2512 {
2513 struct lfs_cluster *cl;
2514 struct lfs *fs;
2515 struct buf *tbp, *fbp;
2516 struct vnode *vp, *devvp, *ovp;
2517 struct inode *ip;
2518 int error;
2519
2520 KERNEL_LOCK(1, curlwp);
2521
2522 error = bp->b_error;
2523 cl = bp->b_private;
2524 fs = cl->fs;
2525 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2526 ASSERT_NO_SEGLOCK(fs);
2527
2528 /* Put the pages back, and release the buffer */
2529 while (cl->bufcount--) {
2530 tbp = cl->bpp[cl->bufcount];
2531 KASSERT(tbp->b_cflags & BC_BUSY);
2532 if (error) {
2533 tbp->b_error = error;
2534 }
2535
2536 /*
2537 * We're done with tbp. If it has not been re-dirtied since
2538 * the cluster was written, free it. Otherwise, keep it on
2539 * the locked list to be written again.
2540 */
2541 vp = tbp->b_vp;
2542
2543 tbp->b_flags &= ~B_GATHERED;
2544
2545 LFS_BCLEAN_LOG(fs, tbp);
2546
2547 mutex_enter(&bufcache_lock);
2548 if (tbp->b_iodone == NULL) {
2549 KASSERT(tbp->b_flags & B_LOCKED);
2550 bremfree(tbp);
2551 if (vp) {
2552 mutex_enter(vp->v_interlock);
2553 reassignbuf(tbp, vp);
2554 mutex_exit(vp->v_interlock);
2555 }
2556 tbp->b_flags |= B_ASYNC; /* for biodone */
2557 }
2558
2559 if (((tbp->b_flags | tbp->b_oflags) &
2560 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2561 LFS_UNLOCK_BUF(tbp);
2562
2563 if (tbp->b_oflags & BO_DONE) {
2564 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2565 cl->bufcount, (long)tbp->b_flags));
2566 }
2567
2568 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2569 /*
2570 * A buffer from the page daemon.
2571 * We use the same iodone as it does,
2572 * so we must manually disassociate its
2573 * buffers from the vp.
2574 */
2575 if ((ovp = tbp->b_vp) != NULL) {
2576 /* This is just silly */
2577 mutex_enter(ovp->v_interlock);
2578 brelvp(tbp);
2579 mutex_exit(ovp->v_interlock);
2580 tbp->b_vp = vp;
2581 tbp->b_objlock = vp->v_interlock;
2582 }
2583 /* Put it back the way it was */
2584 tbp->b_flags |= B_ASYNC;
2585 /* Master buffers have BC_AGE */
2586 if (tbp->b_private == tbp)
2587 tbp->b_cflags |= BC_AGE;
2588 }
2589 mutex_exit(&bufcache_lock);
2590
2591 biodone(tbp);
2592
2593 /*
2594 * If this is the last block for this vnode, but
2595 * there are other blocks on its dirty list,
2596 * set IN_MODIFIED/IN_CLEANING depending on what
2597 * sort of block. Only do this for our mount point,
2598 * not for, e.g., inode blocks that are attached to
2599 * the devvp.
2600 * XXX KS - Shouldn't we set *both* if both types
2601 * of blocks are present (traverse the dirty list?)
2602 */
2603 mutex_enter(vp->v_interlock);
2604 mutex_enter(&lfs_lock);
2605 if (vp != devvp && vp->v_numoutput == 0 &&
2606 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2607 ip = VTOI(vp);
2608 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2609 ip->i_number));
2610 if (LFS_IS_MALLOC_BUF(fbp))
2611 LFS_SET_UINO(ip, IN_CLEANING);
2612 else
2613 LFS_SET_UINO(ip, IN_MODIFIED);
2614 }
2615 cv_broadcast(&vp->v_cv);
2616 mutex_exit(&lfs_lock);
2617 mutex_exit(vp->v_interlock);
2618 }
2619
2620 /* Fix up the cluster buffer, and release it */
2621 if (cl->flags & LFS_CL_MALLOC)
2622 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2623 putiobuf(bp);
2624
2625 /* Note i/o done */
2626 if (cl->flags & LFS_CL_SYNC) {
2627 if (--cl->seg->seg_iocount == 0)
2628 wakeup(&cl->seg->seg_iocount);
2629 }
2630 mutex_enter(&lfs_lock);
2631 #ifdef DIAGNOSTIC
2632 if (fs->lfs_iocount == 0)
2633 panic("lfs_cluster_aiodone: zero iocount");
2634 #endif
2635 if (--fs->lfs_iocount <= 1)
2636 wakeup(&fs->lfs_iocount);
2637 mutex_exit(&lfs_lock);
2638
2639 KERNEL_UNLOCK_LAST(curlwp);
2640
2641 pool_put(&fs->lfs_bpppool, cl->bpp);
2642 cl->bpp = NULL;
2643 pool_put(&fs->lfs_clpool, cl);
2644 }
2645
2646 static void
2647 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2648 {
2649 /* reset b_iodone for when this is a single-buf i/o. */
2650 bp->b_iodone = aiodone;
2651
2652 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2653 }
2654
2655 static void
2656 lfs_cluster_callback(struct buf *bp)
2657 {
2658
2659 lfs_generic_callback(bp, lfs_cluster_aiodone);
2660 }
2661
2662 void
2663 lfs_supercallback(struct buf *bp)
2664 {
2665
2666 lfs_generic_callback(bp, lfs_super_aiodone);
2667 }
2668
2669 /*
2670 * The only buffers that are going to hit these functions are the
2671 * segment write blocks, or the segment summaries, or the superblocks.
2672 *
2673 * All of the above are created by lfs_newbuf, and so do not need to be
2674 * released via brelse.
2675 */
2676 void
2677 lfs_callback(struct buf *bp)
2678 {
2679
2680 lfs_generic_callback(bp, lfs_free_aiodone);
2681 }
2682
2683 /*
2684 * Shellsort (diminishing increment sort) from Data Structures and
2685 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2686 * see also Knuth Vol. 3, page 84. The increments are selected from
2687 * formula (8), page 95. Roughly O(N^3/2).
2688 */
2689 /*
2690 * This is our own private copy of shellsort because we want to sort
2691 * two parallel arrays (the array of buffer pointers and the array of
2692 * logical block numbers) simultaneously. Note that we cast the array
2693 * of logical block numbers to a unsigned in this routine so that the
2694 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2695 */
2696
2697 void
2698 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2699 {
2700 static int __rsshell_increments[] = { 4, 1, 0 };
2701 int incr, *incrp, t1, t2;
2702 struct buf *bp_temp;
2703
2704 #ifdef DEBUG
2705 incr = 0;
2706 for (t1 = 0; t1 < nmemb; t1++) {
2707 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2708 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2709 /* dump before panic */
2710 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2711 nmemb, size);
2712 incr = 0;
2713 for (t1 = 0; t1 < nmemb; t1++) {
2714 const struct buf *bp = bp_array[t1];
2715
2716 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2717 PRIu64 "\n", t1,
2718 (uint64_t)bp->b_bcount,
2719 (uint64_t)bp->b_lblkno);
2720 printf("lbns:");
2721 for (t2 = 0; t2 * size < bp->b_bcount;
2722 t2++) {
2723 printf(" %" PRId32,
2724 lb_array[incr++]);
2725 }
2726 printf("\n");
2727 }
2728 panic("lfs_shellsort: inconsistent input");
2729 }
2730 }
2731 }
2732 #endif
2733
2734 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2735 for (t1 = incr; t1 < nmemb; ++t1)
2736 for (t2 = t1 - incr; t2 >= 0;)
2737 if ((u_int32_t)bp_array[t2]->b_lblkno >
2738 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2739 bp_temp = bp_array[t2];
2740 bp_array[t2] = bp_array[t2 + incr];
2741 bp_array[t2 + incr] = bp_temp;
2742 t2 -= incr;
2743 } else
2744 break;
2745
2746 /* Reform the list of logical blocks */
2747 incr = 0;
2748 for (t1 = 0; t1 < nmemb; t1++) {
2749 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2750 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2751 }
2752 }
2753 }
2754
2755 /*
2756 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2757 * however, we must press on. Just fake success in that case.
2758 */
2759 int
2760 lfs_vref(struct vnode *vp)
2761 {
2762 struct lfs *fs;
2763
2764 KASSERT(mutex_owned(vp->v_interlock));
2765
2766 fs = VTOI(vp)->i_lfs;
2767
2768 ASSERT_MAYBE_SEGLOCK(fs);
2769
2770 /*
2771 * If we return 1 here during a flush, we risk vinvalbuf() not
2772 * being able to flush all of the pages from this vnode, which
2773 * will cause it to panic. So, return 0 if a flush is in progress.
2774 */
2775 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2776 ++fs->lfs_flushvp_fakevref;
2777 mutex_exit(vp->v_interlock);
2778 return 0;
2779 }
2780
2781 return vget(vp, LK_NOWAIT);
2782 }
2783
2784 /*
2785 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2786 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2787 */
2788 void
2789 lfs_vunref(struct vnode *vp)
2790 {
2791 struct lfs *fs;
2792
2793 fs = VTOI(vp)->i_lfs;
2794 ASSERT_MAYBE_SEGLOCK(fs);
2795
2796 /*
2797 * Analogous to lfs_vref, if the node is flushing, fake it.
2798 */
2799 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2800 --fs->lfs_flushvp_fakevref;
2801 return;
2802 }
2803
2804 /* does not call inactive */
2805 mutex_enter(vp->v_interlock);
2806 vrelel(vp, 0);
2807 }
2808
2809 /*
2810 * We use this when we have vnodes that were loaded in solely for cleaning.
2811 * There is no reason to believe that these vnodes will be referenced again
2812 * soon, since the cleaning process is unrelated to normal filesystem
2813 * activity. Putting cleaned vnodes at the tail of the list has the effect
2814 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2815 * cleaning at the head of the list, instead.
2816 */
2817 void
2818 lfs_vunref_head(struct vnode *vp)
2819 {
2820
2821 ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2822
2823 /* does not call inactive, inserts non-held vnode at head of freelist */
2824 mutex_enter(vp->v_interlock);
2825 vrelel(vp, 0);
2826 }
2827
2828
2829 /*
2830 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2831 * point at uninitialized space.
2832 */
2833 void
2834 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2835 {
2836 struct segment *sp = fs->lfs_sp;
2837
2838 KASSERT(vers > 0);
2839
2840 if (sp->seg_bytes_left < fs->lfs_bsize ||
2841 sp->sum_bytes_left < sizeof(struct finfo))
2842 (void) lfs_writeseg(fs, fs->lfs_sp);
2843
2844 sp->sum_bytes_left -= FINFOSIZE;
2845 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2846 sp->fip->fi_nblocks = 0;
2847 sp->fip->fi_ino = ino;
2848 sp->fip->fi_version = vers;
2849 }
2850
2851 /*
2852 * Release the FINFO entry, either clearing out an unused entry or
2853 * advancing us to the next available entry.
2854 */
2855 void
2856 lfs_release_finfo(struct lfs *fs)
2857 {
2858 struct segment *sp = fs->lfs_sp;
2859
2860 if (sp->fip->fi_nblocks != 0) {
2861 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2862 sizeof(int32_t) * sp->fip->fi_nblocks);
2863 sp->start_lbp = &sp->fip->fi_blocks[0];
2864 } else {
2865 sp->sum_bytes_left += FINFOSIZE;
2866 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2867 }
2868 }
2869