Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.239
      1 /*	$NetBSD: lfs_segment.c,v 1.239 2015/05/31 15:44:31 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1991, 1993
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.239 2015/05/31 15:44:31 hannken Exp $");
     64 
     65 #define _VFS_VNODE_PRIVATE	/* XXX: check for VI_MARKER, this has to go */
     66 
     67 #ifdef DEBUG
     68 # define vndebug(vp, str) do {						\
     69 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
     70 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
     71 		     VTOI(vp)->i_number, (str), op));			\
     72 } while(0)
     73 #else
     74 # define vndebug(vp, str)
     75 #endif
     76 #define ivndebug(vp, str) \
     77 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
     78 
     79 #if defined(_KERNEL_OPT)
     80 #include "opt_ddb.h"
     81 #endif
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/namei.h>
     86 #include <sys/kernel.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/file.h>
     89 #include <sys/stat.h>
     90 #include <sys/buf.h>
     91 #include <sys/proc.h>
     92 #include <sys/vnode.h>
     93 #include <sys/mount.h>
     94 #include <sys/kauth.h>
     95 #include <sys/syslog.h>
     96 
     97 #include <miscfs/specfs/specdev.h>
     98 #include <miscfs/fifofs/fifo.h>
     99 
    100 #include <ufs/lfs/ulfs_inode.h>
    101 #include <ufs/lfs/ulfsmount.h>
    102 #include <ufs/lfs/ulfs_extern.h>
    103 
    104 #include <ufs/lfs/lfs.h>
    105 #include <ufs/lfs/lfs_kernel.h>
    106 #include <ufs/lfs/lfs_extern.h>
    107 
    108 #include <uvm/uvm.h>
    109 #include <uvm/uvm_extern.h>
    110 
    111 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
    112 
    113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    114 static void lfs_free_aiodone(struct buf *);
    115 static void lfs_super_aiodone(struct buf *);
    116 static void lfs_cluster_aiodone(struct buf *);
    117 static void lfs_cluster_callback(struct buf *);
    118 
    119 /*
    120  * Determine if it's OK to start a partial in this segment, or if we need
    121  * to go on to a new segment.
    122  */
    123 #define	LFS_PARTIAL_FITS(fs) \
    124 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    125 	(fs)->lfs_frag)
    126 
    127 /*
    128  * Figure out whether we should do a checkpoint write or go ahead with
    129  * an ordinary write.
    130  */
    131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
    132         ((flags & SEGM_CLEAN) == 0 &&					\
    133 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
    134 	    (flags & SEGM_CKP) ||					\
    135 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
    136 
    137 int	 lfs_match_fake(struct lfs *, struct buf *);
    138 void	 lfs_newseg(struct lfs *);
    139 /* XXX ondisk32 */
    140 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
    141 void	 lfs_supercallback(struct buf *);
    142 void	 lfs_updatemeta(struct segment *);
    143 void	 lfs_writesuper(struct lfs *, daddr_t);
    144 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    145 	    struct segment *sp, int dirops);
    146 
    147 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    148 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
    149 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    150 int	lfs_dirvcount = 0;		/* # active dirops */
    151 
    152 /* Statistics Counters */
    153 int lfs_dostats = 1;
    154 struct lfs_stats lfs_stats;
    155 
    156 /* op values to lfs_writevnodes */
    157 #define	VN_REG		0
    158 #define	VN_DIROP	1
    159 #define	VN_EMPTY	2
    160 #define VN_CLEAN	3
    161 
    162 /*
    163  * XXX KS - Set modification time on the Ifile, so the cleaner can
    164  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    165  * since we don't really need this to be flushed to disk (and in any
    166  * case that wouldn't happen to the Ifile until we checkpoint).
    167  */
    168 void
    169 lfs_imtime(struct lfs *fs)
    170 {
    171 	struct timespec ts;
    172 	struct inode *ip;
    173 
    174 	ASSERT_MAYBE_SEGLOCK(fs);
    175 	vfs_timestamp(&ts);
    176 	ip = VTOI(fs->lfs_ivnode);
    177 	ip->i_ffs1_mtime = ts.tv_sec;
    178 	ip->i_ffs1_mtimensec = ts.tv_nsec;
    179 }
    180 
    181 /*
    182  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    183  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    184  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    185  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    186  */
    187 
    188 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    189 
    190 int
    191 lfs_vflush(struct vnode *vp)
    192 {
    193 	struct inode *ip;
    194 	struct lfs *fs;
    195 	struct segment *sp;
    196 	struct buf *bp, *nbp, *tbp, *tnbp;
    197 	int error;
    198 	int flushed;
    199 	int relock;
    200 
    201 	ip = VTOI(vp);
    202 	fs = VFSTOULFS(vp->v_mount)->um_lfs;
    203 	relock = 0;
    204 
    205     top:
    206 	KASSERT(mutex_owned(vp->v_interlock) == false);
    207 	KASSERT(mutex_owned(&lfs_lock) == false);
    208 	KASSERT(mutex_owned(&bufcache_lock) == false);
    209 	ASSERT_NO_SEGLOCK(fs);
    210 	if (ip->i_flag & IN_CLEANING) {
    211 		ivndebug(vp,"vflush/in_cleaning");
    212 		mutex_enter(&lfs_lock);
    213 		LFS_CLR_UINO(ip, IN_CLEANING);
    214 		LFS_SET_UINO(ip, IN_MODIFIED);
    215 		mutex_exit(&lfs_lock);
    216 
    217 		/*
    218 		 * Toss any cleaning buffers that have real counterparts
    219 		 * to avoid losing new data.
    220 		 */
    221 		mutex_enter(vp->v_interlock);
    222 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    223 			nbp = LIST_NEXT(bp, b_vnbufs);
    224 			if (!LFS_IS_MALLOC_BUF(bp))
    225 				continue;
    226 			/*
    227 			 * Look for pages matching the range covered
    228 			 * by cleaning blocks.  It's okay if more dirty
    229 			 * pages appear, so long as none disappear out
    230 			 * from under us.
    231 			 */
    232 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
    233 			    vp != fs->lfs_ivnode) {
    234 				struct vm_page *pg;
    235 				voff_t off;
    236 
    237 				for (off = lfs_lblktosize(fs, bp->b_lblkno);
    238 				     off < lfs_lblktosize(fs, bp->b_lblkno + 1);
    239 				     off += PAGE_SIZE) {
    240 					pg = uvm_pagelookup(&vp->v_uobj, off);
    241 					if (pg == NULL)
    242 						continue;
    243 					if ((pg->flags & PG_CLEAN) == 0 ||
    244 					    pmap_is_modified(pg)) {
    245 						fs->lfs_avail += lfs_btofsb(fs,
    246 							bp->b_bcount);
    247 						wakeup(&fs->lfs_avail);
    248 						mutex_exit(vp->v_interlock);
    249 						lfs_freebuf(fs, bp);
    250 						mutex_enter(vp->v_interlock);
    251 						bp = NULL;
    252 						break;
    253 					}
    254 				}
    255 			}
    256 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    257 			    tbp = tnbp)
    258 			{
    259 				tnbp = LIST_NEXT(tbp, b_vnbufs);
    260 				if (tbp->b_vp == bp->b_vp
    261 				   && tbp->b_lblkno == bp->b_lblkno
    262 				   && tbp != bp)
    263 				{
    264 					fs->lfs_avail += lfs_btofsb(fs,
    265 						bp->b_bcount);
    266 					wakeup(&fs->lfs_avail);
    267 					mutex_exit(vp->v_interlock);
    268 					lfs_freebuf(fs, bp);
    269 					mutex_enter(vp->v_interlock);
    270 					bp = NULL;
    271 					break;
    272 				}
    273 			}
    274 		}
    275 	} else {
    276 		mutex_enter(vp->v_interlock);
    277 	}
    278 
    279 	/* If the node is being written, wait until that is done */
    280 	while (WRITEINPROG(vp)) {
    281 		ivndebug(vp,"vflush/writeinprog");
    282 		cv_wait(&vp->v_cv, vp->v_interlock);
    283 	}
    284 	error = vdead_check(vp, VDEAD_NOWAIT);
    285 	mutex_exit(vp->v_interlock);
    286 
    287 	/* Protect against deadlock in vinvalbuf() */
    288 	lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
    289 	if (error != 0) {
    290 		fs->lfs_reclino = ip->i_number;
    291 	}
    292 
    293 	/* If we're supposed to flush a freed inode, just toss it */
    294 	if (ip->i_lfs_iflags & LFSI_DELETED) {
    295 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
    296 		      ip->i_number));
    297 		/* Drain v_numoutput */
    298 		mutex_enter(vp->v_interlock);
    299 		while (vp->v_numoutput > 0) {
    300 			cv_wait(&vp->v_cv, vp->v_interlock);
    301 		}
    302 		KASSERT(vp->v_numoutput == 0);
    303 		mutex_exit(vp->v_interlock);
    304 
    305 		mutex_enter(&bufcache_lock);
    306 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    307 			nbp = LIST_NEXT(bp, b_vnbufs);
    308 
    309 			KASSERT((bp->b_flags & B_GATHERED) == 0);
    310 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
    311 				fs->lfs_avail += lfs_btofsb(fs, bp->b_bcount);
    312 				wakeup(&fs->lfs_avail);
    313 			}
    314 			/* Copied from lfs_writeseg */
    315 			if (bp->b_iodone != NULL) {
    316 				mutex_exit(&bufcache_lock);
    317 				biodone(bp);
    318 				mutex_enter(&bufcache_lock);
    319 			} else {
    320 				bremfree(bp);
    321 				LFS_UNLOCK_BUF(bp);
    322 				mutex_enter(vp->v_interlock);
    323 				bp->b_flags &= ~(B_READ | B_GATHERED);
    324 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
    325 				bp->b_error = 0;
    326 				reassignbuf(bp, vp);
    327 				mutex_exit(vp->v_interlock);
    328 				brelse(bp, 0);
    329 			}
    330 		}
    331 		mutex_exit(&bufcache_lock);
    332 		LFS_CLR_UINO(ip, IN_CLEANING);
    333 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    334 		ip->i_flag &= ~IN_ALLMOD;
    335 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
    336 		      ip->i_number));
    337 		lfs_segunlock(fs);
    338 
    339 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    340 
    341 		return 0;
    342 	}
    343 
    344 	fs->lfs_flushvp = vp;
    345 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
    346 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    347 		fs->lfs_flushvp = NULL;
    348 		KASSERT(fs->lfs_flushvp_fakevref == 0);
    349 		lfs_segunlock(fs);
    350 
    351 		/* Make sure that any pending buffers get written */
    352 		mutex_enter(vp->v_interlock);
    353 		while (vp->v_numoutput > 0) {
    354 			cv_wait(&vp->v_cv, vp->v_interlock);
    355 		}
    356 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    357 		KASSERT(vp->v_numoutput == 0);
    358 		mutex_exit(vp->v_interlock);
    359 
    360 		return error;
    361 	}
    362 	sp = fs->lfs_sp;
    363 
    364 	flushed = 0;
    365 	if (VPISEMPTY(vp)) {
    366 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    367 		++flushed;
    368 	} else if ((ip->i_flag & IN_CLEANING) &&
    369 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    370 		ivndebug(vp,"vflush/clean");
    371 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    372 		++flushed;
    373 	} else if (lfs_dostats) {
    374 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
    375 			++lfs_stats.vflush_invoked;
    376 		ivndebug(vp,"vflush");
    377 	}
    378 
    379 #ifdef DIAGNOSTIC
    380 	if (vp->v_uflag & VU_DIROP) {
    381 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
    382 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
    383 	}
    384 #endif
    385 
    386 	do {
    387 #ifdef DEBUG
    388 		int loopcount = 0;
    389 #endif
    390 		do {
    391 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    392 				relock = lfs_writefile(fs, sp, vp);
    393 				if (relock && vp != fs->lfs_ivnode) {
    394 					/*
    395 					 * Might have to wait for the
    396 					 * cleaner to run; but we're
    397 					 * still not done with this vnode.
    398 					 * XXX we can do better than this.
    399 					 */
    400 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
    401 					lfs_writeinode(fs, sp, ip);
    402 					mutex_enter(&lfs_lock);
    403 					LFS_SET_UINO(ip, IN_MODIFIED);
    404 					mutex_exit(&lfs_lock);
    405 					lfs_writeseg(fs, sp);
    406 					lfs_segunlock(fs);
    407 					lfs_segunlock_relock(fs);
    408 					goto top;
    409 				}
    410 			}
    411 			/*
    412 			 * If we begin a new segment in the middle of writing
    413 			 * the Ifile, it creates an inconsistent checkpoint,
    414 			 * since the Ifile information for the new segment
    415 			 * is not up-to-date.  Take care of this here by
    416 			 * sending the Ifile through again in case there
    417 			 * are newly dirtied blocks.  But wait, there's more!
    418 			 * This second Ifile write could *also* cross a segment
    419 			 * boundary, if the first one was large.  The second
    420 			 * one is guaranteed to be no more than 8 blocks,
    421 			 * though (two segment blocks and supporting indirects)
    422 			 * so the third write *will not* cross the boundary.
    423 			 */
    424 			if (vp == fs->lfs_ivnode) {
    425 				lfs_writefile(fs, sp, vp);
    426 				lfs_writefile(fs, sp, vp);
    427 			}
    428 #ifdef DEBUG
    429 			if (++loopcount > 2)
    430 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
    431 #endif
    432 		} while (lfs_writeinode(fs, sp, ip));
    433 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    434 
    435 	if (lfs_dostats) {
    436 		++lfs_stats.nwrites;
    437 		if (sp->seg_flags & SEGM_SYNC)
    438 			++lfs_stats.nsync_writes;
    439 		if (sp->seg_flags & SEGM_CKP)
    440 			++lfs_stats.ncheckpoints;
    441 	}
    442 	/*
    443 	 * If we were called from somewhere that has already held the seglock
    444 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    445 	 * the write to complete because we are still locked.
    446 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    447 	 * we must explicitly wait, if that is the case.
    448 	 *
    449 	 * We compare the iocount against 1, not 0, because it is
    450 	 * artificially incremented by lfs_seglock().
    451 	 */
    452 	mutex_enter(&lfs_lock);
    453 	if (fs->lfs_seglock > 1) {
    454 		while (fs->lfs_iocount > 1)
    455 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
    456 				     "lfs_vflush", 0, &lfs_lock);
    457 	}
    458 	mutex_exit(&lfs_lock);
    459 
    460 	lfs_segunlock(fs);
    461 
    462 	/* Wait for these buffers to be recovered by aiodoned */
    463 	mutex_enter(vp->v_interlock);
    464 	while (vp->v_numoutput > 0) {
    465 		cv_wait(&vp->v_cv, vp->v_interlock);
    466 	}
    467 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
    468 	KASSERT(vp->v_numoutput == 0);
    469 	mutex_exit(vp->v_interlock);
    470 
    471 	fs->lfs_flushvp = NULL;
    472 	KASSERT(fs->lfs_flushvp_fakevref == 0);
    473 
    474 	return (0);
    475 }
    476 
    477 int
    478 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    479 {
    480 	struct inode *ip;
    481 	struct vnode *vp;
    482 	int inodes_written = 0, only_cleaning;
    483 	int error = 0;
    484 
    485 	ASSERT_SEGLOCK(fs);
    486  loop:
    487 	/* start at last (newest) vnode. */
    488 	mutex_enter(&mntvnode_lock);
    489 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
    490 		/*
    491 		 * If the vnode that we are about to sync is no longer
    492 		 * associated with this mount point, start over.
    493 		 */
    494 		if (vp->v_mount != mp) {
    495 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
    496 			/*
    497 			 * After this, pages might be busy
    498 			 * due to our own previous putpages.
    499 			 * Start actual segment write here to avoid deadlock.
    500 			 * If we were just writing one segment and we've done
    501 			 * that, break out.
    502 			 */
    503 			mutex_exit(&mntvnode_lock);
    504 			if (lfs_writeseg(fs, sp) &&
    505 			    (sp->seg_flags & SEGM_SINGLE) &&
    506 			    fs->lfs_curseg != fs->lfs_startseg) {
    507 				DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
    508 				break;
    509 			}
    510 			goto loop;
    511 		}
    512 
    513 		mutex_enter(vp->v_interlock);
    514 		if (vp->v_type == VNON || (vp->v_iflag & VI_MARKER) ||
    515 		    vdead_check(vp, VDEAD_NOWAIT) != 0) {
    516 			mutex_exit(vp->v_interlock);
    517 			continue;
    518 		}
    519 
    520 		ip = VTOI(vp);
    521 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
    522 		    (op != VN_DIROP && op != VN_CLEAN &&
    523 		    (vp->v_uflag & VU_DIROP))) {
    524 			mutex_exit(vp->v_interlock);
    525 			vndebug(vp,"dirop");
    526 			continue;
    527 		}
    528 
    529 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
    530 			mutex_exit(vp->v_interlock);
    531 			vndebug(vp,"empty");
    532 			continue;
    533 		}
    534 
    535 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    536 		   && vp != fs->lfs_flushvp
    537 		   && !(ip->i_flag & IN_CLEANING)) {
    538 			mutex_exit(vp->v_interlock);
    539 			vndebug(vp,"cleaning");
    540 			continue;
    541 		}
    542 
    543 		mutex_exit(&mntvnode_lock);
    544 		if (lfs_vref(vp)) {
    545 			vndebug(vp,"vref");
    546 			mutex_enter(&mntvnode_lock);
    547 			continue;
    548 		}
    549 
    550 		only_cleaning = 0;
    551 		/*
    552 		 * Write the inode/file if dirty and it's not the IFILE.
    553 		 */
    554 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
    555 			only_cleaning =
    556 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    557 
    558 			if (ip->i_number != LFS_IFILE_INUM) {
    559 				error = lfs_writefile(fs, sp, vp);
    560 				if (error) {
    561 					lfs_vunref(vp);
    562 					if (error == EAGAIN) {
    563 						/*
    564 						 * This error from lfs_putpages
    565 						 * indicates we need to drop
    566 						 * the segment lock and start
    567 						 * over after the cleaner has
    568 						 * had a chance to run.
    569 						 */
    570 						lfs_writeinode(fs, sp, ip);
    571 						lfs_writeseg(fs, sp);
    572 						if (!VPISEMPTY(vp) &&
    573 						    !WRITEINPROG(vp) &&
    574 						    !(ip->i_flag & IN_ALLMOD)) {
    575 							mutex_enter(&lfs_lock);
    576 							LFS_SET_UINO(ip, IN_MODIFIED);
    577 							mutex_exit(&lfs_lock);
    578 						}
    579 						mutex_enter(&mntvnode_lock);
    580 						break;
    581 					}
    582 					error = 0; /* XXX not quite right */
    583 					mutex_enter(&mntvnode_lock);
    584 					continue;
    585 				}
    586 
    587 				if (!VPISEMPTY(vp)) {
    588 					if (WRITEINPROG(vp)) {
    589 						ivndebug(vp,"writevnodes/write2");
    590 					} else if (!(ip->i_flag & IN_ALLMOD)) {
    591 						mutex_enter(&lfs_lock);
    592 						LFS_SET_UINO(ip, IN_MODIFIED);
    593 						mutex_exit(&lfs_lock);
    594 					}
    595 				}
    596 				(void) lfs_writeinode(fs, sp, ip);
    597 				inodes_written++;
    598 			}
    599 		}
    600 
    601 		if (lfs_clean_vnhead && only_cleaning)
    602 			lfs_vunref_head(vp);
    603 		else
    604 			lfs_vunref(vp);
    605 
    606 		mutex_enter(&mntvnode_lock);
    607 	}
    608 	mutex_exit(&mntvnode_lock);
    609 	return error;
    610 }
    611 
    612 /*
    613  * Do a checkpoint.
    614  */
    615 int
    616 lfs_segwrite(struct mount *mp, int flags)
    617 {
    618 	struct buf *bp;
    619 	struct inode *ip;
    620 	struct lfs *fs;
    621 	struct segment *sp;
    622 	struct vnode *vp;
    623 	SEGUSE *segusep;
    624 	int do_ckp, did_ckp, error;
    625 	unsigned n, segleft, maxseg, sn, i, curseg;
    626 	int writer_set = 0;
    627 	int dirty;
    628 	int redo;
    629 	int um_error;
    630 
    631 	fs = VFSTOULFS(mp)->um_lfs;
    632 	ASSERT_MAYBE_SEGLOCK(fs);
    633 
    634 	if (fs->lfs_ronly)
    635 		return EROFS;
    636 
    637 	lfs_imtime(fs);
    638 
    639 	/*
    640 	 * Allocate a segment structure and enough space to hold pointers to
    641 	 * the maximum possible number of buffers which can be described in a
    642 	 * single summary block.
    643 	 */
    644 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
    645 
    646 	/* We can't do a partial write and checkpoint at the same time. */
    647 	if (do_ckp)
    648 		flags &= ~SEGM_SINGLE;
    649 
    650 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    651 	sp = fs->lfs_sp;
    652 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
    653 		do_ckp = 1;
    654 
    655 	/*
    656 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    657 	 * in which case we have to flush *all* buffers off of this vnode.
    658 	 * We don't care about other nodes, but write any non-dirop nodes
    659 	 * anyway in anticipation of another getnewvnode().
    660 	 *
    661 	 * If we're cleaning we only write cleaning and ifile blocks, and
    662 	 * no dirops, since otherwise we'd risk corruption in a crash.
    663 	 */
    664 	if (sp->seg_flags & SEGM_CLEAN)
    665 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    666 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
    667 		do {
    668 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
    669 			if ((sp->seg_flags & SEGM_SINGLE) &&
    670 			    fs->lfs_curseg != fs->lfs_startseg) {
    671 				DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
    672 				break;
    673 			}
    674 
    675 			if (do_ckp || fs->lfs_dirops == 0) {
    676 				if (!writer_set) {
    677 					lfs_writer_enter(fs, "lfs writer");
    678 					writer_set = 1;
    679 				}
    680 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
    681 				if (um_error == 0)
    682 					um_error = error;
    683 				/* In case writevnodes errored out */
    684 				lfs_flush_dirops(fs);
    685 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    686 				lfs_finalize_fs_seguse(fs);
    687 			}
    688 			if (do_ckp && um_error) {
    689 				lfs_segunlock_relock(fs);
    690 				sp = fs->lfs_sp;
    691 			}
    692 		} while (do_ckp && um_error != 0);
    693 	}
    694 
    695 	/*
    696 	 * If we are doing a checkpoint, mark everything since the
    697 	 * last checkpoint as no longer ACTIVE.
    698 	 */
    699 	if (do_ckp || fs->lfs_doifile) {
    700 		segleft = fs->lfs_nseg;
    701 		curseg = 0;
    702 		for (n = 0; n < fs->lfs_segtabsz; n++) {
    703 			dirty = 0;
    704 			if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
    705 			    fs->lfs_bsize, B_MODIFY, &bp))
    706 				panic("lfs_segwrite: ifile read");
    707 			segusep = (SEGUSE *)bp->b_data;
    708 			maxseg = min(segleft, fs->lfs_sepb);
    709 			for (i = 0; i < maxseg; i++) {
    710 				sn = curseg + i;
    711 				if (sn != lfs_dtosn(fs, fs->lfs_curseg) &&
    712 				    segusep->su_flags & SEGUSE_ACTIVE) {
    713 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    714 					--fs->lfs_nactive;
    715 					++dirty;
    716 				}
    717 				fs->lfs_suflags[fs->lfs_activesb][sn] =
    718 					segusep->su_flags;
    719 				if (fs->lfs_version > 1)
    720 					++segusep;
    721 				else
    722 					segusep = (SEGUSE *)
    723 						((SEGUSE_V1 *)segusep + 1);
    724 			}
    725 
    726 			if (dirty)
    727 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    728 			else
    729 				brelse(bp, 0);
    730 			segleft -= fs->lfs_sepb;
    731 			curseg += fs->lfs_sepb;
    732 		}
    733 	}
    734 
    735 	KASSERT(LFS_SEGLOCK_HELD(fs));
    736 
    737 	did_ckp = 0;
    738 	if (do_ckp || fs->lfs_doifile) {
    739 		vp = fs->lfs_ivnode;
    740 #ifdef DEBUG
    741 		int loopcount = 0;
    742 #endif
    743 		do {
    744 #ifdef DEBUG
    745 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    746 #endif
    747 			mutex_enter(&lfs_lock);
    748 			fs->lfs_flags &= ~LFS_IFDIRTY;
    749 			mutex_exit(&lfs_lock);
    750 
    751 			ip = VTOI(vp);
    752 
    753 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    754 				/*
    755 				 * Ifile has no pages, so we don't need
    756 				 * to check error return here.
    757 				 */
    758 				lfs_writefile(fs, sp, vp);
    759 				/*
    760 				 * Ensure the Ifile takes the current segment
    761 				 * into account.  See comment in lfs_vflush.
    762 				 */
    763 				lfs_writefile(fs, sp, vp);
    764 				lfs_writefile(fs, sp, vp);
    765 			}
    766 
    767 			if (ip->i_flag & IN_ALLMOD)
    768 				++did_ckp;
    769 #if 0
    770 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
    771 #else
    772 			redo = lfs_writeinode(fs, sp, ip);
    773 #endif
    774 			redo += lfs_writeseg(fs, sp);
    775 			mutex_enter(&lfs_lock);
    776 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    777 			mutex_exit(&lfs_lock);
    778 #ifdef DEBUG
    779 			if (++loopcount > 2)
    780 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
    781 					loopcount);
    782 #endif
    783 		} while (redo && do_ckp);
    784 
    785 		/*
    786 		 * Unless we are unmounting, the Ifile may continue to have
    787 		 * dirty blocks even after a checkpoint, due to changes to
    788 		 * inodes' atime.  If we're checkpointing, it's "impossible"
    789 		 * for other parts of the Ifile to be dirty after the loop
    790 		 * above, since we hold the segment lock.
    791 		 */
    792 		mutex_enter(vp->v_interlock);
    793 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
    794 			LFS_CLR_UINO(ip, IN_ALLMOD);
    795 		}
    796 #ifdef DIAGNOSTIC
    797 		else if (do_ckp) {
    798 			int do_panic = 0;
    799 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
    800 				if (bp->b_lblkno < fs->lfs_cleansz +
    801 				    fs->lfs_segtabsz &&
    802 				    !(bp->b_flags & B_GATHERED)) {
    803 					printf("ifile lbn %ld still dirty (flags %lx)\n",
    804 						(long)bp->b_lblkno,
    805 						(long)bp->b_flags);
    806 					++do_panic;
    807 				}
    808 			}
    809 			if (do_panic)
    810 				panic("dirty blocks");
    811 		}
    812 #endif
    813 		mutex_exit(vp->v_interlock);
    814 	} else {
    815 		(void) lfs_writeseg(fs, sp);
    816 	}
    817 
    818 	/* Note Ifile no longer needs to be written */
    819 	fs->lfs_doifile = 0;
    820 	if (writer_set)
    821 		lfs_writer_leave(fs);
    822 
    823 	/*
    824 	 * If we didn't write the Ifile, we didn't really do anything.
    825 	 * That means that (1) there is a checkpoint on disk and (2)
    826 	 * nothing has changed since it was written.
    827 	 *
    828 	 * Take the flags off of the segment so that lfs_segunlock
    829 	 * doesn't have to write the superblock either.
    830 	 */
    831 	if (do_ckp && !did_ckp) {
    832 		sp->seg_flags &= ~SEGM_CKP;
    833 	}
    834 
    835 	if (lfs_dostats) {
    836 		++lfs_stats.nwrites;
    837 		if (sp->seg_flags & SEGM_SYNC)
    838 			++lfs_stats.nsync_writes;
    839 		if (sp->seg_flags & SEGM_CKP)
    840 			++lfs_stats.ncheckpoints;
    841 	}
    842 	lfs_segunlock(fs);
    843 	return (0);
    844 }
    845 
    846 /*
    847  * Write the dirty blocks associated with a vnode.
    848  */
    849 int
    850 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    851 {
    852 	struct inode *ip;
    853 	int i, frag;
    854 	int error;
    855 
    856 	ASSERT_SEGLOCK(fs);
    857 	error = 0;
    858 	ip = VTOI(vp);
    859 
    860 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
    861 
    862 	if (vp->v_uflag & VU_DIROP)
    863 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    864 
    865 	if (sp->seg_flags & SEGM_CLEAN) {
    866 		lfs_gather(fs, sp, vp, lfs_match_fake);
    867 		/*
    868 		 * For a file being flushed, we need to write *all* blocks.
    869 		 * This means writing the cleaning blocks first, and then
    870 		 * immediately following with any non-cleaning blocks.
    871 		 * The same is true of the Ifile since checkpoints assume
    872 		 * that all valid Ifile blocks are written.
    873 		 */
    874 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
    875 			lfs_gather(fs, sp, vp, lfs_match_data);
    876 			/*
    877 			 * Don't call VOP_PUTPAGES: if we're flushing,
    878 			 * we've already done it, and the Ifile doesn't
    879 			 * use the page cache.
    880 			 */
    881 		}
    882 	} else {
    883 		lfs_gather(fs, sp, vp, lfs_match_data);
    884 		/*
    885 		 * If we're flushing, we've already called VOP_PUTPAGES
    886 		 * so don't do it again.  Otherwise, we want to write
    887 		 * everything we've got.
    888 		 */
    889 		if (!IS_FLUSHING(fs, vp)) {
    890 			mutex_enter(vp->v_interlock);
    891 			error = VOP_PUTPAGES(vp, 0, 0,
    892 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
    893 		}
    894 	}
    895 
    896 	/*
    897 	 * It may not be necessary to write the meta-data blocks at this point,
    898 	 * as the roll-forward recovery code should be able to reconstruct the
    899 	 * list.
    900 	 *
    901 	 * We have to write them anyway, though, under two conditions: (1) the
    902 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    903 	 * checkpointing.
    904 	 *
    905 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    906 	 * new blocks not being written yet, in addition to fragments being
    907 	 * moved out of a cleaned segment.  If that is the case, don't
    908 	 * write the indirect blocks, or the finfo will have a small block
    909 	 * in the middle of it!
    910 	 * XXX in this case isn't the inode size wrong too?
    911 	 */
    912 	frag = 0;
    913 	if (sp->seg_flags & SEGM_CLEAN) {
    914 		for (i = 0; i < ULFS_NDADDR; i++)
    915 			if (ip->i_lfs_fragsize[i] > 0 &&
    916 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    917 				++frag;
    918 	}
    919 #ifdef DIAGNOSTIC
    920 	if (frag > 1)
    921 		panic("lfs_writefile: more than one fragment!");
    922 #endif
    923 	if (IS_FLUSHING(fs, vp) ||
    924 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    925 		lfs_gather(fs, sp, vp, lfs_match_indir);
    926 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    927 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    928 	}
    929 	lfs_release_finfo(fs);
    930 
    931 	return error;
    932 }
    933 
    934 /*
    935  * Update segment accounting to reflect this inode's change of address.
    936  */
    937 static int
    938 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
    939 {
    940 	struct buf *bp;
    941 	daddr_t daddr;
    942 	IFILE *ifp;
    943 	SEGUSE *sup;
    944 	ino_t ino;
    945 	int redo_ifile;
    946 	u_int32_t sn;
    947 
    948 	redo_ifile = 0;
    949 
    950 	/*
    951 	 * If updating the ifile, update the super-block.  Update the disk
    952 	 * address and access times for this inode in the ifile.
    953 	 */
    954 	ino = ip->i_number;
    955 	if (ino == LFS_IFILE_INUM) {
    956 		daddr = fs->lfs_idaddr;
    957 		fs->lfs_idaddr = LFS_DBTOFSB(fs, ndaddr);
    958 	} else {
    959 		LFS_IENTRY(ifp, fs, ino, bp);
    960 		daddr = ifp->if_daddr;
    961 		ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
    962 		(void)LFS_BWRITE_LOG(bp); /* Ifile */
    963 	}
    964 
    965 	/*
    966 	 * If this is the Ifile and lfs_offset is set to the first block
    967 	 * in the segment, dirty the new segment's accounting block
    968 	 * (XXX should already be dirty?) and tell the caller to do it again.
    969 	 */
    970 	if (ip->i_number == LFS_IFILE_INUM) {
    971 		sn = lfs_dtosn(fs, fs->lfs_offset);
    972 		if (lfs_sntod(fs, sn) + lfs_btofsb(fs, fs->lfs_sumsize) ==
    973 		    fs->lfs_offset) {
    974 			LFS_SEGENTRY(sup, fs, sn, bp);
    975 			KASSERT(bp->b_oflags & BO_DELWRI);
    976 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
    977 			/* fs->lfs_flags |= LFS_IFDIRTY; */
    978 			redo_ifile |= 1;
    979 		}
    980 	}
    981 
    982 	/*
    983 	 * The inode's last address should not be in the current partial
    984 	 * segment, except under exceptional circumstances (lfs_writevnodes
    985 	 * had to start over, and in the meantime more blocks were written
    986 	 * to a vnode).	 Both inodes will be accounted to this segment
    987 	 * in lfs_writeseg so we need to subtract the earlier version
    988 	 * here anyway.	 The segment count can temporarily dip below
    989 	 * zero here; keep track of how many duplicates we have in
    990 	 * "dupino" so we don't panic below.
    991 	 */
    992 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
    993 		++sp->ndupino;
    994 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
    995 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
    996 		      (long long)daddr, sp->ndupino));
    997 	}
    998 	/*
    999 	 * Account the inode: it no longer belongs to its former segment,
   1000 	 * though it will not belong to the new segment until that segment
   1001 	 * is actually written.
   1002 	 */
   1003 	if (daddr != LFS_UNUSED_DADDR) {
   1004 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
   1005 #ifdef DIAGNOSTIC
   1006 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
   1007 #endif
   1008 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1009 #ifdef DIAGNOSTIC
   1010 		if (sup->su_nbytes +
   1011 		    sizeof (struct ulfs1_dinode) * ndupino
   1012 		      < sizeof (struct ulfs1_dinode)) {
   1013 			printf("lfs_writeinode: negative bytes "
   1014 			       "(segment %" PRIu32 " short by %d, "
   1015 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
   1016 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
   1017 			       "ndupino=%d)\n",
   1018 			       lfs_dtosn(fs, daddr),
   1019 			       (int)sizeof (struct ulfs1_dinode) *
   1020 				   (1 - sp->ndupino) - sup->su_nbytes,
   1021 			       oldsn, sp->seg_number, daddr,
   1022 			       (unsigned int)sup->su_nbytes,
   1023 			       sp->ndupino);
   1024 			panic("lfs_writeinode: negative bytes");
   1025 			sup->su_nbytes = sizeof (struct ulfs1_dinode);
   1026 		}
   1027 #endif
   1028 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
   1029 		      lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
   1030 		sup->su_nbytes -= sizeof (struct ulfs1_dinode);
   1031 		redo_ifile |=
   1032 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
   1033 		if (redo_ifile) {
   1034 			mutex_enter(&lfs_lock);
   1035 			fs->lfs_flags |= LFS_IFDIRTY;
   1036 			mutex_exit(&lfs_lock);
   1037 			/* Don't double-account */
   1038 			fs->lfs_idaddr = 0x0;
   1039 		}
   1040 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
   1041 	}
   1042 
   1043 	return redo_ifile;
   1044 }
   1045 
   1046 int
   1047 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
   1048 {
   1049 	struct buf *bp;
   1050 	struct ulfs1_dinode *cdp;
   1051 	struct vnode *vp = ITOV(ip);
   1052 	daddr_t daddr;
   1053 	int32_t *daddrp;	/* XXX ondisk32 */
   1054 	int i, ndx;
   1055 	int redo_ifile = 0;
   1056 	int gotblk = 0;
   1057 	int count;
   1058 
   1059 	ASSERT_SEGLOCK(fs);
   1060 	if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
   1061 		return (0);
   1062 
   1063 	/* Can't write ifile when writer is not set */
   1064 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
   1065 		(sp->seg_flags & SEGM_CLEAN));
   1066 
   1067 	/*
   1068 	 * If this is the Ifile, see if writing it here will generate a
   1069 	 * temporary misaccounting.  If it will, do the accounting and write
   1070 	 * the blocks, postponing the inode write until the accounting is
   1071 	 * solid.
   1072 	 */
   1073 	count = 0;
   1074 	while (vp == fs->lfs_ivnode) {
   1075 		int redo = 0;
   1076 
   1077 		if (sp->idp == NULL && sp->ibp == NULL &&
   1078 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
   1079 		     sp->sum_bytes_left < sizeof(int32_t))) {
   1080 			(void) lfs_writeseg(fs, sp);
   1081 			continue;
   1082 		}
   1083 
   1084 		/* Look for dirty Ifile blocks */
   1085 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
   1086 			if (!(bp->b_flags & B_GATHERED)) {
   1087 				redo = 1;
   1088 				break;
   1089 			}
   1090 		}
   1091 
   1092 		if (redo == 0)
   1093 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
   1094 		if (redo == 0)
   1095 			break;
   1096 
   1097 		if (sp->idp) {
   1098 			sp->idp->di_inumber = 0;
   1099 			sp->idp = NULL;
   1100 		}
   1101 		++count;
   1102 		if (count > 2)
   1103 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
   1104 		lfs_writefile(fs, sp, fs->lfs_ivnode);
   1105 	}
   1106 
   1107 	/* Allocate a new inode block if necessary. */
   1108 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
   1109 	    sp->ibp == NULL) {
   1110 		/* Allocate a new segment if necessary. */
   1111 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
   1112 		    sp->sum_bytes_left < sizeof(int32_t))
   1113 			(void) lfs_writeseg(fs, sp);
   1114 
   1115 		/* Get next inode block. */
   1116 		daddr = fs->lfs_offset;
   1117 		fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
   1118 		sp->ibp = *sp->cbpp++ =
   1119 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
   1120 			    LFS_FSBTODB(fs, daddr), fs->lfs_ibsize, 0, 0);
   1121 		gotblk++;
   1122 
   1123 		/* Zero out inode numbers */
   1124 		for (i = 0; i < LFS_INOPB(fs); ++i)
   1125 			((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
   1126 			    0;
   1127 
   1128 		++sp->start_bpp;
   1129 		fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
   1130 		/* Set remaining space counters. */
   1131 		sp->seg_bytes_left -= fs->lfs_ibsize;
   1132 		sp->sum_bytes_left -= sizeof(int32_t);
   1133 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
   1134 			sp->ninodes / LFS_INOPB(fs) - 1;
   1135 		((int32_t *)(sp->segsum))[ndx] = daddr;
   1136 	}
   1137 
   1138 	/* Check VU_DIROP in case there is a new file with no data blocks */
   1139 	if (vp->v_uflag & VU_DIROP)
   1140 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   1141 
   1142 	/* Update the inode times and copy the inode onto the inode page. */
   1143 	/* XXX kludge --- don't redirty the ifile just to put times on it */
   1144 	if (ip->i_number != LFS_IFILE_INUM)
   1145 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1146 
   1147 	/*
   1148 	 * If this is the Ifile, and we've already written the Ifile in this
   1149 	 * partial segment, just overwrite it (it's not on disk yet) and
   1150 	 * continue.
   1151 	 *
   1152 	 * XXX we know that the bp that we get the second time around has
   1153 	 * already been gathered.
   1154 	 */
   1155 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
   1156 		*(sp->idp) = *ip->i_din.ffs1_din;
   1157 		ip->i_lfs_osize = ip->i_size;
   1158 		return 0;
   1159 	}
   1160 
   1161 	bp = sp->ibp;
   1162 	cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
   1163 	*cdp = *ip->i_din.ffs1_din;
   1164 
   1165 	/*
   1166 	 * This inode is on its way to disk; clear its VU_DIROP status when
   1167 	 * the write is complete.
   1168 	 */
   1169 	if (vp->v_uflag & VU_DIROP) {
   1170 		if (!(sp->seg_flags & SEGM_CLEAN))
   1171 			ip->i_flag |= IN_CDIROP;
   1172 		else {
   1173 			DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
   1174 		}
   1175 	}
   1176 
   1177 	/*
   1178 	 * If cleaning, link counts and directory file sizes cannot change,
   1179 	 * since those would be directory operations---even if the file
   1180 	 * we are writing is marked VU_DIROP we should write the old values.
   1181 	 * If we're not cleaning, of course, update the values so we get
   1182 	 * current values the next time we clean.
   1183 	 */
   1184 	if (sp->seg_flags & SEGM_CLEAN) {
   1185 		if (vp->v_uflag & VU_DIROP) {
   1186 			cdp->di_nlink = ip->i_lfs_odnlink;
   1187 			/* if (vp->v_type == VDIR) */
   1188 			cdp->di_size = ip->i_lfs_osize;
   1189 		}
   1190 	} else {
   1191 		ip->i_lfs_odnlink = cdp->di_nlink;
   1192 		ip->i_lfs_osize = ip->i_size;
   1193 	}
   1194 
   1195 
   1196 	/* We can finish the segment accounting for truncations now */
   1197 	lfs_finalize_ino_seguse(fs, ip);
   1198 
   1199 	/*
   1200 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
   1201 	 * addresses to disk; possibly change the on-disk record of
   1202 	 * the inode size, either by reverting to the previous size
   1203 	 * (in the case of cleaning) or by verifying the inode's block
   1204 	 * holdings (in the case of files being allocated as they are being
   1205 	 * written).
   1206 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
   1207 	 * XXX count on disk wrong by the same amount.	We should be
   1208 	 * XXX able to "borrow" from lfs_avail and return it after the
   1209 	 * XXX Ifile is written.  See also in lfs_writeseg.
   1210 	 */
   1211 
   1212 	/* Check file size based on highest allocated block */
   1213 	if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
   1214 	     (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
   1215 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
   1216 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
   1217 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
   1218 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
   1219 	}
   1220 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
   1221 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
   1222 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
   1223 		      ip->i_ffs1_blocks, fs->lfs_offset));
   1224 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
   1225 		     daddrp++) {
   1226 			if (*daddrp == UNWRITTEN) {
   1227 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
   1228 				*daddrp = 0;
   1229 			}
   1230 		}
   1231 	}
   1232 
   1233 #ifdef DIAGNOSTIC
   1234 	/*
   1235 	 * Check dinode held blocks against dinode size.
   1236 	 * This should be identical to the check in lfs_vget().
   1237 	 */
   1238 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1239 	     i < ULFS_NDADDR; i++) {
   1240 		KASSERT(i >= 0);
   1241 		if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
   1242 			continue;
   1243 		if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
   1244 		     (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
   1245 			continue;
   1246 		if (cdp->di_db[i] != 0) {
   1247 # ifdef DEBUG
   1248 			lfs_dump_dinode(cdp);
   1249 # endif
   1250 			panic("writing inconsistent inode");
   1251 		}
   1252 	}
   1253 #endif /* DIAGNOSTIC */
   1254 
   1255 	if (ip->i_flag & IN_CLEANING)
   1256 		LFS_CLR_UINO(ip, IN_CLEANING);
   1257 	else {
   1258 		/* XXX IN_ALLMOD */
   1259 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
   1260 			     IN_UPDATE | IN_MODIFY);
   1261 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
   1262 			LFS_CLR_UINO(ip, IN_MODIFIED);
   1263 		else {
   1264 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
   1265 			    "blks=%d, eff=%d\n", ip->i_number,
   1266 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
   1267 		}
   1268 	}
   1269 
   1270 	if (ip->i_number == LFS_IFILE_INUM) {
   1271 		/* We know sp->idp == NULL */
   1272 		sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
   1273 			(sp->ninodes % LFS_INOPB(fs));
   1274 
   1275 		/* Not dirty any more */
   1276 		mutex_enter(&lfs_lock);
   1277 		fs->lfs_flags &= ~LFS_IFDIRTY;
   1278 		mutex_exit(&lfs_lock);
   1279 	}
   1280 
   1281 	if (gotblk) {
   1282 		mutex_enter(&bufcache_lock);
   1283 		LFS_LOCK_BUF(bp);
   1284 		brelsel(bp, 0);
   1285 		mutex_exit(&bufcache_lock);
   1286 	}
   1287 
   1288 	/* Increment inode count in segment summary block. */
   1289 	++((SEGSUM *)(sp->segsum))->ss_ninos;
   1290 
   1291 	/* If this page is full, set flag to allocate a new page. */
   1292 	if (++sp->ninodes % LFS_INOPB(fs) == 0)
   1293 		sp->ibp = NULL;
   1294 
   1295 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
   1296 
   1297 	KASSERT(redo_ifile == 0);
   1298 	return (redo_ifile);
   1299 }
   1300 
   1301 int
   1302 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
   1303 {
   1304 	struct lfs *fs;
   1305 	int vers;
   1306 	int j, blksinblk;
   1307 
   1308 	ASSERT_SEGLOCK(sp->fs);
   1309 	/*
   1310 	 * If full, finish this segment.  We may be doing I/O, so
   1311 	 * release and reacquire the splbio().
   1312 	 */
   1313 #ifdef DIAGNOSTIC
   1314 	if (sp->vp == NULL)
   1315 		panic ("lfs_gatherblock: Null vp in segment");
   1316 #endif
   1317 	fs = sp->fs;
   1318 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
   1319 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
   1320 	    sp->seg_bytes_left < bp->b_bcount) {
   1321 		if (mptr)
   1322 			mutex_exit(mptr);
   1323 		lfs_updatemeta(sp);
   1324 
   1325 		vers = sp->fip->fi_version;
   1326 		(void) lfs_writeseg(fs, sp);
   1327 
   1328 		/* Add the current file to the segment summary. */
   1329 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
   1330 
   1331 		if (mptr)
   1332 			mutex_enter(mptr);
   1333 		return (1);
   1334 	}
   1335 
   1336 	if (bp->b_flags & B_GATHERED) {
   1337 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
   1338 		      " lbn %" PRId64 "\n",
   1339 		      sp->fip->fi_ino, bp->b_lblkno));
   1340 		return (0);
   1341 	}
   1342 
   1343 	/* Insert into the buffer list, update the FINFO block. */
   1344 	bp->b_flags |= B_GATHERED;
   1345 
   1346 	*sp->cbpp++ = bp;
   1347 	for (j = 0; j < blksinblk; j++) {
   1348 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
   1349 		/* This block's accounting moves from lfs_favail to lfs_avail */
   1350 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
   1351 	}
   1352 
   1353 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
   1354 	sp->seg_bytes_left -= bp->b_bcount;
   1355 	return (0);
   1356 }
   1357 
   1358 int
   1359 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
   1360     int (*match)(struct lfs *, struct buf *))
   1361 {
   1362 	struct buf *bp, *nbp;
   1363 	int count = 0;
   1364 
   1365 	ASSERT_SEGLOCK(fs);
   1366 	if (vp->v_type == VBLK)
   1367 		return 0;
   1368 	KASSERT(sp->vp == NULL);
   1369 	sp->vp = vp;
   1370 	mutex_enter(&bufcache_lock);
   1371 
   1372 #ifndef LFS_NO_BACKBUF_HACK
   1373 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1374 # define	BUF_OFFSET	\
   1375 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
   1376 # define	BACK_BUF(BP)	\
   1377 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1378 # define	BEG_OF_LIST	\
   1379 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1380 
   1381 loop:
   1382 	/* Find last buffer. */
   1383 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
   1384 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1385 	     bp = LIST_NEXT(bp, b_vnbufs))
   1386 		/* nothing */;
   1387 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1388 		nbp = BACK_BUF(bp);
   1389 #else /* LFS_NO_BACKBUF_HACK */
   1390 loop:
   1391 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1392 		nbp = LIST_NEXT(bp, b_vnbufs);
   1393 #endif /* LFS_NO_BACKBUF_HACK */
   1394 		if ((bp->b_cflags & BC_BUSY) != 0 ||
   1395 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
   1396 #ifdef DEBUG
   1397 			if (vp == fs->lfs_ivnode &&
   1398 			    (bp->b_cflags & BC_BUSY) != 0 &&
   1399 			    (bp->b_flags & B_GATHERED) == 0)
   1400 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
   1401 				      PRId64 " busy (%x) at 0x%x",
   1402 				      bp->b_lblkno, bp->b_flags,
   1403 				      (unsigned)fs->lfs_offset);
   1404 #endif
   1405 			continue;
   1406 		}
   1407 #ifdef DIAGNOSTIC
   1408 # ifdef LFS_USE_B_INVAL
   1409 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
   1410 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1411 			      " is BC_INVAL\n", bp->b_lblkno));
   1412 			VOP_PRINT(bp->b_vp);
   1413 		}
   1414 # endif /* LFS_USE_B_INVAL */
   1415 		if (!(bp->b_oflags & BO_DELWRI))
   1416 			panic("lfs_gather: bp not BO_DELWRI");
   1417 		if (!(bp->b_flags & B_LOCKED)) {
   1418 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
   1419 			      " blk %" PRId64 " not B_LOCKED\n",
   1420 			      bp->b_lblkno,
   1421 			      LFS_DBTOFSB(fs, bp->b_blkno)));
   1422 			VOP_PRINT(bp->b_vp);
   1423 			panic("lfs_gather: bp not B_LOCKED");
   1424 		}
   1425 #endif
   1426 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
   1427 			goto loop;
   1428 		}
   1429 		count++;
   1430 	}
   1431 	mutex_exit(&bufcache_lock);
   1432 	lfs_updatemeta(sp);
   1433 	KASSERT(sp->vp == vp);
   1434 	sp->vp = NULL;
   1435 	return count;
   1436 }
   1437 
   1438 #if DEBUG
   1439 # define DEBUG_OOFF(n) do {						\
   1440 	if (ooff == 0) {						\
   1441 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
   1442 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
   1443 			", was 0x0 (or %" PRId64 ")\n",			\
   1444 			(n), ip->i_number, lbn, ndaddr, daddr));	\
   1445 	}								\
   1446 } while (0)
   1447 #else
   1448 # define DEBUG_OOFF(n)
   1449 #endif
   1450 
   1451 /*
   1452  * Change the given block's address to ndaddr, finding its previous
   1453  * location using ulfs_bmaparray().
   1454  *
   1455  * Account for this change in the segment table.
   1456  *
   1457  * called with sp == NULL by roll-forwarding code.
   1458  */
   1459 void
   1460 lfs_update_single(struct lfs *fs, struct segment *sp,
   1461     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
   1462 {
   1463 	SEGUSE *sup;
   1464 	struct buf *bp;
   1465 	struct indir a[ULFS_NIADDR + 2], *ap;
   1466 	struct inode *ip;
   1467 	daddr_t daddr, ooff;
   1468 	int num, error;
   1469 	int bb, osize, obb;
   1470 
   1471 	ASSERT_SEGLOCK(fs);
   1472 	KASSERT(sp == NULL || sp->vp == vp);
   1473 	ip = VTOI(vp);
   1474 
   1475 	error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
   1476 	if (error)
   1477 		panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
   1478 
   1479 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1480 	KASSERT(daddr <= LFS_MAX_DADDR);
   1481 	if (daddr > 0)
   1482 		daddr = LFS_DBTOFSB(fs, daddr);
   1483 
   1484 	bb = lfs_numfrags(fs, size);
   1485 	switch (num) {
   1486 	    case 0:
   1487 		    ooff = ip->i_ffs1_db[lbn];
   1488 		    DEBUG_OOFF(0);
   1489 		    if (ooff == UNWRITTEN)
   1490 			    ip->i_ffs1_blocks += bb;
   1491 		    else {
   1492 			    /* possible fragment truncation or extension */
   1493 			    obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1494 			    ip->i_ffs1_blocks += (bb - obb);
   1495 		    }
   1496 		    ip->i_ffs1_db[lbn] = ndaddr;
   1497 		    break;
   1498 	    case 1:
   1499 		    ooff = ip->i_ffs1_ib[a[0].in_off];
   1500 		    DEBUG_OOFF(1);
   1501 		    if (ooff == UNWRITTEN)
   1502 			    ip->i_ffs1_blocks += bb;
   1503 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
   1504 		    break;
   1505 	    default:
   1506 		    ap = &a[num - 1];
   1507 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize,
   1508 			B_MODIFY, &bp))
   1509 			    panic("lfs_updatemeta: bread bno %" PRId64,
   1510 				  ap->in_lbn);
   1511 
   1512 		    /* XXX ondisk32 */
   1513 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
   1514 		    DEBUG_OOFF(num);
   1515 		    if (ooff == UNWRITTEN)
   1516 			    ip->i_ffs1_blocks += bb;
   1517 		    /* XXX ondisk32 */
   1518 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
   1519 		    (void) VOP_BWRITE(bp->b_vp, bp);
   1520 	}
   1521 
   1522 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
   1523 
   1524 	/* Update hiblk when extending the file */
   1525 	if (lbn > ip->i_lfs_hiblk)
   1526 		ip->i_lfs_hiblk = lbn;
   1527 
   1528 	/*
   1529 	 * Though we'd rather it couldn't, this *can* happen right now
   1530 	 * if cleaning blocks and regular blocks coexist.
   1531 	 */
   1532 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
   1533 
   1534 	/*
   1535 	 * Update segment usage information, based on old size
   1536 	 * and location.
   1537 	 */
   1538 	if (daddr > 0) {
   1539 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
   1540 #ifdef DIAGNOSTIC
   1541 		int ndupino;
   1542 
   1543 		if (sp && sp->seg_number == oldsn) {
   1544 			ndupino = sp->ndupino;
   1545 		} else {
   1546 			ndupino = 0;
   1547 		}
   1548 #endif
   1549 		KASSERT(oldsn < fs->lfs_nseg);
   1550 		if (lbn >= 0 && lbn < ULFS_NDADDR)
   1551 			osize = ip->i_lfs_fragsize[lbn];
   1552 		else
   1553 			osize = fs->lfs_bsize;
   1554 		LFS_SEGENTRY(sup, fs, oldsn, bp);
   1555 #ifdef DIAGNOSTIC
   1556 		if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
   1557 		    < osize) {
   1558 			printf("lfs_updatemeta: negative bytes "
   1559 			       "(segment %" PRIu32 " short by %" PRId64
   1560 			       ")\n", lfs_dtosn(fs, daddr),
   1561 			       (int64_t)osize -
   1562 			       (sizeof (struct ulfs1_dinode) * ndupino +
   1563 				sup->su_nbytes));
   1564 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
   1565 			       ", addr = 0x%" PRIx64 "\n",
   1566 			       (unsigned long long)ip->i_number, lbn, daddr);
   1567 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
   1568 			panic("lfs_updatemeta: negative bytes");
   1569 			sup->su_nbytes = osize -
   1570 			    sizeof (struct ulfs1_dinode) * ndupino;
   1571 		}
   1572 #endif
   1573 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
   1574 		      " db 0x%" PRIx64 "\n",
   1575 		      lfs_dtosn(fs, daddr), osize,
   1576 		      ip->i_number, lbn, daddr));
   1577 		sup->su_nbytes -= osize;
   1578 		if (!(bp->b_flags & B_GATHERED)) {
   1579 			mutex_enter(&lfs_lock);
   1580 			fs->lfs_flags |= LFS_IFDIRTY;
   1581 			mutex_exit(&lfs_lock);
   1582 		}
   1583 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
   1584 	}
   1585 	/*
   1586 	 * Now that this block has a new address, and its old
   1587 	 * segment no longer owns it, we can forget about its
   1588 	 * old size.
   1589 	 */
   1590 	if (lbn >= 0 && lbn < ULFS_NDADDR)
   1591 		ip->i_lfs_fragsize[lbn] = size;
   1592 }
   1593 
   1594 /*
   1595  * Update the metadata that points to the blocks listed in the FINFO
   1596  * array.
   1597  */
   1598 void
   1599 lfs_updatemeta(struct segment *sp)
   1600 {
   1601 	struct buf *sbp;
   1602 	struct lfs *fs;
   1603 	struct vnode *vp;
   1604 	daddr_t lbn;
   1605 	int i, nblocks, num;
   1606 	int bb;
   1607 	int bytesleft, size;
   1608 
   1609 	ASSERT_SEGLOCK(sp->fs);
   1610 	vp = sp->vp;
   1611 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1612 	KASSERT(nblocks >= 0);
   1613 	KASSERT(vp != NULL);
   1614 	if (nblocks == 0)
   1615 		return;
   1616 
   1617 	/*
   1618 	 * This count may be high due to oversize blocks from lfs_gop_write.
   1619 	 * Correct for this. (XXX we should be able to keep track of these.)
   1620 	 */
   1621 	fs = sp->fs;
   1622 	for (i = 0; i < nblocks; i++) {
   1623 		if (sp->start_bpp[i] == NULL) {
   1624 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
   1625 			nblocks = i;
   1626 			break;
   1627 		}
   1628 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
   1629 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
   1630 		nblocks -= num - 1;
   1631 	}
   1632 
   1633 	KASSERT(vp->v_type == VREG ||
   1634 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
   1635 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
   1636 
   1637 	/*
   1638 	 * Sort the blocks.
   1639 	 *
   1640 	 * We have to sort even if the blocks come from the
   1641 	 * cleaner, because there might be other pending blocks on the
   1642 	 * same inode...and if we don't sort, and there are fragments
   1643 	 * present, blocks may be written in the wrong place.
   1644 	 */
   1645 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
   1646 
   1647 	/*
   1648 	 * Record the length of the last block in case it's a fragment.
   1649 	 * If there are indirect blocks present, they sort last.  An
   1650 	 * indirect block will be lfs_bsize and its presence indicates
   1651 	 * that you cannot have fragments.
   1652 	 *
   1653 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1654 	 * XXX a later indirect block.	This will continue to be
   1655 	 * XXX true until lfs_markv is fixed to do everything with
   1656 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1657 	 */
   1658 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
   1659 		fs->lfs_bmask) + 1;
   1660 
   1661 	/*
   1662 	 * Assign disk addresses, and update references to the logical
   1663 	 * block and the segment usage information.
   1664 	 */
   1665 	for (i = nblocks; i--; ++sp->start_bpp) {
   1666 		sbp = *sp->start_bpp;
   1667 		lbn = *sp->start_lbp;
   1668 		KASSERT(sbp->b_lblkno == lbn);
   1669 
   1670 		sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
   1671 
   1672 		/*
   1673 		 * If we write a frag in the wrong place, the cleaner won't
   1674 		 * be able to correctly identify its size later, and the
   1675 		 * segment will be uncleanable.	 (Even worse, it will assume
   1676 		 * that the indirect block that actually ends the list
   1677 		 * is of a smaller size!)
   1678 		 */
   1679 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
   1680 			panic("lfs_updatemeta: fragment is not last block");
   1681 
   1682 		/*
   1683 		 * For each subblock in this possibly oversized block,
   1684 		 * update its address on disk.
   1685 		 */
   1686 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
   1687 		KASSERT(vp == sbp->b_vp);
   1688 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
   1689 		     bytesleft -= fs->lfs_bsize) {
   1690 			size = MIN(bytesleft, fs->lfs_bsize);
   1691 			bb = lfs_numfrags(fs, size);
   1692 			lbn = *sp->start_lbp++;
   1693 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
   1694 			    size);
   1695 			fs->lfs_offset += bb;
   1696 		}
   1697 
   1698 	}
   1699 
   1700 	/* This inode has been modified */
   1701 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
   1702 }
   1703 
   1704 /*
   1705  * Move lfs_offset to a segment earlier than sn.
   1706  */
   1707 int
   1708 lfs_rewind(struct lfs *fs, int newsn)
   1709 {
   1710 	int sn, osn, isdirty;
   1711 	struct buf *bp;
   1712 	SEGUSE *sup;
   1713 
   1714 	ASSERT_SEGLOCK(fs);
   1715 
   1716 	osn = lfs_dtosn(fs, fs->lfs_offset);
   1717 	if (osn < newsn)
   1718 		return 0;
   1719 
   1720 	/* lfs_avail eats the remaining space in this segment */
   1721 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
   1722 
   1723 	/* Find a low-numbered segment */
   1724 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
   1725 		LFS_SEGENTRY(sup, fs, sn, bp);
   1726 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1727 		brelse(bp, 0);
   1728 
   1729 		if (!isdirty)
   1730 			break;
   1731 	}
   1732 	if (sn == fs->lfs_nseg)
   1733 		panic("lfs_rewind: no clean segments");
   1734 	if (newsn >= 0 && sn >= newsn)
   1735 		return ENOENT;
   1736 	fs->lfs_nextseg = sn;
   1737 	lfs_newseg(fs);
   1738 	fs->lfs_offset = fs->lfs_curseg;
   1739 
   1740 	return 0;
   1741 }
   1742 
   1743 /*
   1744  * Start a new partial segment.
   1745  *
   1746  * Return 1 when we entered to a new segment.
   1747  * Otherwise, return 0.
   1748  */
   1749 int
   1750 lfs_initseg(struct lfs *fs)
   1751 {
   1752 	struct segment *sp = fs->lfs_sp;
   1753 	SEGSUM *ssp;
   1754 	struct buf *sbp;	/* buffer for SEGSUM */
   1755 	int repeat = 0;		/* return value */
   1756 
   1757 	ASSERT_SEGLOCK(fs);
   1758 	/* Advance to the next segment. */
   1759 	if (!LFS_PARTIAL_FITS(fs)) {
   1760 		SEGUSE *sup;
   1761 		struct buf *bp;
   1762 
   1763 		/* lfs_avail eats the remaining space */
   1764 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1765 						   fs->lfs_curseg);
   1766 		/* Wake up any cleaning procs waiting on this file system. */
   1767 		lfs_wakeup_cleaner(fs);
   1768 		lfs_newseg(fs);
   1769 		repeat = 1;
   1770 		fs->lfs_offset = fs->lfs_curseg;
   1771 
   1772 		sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
   1773 		sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
   1774 
   1775 		/*
   1776 		 * If the segment contains a superblock, update the offset
   1777 		 * and summary address to skip over it.
   1778 		 */
   1779 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1780 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1781 			fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
   1782 			sp->seg_bytes_left -= LFS_SBPAD;
   1783 		}
   1784 		brelse(bp, 0);
   1785 		/* Segment zero could also contain the labelpad */
   1786 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1787 		    fs->lfs_s0addr < lfs_btofsb(fs, LFS_LABELPAD)) {
   1788 			fs->lfs_offset +=
   1789 			    lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_s0addr;
   1790 			sp->seg_bytes_left -=
   1791 			    LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_s0addr);
   1792 		}
   1793 	} else {
   1794 		sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
   1795 		sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
   1796 				      (fs->lfs_offset - fs->lfs_curseg));
   1797 	}
   1798 	fs->lfs_lastpseg = fs->lfs_offset;
   1799 
   1800 	/* Record first address of this partial segment */
   1801 	if (sp->seg_flags & SEGM_CLEAN) {
   1802 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
   1803 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
   1804 			/* "1" is the artificial inc in lfs_seglock */
   1805 			mutex_enter(&lfs_lock);
   1806 			while (fs->lfs_iocount > 1) {
   1807 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
   1808 				    "lfs_initseg", 0, &lfs_lock);
   1809 			}
   1810 			mutex_exit(&lfs_lock);
   1811 			fs->lfs_cleanind = 0;
   1812 		}
   1813 	}
   1814 
   1815 	sp->fs = fs;
   1816 	sp->ibp = NULL;
   1817 	sp->idp = NULL;
   1818 	sp->ninodes = 0;
   1819 	sp->ndupino = 0;
   1820 
   1821 	sp->cbpp = sp->bpp;
   1822 
   1823 	/* Get a new buffer for SEGSUM */
   1824 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1825 	    LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
   1826 
   1827 	/* ... and enter it into the buffer list. */
   1828 	*sp->cbpp = sbp;
   1829 	sp->cbpp++;
   1830 	fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
   1831 
   1832 	sp->start_bpp = sp->cbpp;
   1833 
   1834 	/* Set point to SEGSUM, initialize it. */
   1835 	ssp = sp->segsum = sbp->b_data;
   1836 	memset(ssp, 0, fs->lfs_sumsize);
   1837 	ssp->ss_next = fs->lfs_nextseg;
   1838 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1839 	ssp->ss_magic = SS_MAGIC;
   1840 
   1841 	/* Set pointer to first FINFO, initialize it. */
   1842 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
   1843 	sp->fip->fi_nblocks = 0;
   1844 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1845 	sp->fip->fi_lastlength = 0;
   1846 
   1847 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1848 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1849 
   1850 	return (repeat);
   1851 }
   1852 
   1853 /*
   1854  * Remove SEGUSE_INVAL from all segments.
   1855  */
   1856 void
   1857 lfs_unset_inval_all(struct lfs *fs)
   1858 {
   1859 	SEGUSE *sup;
   1860 	struct buf *bp;
   1861 	int i;
   1862 
   1863 	for (i = 0; i < fs->lfs_nseg; i++) {
   1864 		LFS_SEGENTRY(sup, fs, i, bp);
   1865 		if (sup->su_flags & SEGUSE_INVAL) {
   1866 			sup->su_flags &= ~SEGUSE_INVAL;
   1867 			LFS_WRITESEGENTRY(sup, fs, i, bp);
   1868 		} else
   1869 			brelse(bp, 0);
   1870 	}
   1871 }
   1872 
   1873 /*
   1874  * Return the next segment to write.
   1875  */
   1876 void
   1877 lfs_newseg(struct lfs *fs)
   1878 {
   1879 	CLEANERINFO *cip;
   1880 	SEGUSE *sup;
   1881 	struct buf *bp;
   1882 	int curseg, isdirty, sn, skip_inval;
   1883 
   1884 	ASSERT_SEGLOCK(fs);
   1885 
   1886 	/* Honor LFCNWRAPSTOP */
   1887 	mutex_enter(&lfs_lock);
   1888 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
   1889 		if (fs->lfs_wrappass) {
   1890 			log(LOG_NOTICE, "%s: wrappass=%d\n",
   1891 				fs->lfs_fsmnt, fs->lfs_wrappass);
   1892 			fs->lfs_wrappass = 0;
   1893 			break;
   1894 		}
   1895 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
   1896 		wakeup(&fs->lfs_nowrap);
   1897 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
   1898 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
   1899 			&lfs_lock);
   1900 	}
   1901 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
   1902 	mutex_exit(&lfs_lock);
   1903 
   1904 	LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
   1905 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
   1906 	      lfs_dtosn(fs, fs->lfs_nextseg)));
   1907 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1908 	sup->su_nbytes = 0;
   1909 	sup->su_nsums = 0;
   1910 	sup->su_ninos = 0;
   1911 	LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
   1912 
   1913 	LFS_CLEANERINFO(cip, fs, bp);
   1914 	--cip->clean;
   1915 	++cip->dirty;
   1916 	fs->lfs_nclean = cip->clean;
   1917 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1918 
   1919 	fs->lfs_lastseg = fs->lfs_curseg;
   1920 	fs->lfs_curseg = fs->lfs_nextseg;
   1921 	skip_inval = 1;
   1922 	for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1923 		sn = (sn + 1) % fs->lfs_nseg;
   1924 
   1925 		if (sn == curseg) {
   1926 			if (skip_inval)
   1927 				skip_inval = 0;
   1928 			else
   1929 				panic("lfs_nextseg: no clean segments");
   1930 		}
   1931 		LFS_SEGENTRY(sup, fs, sn, bp);
   1932 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
   1933 		/* Check SEGUSE_EMPTY as we go along */
   1934 		if (isdirty && sup->su_nbytes == 0 &&
   1935 		    !(sup->su_flags & SEGUSE_EMPTY))
   1936 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
   1937 		else
   1938 			brelse(bp, 0);
   1939 
   1940 		if (!isdirty)
   1941 			break;
   1942 	}
   1943 	if (skip_inval == 0)
   1944 		lfs_unset_inval_all(fs);
   1945 
   1946 	++fs->lfs_nactive;
   1947 	fs->lfs_nextseg = lfs_sntod(fs, sn);
   1948 	if (lfs_dostats) {
   1949 		++lfs_stats.segsused;
   1950 	}
   1951 }
   1952 
   1953 static struct buf *
   1954 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
   1955     int n)
   1956 {
   1957 	struct lfs_cluster *cl;
   1958 	struct buf **bpp, *bp;
   1959 
   1960 	ASSERT_SEGLOCK(fs);
   1961 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
   1962 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
   1963 	memset(cl, 0, sizeof(*cl));
   1964 	cl->fs = fs;
   1965 	cl->bpp = bpp;
   1966 	cl->bufcount = 0;
   1967 	cl->bufsize = 0;
   1968 
   1969 	/* If this segment is being written synchronously, note that */
   1970 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1971 		cl->flags |= LFS_CL_SYNC;
   1972 		cl->seg = fs->lfs_sp;
   1973 		++cl->seg->seg_iocount;
   1974 	}
   1975 
   1976 	/* Get an empty buffer header, or maybe one with something on it */
   1977 	bp = getiobuf(vp, true);
   1978 	bp->b_dev = NODEV;
   1979 	bp->b_blkno = bp->b_lblkno = addr;
   1980 	bp->b_iodone = lfs_cluster_callback;
   1981 	bp->b_private = cl;
   1982 
   1983 	return bp;
   1984 }
   1985 
   1986 int
   1987 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1988 {
   1989 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
   1990 	SEGUSE *sup;
   1991 	SEGSUM *ssp;
   1992 	int i;
   1993 	int do_again, nblocks, byteoffset;
   1994 	size_t el_size;
   1995 	struct lfs_cluster *cl;
   1996 	u_short ninos;
   1997 	struct vnode *devvp;
   1998 	char *p = NULL;
   1999 	struct vnode *vp;
   2000 	int32_t *daddrp;	/* XXX ondisk32 */
   2001 	int changed;
   2002 	u_int32_t sum;
   2003 #ifdef DEBUG
   2004 	FINFO *fip;
   2005 	int findex;
   2006 #endif
   2007 
   2008 	ASSERT_SEGLOCK(fs);
   2009 
   2010 	ssp = (SEGSUM *)sp->segsum;
   2011 
   2012 	/*
   2013 	 * If there are no buffers other than the segment summary to write,
   2014 	 * don't do anything.  If we are the end of a dirop sequence, however,
   2015 	 * write the empty segment summary anyway, to help out the
   2016 	 * roll-forward agent.
   2017 	 */
   2018 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
   2019 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
   2020 			return 0;
   2021 	}
   2022 
   2023 	/* Note if partial segment is being written by the cleaner */
   2024 	if (sp->seg_flags & SEGM_CLEAN)
   2025 		ssp->ss_flags |= SS_CLEAN;
   2026 
   2027 	/* Note if we are writing to reclaim */
   2028 	if (sp->seg_flags & SEGM_RECLAIM) {
   2029 		ssp->ss_flags |= SS_RECLAIM;
   2030 		ssp->ss_reclino = fs->lfs_reclino;
   2031 	}
   2032 
   2033 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2034 
   2035 	/* Update the segment usage information. */
   2036 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   2037 
   2038 	/* Loop through all blocks, except the segment summary. */
   2039 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   2040 		if ((*bpp)->b_vp != devvp) {
   2041 			sup->su_nbytes += (*bpp)->b_bcount;
   2042 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
   2043 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
   2044 			      sp->seg_number, (*bpp)->b_bcount,
   2045 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
   2046 			      (*bpp)->b_blkno));
   2047 		}
   2048 	}
   2049 
   2050 #ifdef DEBUG
   2051 	/* Check for zero-length and zero-version FINFO entries. */
   2052 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
   2053 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
   2054 		KDASSERT(fip->fi_nblocks > 0);
   2055 		KDASSERT(fip->fi_version > 0);
   2056 		fip = (FINFO *)((char *)fip + FINFOSIZE +
   2057 			sizeof(int32_t) * fip->fi_nblocks);
   2058 	}
   2059 #endif /* DEBUG */
   2060 
   2061 	ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
   2062 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
   2063 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
   2064 	      ssp->ss_ninos));
   2065 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
   2066 	/* sup->su_nbytes += fs->lfs_sumsize; */
   2067 	if (fs->lfs_version == 1)
   2068 		sup->su_olastmod = time_second;
   2069 	else
   2070 		sup->su_lastmod = time_second;
   2071 	sup->su_ninos += ninos;
   2072 	++sup->su_nsums;
   2073 	fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
   2074 
   2075 	do_again = !(bp->b_flags & B_GATHERED);
   2076 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
   2077 
   2078 	/*
   2079 	 * Mark blocks B_BUSY, to prevent then from being changed between
   2080 	 * the checksum computation and the actual write.
   2081 	 *
   2082 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   2083 	 * there are any, replace them with copies that have UNASSIGNED
   2084 	 * instead.
   2085 	 */
   2086 	mutex_enter(&bufcache_lock);
   2087 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   2088 		++bpp;
   2089 		bp = *bpp;
   2090 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
   2091 			bp->b_cflags |= BC_BUSY;
   2092 			continue;
   2093 		}
   2094 
   2095 		while (bp->b_cflags & BC_BUSY) {
   2096 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
   2097 			      " data summary corruption for ino %d, lbn %"
   2098 			      PRId64 "\n",
   2099 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
   2100 			bp->b_cflags |= BC_WANTED;
   2101 			cv_wait(&bp->b_busy, &bufcache_lock);
   2102 		}
   2103 		bp->b_cflags |= BC_BUSY;
   2104 		mutex_exit(&bufcache_lock);
   2105 		unbusybp = NULL;
   2106 
   2107 		/*
   2108 		 * Check and replace indirect block UNWRITTEN bogosity.
   2109 		 * XXX See comment in lfs_writefile.
   2110 		 */
   2111 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   2112 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
   2113 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   2114 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
   2115 			      VTOI(bp->b_vp)->i_number,
   2116 			      VTOI(bp->b_vp)->i_lfs_effnblks,
   2117 			      VTOI(bp->b_vp)->i_ffs1_blocks));
   2118 			/* Make a copy we'll make changes to */
   2119 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   2120 					   bp->b_bcount, LFS_NB_IBLOCK);
   2121 			newbp->b_blkno = bp->b_blkno;
   2122 			memcpy(newbp->b_data, bp->b_data,
   2123 			       newbp->b_bcount);
   2124 
   2125 			changed = 0;
   2126 			/* XXX ondisk32 */
   2127 			for (daddrp = (int32_t *)(newbp->b_data);
   2128 			     daddrp < (int32_t *)((char *)newbp->b_data +
   2129 						  newbp->b_bcount); daddrp++) {
   2130 				if (*daddrp == UNWRITTEN) {
   2131 					++changed;
   2132 					*daddrp = 0;
   2133 				}
   2134 			}
   2135 			/*
   2136 			 * Get rid of the old buffer.  Don't mark it clean,
   2137 			 * though, if it still has dirty data on it.
   2138 			 */
   2139 			if (changed) {
   2140 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
   2141 				      " bp = %p newbp = %p\n", changed, bp,
   2142 				      newbp));
   2143 				*bpp = newbp;
   2144 				bp->b_flags &= ~B_GATHERED;
   2145 				bp->b_error = 0;
   2146 				if (bp->b_iodone != NULL) {
   2147 					DLOG((DLOG_SEG, "lfs_writeseg: "
   2148 					      "indir bp should not be B_CALL\n"));
   2149 					biodone(bp);
   2150 					bp = NULL;
   2151 				} else {
   2152 					/* Still on free list, leave it there */
   2153 					unbusybp = bp;
   2154 					/*
   2155 					 * We have to re-decrement lfs_avail
   2156 					 * since this block is going to come
   2157 					 * back around to us in the next
   2158 					 * segment.
   2159 					 */
   2160 					fs->lfs_avail -=
   2161 					    lfs_btofsb(fs, bp->b_bcount);
   2162 				}
   2163 			} else {
   2164 				lfs_freebuf(fs, newbp);
   2165 			}
   2166 		}
   2167 		mutex_enter(&bufcache_lock);
   2168 		if (unbusybp != NULL) {
   2169 			unbusybp->b_cflags &= ~BC_BUSY;
   2170 			if (unbusybp->b_cflags & BC_WANTED)
   2171 				cv_broadcast(&bp->b_busy);
   2172 		}
   2173 	}
   2174 	mutex_exit(&bufcache_lock);
   2175 
   2176 	/*
   2177 	 * Compute checksum across data and then across summary; the first
   2178 	 * block (the summary block) is skipped.  Set the create time here
   2179 	 * so that it's guaranteed to be later than the inode mod times.
   2180 	 */
   2181 	sum = 0;
   2182 	if (fs->lfs_version == 1)
   2183 		el_size = sizeof(u_long);
   2184 	else
   2185 		el_size = sizeof(u_int32_t);
   2186 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
   2187 		++bpp;
   2188 		/* Loop through gop_write cluster blocks */
   2189 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
   2190 		     byteoffset += fs->lfs_bsize) {
   2191 #ifdef LFS_USE_B_INVAL
   2192 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
   2193 			    (*bpp)->b_iodone != NULL) {
   2194 				if (copyin((void *)(*bpp)->b_saveaddr +
   2195 					   byteoffset, dp, el_size)) {
   2196 					panic("lfs_writeseg: copyin failed [1]:"
   2197 						" ino %d blk %" PRId64,
   2198 						VTOI((*bpp)->b_vp)->i_number,
   2199 						(*bpp)->b_lblkno);
   2200 				}
   2201 			} else
   2202 #endif /* LFS_USE_B_INVAL */
   2203 			{
   2204 				sum = lfs_cksum_part((char *)
   2205 				    (*bpp)->b_data + byteoffset, el_size, sum);
   2206 			}
   2207 		}
   2208 	}
   2209 	if (fs->lfs_version == 1)
   2210 		ssp->ss_ocreate = time_second;
   2211 	else {
   2212 		ssp->ss_create = time_second;
   2213 		ssp->ss_serial = ++fs->lfs_serial;
   2214 		ssp->ss_ident  = fs->lfs_ident;
   2215 	}
   2216 	ssp->ss_datasum = lfs_cksum_fold(sum);
   2217 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
   2218 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   2219 
   2220 	mutex_enter(&lfs_lock);
   2221 	fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
   2222 			  lfs_btofsb(fs, fs->lfs_sumsize));
   2223 	fs->lfs_dmeta += (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
   2224 			  lfs_btofsb(fs, fs->lfs_sumsize));
   2225 	mutex_exit(&lfs_lock);
   2226 
   2227 	/*
   2228 	 * When we simply write the blocks we lose a rotation for every block
   2229 	 * written.  To avoid this problem, we cluster the buffers into a
   2230 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
   2231 	 * devices can handle, use that for the size of the chunks.
   2232 	 *
   2233 	 * Blocks that are already clusters (from GOP_WRITE), however, we
   2234 	 * don't bother to copy into other clusters.
   2235 	 */
   2236 
   2237 #define CHUNKSIZE MAXPHYS
   2238 
   2239 	if (devvp == NULL)
   2240 		panic("devvp is NULL");
   2241 	for (bpp = sp->bpp, i = nblocks; i;) {
   2242 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   2243 		cl = cbp->b_private;
   2244 
   2245 		cbp->b_flags |= B_ASYNC;
   2246 		cbp->b_cflags |= BC_BUSY;
   2247 		cbp->b_bcount = 0;
   2248 
   2249 #if defined(DEBUG) && defined(DIAGNOSTIC)
   2250 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
   2251 		    / sizeof(int32_t)) {
   2252 			panic("lfs_writeseg: real bpp overwrite");
   2253 		}
   2254 		if (bpp - sp->bpp > lfs_segsize(fs) / fs->lfs_fsize) {
   2255 			panic("lfs_writeseg: theoretical bpp overwrite");
   2256 		}
   2257 #endif
   2258 
   2259 		/*
   2260 		 * Construct the cluster.
   2261 		 */
   2262 		mutex_enter(&lfs_lock);
   2263 		++fs->lfs_iocount;
   2264 		mutex_exit(&lfs_lock);
   2265 		while (i && cbp->b_bcount < CHUNKSIZE) {
   2266 			bp = *bpp;
   2267 
   2268 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   2269 				break;
   2270 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
   2271 				break;
   2272 
   2273 			/* Clusters from GOP_WRITE are expedited */
   2274 			if (bp->b_bcount > fs->lfs_bsize) {
   2275 				if (cbp->b_bcount > 0)
   2276 					/* Put in its own buffer */
   2277 					break;
   2278 				else {
   2279 					cbp->b_data = bp->b_data;
   2280 				}
   2281 			} else if (cbp->b_bcount == 0) {
   2282 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
   2283 							     LFS_NB_CLUSTER);
   2284 				cl->flags |= LFS_CL_MALLOC;
   2285 			}
   2286 #ifdef DIAGNOSTIC
   2287 			if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
   2288 					      btodb(bp->b_bcount - 1))) !=
   2289 			    sp->seg_number) {
   2290 				printf("blk size %d daddr %" PRIx64
   2291 				    " not in seg %d\n",
   2292 				    bp->b_bcount, bp->b_blkno,
   2293 				    sp->seg_number);
   2294 				panic("segment overwrite");
   2295 			}
   2296 #endif
   2297 
   2298 #ifdef LFS_USE_B_INVAL
   2299 			/*
   2300 			 * Fake buffers from the cleaner are marked as B_INVAL.
   2301 			 * We need to copy the data from user space rather than
   2302 			 * from the buffer indicated.
   2303 			 * XXX == what do I do on an error?
   2304 			 */
   2305 			if ((bp->b_cflags & BC_INVAL) != 0 &&
   2306 			    bp->b_iodone != NULL) {
   2307 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   2308 					panic("lfs_writeseg: "
   2309 					    "copyin failed [2]");
   2310 			} else
   2311 #endif /* LFS_USE_B_INVAL */
   2312 			if (cl->flags & LFS_CL_MALLOC) {
   2313 				/* copy data into our cluster. */
   2314 				memcpy(p, bp->b_data, bp->b_bcount);
   2315 				p += bp->b_bcount;
   2316 			}
   2317 
   2318 			cbp->b_bcount += bp->b_bcount;
   2319 			cl->bufsize += bp->b_bcount;
   2320 
   2321 			bp->b_flags &= ~B_READ;
   2322 			bp->b_error = 0;
   2323 			cl->bpp[cl->bufcount++] = bp;
   2324 
   2325 			vp = bp->b_vp;
   2326 			mutex_enter(&bufcache_lock);
   2327 			mutex_enter(vp->v_interlock);
   2328 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
   2329 			reassignbuf(bp, vp);
   2330 			vp->v_numoutput++;
   2331 			mutex_exit(vp->v_interlock);
   2332 			mutex_exit(&bufcache_lock);
   2333 
   2334 			bpp++;
   2335 			i--;
   2336 		}
   2337 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2338 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
   2339 		else
   2340 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
   2341 		mutex_enter(devvp->v_interlock);
   2342 		devvp->v_numoutput++;
   2343 		mutex_exit(devvp->v_interlock);
   2344 		VOP_STRATEGY(devvp, cbp);
   2345 		curlwp->l_ru.ru_oublock++;
   2346 	}
   2347 
   2348 	if (lfs_dostats) {
   2349 		++lfs_stats.psegwrites;
   2350 		lfs_stats.blocktot += nblocks - 1;
   2351 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   2352 			++lfs_stats.psyncwrites;
   2353 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   2354 			++lfs_stats.pcleanwrites;
   2355 			lfs_stats.cleanblocks += nblocks - 1;
   2356 		}
   2357 	}
   2358 
   2359 	return (lfs_initseg(fs) || do_again);
   2360 }
   2361 
   2362 void
   2363 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   2364 {
   2365 	struct buf *bp;
   2366 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2367 	int s;
   2368 
   2369 	ASSERT_MAYBE_SEGLOCK(fs);
   2370 #ifdef DIAGNOSTIC
   2371 	KASSERT(fs->lfs_magic == LFS_MAGIC);
   2372 #endif
   2373 	/*
   2374 	 * If we can write one superblock while another is in
   2375 	 * progress, we risk not having a complete checkpoint if we crash.
   2376 	 * So, block here if a superblock write is in progress.
   2377 	 */
   2378 	mutex_enter(&lfs_lock);
   2379 	s = splbio();
   2380 	while (fs->lfs_sbactive) {
   2381 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
   2382 			&lfs_lock);
   2383 	}
   2384 	fs->lfs_sbactive = daddr;
   2385 	splx(s);
   2386 	mutex_exit(&lfs_lock);
   2387 
   2388 	/* Set timestamp of this version of the superblock */
   2389 	if (fs->lfs_version == 1)
   2390 		fs->lfs_otstamp = time_second;
   2391 	fs->lfs_tstamp = time_second;
   2392 
   2393 	/* Checksum the superblock and copy it into a buffer. */
   2394 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2395 	bp = lfs_newbuf(fs, devvp,
   2396 	    LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
   2397 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
   2398 	    LFS_SBPAD - sizeof(struct dlfs));
   2399 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2400 
   2401 	bp->b_cflags |= BC_BUSY;
   2402 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
   2403 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
   2404 	bp->b_error = 0;
   2405 	bp->b_iodone = lfs_supercallback;
   2406 
   2407 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
   2408 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2409 	else
   2410 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2411 	curlwp->l_ru.ru_oublock++;
   2412 
   2413 	mutex_enter(devvp->v_interlock);
   2414 	devvp->v_numoutput++;
   2415 	mutex_exit(devvp->v_interlock);
   2416 
   2417 	mutex_enter(&lfs_lock);
   2418 	++fs->lfs_iocount;
   2419 	mutex_exit(&lfs_lock);
   2420 	VOP_STRATEGY(devvp, bp);
   2421 }
   2422 
   2423 /*
   2424  * Logical block number match routines used when traversing the dirty block
   2425  * chain.
   2426  */
   2427 int
   2428 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2429 {
   2430 
   2431 	ASSERT_SEGLOCK(fs);
   2432 	return LFS_IS_MALLOC_BUF(bp);
   2433 }
   2434 
   2435 #if 0
   2436 int
   2437 lfs_match_real(struct lfs *fs, struct buf *bp)
   2438 {
   2439 
   2440 	ASSERT_SEGLOCK(fs);
   2441 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
   2442 }
   2443 #endif
   2444 
   2445 int
   2446 lfs_match_data(struct lfs *fs, struct buf *bp)
   2447 {
   2448 
   2449 	ASSERT_SEGLOCK(fs);
   2450 	return (bp->b_lblkno >= 0);
   2451 }
   2452 
   2453 int
   2454 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2455 {
   2456 	daddr_t lbn;
   2457 
   2458 	ASSERT_SEGLOCK(fs);
   2459 	lbn = bp->b_lblkno;
   2460 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
   2461 }
   2462 
   2463 int
   2464 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2465 {
   2466 	daddr_t lbn;
   2467 
   2468 	ASSERT_SEGLOCK(fs);
   2469 	lbn = bp->b_lblkno;
   2470 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
   2471 }
   2472 
   2473 int
   2474 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2475 {
   2476 	daddr_t lbn;
   2477 
   2478 	ASSERT_SEGLOCK(fs);
   2479 	lbn = bp->b_lblkno;
   2480 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
   2481 }
   2482 
   2483 static void
   2484 lfs_free_aiodone(struct buf *bp)
   2485 {
   2486 	struct lfs *fs;
   2487 
   2488 	KERNEL_LOCK(1, curlwp);
   2489 	fs = bp->b_private;
   2490 	ASSERT_NO_SEGLOCK(fs);
   2491 	lfs_freebuf(fs, bp);
   2492 	KERNEL_UNLOCK_LAST(curlwp);
   2493 }
   2494 
   2495 static void
   2496 lfs_super_aiodone(struct buf *bp)
   2497 {
   2498 	struct lfs *fs;
   2499 
   2500 	KERNEL_LOCK(1, curlwp);
   2501 	fs = bp->b_private;
   2502 	ASSERT_NO_SEGLOCK(fs);
   2503 	mutex_enter(&lfs_lock);
   2504 	fs->lfs_sbactive = 0;
   2505 	if (--fs->lfs_iocount <= 1)
   2506 		wakeup(&fs->lfs_iocount);
   2507 	wakeup(&fs->lfs_sbactive);
   2508 	mutex_exit(&lfs_lock);
   2509 	lfs_freebuf(fs, bp);
   2510 	KERNEL_UNLOCK_LAST(curlwp);
   2511 }
   2512 
   2513 static void
   2514 lfs_cluster_aiodone(struct buf *bp)
   2515 {
   2516 	struct lfs_cluster *cl;
   2517 	struct lfs *fs;
   2518 	struct buf *tbp, *fbp;
   2519 	struct vnode *vp, *devvp, *ovp;
   2520 	struct inode *ip;
   2521 	int error;
   2522 
   2523 	KERNEL_LOCK(1, curlwp);
   2524 
   2525 	error = bp->b_error;
   2526 	cl = bp->b_private;
   2527 	fs = cl->fs;
   2528 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   2529 	ASSERT_NO_SEGLOCK(fs);
   2530 
   2531 	/* Put the pages back, and release the buffer */
   2532 	while (cl->bufcount--) {
   2533 		tbp = cl->bpp[cl->bufcount];
   2534 		KASSERT(tbp->b_cflags & BC_BUSY);
   2535 		if (error) {
   2536 			tbp->b_error = error;
   2537 		}
   2538 
   2539 		/*
   2540 		 * We're done with tbp.	 If it has not been re-dirtied since
   2541 		 * the cluster was written, free it.  Otherwise, keep it on
   2542 		 * the locked list to be written again.
   2543 		 */
   2544 		vp = tbp->b_vp;
   2545 
   2546 		tbp->b_flags &= ~B_GATHERED;
   2547 
   2548 		LFS_BCLEAN_LOG(fs, tbp);
   2549 
   2550 		mutex_enter(&bufcache_lock);
   2551 		if (tbp->b_iodone == NULL) {
   2552 			KASSERT(tbp->b_flags & B_LOCKED);
   2553 			bremfree(tbp);
   2554 			if (vp) {
   2555 				mutex_enter(vp->v_interlock);
   2556 				reassignbuf(tbp, vp);
   2557 				mutex_exit(vp->v_interlock);
   2558 			}
   2559 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2560 		}
   2561 
   2562 		if (((tbp->b_flags | tbp->b_oflags) &
   2563 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
   2564 			LFS_UNLOCK_BUF(tbp);
   2565 
   2566 		if (tbp->b_oflags & BO_DONE) {
   2567 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
   2568 				cl->bufcount, (long)tbp->b_flags));
   2569 		}
   2570 
   2571 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
   2572 			/*
   2573 			 * A buffer from the page daemon.
   2574 			 * We use the same iodone as it does,
   2575 			 * so we must manually disassociate its
   2576 			 * buffers from the vp.
   2577 			 */
   2578 			if ((ovp = tbp->b_vp) != NULL) {
   2579 				/* This is just silly */
   2580 				mutex_enter(ovp->v_interlock);
   2581 				brelvp(tbp);
   2582 				mutex_exit(ovp->v_interlock);
   2583 				tbp->b_vp = vp;
   2584 				tbp->b_objlock = vp->v_interlock;
   2585 			}
   2586 			/* Put it back the way it was */
   2587 			tbp->b_flags |= B_ASYNC;
   2588 			/* Master buffers have BC_AGE */
   2589 			if (tbp->b_private == tbp)
   2590 				tbp->b_cflags |= BC_AGE;
   2591 		}
   2592 		mutex_exit(&bufcache_lock);
   2593 
   2594 		biodone(tbp);
   2595 
   2596 		/*
   2597 		 * If this is the last block for this vnode, but
   2598 		 * there are other blocks on its dirty list,
   2599 		 * set IN_MODIFIED/IN_CLEANING depending on what
   2600 		 * sort of block.  Only do this for our mount point,
   2601 		 * not for, e.g., inode blocks that are attached to
   2602 		 * the devvp.
   2603 		 * XXX KS - Shouldn't we set *both* if both types
   2604 		 * of blocks are present (traverse the dirty list?)
   2605 		 */
   2606 		mutex_enter(vp->v_interlock);
   2607 		mutex_enter(&lfs_lock);
   2608 		if (vp != devvp && vp->v_numoutput == 0 &&
   2609 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
   2610 			ip = VTOI(vp);
   2611 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
   2612 			       ip->i_number));
   2613 			if (LFS_IS_MALLOC_BUF(fbp))
   2614 				LFS_SET_UINO(ip, IN_CLEANING);
   2615 			else
   2616 				LFS_SET_UINO(ip, IN_MODIFIED);
   2617 		}
   2618 		cv_broadcast(&vp->v_cv);
   2619 		mutex_exit(&lfs_lock);
   2620 		mutex_exit(vp->v_interlock);
   2621 	}
   2622 
   2623 	/* Fix up the cluster buffer, and release it */
   2624 	if (cl->flags & LFS_CL_MALLOC)
   2625 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
   2626 	putiobuf(bp);
   2627 
   2628 	/* Note i/o done */
   2629 	if (cl->flags & LFS_CL_SYNC) {
   2630 		if (--cl->seg->seg_iocount == 0)
   2631 			wakeup(&cl->seg->seg_iocount);
   2632 	}
   2633 	mutex_enter(&lfs_lock);
   2634 #ifdef DIAGNOSTIC
   2635 	if (fs->lfs_iocount == 0)
   2636 		panic("lfs_cluster_aiodone: zero iocount");
   2637 #endif
   2638 	if (--fs->lfs_iocount <= 1)
   2639 		wakeup(&fs->lfs_iocount);
   2640 	mutex_exit(&lfs_lock);
   2641 
   2642 	KERNEL_UNLOCK_LAST(curlwp);
   2643 
   2644 	pool_put(&fs->lfs_bpppool, cl->bpp);
   2645 	cl->bpp = NULL;
   2646 	pool_put(&fs->lfs_clpool, cl);
   2647 }
   2648 
   2649 static void
   2650 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2651 {
   2652 	/* reset b_iodone for when this is a single-buf i/o. */
   2653 	bp->b_iodone = aiodone;
   2654 
   2655 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
   2656 }
   2657 
   2658 static void
   2659 lfs_cluster_callback(struct buf *bp)
   2660 {
   2661 
   2662 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2663 }
   2664 
   2665 void
   2666 lfs_supercallback(struct buf *bp)
   2667 {
   2668 
   2669 	lfs_generic_callback(bp, lfs_super_aiodone);
   2670 }
   2671 
   2672 /*
   2673  * The only buffers that are going to hit these functions are the
   2674  * segment write blocks, or the segment summaries, or the superblocks.
   2675  *
   2676  * All of the above are created by lfs_newbuf, and so do not need to be
   2677  * released via brelse.
   2678  */
   2679 void
   2680 lfs_callback(struct buf *bp)
   2681 {
   2682 
   2683 	lfs_generic_callback(bp, lfs_free_aiodone);
   2684 }
   2685 
   2686 /*
   2687  * Shellsort (diminishing increment sort) from Data Structures and
   2688  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2689  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2690  * formula (8), page 95.  Roughly O(N^3/2).
   2691  */
   2692 /*
   2693  * This is our own private copy of shellsort because we want to sort
   2694  * two parallel arrays (the array of buffer pointers and the array of
   2695  * logical block numbers) simultaneously.  Note that we cast the array
   2696  * of logical block numbers to a unsigned in this routine so that the
   2697  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2698  */
   2699 
   2700 void
   2701 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
   2702 {
   2703 	static int __rsshell_increments[] = { 4, 1, 0 };
   2704 	int incr, *incrp, t1, t2;
   2705 	struct buf *bp_temp;
   2706 
   2707 #ifdef DEBUG
   2708 	incr = 0;
   2709 	for (t1 = 0; t1 < nmemb; t1++) {
   2710 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2711 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
   2712 				/* dump before panic */
   2713 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
   2714 				    nmemb, size);
   2715 				incr = 0;
   2716 				for (t1 = 0; t1 < nmemb; t1++) {
   2717 					const struct buf *bp = bp_array[t1];
   2718 
   2719 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
   2720 					    PRIu64 "\n", t1,
   2721 					    (uint64_t)bp->b_bcount,
   2722 					    (uint64_t)bp->b_lblkno);
   2723 					printf("lbns:");
   2724 					for (t2 = 0; t2 * size < bp->b_bcount;
   2725 					    t2++) {
   2726 						printf(" %" PRId32,
   2727 						    lb_array[incr++]);
   2728 					}
   2729 					printf("\n");
   2730 				}
   2731 				panic("lfs_shellsort: inconsistent input");
   2732 			}
   2733 		}
   2734 	}
   2735 #endif
   2736 
   2737 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2738 		for (t1 = incr; t1 < nmemb; ++t1)
   2739 			for (t2 = t1 - incr; t2 >= 0;)
   2740 				if ((u_int32_t)bp_array[t2]->b_lblkno >
   2741 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
   2742 					bp_temp = bp_array[t2];
   2743 					bp_array[t2] = bp_array[t2 + incr];
   2744 					bp_array[t2 + incr] = bp_temp;
   2745 					t2 -= incr;
   2746 				} else
   2747 					break;
   2748 
   2749 	/* Reform the list of logical blocks */
   2750 	incr = 0;
   2751 	for (t1 = 0; t1 < nmemb; t1++) {
   2752 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
   2753 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
   2754 		}
   2755 	}
   2756 }
   2757 
   2758 /*
   2759  * Call vget with LK_NOWAIT.  If we are the one who is dead,
   2760  * however, we must press on.  Just fake success in that case.
   2761  */
   2762 int
   2763 lfs_vref(struct vnode *vp)
   2764 {
   2765 	struct lfs *fs;
   2766 
   2767 	KASSERT(mutex_owned(vp->v_interlock));
   2768 
   2769 	fs = VTOI(vp)->i_lfs;
   2770 
   2771 	ASSERT_MAYBE_SEGLOCK(fs);
   2772 
   2773 	/*
   2774 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2775 	 * being able to flush all of the pages from this vnode, which
   2776 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2777 	 */
   2778 	if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
   2779  		++fs->lfs_flushvp_fakevref;
   2780 		mutex_exit(vp->v_interlock);
   2781  		return 0;
   2782  	}
   2783 
   2784 	return vget(vp, LK_NOWAIT, false /* !wait */);
   2785 }
   2786 
   2787 /*
   2788  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2789  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2790  */
   2791 void
   2792 lfs_vunref(struct vnode *vp)
   2793 {
   2794 	struct lfs *fs;
   2795 
   2796 	fs = VTOI(vp)->i_lfs;
   2797 	ASSERT_MAYBE_SEGLOCK(fs);
   2798 
   2799 	/*
   2800 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2801 	 */
   2802 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
   2803 		--fs->lfs_flushvp_fakevref;
   2804 		return;
   2805 	}
   2806 
   2807 	/* does not call inactive XXX sure it does XXX */
   2808 	vrele(vp);
   2809 }
   2810 
   2811 /*
   2812  * We use this when we have vnodes that were loaded in solely for cleaning.
   2813  * There is no reason to believe that these vnodes will be referenced again
   2814  * soon, since the cleaning process is unrelated to normal filesystem
   2815  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2816  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2817  * cleaning at the head of the list, instead.
   2818  */
   2819 void
   2820 lfs_vunref_head(struct vnode *vp)
   2821 {
   2822 
   2823 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
   2824 
   2825 	/* does not call inactive XXX sure it does XXX,
   2826 	   inserts non-held vnode at head of freelist */
   2827 	vrele(vp);
   2828 }
   2829 
   2830 
   2831 /*
   2832  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
   2833  * point at uninitialized space.
   2834  */
   2835 void
   2836 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
   2837 {
   2838 	struct segment *sp = fs->lfs_sp;
   2839 
   2840 	KASSERT(vers > 0);
   2841 
   2842 	if (sp->seg_bytes_left < fs->lfs_bsize ||
   2843 	    sp->sum_bytes_left < sizeof(struct finfo))
   2844 		(void) lfs_writeseg(fs, fs->lfs_sp);
   2845 
   2846 	sp->sum_bytes_left -= FINFOSIZE;
   2847 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2848 	sp->fip->fi_nblocks = 0;
   2849 	sp->fip->fi_ino = ino;
   2850 	sp->fip->fi_version = vers;
   2851 }
   2852 
   2853 /*
   2854  * Release the FINFO entry, either clearing out an unused entry or
   2855  * advancing us to the next available entry.
   2856  */
   2857 void
   2858 lfs_release_finfo(struct lfs *fs)
   2859 {
   2860 	struct segment *sp = fs->lfs_sp;
   2861 
   2862 	if (sp->fip->fi_nblocks != 0) {
   2863 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
   2864 			sizeof(int32_t) * sp->fip->fi_nblocks);
   2865 		sp->start_lbp = &sp->fip->fi_blocks[0];
   2866 	} else {
   2867 		sp->sum_bytes_left += FINFOSIZE;
   2868 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2869 	}
   2870 }
   2871