lfs_segment.c revision 1.245 1 /* $NetBSD: lfs_segment.c,v 1.245 2015/07/28 05:09:35 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.245 2015/07/28 05:09:35 dholland Exp $");
64
65 #define _VFS_VNODE_PRIVATE /* XXX: check for VI_MARKER, this has to go */
66
67 #ifdef DEBUG
68 # define vndebug(vp, str) do { \
69 if (VTOI(vp)->i_flag & IN_CLEANING) \
70 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
71 VTOI(vp)->i_number, (str), op)); \
72 } while(0)
73 #else
74 # define vndebug(vp, str)
75 #endif
76 #define ivndebug(vp, str) \
77 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
78
79 #if defined(_KERNEL_OPT)
80 #include "opt_ddb.h"
81 #endif
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/namei.h>
86 #include <sys/kernel.h>
87 #include <sys/resourcevar.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/buf.h>
91 #include <sys/proc.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/kauth.h>
95 #include <sys/syslog.h>
96
97 #include <miscfs/specfs/specdev.h>
98 #include <miscfs/fifofs/fifo.h>
99
100 #include <ufs/lfs/ulfs_inode.h>
101 #include <ufs/lfs/ulfsmount.h>
102 #include <ufs/lfs/ulfs_extern.h>
103
104 #include <ufs/lfs/lfs.h>
105 #include <ufs/lfs/lfs_accessors.h>
106 #include <ufs/lfs/lfs_kernel.h>
107 #include <ufs/lfs/lfs_extern.h>
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
113
114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 static void lfs_free_aiodone(struct buf *);
116 static void lfs_super_aiodone(struct buf *);
117 static void lfs_cluster_aiodone(struct buf *);
118 static void lfs_cluster_callback(struct buf *);
119
120 /*
121 * Determine if it's OK to start a partial in this segment, or if we need
122 * to go on to a new segment.
123 */
124 #define LFS_PARTIAL_FITS(fs) \
125 (lfs_sb_getfsbpseg(fs) - \
126 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
127 lfs_sb_getfrag(fs))
128
129 /*
130 * Figure out whether we should do a checkpoint write or go ahead with
131 * an ordinary write.
132 */
133 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
134 ((flags & SEGM_CLEAN) == 0 && \
135 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
136 (flags & SEGM_CKP) || \
137 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
138
139 int lfs_match_fake(struct lfs *, struct buf *);
140 void lfs_newseg(struct lfs *);
141 /* XXX ondisk32 */
142 void lfs_shellsort(struct buf **, int32_t *, int, int);
143 void lfs_supercallback(struct buf *);
144 void lfs_updatemeta(struct segment *);
145 void lfs_writesuper(struct lfs *, daddr_t);
146 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
147 struct segment *sp, int dirops);
148
149 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
150 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
151 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
152 int lfs_dirvcount = 0; /* # active dirops */
153
154 /* Statistics Counters */
155 int lfs_dostats = 1;
156 struct lfs_stats lfs_stats;
157
158 /* op values to lfs_writevnodes */
159 #define VN_REG 0
160 #define VN_DIROP 1
161 #define VN_EMPTY 2
162 #define VN_CLEAN 3
163
164 /*
165 * XXX KS - Set modification time on the Ifile, so the cleaner can
166 * read the fs mod time off of it. We don't set IN_UPDATE here,
167 * since we don't really need this to be flushed to disk (and in any
168 * case that wouldn't happen to the Ifile until we checkpoint).
169 */
170 void
171 lfs_imtime(struct lfs *fs)
172 {
173 struct timespec ts;
174 struct inode *ip;
175
176 ASSERT_MAYBE_SEGLOCK(fs);
177 vfs_timestamp(&ts);
178 ip = VTOI(fs->lfs_ivnode);
179 ip->i_ffs1_mtime = ts.tv_sec;
180 ip->i_ffs1_mtimensec = ts.tv_nsec;
181 }
182
183 /*
184 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
185 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
186 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
187 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
188 */
189
190 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
191
192 int
193 lfs_vflush(struct vnode *vp)
194 {
195 struct inode *ip;
196 struct lfs *fs;
197 struct segment *sp;
198 struct buf *bp, *nbp, *tbp, *tnbp;
199 int error;
200 int flushed;
201 int relock;
202
203 ip = VTOI(vp);
204 fs = VFSTOULFS(vp->v_mount)->um_lfs;
205 relock = 0;
206
207 top:
208 KASSERT(mutex_owned(vp->v_interlock) == false);
209 KASSERT(mutex_owned(&lfs_lock) == false);
210 KASSERT(mutex_owned(&bufcache_lock) == false);
211 ASSERT_NO_SEGLOCK(fs);
212 if (ip->i_flag & IN_CLEANING) {
213 ivndebug(vp,"vflush/in_cleaning");
214 mutex_enter(&lfs_lock);
215 LFS_CLR_UINO(ip, IN_CLEANING);
216 LFS_SET_UINO(ip, IN_MODIFIED);
217 mutex_exit(&lfs_lock);
218
219 /*
220 * Toss any cleaning buffers that have real counterparts
221 * to avoid losing new data.
222 */
223 mutex_enter(vp->v_interlock);
224 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
225 nbp = LIST_NEXT(bp, b_vnbufs);
226 if (!LFS_IS_MALLOC_BUF(bp))
227 continue;
228 /*
229 * Look for pages matching the range covered
230 * by cleaning blocks. It's okay if more dirty
231 * pages appear, so long as none disappear out
232 * from under us.
233 */
234 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
235 vp != fs->lfs_ivnode) {
236 struct vm_page *pg;
237 voff_t off;
238
239 for (off = lfs_lblktosize(fs, bp->b_lblkno);
240 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
241 off += PAGE_SIZE) {
242 pg = uvm_pagelookup(&vp->v_uobj, off);
243 if (pg == NULL)
244 continue;
245 if ((pg->flags & PG_CLEAN) == 0 ||
246 pmap_is_modified(pg)) {
247 lfs_sb_addavail(fs,
248 lfs_btofsb(fs,
249 bp->b_bcount));
250 wakeup(&fs->lfs_availsleep);
251 mutex_exit(vp->v_interlock);
252 lfs_freebuf(fs, bp);
253 mutex_enter(vp->v_interlock);
254 bp = NULL;
255 break;
256 }
257 }
258 }
259 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
260 tbp = tnbp)
261 {
262 tnbp = LIST_NEXT(tbp, b_vnbufs);
263 if (tbp->b_vp == bp->b_vp
264 && tbp->b_lblkno == bp->b_lblkno
265 && tbp != bp)
266 {
267 lfs_sb_addavail(fs, lfs_btofsb(fs,
268 bp->b_bcount));
269 wakeup(&fs->lfs_availsleep);
270 mutex_exit(vp->v_interlock);
271 lfs_freebuf(fs, bp);
272 mutex_enter(vp->v_interlock);
273 bp = NULL;
274 break;
275 }
276 }
277 }
278 } else {
279 mutex_enter(vp->v_interlock);
280 }
281
282 /* If the node is being written, wait until that is done */
283 while (WRITEINPROG(vp)) {
284 ivndebug(vp,"vflush/writeinprog");
285 cv_wait(&vp->v_cv, vp->v_interlock);
286 }
287 error = vdead_check(vp, VDEAD_NOWAIT);
288 mutex_exit(vp->v_interlock);
289
290 /* Protect against deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
292 if (error != 0) {
293 fs->lfs_reclino = ip->i_number;
294 }
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 if (ip->i_lfs_iflags & LFSI_DELETED) {
298 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
299 ip->i_number));
300 /* Drain v_numoutput */
301 mutex_enter(vp->v_interlock);
302 while (vp->v_numoutput > 0) {
303 cv_wait(&vp->v_cv, vp->v_interlock);
304 }
305 KASSERT(vp->v_numoutput == 0);
306 mutex_exit(vp->v_interlock);
307
308 mutex_enter(&bufcache_lock);
309 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
310 nbp = LIST_NEXT(bp, b_vnbufs);
311
312 KASSERT((bp->b_flags & B_GATHERED) == 0);
313 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
314 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
315 wakeup(&fs->lfs_availsleep);
316 }
317 /* Copied from lfs_writeseg */
318 if (bp->b_iodone != NULL) {
319 mutex_exit(&bufcache_lock);
320 biodone(bp);
321 mutex_enter(&bufcache_lock);
322 } else {
323 bremfree(bp);
324 LFS_UNLOCK_BUF(bp);
325 mutex_enter(vp->v_interlock);
326 bp->b_flags &= ~(B_READ | B_GATHERED);
327 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
328 bp->b_error = 0;
329 reassignbuf(bp, vp);
330 mutex_exit(vp->v_interlock);
331 brelse(bp, 0);
332 }
333 }
334 mutex_exit(&bufcache_lock);
335 LFS_CLR_UINO(ip, IN_CLEANING);
336 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
337 ip->i_flag &= ~IN_ALLMOD;
338 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
339 ip->i_number));
340 lfs_segunlock(fs);
341
342 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
343
344 return 0;
345 }
346
347 fs->lfs_flushvp = vp;
348 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
349 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
350 fs->lfs_flushvp = NULL;
351 KASSERT(fs->lfs_flushvp_fakevref == 0);
352 lfs_segunlock(fs);
353
354 /* Make sure that any pending buffers get written */
355 mutex_enter(vp->v_interlock);
356 while (vp->v_numoutput > 0) {
357 cv_wait(&vp->v_cv, vp->v_interlock);
358 }
359 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
360 KASSERT(vp->v_numoutput == 0);
361 mutex_exit(vp->v_interlock);
362
363 return error;
364 }
365 sp = fs->lfs_sp;
366
367 flushed = 0;
368 if (VPISEMPTY(vp)) {
369 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
370 ++flushed;
371 } else if ((ip->i_flag & IN_CLEANING) &&
372 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
373 ivndebug(vp,"vflush/clean");
374 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
375 ++flushed;
376 } else if (lfs_dostats) {
377 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
378 ++lfs_stats.vflush_invoked;
379 ivndebug(vp,"vflush");
380 }
381
382 #ifdef DIAGNOSTIC
383 if (vp->v_uflag & VU_DIROP) {
384 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
385 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
386 }
387 #endif
388
389 do {
390 #ifdef DEBUG
391 int loopcount = 0;
392 #endif
393 do {
394 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
395 relock = lfs_writefile(fs, sp, vp);
396 if (relock && vp != fs->lfs_ivnode) {
397 /*
398 * Might have to wait for the
399 * cleaner to run; but we're
400 * still not done with this vnode.
401 * XXX we can do better than this.
402 */
403 KDASSERT(ip->i_number != LFS_IFILE_INUM);
404 lfs_writeinode(fs, sp, ip);
405 mutex_enter(&lfs_lock);
406 LFS_SET_UINO(ip, IN_MODIFIED);
407 mutex_exit(&lfs_lock);
408 lfs_writeseg(fs, sp);
409 lfs_segunlock(fs);
410 lfs_segunlock_relock(fs);
411 goto top;
412 }
413 }
414 /*
415 * If we begin a new segment in the middle of writing
416 * the Ifile, it creates an inconsistent checkpoint,
417 * since the Ifile information for the new segment
418 * is not up-to-date. Take care of this here by
419 * sending the Ifile through again in case there
420 * are newly dirtied blocks. But wait, there's more!
421 * This second Ifile write could *also* cross a segment
422 * boundary, if the first one was large. The second
423 * one is guaranteed to be no more than 8 blocks,
424 * though (two segment blocks and supporting indirects)
425 * so the third write *will not* cross the boundary.
426 */
427 if (vp == fs->lfs_ivnode) {
428 lfs_writefile(fs, sp, vp);
429 lfs_writefile(fs, sp, vp);
430 }
431 #ifdef DEBUG
432 if (++loopcount > 2)
433 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
434 #endif
435 } while (lfs_writeinode(fs, sp, ip));
436 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
437
438 if (lfs_dostats) {
439 ++lfs_stats.nwrites;
440 if (sp->seg_flags & SEGM_SYNC)
441 ++lfs_stats.nsync_writes;
442 if (sp->seg_flags & SEGM_CKP)
443 ++lfs_stats.ncheckpoints;
444 }
445 /*
446 * If we were called from somewhere that has already held the seglock
447 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
448 * the write to complete because we are still locked.
449 * Since lfs_vflush() must return the vnode with no dirty buffers,
450 * we must explicitly wait, if that is the case.
451 *
452 * We compare the iocount against 1, not 0, because it is
453 * artificially incremented by lfs_seglock().
454 */
455 mutex_enter(&lfs_lock);
456 if (fs->lfs_seglock > 1) {
457 while (fs->lfs_iocount > 1)
458 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
459 "lfs_vflush", 0, &lfs_lock);
460 }
461 mutex_exit(&lfs_lock);
462
463 lfs_segunlock(fs);
464
465 /* Wait for these buffers to be recovered by aiodoned */
466 mutex_enter(vp->v_interlock);
467 while (vp->v_numoutput > 0) {
468 cv_wait(&vp->v_cv, vp->v_interlock);
469 }
470 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
471 KASSERT(vp->v_numoutput == 0);
472 mutex_exit(vp->v_interlock);
473
474 fs->lfs_flushvp = NULL;
475 KASSERT(fs->lfs_flushvp_fakevref == 0);
476
477 return (0);
478 }
479
480 int
481 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
482 {
483 struct inode *ip;
484 struct vnode *vp;
485 int inodes_written = 0;
486 int error = 0;
487
488 ASSERT_SEGLOCK(fs);
489 loop:
490 /* start at last (newest) vnode. */
491 mutex_enter(&mntvnode_lock);
492 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
493 /*
494 * If the vnode that we are about to sync is no longer
495 * associated with this mount point, start over.
496 */
497 if (vp->v_mount != mp) {
498 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
499 /*
500 * After this, pages might be busy
501 * due to our own previous putpages.
502 * Start actual segment write here to avoid deadlock.
503 * If we were just writing one segment and we've done
504 * that, break out.
505 */
506 mutex_exit(&mntvnode_lock);
507 if (lfs_writeseg(fs, sp) &&
508 (sp->seg_flags & SEGM_SINGLE) &&
509 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
510 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
511 break;
512 }
513 goto loop;
514 }
515
516 mutex_enter(vp->v_interlock);
517 if (vp->v_type == VNON || (vp->v_iflag & VI_MARKER) ||
518 vdead_check(vp, VDEAD_NOWAIT) != 0) {
519 mutex_exit(vp->v_interlock);
520 continue;
521 }
522
523 ip = VTOI(vp);
524 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
525 (op != VN_DIROP && op != VN_CLEAN &&
526 (vp->v_uflag & VU_DIROP))) {
527 mutex_exit(vp->v_interlock);
528 vndebug(vp,"dirop");
529 continue;
530 }
531
532 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
533 mutex_exit(vp->v_interlock);
534 vndebug(vp,"empty");
535 continue;
536 }
537
538 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
539 && vp != fs->lfs_flushvp
540 && !(ip->i_flag & IN_CLEANING)) {
541 mutex_exit(vp->v_interlock);
542 vndebug(vp,"cleaning");
543 continue;
544 }
545
546 mutex_exit(&mntvnode_lock);
547 if (vget(vp, LK_NOWAIT, false /* !wait */)) {
548 vndebug(vp,"vget");
549 mutex_enter(&mntvnode_lock);
550 continue;
551 }
552
553 /*
554 * Write the inode/file if dirty and it's not the IFILE.
555 */
556 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
557 if (ip->i_number != LFS_IFILE_INUM) {
558 error = lfs_writefile(fs, sp, vp);
559 if (error) {
560 vrele(vp);
561 if (error == EAGAIN) {
562 /*
563 * This error from lfs_putpages
564 * indicates we need to drop
565 * the segment lock and start
566 * over after the cleaner has
567 * had a chance to run.
568 */
569 lfs_writeinode(fs, sp, ip);
570 lfs_writeseg(fs, sp);
571 if (!VPISEMPTY(vp) &&
572 !WRITEINPROG(vp) &&
573 !(ip->i_flag & IN_ALLMOD)) {
574 mutex_enter(&lfs_lock);
575 LFS_SET_UINO(ip, IN_MODIFIED);
576 mutex_exit(&lfs_lock);
577 }
578 mutex_enter(&mntvnode_lock);
579 break;
580 }
581 error = 0; /* XXX not quite right */
582 mutex_enter(&mntvnode_lock);
583 continue;
584 }
585
586 if (!VPISEMPTY(vp)) {
587 if (WRITEINPROG(vp)) {
588 ivndebug(vp,"writevnodes/write2");
589 } else if (!(ip->i_flag & IN_ALLMOD)) {
590 mutex_enter(&lfs_lock);
591 LFS_SET_UINO(ip, IN_MODIFIED);
592 mutex_exit(&lfs_lock);
593 }
594 }
595 (void) lfs_writeinode(fs, sp, ip);
596 inodes_written++;
597 }
598 }
599
600 vrele(vp);
601
602 mutex_enter(&mntvnode_lock);
603 }
604 mutex_exit(&mntvnode_lock);
605 return error;
606 }
607
608 /*
609 * Do a checkpoint.
610 */
611 int
612 lfs_segwrite(struct mount *mp, int flags)
613 {
614 struct buf *bp;
615 struct inode *ip;
616 struct lfs *fs;
617 struct segment *sp;
618 struct vnode *vp;
619 SEGUSE *segusep;
620 int do_ckp, did_ckp, error;
621 unsigned n, segleft, maxseg, sn, i, curseg;
622 int writer_set = 0;
623 int dirty;
624 int redo;
625 int um_error;
626
627 fs = VFSTOULFS(mp)->um_lfs;
628 ASSERT_MAYBE_SEGLOCK(fs);
629
630 if (fs->lfs_ronly)
631 return EROFS;
632
633 lfs_imtime(fs);
634
635 /*
636 * Allocate a segment structure and enough space to hold pointers to
637 * the maximum possible number of buffers which can be described in a
638 * single summary block.
639 */
640 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
641
642 /* We can't do a partial write and checkpoint at the same time. */
643 if (do_ckp)
644 flags &= ~SEGM_SINGLE;
645
646 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
647 sp = fs->lfs_sp;
648 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
649 do_ckp = 1;
650
651 /*
652 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
653 * in which case we have to flush *all* buffers off of this vnode.
654 * We don't care about other nodes, but write any non-dirop nodes
655 * anyway in anticipation of another getnewvnode().
656 *
657 * If we're cleaning we only write cleaning and ifile blocks, and
658 * no dirops, since otherwise we'd risk corruption in a crash.
659 */
660 if (sp->seg_flags & SEGM_CLEAN)
661 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
662 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
663 do {
664 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
665 if ((sp->seg_flags & SEGM_SINGLE) &&
666 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
667 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
668 break;
669 }
670
671 if (do_ckp || fs->lfs_dirops == 0) {
672 if (!writer_set) {
673 lfs_writer_enter(fs, "lfs writer");
674 writer_set = 1;
675 }
676 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
677 if (um_error == 0)
678 um_error = error;
679 /* In case writevnodes errored out */
680 lfs_flush_dirops(fs);
681 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
682 lfs_finalize_fs_seguse(fs);
683 }
684 if (do_ckp && um_error) {
685 lfs_segunlock_relock(fs);
686 sp = fs->lfs_sp;
687 }
688 } while (do_ckp && um_error != 0);
689 }
690
691 /*
692 * If we are doing a checkpoint, mark everything since the
693 * last checkpoint as no longer ACTIVE.
694 */
695 if (do_ckp || fs->lfs_doifile) {
696 segleft = lfs_sb_getnseg(fs);
697 curseg = 0;
698 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
699 dirty = 0;
700 if (bread(fs->lfs_ivnode, lfs_sb_getcleansz(fs) + n,
701 lfs_sb_getbsize(fs), B_MODIFY, &bp))
702 panic("lfs_segwrite: ifile read");
703 segusep = (SEGUSE *)bp->b_data;
704 maxseg = min(segleft, lfs_sb_getsepb(fs));
705 for (i = 0; i < maxseg; i++) {
706 sn = curseg + i;
707 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
708 segusep->su_flags & SEGUSE_ACTIVE) {
709 segusep->su_flags &= ~SEGUSE_ACTIVE;
710 --fs->lfs_nactive;
711 ++dirty;
712 }
713 fs->lfs_suflags[fs->lfs_activesb][sn] =
714 segusep->su_flags;
715 if (fs->lfs_version > 1)
716 ++segusep;
717 else
718 segusep = (SEGUSE *)
719 ((SEGUSE_V1 *)segusep + 1);
720 }
721
722 if (dirty)
723 error = LFS_BWRITE_LOG(bp); /* Ifile */
724 else
725 brelse(bp, 0);
726 segleft -= lfs_sb_getsepb(fs);
727 curseg += lfs_sb_getsepb(fs);
728 }
729 }
730
731 KASSERT(LFS_SEGLOCK_HELD(fs));
732
733 did_ckp = 0;
734 if (do_ckp || fs->lfs_doifile) {
735 vp = fs->lfs_ivnode;
736 #ifdef DEBUG
737 int loopcount = 0;
738 #endif
739 do {
740 #ifdef DEBUG
741 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
742 #endif
743 mutex_enter(&lfs_lock);
744 fs->lfs_flags &= ~LFS_IFDIRTY;
745 mutex_exit(&lfs_lock);
746
747 ip = VTOI(vp);
748
749 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
750 /*
751 * Ifile has no pages, so we don't need
752 * to check error return here.
753 */
754 lfs_writefile(fs, sp, vp);
755 /*
756 * Ensure the Ifile takes the current segment
757 * into account. See comment in lfs_vflush.
758 */
759 lfs_writefile(fs, sp, vp);
760 lfs_writefile(fs, sp, vp);
761 }
762
763 if (ip->i_flag & IN_ALLMOD)
764 ++did_ckp;
765 #if 0
766 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
767 #else
768 redo = lfs_writeinode(fs, sp, ip);
769 #endif
770 redo += lfs_writeseg(fs, sp);
771 mutex_enter(&lfs_lock);
772 redo += (fs->lfs_flags & LFS_IFDIRTY);
773 mutex_exit(&lfs_lock);
774 #ifdef DEBUG
775 if (++loopcount > 2)
776 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
777 loopcount);
778 #endif
779 } while (redo && do_ckp);
780
781 /*
782 * Unless we are unmounting, the Ifile may continue to have
783 * dirty blocks even after a checkpoint, due to changes to
784 * inodes' atime. If we're checkpointing, it's "impossible"
785 * for other parts of the Ifile to be dirty after the loop
786 * above, since we hold the segment lock.
787 */
788 mutex_enter(vp->v_interlock);
789 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
790 LFS_CLR_UINO(ip, IN_ALLMOD);
791 }
792 #ifdef DIAGNOSTIC
793 else if (do_ckp) {
794 int do_panic = 0;
795 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
796 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
797 lfs_sb_getsegtabsz(fs) &&
798 !(bp->b_flags & B_GATHERED)) {
799 printf("ifile lbn %ld still dirty (flags %lx)\n",
800 (long)bp->b_lblkno,
801 (long)bp->b_flags);
802 ++do_panic;
803 }
804 }
805 if (do_panic)
806 panic("dirty blocks");
807 }
808 #endif
809 mutex_exit(vp->v_interlock);
810 } else {
811 (void) lfs_writeseg(fs, sp);
812 }
813
814 /* Note Ifile no longer needs to be written */
815 fs->lfs_doifile = 0;
816 if (writer_set)
817 lfs_writer_leave(fs);
818
819 /*
820 * If we didn't write the Ifile, we didn't really do anything.
821 * That means that (1) there is a checkpoint on disk and (2)
822 * nothing has changed since it was written.
823 *
824 * Take the flags off of the segment so that lfs_segunlock
825 * doesn't have to write the superblock either.
826 */
827 if (do_ckp && !did_ckp) {
828 sp->seg_flags &= ~SEGM_CKP;
829 }
830
831 if (lfs_dostats) {
832 ++lfs_stats.nwrites;
833 if (sp->seg_flags & SEGM_SYNC)
834 ++lfs_stats.nsync_writes;
835 if (sp->seg_flags & SEGM_CKP)
836 ++lfs_stats.ncheckpoints;
837 }
838 lfs_segunlock(fs);
839 return (0);
840 }
841
842 /*
843 * Write the dirty blocks associated with a vnode.
844 */
845 int
846 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
847 {
848 struct inode *ip;
849 int i, frag;
850 int error;
851
852 ASSERT_SEGLOCK(fs);
853 error = 0;
854 ip = VTOI(vp);
855
856 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
857
858 if (vp->v_uflag & VU_DIROP)
859 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
860
861 if (sp->seg_flags & SEGM_CLEAN) {
862 lfs_gather(fs, sp, vp, lfs_match_fake);
863 /*
864 * For a file being flushed, we need to write *all* blocks.
865 * This means writing the cleaning blocks first, and then
866 * immediately following with any non-cleaning blocks.
867 * The same is true of the Ifile since checkpoints assume
868 * that all valid Ifile blocks are written.
869 */
870 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
871 lfs_gather(fs, sp, vp, lfs_match_data);
872 /*
873 * Don't call VOP_PUTPAGES: if we're flushing,
874 * we've already done it, and the Ifile doesn't
875 * use the page cache.
876 */
877 }
878 } else {
879 lfs_gather(fs, sp, vp, lfs_match_data);
880 /*
881 * If we're flushing, we've already called VOP_PUTPAGES
882 * so don't do it again. Otherwise, we want to write
883 * everything we've got.
884 */
885 if (!IS_FLUSHING(fs, vp)) {
886 mutex_enter(vp->v_interlock);
887 error = VOP_PUTPAGES(vp, 0, 0,
888 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
889 }
890 }
891
892 /*
893 * It may not be necessary to write the meta-data blocks at this point,
894 * as the roll-forward recovery code should be able to reconstruct the
895 * list.
896 *
897 * We have to write them anyway, though, under two conditions: (1) the
898 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
899 * checkpointing.
900 *
901 * BUT if we are cleaning, we might have indirect blocks that refer to
902 * new blocks not being written yet, in addition to fragments being
903 * moved out of a cleaned segment. If that is the case, don't
904 * write the indirect blocks, or the finfo will have a small block
905 * in the middle of it!
906 * XXX in this case isn't the inode size wrong too?
907 */
908 frag = 0;
909 if (sp->seg_flags & SEGM_CLEAN) {
910 for (i = 0; i < ULFS_NDADDR; i++)
911 if (ip->i_lfs_fragsize[i] > 0 &&
912 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
913 ++frag;
914 }
915 #ifdef DIAGNOSTIC
916 if (frag > 1)
917 panic("lfs_writefile: more than one fragment!");
918 #endif
919 if (IS_FLUSHING(fs, vp) ||
920 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
921 lfs_gather(fs, sp, vp, lfs_match_indir);
922 lfs_gather(fs, sp, vp, lfs_match_dindir);
923 lfs_gather(fs, sp, vp, lfs_match_tindir);
924 }
925 lfs_release_finfo(fs);
926
927 return error;
928 }
929
930 /*
931 * Update segment accounting to reflect this inode's change of address.
932 */
933 static int
934 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
935 {
936 struct buf *bp;
937 daddr_t daddr;
938 IFILE *ifp;
939 SEGUSE *sup;
940 ino_t ino;
941 int redo_ifile;
942 u_int32_t sn;
943
944 redo_ifile = 0;
945
946 /*
947 * If updating the ifile, update the super-block. Update the disk
948 * address and access times for this inode in the ifile.
949 */
950 ino = ip->i_number;
951 if (ino == LFS_IFILE_INUM) {
952 daddr = lfs_sb_getidaddr(fs);
953 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
954 } else {
955 LFS_IENTRY(ifp, fs, ino, bp);
956 daddr = ifp->if_daddr;
957 ifp->if_daddr = LFS_DBTOFSB(fs, ndaddr);
958 (void)LFS_BWRITE_LOG(bp); /* Ifile */
959 }
960
961 /*
962 * If this is the Ifile and lfs_offset is set to the first block
963 * in the segment, dirty the new segment's accounting block
964 * (XXX should already be dirty?) and tell the caller to do it again.
965 */
966 if (ip->i_number == LFS_IFILE_INUM) {
967 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
968 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
969 lfs_sb_getoffset(fs)) {
970 LFS_SEGENTRY(sup, fs, sn, bp);
971 KASSERT(bp->b_oflags & BO_DELWRI);
972 LFS_WRITESEGENTRY(sup, fs, sn, bp);
973 /* fs->lfs_flags |= LFS_IFDIRTY; */
974 redo_ifile |= 1;
975 }
976 }
977
978 /*
979 * The inode's last address should not be in the current partial
980 * segment, except under exceptional circumstances (lfs_writevnodes
981 * had to start over, and in the meantime more blocks were written
982 * to a vnode). Both inodes will be accounted to this segment
983 * in lfs_writeseg so we need to subtract the earlier version
984 * here anyway. The segment count can temporarily dip below
985 * zero here; keep track of how many duplicates we have in
986 * "dupino" so we don't panic below.
987 */
988 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
989 ++sp->ndupino;
990 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
991 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
992 (long long)daddr, sp->ndupino));
993 }
994 /*
995 * Account the inode: it no longer belongs to its former segment,
996 * though it will not belong to the new segment until that segment
997 * is actually written.
998 */
999 if (daddr != LFS_UNUSED_DADDR) {
1000 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1001 #ifdef DIAGNOSTIC
1002 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1003 #endif
1004 LFS_SEGENTRY(sup, fs, oldsn, bp);
1005 #ifdef DIAGNOSTIC
1006 if (sup->su_nbytes +
1007 sizeof (struct ulfs1_dinode) * ndupino
1008 < sizeof (struct ulfs1_dinode)) {
1009 printf("lfs_writeinode: negative bytes "
1010 "(segment %" PRIu32 " short by %d, "
1011 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1012 ", daddr=%" PRId64 ", su_nbytes=%u, "
1013 "ndupino=%d)\n",
1014 lfs_dtosn(fs, daddr),
1015 (int)sizeof (struct ulfs1_dinode) *
1016 (1 - sp->ndupino) - sup->su_nbytes,
1017 oldsn, sp->seg_number, daddr,
1018 (unsigned int)sup->su_nbytes,
1019 sp->ndupino);
1020 panic("lfs_writeinode: negative bytes");
1021 sup->su_nbytes = sizeof (struct ulfs1_dinode);
1022 }
1023 #endif
1024 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1025 lfs_dtosn(fs, daddr), sizeof (struct ulfs1_dinode), ino));
1026 sup->su_nbytes -= sizeof (struct ulfs1_dinode);
1027 redo_ifile |=
1028 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1029 if (redo_ifile) {
1030 mutex_enter(&lfs_lock);
1031 fs->lfs_flags |= LFS_IFDIRTY;
1032 mutex_exit(&lfs_lock);
1033 /* Don't double-account */
1034 lfs_sb_setidaddr(fs, 0x0);
1035 }
1036 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1037 }
1038
1039 return redo_ifile;
1040 }
1041
1042 int
1043 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1044 {
1045 struct buf *bp;
1046 struct ulfs1_dinode *cdp;
1047 struct vnode *vp = ITOV(ip);
1048 daddr_t daddr;
1049 int32_t *daddrp; /* XXX ondisk32 */
1050 int i, ndx;
1051 int redo_ifile = 0;
1052 int gotblk = 0;
1053 int count;
1054
1055 ASSERT_SEGLOCK(fs);
1056 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1057 return (0);
1058
1059 /* Can't write ifile when writer is not set */
1060 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1061 (sp->seg_flags & SEGM_CLEAN));
1062
1063 /*
1064 * If this is the Ifile, see if writing it here will generate a
1065 * temporary misaccounting. If it will, do the accounting and write
1066 * the blocks, postponing the inode write until the accounting is
1067 * solid.
1068 */
1069 count = 0;
1070 while (vp == fs->lfs_ivnode) {
1071 int redo = 0;
1072
1073 if (sp->idp == NULL && sp->ibp == NULL &&
1074 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1075 sp->sum_bytes_left < sizeof(int32_t))) {
1076 (void) lfs_writeseg(fs, sp);
1077 continue;
1078 }
1079
1080 /* Look for dirty Ifile blocks */
1081 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1082 if (!(bp->b_flags & B_GATHERED)) {
1083 redo = 1;
1084 break;
1085 }
1086 }
1087
1088 if (redo == 0)
1089 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1090 if (redo == 0)
1091 break;
1092
1093 if (sp->idp) {
1094 sp->idp->di_inumber = 0;
1095 sp->idp = NULL;
1096 }
1097 ++count;
1098 if (count > 2)
1099 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1100 lfs_writefile(fs, sp, fs->lfs_ivnode);
1101 }
1102
1103 /* Allocate a new inode block if necessary. */
1104 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1105 sp->ibp == NULL) {
1106 /* Allocate a new segment if necessary. */
1107 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1108 sp->sum_bytes_left < sizeof(int32_t))
1109 (void) lfs_writeseg(fs, sp);
1110
1111 /* Get next inode block. */
1112 daddr = lfs_sb_getoffset(fs);
1113 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1114 sp->ibp = *sp->cbpp++ =
1115 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1116 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1117 gotblk++;
1118
1119 /* Zero out inode numbers */
1120 for (i = 0; i < LFS_INOPB(fs); ++i)
1121 ((struct ulfs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1122 0;
1123
1124 ++sp->start_bpp;
1125 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1126 /* Set remaining space counters. */
1127 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1128 sp->sum_bytes_left -= sizeof(int32_t);
1129 ndx = lfs_sb_getsumsize(fs) / sizeof(int32_t) -
1130 sp->ninodes / LFS_INOPB(fs) - 1;
1131 ((int32_t *)(sp->segsum))[ndx] = daddr;
1132 }
1133
1134 /* Check VU_DIROP in case there is a new file with no data blocks */
1135 if (vp->v_uflag & VU_DIROP)
1136 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1137
1138 /* Update the inode times and copy the inode onto the inode page. */
1139 /* XXX kludge --- don't redirty the ifile just to put times on it */
1140 if (ip->i_number != LFS_IFILE_INUM)
1141 LFS_ITIMES(ip, NULL, NULL, NULL);
1142
1143 /*
1144 * If this is the Ifile, and we've already written the Ifile in this
1145 * partial segment, just overwrite it (it's not on disk yet) and
1146 * continue.
1147 *
1148 * XXX we know that the bp that we get the second time around has
1149 * already been gathered.
1150 */
1151 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1152 *(sp->idp) = *ip->i_din.ffs1_din;
1153 ip->i_lfs_osize = ip->i_size;
1154 return 0;
1155 }
1156
1157 bp = sp->ibp;
1158 cdp = ((struct ulfs1_dinode *)bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
1159 *cdp = *ip->i_din.ffs1_din;
1160
1161 /*
1162 * This inode is on its way to disk; clear its VU_DIROP status when
1163 * the write is complete.
1164 */
1165 if (vp->v_uflag & VU_DIROP) {
1166 if (!(sp->seg_flags & SEGM_CLEAN))
1167 ip->i_flag |= IN_CDIROP;
1168 else {
1169 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1170 }
1171 }
1172
1173 /*
1174 * If cleaning, link counts and directory file sizes cannot change,
1175 * since those would be directory operations---even if the file
1176 * we are writing is marked VU_DIROP we should write the old values.
1177 * If we're not cleaning, of course, update the values so we get
1178 * current values the next time we clean.
1179 */
1180 if (sp->seg_flags & SEGM_CLEAN) {
1181 if (vp->v_uflag & VU_DIROP) {
1182 cdp->di_nlink = ip->i_lfs_odnlink;
1183 /* if (vp->v_type == VDIR) */
1184 cdp->di_size = ip->i_lfs_osize;
1185 }
1186 } else {
1187 ip->i_lfs_odnlink = cdp->di_nlink;
1188 ip->i_lfs_osize = ip->i_size;
1189 }
1190
1191
1192 /* We can finish the segment accounting for truncations now */
1193 lfs_finalize_ino_seguse(fs, ip);
1194
1195 /*
1196 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1197 * addresses to disk; possibly change the on-disk record of
1198 * the inode size, either by reverting to the previous size
1199 * (in the case of cleaning) or by verifying the inode's block
1200 * holdings (in the case of files being allocated as they are being
1201 * written).
1202 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1203 * XXX count on disk wrong by the same amount. We should be
1204 * XXX able to "borrow" from lfs_avail and return it after the
1205 * XXX Ifile is written. See also in lfs_writeseg.
1206 */
1207
1208 /* Check file size based on highest allocated block */
1209 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1210 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1211 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1212 cdp->di_size = (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs);
1213 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1214 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1215 }
1216 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1217 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1218 " at %jx\n", ip->i_number, ip->i_lfs_effnblks,
1219 ip->i_ffs1_blocks, (uintmax_t)lfs_sb_getoffset(fs)));
1220 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + ULFS_NIADDR;
1221 daddrp++) {
1222 if (*daddrp == UNWRITTEN) {
1223 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1224 *daddrp = 0;
1225 }
1226 }
1227 }
1228
1229 #ifdef DIAGNOSTIC
1230 /*
1231 * Check dinode held blocks against dinode size.
1232 * This should be identical to the check in lfs_vget().
1233 */
1234 for (i = (cdp->di_size + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1235 i < ULFS_NDADDR; i++) {
1236 KASSERT(i >= 0);
1237 if ((cdp->di_mode & LFS_IFMT) == LFS_IFLNK)
1238 continue;
1239 if (((cdp->di_mode & LFS_IFMT) == LFS_IFBLK ||
1240 (cdp->di_mode & LFS_IFMT) == LFS_IFCHR) && i == 0)
1241 continue;
1242 if (cdp->di_db[i] != 0) {
1243 # ifdef DEBUG
1244 lfs_dump_dinode(cdp);
1245 # endif
1246 panic("writing inconsistent inode");
1247 }
1248 }
1249 #endif /* DIAGNOSTIC */
1250
1251 if (ip->i_flag & IN_CLEANING)
1252 LFS_CLR_UINO(ip, IN_CLEANING);
1253 else {
1254 /* XXX IN_ALLMOD */
1255 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1256 IN_UPDATE | IN_MODIFY);
1257 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1258 LFS_CLR_UINO(ip, IN_MODIFIED);
1259 else {
1260 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1261 "blks=%d, eff=%d\n", ip->i_number,
1262 ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1263 }
1264 }
1265
1266 if (ip->i_number == LFS_IFILE_INUM) {
1267 /* We know sp->idp == NULL */
1268 sp->idp = ((struct ulfs1_dinode *)bp->b_data) +
1269 (sp->ninodes % LFS_INOPB(fs));
1270
1271 /* Not dirty any more */
1272 mutex_enter(&lfs_lock);
1273 fs->lfs_flags &= ~LFS_IFDIRTY;
1274 mutex_exit(&lfs_lock);
1275 }
1276
1277 if (gotblk) {
1278 mutex_enter(&bufcache_lock);
1279 LFS_LOCK_BUF(bp);
1280 brelsel(bp, 0);
1281 mutex_exit(&bufcache_lock);
1282 }
1283
1284 /* Increment inode count in segment summary block. */
1285 ++((SEGSUM *)(sp->segsum))->ss_ninos;
1286
1287 /* If this page is full, set flag to allocate a new page. */
1288 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1289 sp->ibp = NULL;
1290
1291 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1292
1293 KASSERT(redo_ifile == 0);
1294 return (redo_ifile);
1295 }
1296
1297 int
1298 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1299 {
1300 struct lfs *fs;
1301 int vers;
1302 int j, blksinblk;
1303
1304 ASSERT_SEGLOCK(sp->fs);
1305 /*
1306 * If full, finish this segment. We may be doing I/O, so
1307 * release and reacquire the splbio().
1308 */
1309 #ifdef DIAGNOSTIC
1310 if (sp->vp == NULL)
1311 panic ("lfs_gatherblock: Null vp in segment");
1312 #endif
1313 fs = sp->fs;
1314 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1315 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1316 sp->seg_bytes_left < bp->b_bcount) {
1317 if (mptr)
1318 mutex_exit(mptr);
1319 lfs_updatemeta(sp);
1320
1321 vers = sp->fip->fi_version;
1322 (void) lfs_writeseg(fs, sp);
1323
1324 /* Add the current file to the segment summary. */
1325 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1326
1327 if (mptr)
1328 mutex_enter(mptr);
1329 return (1);
1330 }
1331
1332 if (bp->b_flags & B_GATHERED) {
1333 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1334 " lbn %" PRId64 "\n",
1335 sp->fip->fi_ino, bp->b_lblkno));
1336 return (0);
1337 }
1338
1339 /* Insert into the buffer list, update the FINFO block. */
1340 bp->b_flags |= B_GATHERED;
1341
1342 *sp->cbpp++ = bp;
1343 for (j = 0; j < blksinblk; j++) {
1344 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1345 /* This block's accounting moves from lfs_favail to lfs_avail */
1346 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1347 }
1348
1349 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1350 sp->seg_bytes_left -= bp->b_bcount;
1351 return (0);
1352 }
1353
1354 int
1355 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1356 int (*match)(struct lfs *, struct buf *))
1357 {
1358 struct buf *bp, *nbp;
1359 int count = 0;
1360
1361 ASSERT_SEGLOCK(fs);
1362 if (vp->v_type == VBLK)
1363 return 0;
1364 KASSERT(sp->vp == NULL);
1365 sp->vp = vp;
1366 mutex_enter(&bufcache_lock);
1367
1368 #ifndef LFS_NO_BACKBUF_HACK
1369 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1370 # define BUF_OFFSET \
1371 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1372 # define BACK_BUF(BP) \
1373 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1374 # define BEG_OF_LIST \
1375 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1376
1377 loop:
1378 /* Find last buffer. */
1379 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1380 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1381 bp = LIST_NEXT(bp, b_vnbufs))
1382 /* nothing */;
1383 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1384 nbp = BACK_BUF(bp);
1385 #else /* LFS_NO_BACKBUF_HACK */
1386 loop:
1387 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1388 nbp = LIST_NEXT(bp, b_vnbufs);
1389 #endif /* LFS_NO_BACKBUF_HACK */
1390 if ((bp->b_cflags & BC_BUSY) != 0 ||
1391 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1392 #ifdef DEBUG
1393 if (vp == fs->lfs_ivnode &&
1394 (bp->b_cflags & BC_BUSY) != 0 &&
1395 (bp->b_flags & B_GATHERED) == 0)
1396 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1397 PRId64 " busy (%x) at 0x%jx",
1398 bp->b_lblkno, bp->b_flags,
1399 (uintmax_t)lfs_sb_getoffset(fs));
1400 #endif
1401 continue;
1402 }
1403 #ifdef DIAGNOSTIC
1404 # ifdef LFS_USE_B_INVAL
1405 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1406 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1407 " is BC_INVAL\n", bp->b_lblkno));
1408 VOP_PRINT(bp->b_vp);
1409 }
1410 # endif /* LFS_USE_B_INVAL */
1411 if (!(bp->b_oflags & BO_DELWRI))
1412 panic("lfs_gather: bp not BO_DELWRI");
1413 if (!(bp->b_flags & B_LOCKED)) {
1414 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1415 " blk %" PRId64 " not B_LOCKED\n",
1416 bp->b_lblkno,
1417 LFS_DBTOFSB(fs, bp->b_blkno)));
1418 VOP_PRINT(bp->b_vp);
1419 panic("lfs_gather: bp not B_LOCKED");
1420 }
1421 #endif
1422 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1423 goto loop;
1424 }
1425 count++;
1426 }
1427 mutex_exit(&bufcache_lock);
1428 lfs_updatemeta(sp);
1429 KASSERT(sp->vp == vp);
1430 sp->vp = NULL;
1431 return count;
1432 }
1433
1434 #if DEBUG
1435 # define DEBUG_OOFF(n) do { \
1436 if (ooff == 0) { \
1437 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1438 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1439 ", was 0x0 (or %" PRId64 ")\n", \
1440 (n), ip->i_number, lbn, ndaddr, daddr)); \
1441 } \
1442 } while (0)
1443 #else
1444 # define DEBUG_OOFF(n)
1445 #endif
1446
1447 /*
1448 * Change the given block's address to ndaddr, finding its previous
1449 * location using ulfs_bmaparray().
1450 *
1451 * Account for this change in the segment table.
1452 *
1453 * called with sp == NULL by roll-forwarding code.
1454 */
1455 void
1456 lfs_update_single(struct lfs *fs, struct segment *sp,
1457 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1458 {
1459 SEGUSE *sup;
1460 struct buf *bp;
1461 struct indir a[ULFS_NIADDR + 2], *ap;
1462 struct inode *ip;
1463 daddr_t daddr, ooff;
1464 int num, error;
1465 int bb, osize, obb;
1466
1467 ASSERT_SEGLOCK(fs);
1468 KASSERT(sp == NULL || sp->vp == vp);
1469 ip = VTOI(vp);
1470
1471 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1472 if (error)
1473 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1474
1475 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1476 KASSERT(daddr <= LFS_MAX_DADDR);
1477 if (daddr > 0)
1478 daddr = LFS_DBTOFSB(fs, daddr);
1479
1480 bb = lfs_numfrags(fs, size);
1481 switch (num) {
1482 case 0:
1483 ooff = ip->i_ffs1_db[lbn];
1484 DEBUG_OOFF(0);
1485 if (ooff == UNWRITTEN)
1486 ip->i_ffs1_blocks += bb;
1487 else {
1488 /* possible fragment truncation or extension */
1489 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1490 ip->i_ffs1_blocks += (bb - obb);
1491 }
1492 ip->i_ffs1_db[lbn] = ndaddr;
1493 break;
1494 case 1:
1495 ooff = ip->i_ffs1_ib[a[0].in_off];
1496 DEBUG_OOFF(1);
1497 if (ooff == UNWRITTEN)
1498 ip->i_ffs1_blocks += bb;
1499 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1500 break;
1501 default:
1502 ap = &a[num - 1];
1503 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1504 B_MODIFY, &bp))
1505 panic("lfs_updatemeta: bread bno %" PRId64,
1506 ap->in_lbn);
1507
1508 /* XXX ondisk32 */
1509 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1510 DEBUG_OOFF(num);
1511 if (ooff == UNWRITTEN)
1512 ip->i_ffs1_blocks += bb;
1513 /* XXX ondisk32 */
1514 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1515 (void) VOP_BWRITE(bp->b_vp, bp);
1516 }
1517
1518 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1519
1520 /* Update hiblk when extending the file */
1521 if (lbn > ip->i_lfs_hiblk)
1522 ip->i_lfs_hiblk = lbn;
1523
1524 /*
1525 * Though we'd rather it couldn't, this *can* happen right now
1526 * if cleaning blocks and regular blocks coexist.
1527 */
1528 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1529
1530 /*
1531 * Update segment usage information, based on old size
1532 * and location.
1533 */
1534 if (daddr > 0) {
1535 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1536 #ifdef DIAGNOSTIC
1537 int ndupino;
1538
1539 if (sp && sp->seg_number == oldsn) {
1540 ndupino = sp->ndupino;
1541 } else {
1542 ndupino = 0;
1543 }
1544 #endif
1545 KASSERT(oldsn < lfs_sb_getnseg(fs));
1546 if (lbn >= 0 && lbn < ULFS_NDADDR)
1547 osize = ip->i_lfs_fragsize[lbn];
1548 else
1549 osize = lfs_sb_getbsize(fs);
1550 LFS_SEGENTRY(sup, fs, oldsn, bp);
1551 #ifdef DIAGNOSTIC
1552 if (sup->su_nbytes + sizeof (struct ulfs1_dinode) * ndupino
1553 < osize) {
1554 printf("lfs_updatemeta: negative bytes "
1555 "(segment %" PRIu32 " short by %" PRId64
1556 ")\n", lfs_dtosn(fs, daddr),
1557 (int64_t)osize -
1558 (sizeof (struct ulfs1_dinode) * ndupino +
1559 sup->su_nbytes));
1560 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1561 ", addr = 0x%" PRIx64 "\n",
1562 (unsigned long long)ip->i_number, lbn, daddr);
1563 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1564 panic("lfs_updatemeta: negative bytes");
1565 sup->su_nbytes = osize -
1566 sizeof (struct ulfs1_dinode) * ndupino;
1567 }
1568 #endif
1569 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1570 " db 0x%" PRIx64 "\n",
1571 lfs_dtosn(fs, daddr), osize,
1572 ip->i_number, lbn, daddr));
1573 sup->su_nbytes -= osize;
1574 if (!(bp->b_flags & B_GATHERED)) {
1575 mutex_enter(&lfs_lock);
1576 fs->lfs_flags |= LFS_IFDIRTY;
1577 mutex_exit(&lfs_lock);
1578 }
1579 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1580 }
1581 /*
1582 * Now that this block has a new address, and its old
1583 * segment no longer owns it, we can forget about its
1584 * old size.
1585 */
1586 if (lbn >= 0 && lbn < ULFS_NDADDR)
1587 ip->i_lfs_fragsize[lbn] = size;
1588 }
1589
1590 /*
1591 * Update the metadata that points to the blocks listed in the FINFO
1592 * array.
1593 */
1594 void
1595 lfs_updatemeta(struct segment *sp)
1596 {
1597 struct buf *sbp;
1598 struct lfs *fs;
1599 struct vnode *vp;
1600 daddr_t lbn;
1601 int i, nblocks, num;
1602 int bb;
1603 int bytesleft, size;
1604
1605 ASSERT_SEGLOCK(sp->fs);
1606 vp = sp->vp;
1607 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1608 KASSERT(nblocks >= 0);
1609 KASSERT(vp != NULL);
1610 if (nblocks == 0)
1611 return;
1612
1613 /*
1614 * This count may be high due to oversize blocks from lfs_gop_write.
1615 * Correct for this. (XXX we should be able to keep track of these.)
1616 */
1617 fs = sp->fs;
1618 for (i = 0; i < nblocks; i++) {
1619 if (sp->start_bpp[i] == NULL) {
1620 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1621 nblocks = i;
1622 break;
1623 }
1624 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1625 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1626 nblocks -= num - 1;
1627 }
1628
1629 KASSERT(vp->v_type == VREG ||
1630 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1631 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1632
1633 /*
1634 * Sort the blocks.
1635 *
1636 * We have to sort even if the blocks come from the
1637 * cleaner, because there might be other pending blocks on the
1638 * same inode...and if we don't sort, and there are fragments
1639 * present, blocks may be written in the wrong place.
1640 */
1641 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1642
1643 /*
1644 * Record the length of the last block in case it's a fragment.
1645 * If there are indirect blocks present, they sort last. An
1646 * indirect block will be lfs_bsize and its presence indicates
1647 * that you cannot have fragments.
1648 *
1649 * XXX This last is a lie. A cleaned fragment can coexist with
1650 * XXX a later indirect block. This will continue to be
1651 * XXX true until lfs_markv is fixed to do everything with
1652 * XXX fake blocks (including fake inodes and fake indirect blocks).
1653 */
1654 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1655 lfs_sb_getbmask(fs)) + 1;
1656
1657 /*
1658 * Assign disk addresses, and update references to the logical
1659 * block and the segment usage information.
1660 */
1661 for (i = nblocks; i--; ++sp->start_bpp) {
1662 sbp = *sp->start_bpp;
1663 lbn = *sp->start_lbp;
1664 KASSERT(sbp->b_lblkno == lbn);
1665
1666 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1667
1668 /*
1669 * If we write a frag in the wrong place, the cleaner won't
1670 * be able to correctly identify its size later, and the
1671 * segment will be uncleanable. (Even worse, it will assume
1672 * that the indirect block that actually ends the list
1673 * is of a smaller size!)
1674 */
1675 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1676 panic("lfs_updatemeta: fragment is not last block");
1677
1678 /*
1679 * For each subblock in this possibly oversized block,
1680 * update its address on disk.
1681 */
1682 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1683 KASSERT(vp == sbp->b_vp);
1684 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1685 bytesleft -= lfs_sb_getbsize(fs)) {
1686 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1687 bb = lfs_numfrags(fs, size);
1688 lbn = *sp->start_lbp++;
1689 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1690 size);
1691 lfs_sb_addoffset(fs, bb);
1692 }
1693
1694 }
1695
1696 /* This inode has been modified */
1697 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1698 }
1699
1700 /*
1701 * Move lfs_offset to a segment earlier than sn.
1702 */
1703 int
1704 lfs_rewind(struct lfs *fs, int newsn)
1705 {
1706 int sn, osn, isdirty;
1707 struct buf *bp;
1708 SEGUSE *sup;
1709
1710 ASSERT_SEGLOCK(fs);
1711
1712 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1713 if (osn < newsn)
1714 return 0;
1715
1716 /* lfs_avail eats the remaining space in this segment */
1717 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1718
1719 /* Find a low-numbered segment */
1720 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1721 LFS_SEGENTRY(sup, fs, sn, bp);
1722 isdirty = sup->su_flags & SEGUSE_DIRTY;
1723 brelse(bp, 0);
1724
1725 if (!isdirty)
1726 break;
1727 }
1728 if (sn == lfs_sb_getnseg(fs))
1729 panic("lfs_rewind: no clean segments");
1730 if (newsn >= 0 && sn >= newsn)
1731 return ENOENT;
1732 lfs_sb_setnextseg(fs, sn);
1733 lfs_newseg(fs);
1734 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1735
1736 return 0;
1737 }
1738
1739 /*
1740 * Start a new partial segment.
1741 *
1742 * Return 1 when we entered to a new segment.
1743 * Otherwise, return 0.
1744 */
1745 int
1746 lfs_initseg(struct lfs *fs)
1747 {
1748 struct segment *sp = fs->lfs_sp;
1749 SEGSUM *ssp;
1750 struct buf *sbp; /* buffer for SEGSUM */
1751 int repeat = 0; /* return value */
1752
1753 ASSERT_SEGLOCK(fs);
1754 /* Advance to the next segment. */
1755 if (!LFS_PARTIAL_FITS(fs)) {
1756 SEGUSE *sup;
1757 struct buf *bp;
1758
1759 /* lfs_avail eats the remaining space */
1760 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1761 lfs_sb_getcurseg(fs)));
1762 /* Wake up any cleaning procs waiting on this file system. */
1763 lfs_wakeup_cleaner(fs);
1764 lfs_newseg(fs);
1765 repeat = 1;
1766 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1767
1768 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1769 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1770
1771 /*
1772 * If the segment contains a superblock, update the offset
1773 * and summary address to skip over it.
1774 */
1775 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1776 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1777 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1778 sp->seg_bytes_left -= LFS_SBPAD;
1779 }
1780 brelse(bp, 0);
1781 /* Segment zero could also contain the labelpad */
1782 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1783 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1784 lfs_sb_addoffset(fs,
1785 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1786 sp->seg_bytes_left -=
1787 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1788 }
1789 } else {
1790 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1791 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1792 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1793 }
1794 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1795
1796 /* Record first address of this partial segment */
1797 if (sp->seg_flags & SEGM_CLEAN) {
1798 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1799 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1800 /* "1" is the artificial inc in lfs_seglock */
1801 mutex_enter(&lfs_lock);
1802 while (fs->lfs_iocount > 1) {
1803 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1804 "lfs_initseg", 0, &lfs_lock);
1805 }
1806 mutex_exit(&lfs_lock);
1807 fs->lfs_cleanind = 0;
1808 }
1809 }
1810
1811 sp->fs = fs;
1812 sp->ibp = NULL;
1813 sp->idp = NULL;
1814 sp->ninodes = 0;
1815 sp->ndupino = 0;
1816
1817 sp->cbpp = sp->bpp;
1818
1819 /* Get a new buffer for SEGSUM */
1820 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1821 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1822
1823 /* ... and enter it into the buffer list. */
1824 *sp->cbpp = sbp;
1825 sp->cbpp++;
1826 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1827
1828 sp->start_bpp = sp->cbpp;
1829
1830 /* Set point to SEGSUM, initialize it. */
1831 ssp = sp->segsum = sbp->b_data;
1832 memset(ssp, 0, lfs_sb_getsumsize(fs));
1833 ssp->ss_next = lfs_sb_getnextseg(fs);
1834 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1835 ssp->ss_magic = SS_MAGIC;
1836
1837 /* Set pointer to first FINFO, initialize it. */
1838 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1839 sp->fip->fi_nblocks = 0;
1840 sp->start_lbp = &sp->fip->fi_blocks[0];
1841 sp->fip->fi_lastlength = 0;
1842
1843 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1844 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1845
1846 return (repeat);
1847 }
1848
1849 /*
1850 * Remove SEGUSE_INVAL from all segments.
1851 */
1852 void
1853 lfs_unset_inval_all(struct lfs *fs)
1854 {
1855 SEGUSE *sup;
1856 struct buf *bp;
1857 int i;
1858
1859 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1860 LFS_SEGENTRY(sup, fs, i, bp);
1861 if (sup->su_flags & SEGUSE_INVAL) {
1862 sup->su_flags &= ~SEGUSE_INVAL;
1863 LFS_WRITESEGENTRY(sup, fs, i, bp);
1864 } else
1865 brelse(bp, 0);
1866 }
1867 }
1868
1869 /*
1870 * Return the next segment to write.
1871 */
1872 void
1873 lfs_newseg(struct lfs *fs)
1874 {
1875 CLEANERINFO *cip;
1876 SEGUSE *sup;
1877 struct buf *bp;
1878 int curseg, isdirty, sn, skip_inval;
1879
1880 ASSERT_SEGLOCK(fs);
1881
1882 /* Honor LFCNWRAPSTOP */
1883 mutex_enter(&lfs_lock);
1884 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1885 if (fs->lfs_wrappass) {
1886 log(LOG_NOTICE, "%s: wrappass=%d\n",
1887 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1888 fs->lfs_wrappass = 0;
1889 break;
1890 }
1891 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1892 wakeup(&fs->lfs_nowrap);
1893 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1894 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1895 &lfs_lock);
1896 }
1897 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1898 mutex_exit(&lfs_lock);
1899
1900 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1901 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1902 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1903 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1904 sup->su_nbytes = 0;
1905 sup->su_nsums = 0;
1906 sup->su_ninos = 0;
1907 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1908
1909 LFS_CLEANERINFO(cip, fs, bp);
1910 --cip->clean;
1911 ++cip->dirty;
1912 lfs_sb_setnclean(fs, cip->clean);
1913 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1914
1915 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1916 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1917 skip_inval = 1;
1918 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1919 sn = (sn + 1) % lfs_sb_getnseg(fs);
1920
1921 if (sn == curseg) {
1922 if (skip_inval)
1923 skip_inval = 0;
1924 else
1925 panic("lfs_nextseg: no clean segments");
1926 }
1927 LFS_SEGENTRY(sup, fs, sn, bp);
1928 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1929 /* Check SEGUSE_EMPTY as we go along */
1930 if (isdirty && sup->su_nbytes == 0 &&
1931 !(sup->su_flags & SEGUSE_EMPTY))
1932 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1933 else
1934 brelse(bp, 0);
1935
1936 if (!isdirty)
1937 break;
1938 }
1939 if (skip_inval == 0)
1940 lfs_unset_inval_all(fs);
1941
1942 ++fs->lfs_nactive;
1943 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1944 if (lfs_dostats) {
1945 ++lfs_stats.segsused;
1946 }
1947 }
1948
1949 static struct buf *
1950 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1951 int n)
1952 {
1953 struct lfs_cluster *cl;
1954 struct buf **bpp, *bp;
1955
1956 ASSERT_SEGLOCK(fs);
1957 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1958 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1959 memset(cl, 0, sizeof(*cl));
1960 cl->fs = fs;
1961 cl->bpp = bpp;
1962 cl->bufcount = 0;
1963 cl->bufsize = 0;
1964
1965 /* If this segment is being written synchronously, note that */
1966 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1967 cl->flags |= LFS_CL_SYNC;
1968 cl->seg = fs->lfs_sp;
1969 ++cl->seg->seg_iocount;
1970 }
1971
1972 /* Get an empty buffer header, or maybe one with something on it */
1973 bp = getiobuf(vp, true);
1974 bp->b_dev = NODEV;
1975 bp->b_blkno = bp->b_lblkno = addr;
1976 bp->b_iodone = lfs_cluster_callback;
1977 bp->b_private = cl;
1978
1979 return bp;
1980 }
1981
1982 int
1983 lfs_writeseg(struct lfs *fs, struct segment *sp)
1984 {
1985 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1986 SEGUSE *sup;
1987 SEGSUM *ssp;
1988 int i;
1989 int do_again, nblocks, byteoffset;
1990 size_t el_size;
1991 struct lfs_cluster *cl;
1992 u_short ninos;
1993 struct vnode *devvp;
1994 char *p = NULL;
1995 struct vnode *vp;
1996 int32_t *daddrp; /* XXX ondisk32 */
1997 int changed;
1998 u_int32_t sum;
1999 #ifdef DEBUG
2000 FINFO *fip;
2001 int findex;
2002 #endif
2003
2004 ASSERT_SEGLOCK(fs);
2005
2006 ssp = (SEGSUM *)sp->segsum;
2007
2008 /*
2009 * If there are no buffers other than the segment summary to write,
2010 * don't do anything. If we are the end of a dirop sequence, however,
2011 * write the empty segment summary anyway, to help out the
2012 * roll-forward agent.
2013 */
2014 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2015 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2016 return 0;
2017 }
2018
2019 /* Note if partial segment is being written by the cleaner */
2020 if (sp->seg_flags & SEGM_CLEAN)
2021 ssp->ss_flags |= SS_CLEAN;
2022
2023 /* Note if we are writing to reclaim */
2024 if (sp->seg_flags & SEGM_RECLAIM) {
2025 ssp->ss_flags |= SS_RECLAIM;
2026 ssp->ss_reclino = fs->lfs_reclino;
2027 }
2028
2029 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2030
2031 /* Update the segment usage information. */
2032 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2033
2034 /* Loop through all blocks, except the segment summary. */
2035 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2036 if ((*bpp)->b_vp != devvp) {
2037 sup->su_nbytes += (*bpp)->b_bcount;
2038 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2039 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2040 sp->seg_number, (*bpp)->b_bcount,
2041 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2042 (*bpp)->b_blkno));
2043 }
2044 }
2045
2046 #ifdef DEBUG
2047 /* Check for zero-length and zero-version FINFO entries. */
2048 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2049 for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2050 KDASSERT(fip->fi_nblocks > 0);
2051 KDASSERT(fip->fi_version > 0);
2052 fip = (FINFO *)((char *)fip + FINFOSIZE +
2053 sizeof(int32_t) * fip->fi_nblocks);
2054 }
2055 #endif /* DEBUG */
2056
2057 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2058 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2059 sp->seg_number, ssp->ss_ninos * sizeof (struct ulfs1_dinode),
2060 ssp->ss_ninos));
2061 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ulfs1_dinode);
2062 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2063 if (fs->lfs_version == 1)
2064 sup->su_olastmod = time_second;
2065 else
2066 sup->su_lastmod = time_second;
2067 sup->su_ninos += ninos;
2068 ++sup->su_nsums;
2069 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2070
2071 do_again = !(bp->b_flags & B_GATHERED);
2072 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2073
2074 /*
2075 * Mark blocks B_BUSY, to prevent then from being changed between
2076 * the checksum computation and the actual write.
2077 *
2078 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2079 * there are any, replace them with copies that have UNASSIGNED
2080 * instead.
2081 */
2082 mutex_enter(&bufcache_lock);
2083 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2084 ++bpp;
2085 bp = *bpp;
2086 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2087 bp->b_cflags |= BC_BUSY;
2088 continue;
2089 }
2090
2091 while (bp->b_cflags & BC_BUSY) {
2092 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2093 " data summary corruption for ino %d, lbn %"
2094 PRId64 "\n",
2095 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2096 bp->b_cflags |= BC_WANTED;
2097 cv_wait(&bp->b_busy, &bufcache_lock);
2098 }
2099 bp->b_cflags |= BC_BUSY;
2100 mutex_exit(&bufcache_lock);
2101 unbusybp = NULL;
2102
2103 /*
2104 * Check and replace indirect block UNWRITTEN bogosity.
2105 * XXX See comment in lfs_writefile.
2106 */
2107 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2108 VTOI(bp->b_vp)->i_ffs1_blocks !=
2109 VTOI(bp->b_vp)->i_lfs_effnblks) {
2110 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2111 VTOI(bp->b_vp)->i_number,
2112 VTOI(bp->b_vp)->i_lfs_effnblks,
2113 VTOI(bp->b_vp)->i_ffs1_blocks));
2114 /* Make a copy we'll make changes to */
2115 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2116 bp->b_bcount, LFS_NB_IBLOCK);
2117 newbp->b_blkno = bp->b_blkno;
2118 memcpy(newbp->b_data, bp->b_data,
2119 newbp->b_bcount);
2120
2121 changed = 0;
2122 /* XXX ondisk32 */
2123 for (daddrp = (int32_t *)(newbp->b_data);
2124 daddrp < (int32_t *)((char *)newbp->b_data +
2125 newbp->b_bcount); daddrp++) {
2126 if (*daddrp == UNWRITTEN) {
2127 ++changed;
2128 *daddrp = 0;
2129 }
2130 }
2131 /*
2132 * Get rid of the old buffer. Don't mark it clean,
2133 * though, if it still has dirty data on it.
2134 */
2135 if (changed) {
2136 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2137 " bp = %p newbp = %p\n", changed, bp,
2138 newbp));
2139 *bpp = newbp;
2140 bp->b_flags &= ~B_GATHERED;
2141 bp->b_error = 0;
2142 if (bp->b_iodone != NULL) {
2143 DLOG((DLOG_SEG, "lfs_writeseg: "
2144 "indir bp should not be B_CALL\n"));
2145 biodone(bp);
2146 bp = NULL;
2147 } else {
2148 /* Still on free list, leave it there */
2149 unbusybp = bp;
2150 /*
2151 * We have to re-decrement lfs_avail
2152 * since this block is going to come
2153 * back around to us in the next
2154 * segment.
2155 */
2156 lfs_sb_subavail(fs,
2157 lfs_btofsb(fs, bp->b_bcount));
2158 }
2159 } else {
2160 lfs_freebuf(fs, newbp);
2161 }
2162 }
2163 mutex_enter(&bufcache_lock);
2164 if (unbusybp != NULL) {
2165 unbusybp->b_cflags &= ~BC_BUSY;
2166 if (unbusybp->b_cflags & BC_WANTED)
2167 cv_broadcast(&bp->b_busy);
2168 }
2169 }
2170 mutex_exit(&bufcache_lock);
2171
2172 /*
2173 * Compute checksum across data and then across summary; the first
2174 * block (the summary block) is skipped. Set the create time here
2175 * so that it's guaranteed to be later than the inode mod times.
2176 */
2177 sum = 0;
2178 if (fs->lfs_version == 1)
2179 el_size = sizeof(u_long);
2180 else
2181 el_size = sizeof(u_int32_t);
2182 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2183 ++bpp;
2184 /* Loop through gop_write cluster blocks */
2185 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2186 byteoffset += lfs_sb_getbsize(fs)) {
2187 #ifdef LFS_USE_B_INVAL
2188 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2189 (*bpp)->b_iodone != NULL) {
2190 if (copyin((void *)(*bpp)->b_saveaddr +
2191 byteoffset, dp, el_size)) {
2192 panic("lfs_writeseg: copyin failed [1]:"
2193 " ino %d blk %" PRId64,
2194 VTOI((*bpp)->b_vp)->i_number,
2195 (*bpp)->b_lblkno);
2196 }
2197 } else
2198 #endif /* LFS_USE_B_INVAL */
2199 {
2200 sum = lfs_cksum_part((char *)
2201 (*bpp)->b_data + byteoffset, el_size, sum);
2202 }
2203 }
2204 }
2205 if (fs->lfs_version == 1)
2206 ssp->ss_ocreate = time_second;
2207 else {
2208 ssp->ss_create = time_second;
2209 lfs_sb_addserial(fs, 1);
2210 ssp->ss_serial = lfs_sb_getserial(fs);
2211 ssp->ss_ident = lfs_sb_getident(fs);
2212 }
2213 ssp->ss_datasum = lfs_cksum_fold(sum);
2214 ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2215 lfs_sb_getsumsize(fs) - sizeof(ssp->ss_sumsum));
2216
2217 mutex_enter(&lfs_lock);
2218 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2219 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2220 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2221 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2222 mutex_exit(&lfs_lock);
2223
2224 /*
2225 * When we simply write the blocks we lose a rotation for every block
2226 * written. To avoid this problem, we cluster the buffers into a
2227 * chunk and write the chunk. MAXPHYS is the largest size I/O
2228 * devices can handle, use that for the size of the chunks.
2229 *
2230 * Blocks that are already clusters (from GOP_WRITE), however, we
2231 * don't bother to copy into other clusters.
2232 */
2233
2234 #define CHUNKSIZE MAXPHYS
2235
2236 if (devvp == NULL)
2237 panic("devvp is NULL");
2238 for (bpp = sp->bpp, i = nblocks; i;) {
2239 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2240 cl = cbp->b_private;
2241
2242 cbp->b_flags |= B_ASYNC;
2243 cbp->b_cflags |= BC_BUSY;
2244 cbp->b_bcount = 0;
2245
2246 #if defined(DEBUG) && defined(DIAGNOSTIC)
2247 if (bpp - sp->bpp > (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2248 / sizeof(int32_t)) {
2249 panic("lfs_writeseg: real bpp overwrite");
2250 }
2251 if (bpp - sp->bpp > lfs_segsize(fs) / lfs_sb_getfsize(fs)) {
2252 panic("lfs_writeseg: theoretical bpp overwrite");
2253 }
2254 #endif
2255
2256 /*
2257 * Construct the cluster.
2258 */
2259 mutex_enter(&lfs_lock);
2260 ++fs->lfs_iocount;
2261 mutex_exit(&lfs_lock);
2262 while (i && cbp->b_bcount < CHUNKSIZE) {
2263 bp = *bpp;
2264
2265 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2266 break;
2267 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2268 break;
2269
2270 /* Clusters from GOP_WRITE are expedited */
2271 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2272 if (cbp->b_bcount > 0)
2273 /* Put in its own buffer */
2274 break;
2275 else {
2276 cbp->b_data = bp->b_data;
2277 }
2278 } else if (cbp->b_bcount == 0) {
2279 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2280 LFS_NB_CLUSTER);
2281 cl->flags |= LFS_CL_MALLOC;
2282 }
2283 #ifdef DIAGNOSTIC
2284 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2285 btodb(bp->b_bcount - 1))) !=
2286 sp->seg_number) {
2287 printf("blk size %d daddr %" PRIx64
2288 " not in seg %d\n",
2289 bp->b_bcount, bp->b_blkno,
2290 sp->seg_number);
2291 panic("segment overwrite");
2292 }
2293 #endif
2294
2295 #ifdef LFS_USE_B_INVAL
2296 /*
2297 * Fake buffers from the cleaner are marked as B_INVAL.
2298 * We need to copy the data from user space rather than
2299 * from the buffer indicated.
2300 * XXX == what do I do on an error?
2301 */
2302 if ((bp->b_cflags & BC_INVAL) != 0 &&
2303 bp->b_iodone != NULL) {
2304 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2305 panic("lfs_writeseg: "
2306 "copyin failed [2]");
2307 } else
2308 #endif /* LFS_USE_B_INVAL */
2309 if (cl->flags & LFS_CL_MALLOC) {
2310 /* copy data into our cluster. */
2311 memcpy(p, bp->b_data, bp->b_bcount);
2312 p += bp->b_bcount;
2313 }
2314
2315 cbp->b_bcount += bp->b_bcount;
2316 cl->bufsize += bp->b_bcount;
2317
2318 bp->b_flags &= ~B_READ;
2319 bp->b_error = 0;
2320 cl->bpp[cl->bufcount++] = bp;
2321
2322 vp = bp->b_vp;
2323 mutex_enter(&bufcache_lock);
2324 mutex_enter(vp->v_interlock);
2325 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2326 reassignbuf(bp, vp);
2327 vp->v_numoutput++;
2328 mutex_exit(vp->v_interlock);
2329 mutex_exit(&bufcache_lock);
2330
2331 bpp++;
2332 i--;
2333 }
2334 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2335 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2336 else
2337 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2338 mutex_enter(devvp->v_interlock);
2339 devvp->v_numoutput++;
2340 mutex_exit(devvp->v_interlock);
2341 VOP_STRATEGY(devvp, cbp);
2342 curlwp->l_ru.ru_oublock++;
2343 }
2344
2345 if (lfs_dostats) {
2346 ++lfs_stats.psegwrites;
2347 lfs_stats.blocktot += nblocks - 1;
2348 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2349 ++lfs_stats.psyncwrites;
2350 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2351 ++lfs_stats.pcleanwrites;
2352 lfs_stats.cleanblocks += nblocks - 1;
2353 }
2354 }
2355
2356 return (lfs_initseg(fs) || do_again);
2357 }
2358
2359 void
2360 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2361 {
2362 struct buf *bp;
2363 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2364 int s;
2365
2366 ASSERT_MAYBE_SEGLOCK(fs);
2367 #ifdef DIAGNOSTIC
2368 KASSERT(fs->lfs_magic == LFS_MAGIC);
2369 #endif
2370 /*
2371 * If we can write one superblock while another is in
2372 * progress, we risk not having a complete checkpoint if we crash.
2373 * So, block here if a superblock write is in progress.
2374 */
2375 mutex_enter(&lfs_lock);
2376 s = splbio();
2377 while (fs->lfs_sbactive) {
2378 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2379 &lfs_lock);
2380 }
2381 fs->lfs_sbactive = daddr;
2382 splx(s);
2383 mutex_exit(&lfs_lock);
2384
2385 /* Set timestamp of this version of the superblock */
2386 if (fs->lfs_version == 1)
2387 lfs_sb_setotstamp(fs, time_second);
2388 lfs_sb_settstamp(fs, time_second);
2389
2390 /* Checksum the superblock and copy it into a buffer. */
2391 lfs_sb_setcksum(fs, lfs_sb_cksum(&(fs->lfs_dlfs)));
2392 bp = lfs_newbuf(fs, devvp,
2393 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2394 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2395 LFS_SBPAD - sizeof(struct dlfs));
2396 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2397
2398 bp->b_cflags |= BC_BUSY;
2399 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2400 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2401 bp->b_error = 0;
2402 bp->b_iodone = lfs_supercallback;
2403
2404 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2405 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2406 else
2407 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2408 curlwp->l_ru.ru_oublock++;
2409
2410 mutex_enter(devvp->v_interlock);
2411 devvp->v_numoutput++;
2412 mutex_exit(devvp->v_interlock);
2413
2414 mutex_enter(&lfs_lock);
2415 ++fs->lfs_iocount;
2416 mutex_exit(&lfs_lock);
2417 VOP_STRATEGY(devvp, bp);
2418 }
2419
2420 /*
2421 * Logical block number match routines used when traversing the dirty block
2422 * chain.
2423 */
2424 int
2425 lfs_match_fake(struct lfs *fs, struct buf *bp)
2426 {
2427
2428 ASSERT_SEGLOCK(fs);
2429 return LFS_IS_MALLOC_BUF(bp);
2430 }
2431
2432 #if 0
2433 int
2434 lfs_match_real(struct lfs *fs, struct buf *bp)
2435 {
2436
2437 ASSERT_SEGLOCK(fs);
2438 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2439 }
2440 #endif
2441
2442 int
2443 lfs_match_data(struct lfs *fs, struct buf *bp)
2444 {
2445
2446 ASSERT_SEGLOCK(fs);
2447 return (bp->b_lblkno >= 0);
2448 }
2449
2450 int
2451 lfs_match_indir(struct lfs *fs, struct buf *bp)
2452 {
2453 daddr_t lbn;
2454
2455 ASSERT_SEGLOCK(fs);
2456 lbn = bp->b_lblkno;
2457 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2458 }
2459
2460 int
2461 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2462 {
2463 daddr_t lbn;
2464
2465 ASSERT_SEGLOCK(fs);
2466 lbn = bp->b_lblkno;
2467 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2468 }
2469
2470 int
2471 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2472 {
2473 daddr_t lbn;
2474
2475 ASSERT_SEGLOCK(fs);
2476 lbn = bp->b_lblkno;
2477 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2478 }
2479
2480 static void
2481 lfs_free_aiodone(struct buf *bp)
2482 {
2483 struct lfs *fs;
2484
2485 KERNEL_LOCK(1, curlwp);
2486 fs = bp->b_private;
2487 ASSERT_NO_SEGLOCK(fs);
2488 lfs_freebuf(fs, bp);
2489 KERNEL_UNLOCK_LAST(curlwp);
2490 }
2491
2492 static void
2493 lfs_super_aiodone(struct buf *bp)
2494 {
2495 struct lfs *fs;
2496
2497 KERNEL_LOCK(1, curlwp);
2498 fs = bp->b_private;
2499 ASSERT_NO_SEGLOCK(fs);
2500 mutex_enter(&lfs_lock);
2501 fs->lfs_sbactive = 0;
2502 if (--fs->lfs_iocount <= 1)
2503 wakeup(&fs->lfs_iocount);
2504 wakeup(&fs->lfs_sbactive);
2505 mutex_exit(&lfs_lock);
2506 lfs_freebuf(fs, bp);
2507 KERNEL_UNLOCK_LAST(curlwp);
2508 }
2509
2510 static void
2511 lfs_cluster_aiodone(struct buf *bp)
2512 {
2513 struct lfs_cluster *cl;
2514 struct lfs *fs;
2515 struct buf *tbp, *fbp;
2516 struct vnode *vp, *devvp, *ovp;
2517 struct inode *ip;
2518 int error;
2519
2520 KERNEL_LOCK(1, curlwp);
2521
2522 error = bp->b_error;
2523 cl = bp->b_private;
2524 fs = cl->fs;
2525 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2526 ASSERT_NO_SEGLOCK(fs);
2527
2528 /* Put the pages back, and release the buffer */
2529 while (cl->bufcount--) {
2530 tbp = cl->bpp[cl->bufcount];
2531 KASSERT(tbp->b_cflags & BC_BUSY);
2532 if (error) {
2533 tbp->b_error = error;
2534 }
2535
2536 /*
2537 * We're done with tbp. If it has not been re-dirtied since
2538 * the cluster was written, free it. Otherwise, keep it on
2539 * the locked list to be written again.
2540 */
2541 vp = tbp->b_vp;
2542
2543 tbp->b_flags &= ~B_GATHERED;
2544
2545 LFS_BCLEAN_LOG(fs, tbp);
2546
2547 mutex_enter(&bufcache_lock);
2548 if (tbp->b_iodone == NULL) {
2549 KASSERT(tbp->b_flags & B_LOCKED);
2550 bremfree(tbp);
2551 if (vp) {
2552 mutex_enter(vp->v_interlock);
2553 reassignbuf(tbp, vp);
2554 mutex_exit(vp->v_interlock);
2555 }
2556 tbp->b_flags |= B_ASYNC; /* for biodone */
2557 }
2558
2559 if (((tbp->b_flags | tbp->b_oflags) &
2560 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2561 LFS_UNLOCK_BUF(tbp);
2562
2563 if (tbp->b_oflags & BO_DONE) {
2564 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2565 cl->bufcount, (long)tbp->b_flags));
2566 }
2567
2568 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2569 /*
2570 * A buffer from the page daemon.
2571 * We use the same iodone as it does,
2572 * so we must manually disassociate its
2573 * buffers from the vp.
2574 */
2575 if ((ovp = tbp->b_vp) != NULL) {
2576 /* This is just silly */
2577 mutex_enter(ovp->v_interlock);
2578 brelvp(tbp);
2579 mutex_exit(ovp->v_interlock);
2580 tbp->b_vp = vp;
2581 tbp->b_objlock = vp->v_interlock;
2582 }
2583 /* Put it back the way it was */
2584 tbp->b_flags |= B_ASYNC;
2585 /* Master buffers have BC_AGE */
2586 if (tbp->b_private == tbp)
2587 tbp->b_cflags |= BC_AGE;
2588 }
2589 mutex_exit(&bufcache_lock);
2590
2591 biodone(tbp);
2592
2593 /*
2594 * If this is the last block for this vnode, but
2595 * there are other blocks on its dirty list,
2596 * set IN_MODIFIED/IN_CLEANING depending on what
2597 * sort of block. Only do this for our mount point,
2598 * not for, e.g., inode blocks that are attached to
2599 * the devvp.
2600 * XXX KS - Shouldn't we set *both* if both types
2601 * of blocks are present (traverse the dirty list?)
2602 */
2603 mutex_enter(vp->v_interlock);
2604 mutex_enter(&lfs_lock);
2605 if (vp != devvp && vp->v_numoutput == 0 &&
2606 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2607 ip = VTOI(vp);
2608 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2609 ip->i_number));
2610 if (LFS_IS_MALLOC_BUF(fbp))
2611 LFS_SET_UINO(ip, IN_CLEANING);
2612 else
2613 LFS_SET_UINO(ip, IN_MODIFIED);
2614 }
2615 cv_broadcast(&vp->v_cv);
2616 mutex_exit(&lfs_lock);
2617 mutex_exit(vp->v_interlock);
2618 }
2619
2620 /* Fix up the cluster buffer, and release it */
2621 if (cl->flags & LFS_CL_MALLOC)
2622 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2623 putiobuf(bp);
2624
2625 /* Note i/o done */
2626 if (cl->flags & LFS_CL_SYNC) {
2627 if (--cl->seg->seg_iocount == 0)
2628 wakeup(&cl->seg->seg_iocount);
2629 }
2630 mutex_enter(&lfs_lock);
2631 #ifdef DIAGNOSTIC
2632 if (fs->lfs_iocount == 0)
2633 panic("lfs_cluster_aiodone: zero iocount");
2634 #endif
2635 if (--fs->lfs_iocount <= 1)
2636 wakeup(&fs->lfs_iocount);
2637 mutex_exit(&lfs_lock);
2638
2639 KERNEL_UNLOCK_LAST(curlwp);
2640
2641 pool_put(&fs->lfs_bpppool, cl->bpp);
2642 cl->bpp = NULL;
2643 pool_put(&fs->lfs_clpool, cl);
2644 }
2645
2646 static void
2647 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2648 {
2649 /* reset b_iodone for when this is a single-buf i/o. */
2650 bp->b_iodone = aiodone;
2651
2652 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2653 }
2654
2655 static void
2656 lfs_cluster_callback(struct buf *bp)
2657 {
2658
2659 lfs_generic_callback(bp, lfs_cluster_aiodone);
2660 }
2661
2662 void
2663 lfs_supercallback(struct buf *bp)
2664 {
2665
2666 lfs_generic_callback(bp, lfs_super_aiodone);
2667 }
2668
2669 /*
2670 * The only buffers that are going to hit these functions are the
2671 * segment write blocks, or the segment summaries, or the superblocks.
2672 *
2673 * All of the above are created by lfs_newbuf, and so do not need to be
2674 * released via brelse.
2675 */
2676 void
2677 lfs_callback(struct buf *bp)
2678 {
2679
2680 lfs_generic_callback(bp, lfs_free_aiodone);
2681 }
2682
2683 /*
2684 * Shellsort (diminishing increment sort) from Data Structures and
2685 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2686 * see also Knuth Vol. 3, page 84. The increments are selected from
2687 * formula (8), page 95. Roughly O(N^3/2).
2688 */
2689 /*
2690 * This is our own private copy of shellsort because we want to sort
2691 * two parallel arrays (the array of buffer pointers and the array of
2692 * logical block numbers) simultaneously. Note that we cast the array
2693 * of logical block numbers to a unsigned in this routine so that the
2694 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2695 */
2696
2697 void
2698 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2699 {
2700 static int __rsshell_increments[] = { 4, 1, 0 };
2701 int incr, *incrp, t1, t2;
2702 struct buf *bp_temp;
2703
2704 #ifdef DEBUG
2705 incr = 0;
2706 for (t1 = 0; t1 < nmemb; t1++) {
2707 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2708 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2709 /* dump before panic */
2710 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2711 nmemb, size);
2712 incr = 0;
2713 for (t1 = 0; t1 < nmemb; t1++) {
2714 const struct buf *bp = bp_array[t1];
2715
2716 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2717 PRIu64 "\n", t1,
2718 (uint64_t)bp->b_bcount,
2719 (uint64_t)bp->b_lblkno);
2720 printf("lbns:");
2721 for (t2 = 0; t2 * size < bp->b_bcount;
2722 t2++) {
2723 printf(" %" PRId32,
2724 lb_array[incr++]);
2725 }
2726 printf("\n");
2727 }
2728 panic("lfs_shellsort: inconsistent input");
2729 }
2730 }
2731 }
2732 #endif
2733
2734 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2735 for (t1 = incr; t1 < nmemb; ++t1)
2736 for (t2 = t1 - incr; t2 >= 0;)
2737 if ((u_int32_t)bp_array[t2]->b_lblkno >
2738 (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2739 bp_temp = bp_array[t2];
2740 bp_array[t2] = bp_array[t2 + incr];
2741 bp_array[t2 + incr] = bp_temp;
2742 t2 -= incr;
2743 } else
2744 break;
2745
2746 /* Reform the list of logical blocks */
2747 incr = 0;
2748 for (t1 = 0; t1 < nmemb; t1++) {
2749 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2750 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2751 }
2752 }
2753 }
2754
2755 /*
2756 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2757 * point at uninitialized space.
2758 */
2759 void
2760 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2761 {
2762 struct segment *sp = fs->lfs_sp;
2763
2764 KASSERT(vers > 0);
2765
2766 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2767 sp->sum_bytes_left < sizeof(struct finfo))
2768 (void) lfs_writeseg(fs, fs->lfs_sp);
2769
2770 sp->sum_bytes_left -= FINFOSIZE;
2771 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2772 sp->fip->fi_nblocks = 0;
2773 sp->fip->fi_ino = ino;
2774 sp->fip->fi_version = vers;
2775 }
2776
2777 /*
2778 * Release the FINFO entry, either clearing out an unused entry or
2779 * advancing us to the next available entry.
2780 */
2781 void
2782 lfs_release_finfo(struct lfs *fs)
2783 {
2784 struct segment *sp = fs->lfs_sp;
2785
2786 if (sp->fip->fi_nblocks != 0) {
2787 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2788 sizeof(int32_t) * sp->fip->fi_nblocks);
2789 sp->start_lbp = &sp->fip->fi_blocks[0];
2790 } else {
2791 sp->sum_bytes_left += FINFOSIZE;
2792 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2793 }
2794 }
2795