Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.25
      1 /*	$NetBSD: lfs_segment.c,v 1.25 1999/04/12 00:11:01 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by the NetBSD
     21  *      Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/namei.h>
     78 #include <sys/kernel.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/file.h>
     81 #include <sys/stat.h>
     82 #include <sys/buf.h>
     83 #include <sys/proc.h>
     84 #include <sys/conf.h>
     85 #include <sys/vnode.h>
     86 #include <sys/malloc.h>
     87 #include <sys/mount.h>
     88 
     89 #include <miscfs/specfs/specdev.h>
     90 #include <miscfs/fifofs/fifo.h>
     91 
     92 #include <ufs/ufs/quota.h>
     93 #include <ufs/ufs/inode.h>
     94 #include <ufs/ufs/dir.h>
     95 #include <ufs/ufs/ufsmount.h>
     96 #include <ufs/ufs/ufs_extern.h>
     97 
     98 #include <ufs/lfs/lfs.h>
     99 #include <ufs/lfs/lfs_extern.h>
    100 
    101 extern int count_lock_queue __P((void));
    102 extern struct simplelock vnode_free_list_slock;		/* XXX */
    103 extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
    104 
    105 /*
    106  * Determine if it's OK to start a partial in this segment, or if we need
    107  * to go on to a new segment.
    108  */
    109 #define	LFS_PARTIAL_FITS(fs) \
    110 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    111 	1 << (fs)->lfs_fsbtodb)
    112 
    113 void	 lfs_callback __P((struct buf *));
    114 int	 lfs_gather __P((struct lfs *, struct segment *,
    115 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
    116 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
    117 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
    118 int	 lfs_match_fake __P((struct lfs *, struct buf *));
    119 int	 lfs_match_data __P((struct lfs *, struct buf *));
    120 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
    121 int	 lfs_match_indir __P((struct lfs *, struct buf *));
    122 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
    123 void	 lfs_newseg __P((struct lfs *));
    124 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
    125 void	 lfs_supercallback __P((struct buf *));
    126 void	 lfs_updatemeta __P((struct segment *));
    127 int	 lfs_vref __P((struct vnode *));
    128 void	 lfs_vunref __P((struct vnode *));
    129 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
    130 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
    131 int	 lfs_writeseg __P((struct lfs *, struct segment *));
    132 void	 lfs_writesuper __P((struct lfs *, daddr_t));
    133 int	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
    134 	    struct segment *sp, int dirops));
    135 
    136 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    137 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
    138 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    139 
    140 /* Statistics Counters */
    141 int lfs_dostats = 1;
    142 struct lfs_stats lfs_stats;
    143 
    144 /* op values to lfs_writevnodes */
    145 #define	VN_REG	        0
    146 #define	VN_DIROP	1
    147 #define	VN_EMPTY	2
    148 #define VN_CLEAN        3
    149 
    150 #define LFS_MAX_ACTIVE          10
    151 
    152 /*
    153  * XXX KS - Set modification time on the Ifile, so the cleaner can
    154  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    155  * since we don't really need this to be flushed to disk (and in any
    156  * case that wouldn't happen to the Ifile until we checkpoint).
    157  */
    158 void
    159 lfs_imtime(fs)
    160 	struct lfs *fs;
    161 {
    162 	struct timespec ts;
    163 	struct inode *ip;
    164 
    165 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    166 	ip = VTOI(fs->lfs_ivnode);
    167 	ip->i_ffs_mtime = ts.tv_sec;
    168 	ip->i_ffs_mtimensec = ts.tv_nsec;
    169 }
    170 
    171 /*
    172  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    173  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    174  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    175  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    176  */
    177 
    178 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    179 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    180 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    181 
    182 int
    183 lfs_vflush(vp)
    184 	struct vnode *vp;
    185 {
    186 	struct inode *ip;
    187 	struct lfs *fs;
    188 	struct segment *sp;
    189 	int error;
    190 
    191 	ip = VTOI(vp);
    192 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    193 
    194 	if(ip->i_flag & IN_CLEANING) {
    195 #ifdef DEBUG_LFS
    196 		ivndebug(vp,"vflush/in_cleaning");
    197 #endif
    198 		ip->i_flag &= ~IN_CLEANING;
    199 		if(ip->i_flag & IN_MODIFIED) {
    200 			fs->lfs_uinodes--;
    201 		} else
    202 			ip->i_flag |= IN_MODIFIED;
    203 	}
    204 
    205 	/* If the node is being written, wait until that is done */
    206 	if(WRITEINPROG(vp)) {
    207 #ifdef DEBUG_LFS
    208 		ivndebug(vp,"vflush/writeinprog");
    209 #endif
    210 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    211 	}
    212 
    213 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    214 	lfs_seglock(fs, SEGM_SYNC);
    215 	SET_FLUSHING(fs,vp);
    216 	if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
    217 		error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
    218 		CLR_FLUSHING(fs,vp);
    219 		lfs_segunlock(fs);
    220 		return error;
    221 	}
    222 	sp = fs->lfs_sp;
    223 
    224 	if (vp->v_dirtyblkhd.lh_first == NULL) {
    225 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    226 	} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    227 #ifdef DEBUG_LFS
    228 		ivndebug(vp,"vflush/clean");
    229 #endif
    230 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    231 	}
    232 	else if(lfs_dostats) {
    233 		if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
    234 			++lfs_stats.vflush_invoked;
    235 #ifdef DEBUG_LFS
    236 		ivndebug(vp,"vflush");
    237 #endif
    238 	}
    239 
    240 #ifdef DIAGNOSTIC
    241 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    242 	if(vp->v_flag & VDIROP) {
    243 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    244 		/* panic("VDIROP being flushed...this can\'t happen"); */
    245 	}
    246 	if(vp->v_usecount<0) {
    247 		printf("usecount=%d\n",vp->v_usecount);
    248 		panic("lfs_vflush: usecount<0");
    249 	}
    250 #endif
    251 
    252 	do {
    253 		do {
    254 			if (vp->v_dirtyblkhd.lh_first != NULL)
    255 				lfs_writefile(fs, sp, vp);
    256 		} while (lfs_writeinode(fs, sp, ip));
    257 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    258 
    259 	if(lfs_dostats) {
    260 		++lfs_stats.nwrites;
    261 		if (sp->seg_flags & SEGM_SYNC)
    262 			++lfs_stats.nsync_writes;
    263 		if (sp->seg_flags & SEGM_CKP)
    264 			++lfs_stats.ncheckpoints;
    265 	}
    266 	lfs_segunlock(fs);
    267 
    268 	CLR_FLUSHING(fs,vp);
    269 	return (0);
    270 }
    271 
    272 #ifdef DEBUG_LFS_VERBOSE
    273 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    274 #else
    275 # define vndebug(vp,str)
    276 #endif
    277 
    278 int
    279 lfs_writevnodes(fs, mp, sp, op)
    280 	struct lfs *fs;
    281 	struct mount *mp;
    282 	struct segment *sp;
    283 	int op;
    284 {
    285 	struct inode *ip;
    286 	struct vnode *vp;
    287 	int inodes_written=0, only_cleaning;
    288 
    289 #ifndef LFS_NO_BACKVP_HACK
    290 	/* BEGIN HACK */
    291 #define	VN_OFFSET	(((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
    292 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    293 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    294 
    295 	/* Find last vnode. */
    296  loop:	for (vp = mp->mnt_vnodelist.lh_first;
    297 	     vp && vp->v_mntvnodes.le_next != NULL;
    298 	     vp = vp->v_mntvnodes.le_next);
    299 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    300 #else
    301 	loop:
    302 	for (vp = mp->mnt_vnodelist.lh_first;
    303 	     vp != NULL;
    304 	     vp = vp->v_mntvnodes.le_next) {
    305 #endif
    306 		/*
    307 		 * If the vnode that we are about to sync is no longer
    308 		 * associated with this mount point, start over.
    309 		 */
    310 		if (vp->v_mount != mp)
    311 			goto loop;
    312 
    313 		ip = VTOI(vp);
    314 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    315 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    316 			vndebug(vp,"dirop");
    317 			continue;
    318 		}
    319 
    320 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
    321 			vndebug(vp,"empty");
    322 			continue;
    323 		}
    324 
    325 		if (vp->v_type == VNON) {
    326 			continue;
    327 		}
    328 
    329 		if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    330 		   && !(ip->i_flag & IN_CLEANING)) {
    331 			vndebug(vp,"cleaning");
    332 			continue;
    333 		}
    334 
    335 		if (lfs_vref(vp)) {
    336 			vndebug(vp,"vref");
    337 			continue;
    338 		}
    339 
    340 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
    341 		if(WRITEINPROG(vp)) {
    342 			lfs_vunref(vp);
    343 #ifdef DEBUG_LFS
    344 			ivndebug(vp,"writevnodes/writeinprog");
    345 #endif
    346 			continue;
    347 		}
    348 #endif
    349 		only_cleaning = 0;
    350 		/*
    351 		 * Write the inode/file if dirty and it's not the
    352 		 * the IFILE.
    353 		 */
    354 		if ((ip->i_flag &
    355 		     (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
    356 		     vp->v_dirtyblkhd.lh_first != NULL))
    357 		{
    358 			only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
    359 
    360 			if(ip->i_number != LFS_IFILE_INUM
    361 			   && vp->v_dirtyblkhd.lh_first != NULL)
    362 			{
    363 				lfs_writefile(fs, sp, vp);
    364 			}
    365 			if(vp->v_dirtyblkhd.lh_first != NULL) {
    366 				if(WRITEINPROG(vp)) {
    367 #ifdef DEBUG_LFS
    368 					ivndebug(vp,"writevnodes/write2");
    369 #endif
    370 				} else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
    371 #ifdef DEBUG_LFS
    372 					printf("<%d>",ip->i_number);
    373 #endif
    374 					ip->i_flag |= IN_MODIFIED;
    375 					++fs->lfs_uinodes;
    376 				}
    377 			}
    378 			(void) lfs_writeinode(fs, sp, ip);
    379 			inodes_written++;
    380 		}
    381 
    382 		if(vp->v_flag & VDIROP) {
    383 			--fs->lfs_dirvcount;
    384 			vp->v_flag &= ~VDIROP;
    385 			wakeup(&fs->lfs_dirvcount);
    386 			lfs_vunref(vp);
    387 		}
    388 
    389 		if(lfs_clean_vnhead && only_cleaning)
    390 			lfs_vunref_head(vp);
    391 		else
    392 			lfs_vunref(vp);
    393 	}
    394 	return inodes_written;
    395 }
    396 
    397 int
    398 lfs_segwrite(mp, flags)
    399 	struct mount *mp;
    400 	int flags;			/* Do a checkpoint. */
    401 {
    402 	struct buf *bp;
    403 	struct inode *ip;
    404 	struct lfs *fs;
    405 	struct segment *sp;
    406 	struct vnode *vp;
    407 	SEGUSE *segusep;
    408 	ufs_daddr_t ibno;
    409 	int do_ckp, error, i;
    410 	int writer_set = 0;
    411 	int need_unlock = 0;
    412 
    413 	fs = VFSTOUFS(mp)->um_lfs;
    414 
    415 	lfs_imtime(fs);
    416 
    417 	/*
    418 	 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
    419 	 * clean segments, wait until cleaner writes.
    420 	 */
    421 	if(!(flags & SEGM_CLEAN)
    422 	   && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    423 	{
    424 		do {
    425 			if (fs->lfs_nclean <= MIN_FREE_SEGS
    426 			    || fs->lfs_avail <= 0)
    427 			{
    428 				wakeup(&lfs_allclean_wakeup);
    429 				wakeup(&fs->lfs_nextseg);
    430 				error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    431 					       "lfs_avail", 0);
    432 				if (error) {
    433 					return (error);
    434 				}
    435 			}
    436 		} while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
    437 	}
    438 
    439 	/*
    440 	 * Allocate a segment structure and enough space to hold pointers to
    441 	 * the maximum possible number of buffers which can be described in a
    442 	 * single summary block.
    443 	 */
    444 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    445 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    446 	sp = fs->lfs_sp;
    447 
    448 	/*
    449 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    450 	 * in which case we have to flush *all* buffers off of this vnode.
    451 	 */
    452 	if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
    453 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    454 	else {
    455 		lfs_writevnodes(fs, mp, sp, VN_REG);
    456 		/*
    457 		 * XXX KS - If we're cleaning, we can't wait for dirops,
    458 		 * because they might be waiting on us.  The downside of this
    459 		 * is that, if we write anything besides cleaning blocks
    460 		 * while cleaning, the checkpoint is not completely
    461 		 * consistent.
    462 		 */
    463 		if(!(sp->seg_flags & SEGM_CLEAN)) {
    464 			while(fs->lfs_dirops)
    465 				if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    466 						"lfs writer", 0)))
    467 				{
    468 					free(sp->bpp, M_SEGMENT);
    469 					free(sp, M_SEGMENT);
    470 					return (error);
    471 				}
    472 			fs->lfs_writer++;
    473 			writer_set=1;
    474 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    475 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    476 		}
    477 	}
    478 
    479 	/*
    480 	 * If we are doing a checkpoint, mark everything since the
    481 	 * last checkpoint as no longer ACTIVE.
    482 	 */
    483 	if (do_ckp) {
    484 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    485 		     --ibno >= fs->lfs_cleansz; ) {
    486 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    487 
    488 				panic("lfs_segwrite: ifile read");
    489 			segusep = (SEGUSE *)bp->b_data;
    490 			for (i = fs->lfs_sepb; i--; segusep++)
    491 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    492 
    493 			/* But the current segment is still ACTIVE */
    494 			if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
    495 				((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
    496 			error = VOP_BWRITE(bp);
    497 		}
    498 	}
    499 
    500 	if (do_ckp || fs->lfs_doifile) {
    501 	redo:
    502 		vp = fs->lfs_ivnode;
    503 		/*
    504 		 * Depending on the circumstances of our calling, the ifile
    505 		 * inode might be locked.  If it is, and if it is locked by
    506 		 * us, we should VREF instead of vget here.
    507 		 */
    508 		need_unlock = 0;
    509 		if(VOP_ISLOCKED(vp)
    510 		   && VTOI(vp)->i_lock.lk_lockholder == curproc->p_pid) {
    511 			VREF(vp);
    512 		} else {
    513 			while (vget(vp, LK_EXCLUSIVE))
    514 				continue;
    515 			need_unlock = 1;
    516 		}
    517 		ip = VTOI(vp);
    518 		if (vp->v_dirtyblkhd.lh_first != NULL)
    519 			lfs_writefile(fs, sp, vp);
    520 		(void)lfs_writeinode(fs, sp, ip);
    521 
    522 		/* Only vput if we used vget() above. */
    523 		if(need_unlock)
    524 			vput(vp);
    525 		else
    526 			vrele(vp);
    527 
    528 		if (lfs_writeseg(fs, sp) && do_ckp)
    529 			goto redo;
    530 	} else {
    531 		(void) lfs_writeseg(fs, sp);
    532 	}
    533 
    534 	/*
    535 	 * If the I/O count is non-zero, sleep until it reaches zero.
    536 	 * At the moment, the user's process hangs around so we can
    537 	 * sleep.
    538 	 */
    539 	fs->lfs_doifile = 0;
    540 	if(writer_set && --fs->lfs_writer==0)
    541 		wakeup(&fs->lfs_dirops);
    542 
    543 	if(lfs_dostats) {
    544 		++lfs_stats.nwrites;
    545 		if (sp->seg_flags & SEGM_SYNC)
    546 			++lfs_stats.nsync_writes;
    547 		if (sp->seg_flags & SEGM_CKP)
    548 			++lfs_stats.ncheckpoints;
    549 	}
    550 	lfs_segunlock(fs);
    551 	return (0);
    552 }
    553 
    554 /*
    555  * Write the dirty blocks associated with a vnode.
    556  */
    557 void
    558 lfs_writefile(fs, sp, vp)
    559 	struct lfs *fs;
    560 	struct segment *sp;
    561 	struct vnode *vp;
    562 {
    563 	struct buf *bp;
    564 	struct finfo *fip;
    565 	IFILE *ifp;
    566 
    567 
    568 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    569 	    sp->sum_bytes_left < sizeof(struct finfo))
    570 		(void) lfs_writeseg(fs, sp);
    571 
    572 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    573 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    574 
    575 	if(vp->v_flag & VDIROP)
    576 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    577 
    578 	fip = sp->fip;
    579 	fip->fi_nblocks = 0;
    580 	fip->fi_ino = VTOI(vp)->i_number;
    581 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    582 	fip->fi_version = ifp->if_version;
    583 	brelse(bp);
    584 
    585 	/*
    586 	 * It may not be necessary to write the meta-data blocks at this point,
    587 	 * as the roll-forward recovery code should be able to reconstruct the
    588 	 * list.
    589 	 *
    590 	 * We have to write them anyway, though, under two conditions: (1) the
    591 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    592 	 * checkpointing.
    593 	 */
    594 	if((sp->seg_flags & SEGM_CLEAN)
    595 	   && VTOI(vp)->i_number != LFS_IFILE_INUM
    596 	   && !IS_FLUSHING(fs,vp))
    597 	{
    598 		lfs_gather(fs, sp, vp, lfs_match_fake);
    599 	} else
    600 		lfs_gather(fs, sp, vp, lfs_match_data);
    601 
    602 	if(lfs_writeindir
    603 	   || IS_FLUSHING(fs,vp)
    604 	   || (sp->seg_flags & SEGM_CKP))
    605 	{
    606 		lfs_gather(fs, sp, vp, lfs_match_indir);
    607 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    608 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
    609 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    610 /* #endif */
    611 	}
    612 	fip = sp->fip;
    613 	if (fip->fi_nblocks != 0) {
    614 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
    615 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
    616 		sp->start_lbp = &sp->fip->fi_blocks[0];
    617 	} else {
    618 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
    619 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    620 	}
    621 }
    622 
    623 int
    624 lfs_writeinode(fs, sp, ip)
    625 	struct lfs *fs;
    626 	struct segment *sp;
    627 	struct inode *ip;
    628 {
    629 	struct buf *bp, *ibp;
    630 	IFILE *ifp;
    631 	SEGUSE *sup;
    632 	ufs_daddr_t daddr;
    633 	ino_t ino;
    634 	int error, i, ndx;
    635 	int redo_ifile = 0;
    636 	struct timespec ts;
    637 	int gotblk=0;
    638 
    639 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
    640 		return(0);
    641 
    642 	/* Allocate a new inode block if necessary. */
    643 	if (sp->ibp == NULL) {
    644 		/* Allocate a new segment if necessary. */
    645 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    646 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    647 			(void) lfs_writeseg(fs, sp);
    648 
    649 		/* Get next inode block. */
    650 		daddr = fs->lfs_offset;
    651 		fs->lfs_offset += fsbtodb(fs, 1);
    652 		sp->ibp = *sp->cbpp++ =
    653 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
    654 		gotblk++;
    655 
    656 		/* Zero out inode numbers */
    657 		for (i = 0; i < INOPB(fs); ++i)
    658 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    659 
    660 		++sp->start_bpp;
    661 		fs->lfs_avail -= fsbtodb(fs, 1);
    662 		/* Set remaining space counters. */
    663 		sp->seg_bytes_left -= fs->lfs_bsize;
    664 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    665 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    666 			sp->ninodes / INOPB(fs) - 1;
    667 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    668 	}
    669 
    670 	/* Update the inode times and copy the inode onto the inode page. */
    671 	if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
    672 		--fs->lfs_uinodes;
    673 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    674 	LFS_ITIMES(ip, &ts, &ts, &ts);
    675 
    676 	if(ip->i_flag & IN_CLEANING)
    677 		ip->i_flag &= ~IN_CLEANING;
    678 	else
    679 		ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
    680 
    681 	bp = sp->ibp;
    682 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
    683 		ip->i_din.ffs_din;
    684 	if(gotblk) {
    685 		bp->b_flags |= B_LOCKED;
    686 		brelse(bp);
    687 	}
    688 
    689 	/* Increment inode count in segment summary block. */
    690 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    691 
    692 	/* If this page is full, set flag to allocate a new page. */
    693 	if (++sp->ninodes % INOPB(fs) == 0)
    694 		sp->ibp = NULL;
    695 
    696 	/*
    697 	 * If updating the ifile, update the super-block.  Update the disk
    698 	 * address and access times for this inode in the ifile.
    699 	 */
    700 	ino = ip->i_number;
    701 	if (ino == LFS_IFILE_INUM) {
    702 		daddr = fs->lfs_idaddr;
    703 		fs->lfs_idaddr = bp->b_blkno;
    704 	} else {
    705 		LFS_IENTRY(ifp, fs, ino, ibp);
    706 		daddr = ifp->if_daddr;
    707 		ifp->if_daddr = bp->b_blkno;
    708 		error = VOP_BWRITE(ibp);
    709 	}
    710 
    711 	/*
    712 	 * No need to update segment usage if there was no former inode address
    713 	 * or if the last inode address is in the current partial segment.
    714 	 */
    715 	if (daddr != LFS_UNUSED_DADDR &&
    716 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    717 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    718 #ifdef DIAGNOSTIC
    719 		if (sup->su_nbytes < DINODE_SIZE) {
    720 			/* XXX -- Change to a panic. */
    721 			printf("lfs_writeinode: negative bytes (segment %d)\n",
    722 			       datosn(fs, daddr));
    723 			panic("negative bytes");
    724 		}
    725 #endif
    726 		sup->su_nbytes -= DINODE_SIZE;
    727 		redo_ifile =
    728 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    729 		error = VOP_BWRITE(bp);
    730 	}
    731 	return (redo_ifile);
    732 }
    733 
    734 int
    735 lfs_gatherblock(sp, bp, sptr)
    736 	struct segment *sp;
    737 	struct buf *bp;
    738 	int *sptr;
    739 {
    740 	struct lfs *fs;
    741 	int version;
    742 
    743 	/*
    744 	 * If full, finish this segment.  We may be doing I/O, so
    745 	 * release and reacquire the splbio().
    746 	 */
    747 #ifdef DIAGNOSTIC
    748 	if (sp->vp == NULL)
    749 		panic ("lfs_gatherblock: Null vp in segment");
    750 #endif
    751 	fs = sp->fs;
    752 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    753 	    sp->seg_bytes_left < bp->b_bcount) {
    754 		if (sptr)
    755 			splx(*sptr);
    756 		lfs_updatemeta(sp);
    757 
    758 		version = sp->fip->fi_version;
    759 		(void) lfs_writeseg(fs, sp);
    760 
    761 		sp->fip->fi_version = version;
    762 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    763 		/* Add the current file to the segment summary. */
    764 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    765 		sp->sum_bytes_left -=
    766 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
    767 
    768 		if (sptr)
    769 			*sptr = splbio();
    770 		return(1);
    771 	}
    772 
    773 #ifdef DEBUG
    774 	if(bp->b_flags & B_GATHERED) {
    775 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
    776 		       sp->fip->fi_ino, bp->b_lblkno);
    777 		return(0);
    778 	}
    779 #endif
    780 	/* Insert into the buffer list, update the FINFO block. */
    781 	bp->b_flags |= B_GATHERED;
    782 	*sp->cbpp++ = bp;
    783 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    784 
    785 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    786 	sp->seg_bytes_left -= bp->b_bcount;
    787 	return(0);
    788 }
    789 
    790 int
    791 lfs_gather(fs, sp, vp, match)
    792 	struct lfs *fs;
    793 	struct segment *sp;
    794 	struct vnode *vp;
    795 	int (*match) __P((struct lfs *, struct buf *));
    796 {
    797 	struct buf *bp;
    798 	int s, count=0;
    799 
    800 	sp->vp = vp;
    801 	s = splbio();
    802 
    803 #ifndef LFS_NO_BACKBUF_HACK
    804 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    805 #else /* LFS_NO_BACKBUF_HACK */
    806 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    807 # define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
    808 # define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    809 # define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    810 /* Find last buffer. */
    811 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    812 	    bp = bp->b_vnbufs.le_next);
    813 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    814 #endif /* LFS_NO_BACKBUF_HACK */
    815 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
    816 			continue;
    817 #ifdef DIAGNOSTIC
    818 		if (!(bp->b_flags & B_DELWRI))
    819 			panic("lfs_gather: bp not B_DELWRI");
    820 		if (!(bp->b_flags & B_LOCKED))
    821 			panic("lfs_gather: bp not B_LOCKED");
    822 #endif
    823 		count++;
    824 		if (lfs_gatherblock(sp, bp, &s)) {
    825 			goto loop;
    826 		}
    827 	}
    828 	splx(s);
    829 	lfs_updatemeta(sp);
    830 	sp->vp = NULL;
    831 	return count;
    832 }
    833 
    834 /*
    835  * Update the metadata that points to the blocks listed in the FINFO
    836  * array.
    837  */
    838 void
    839 lfs_updatemeta(sp)
    840 	struct segment *sp;
    841 {
    842 	SEGUSE *sup;
    843 	struct buf *bp;
    844 	struct lfs *fs;
    845 	struct vnode *vp;
    846 	struct indir a[NIADDR + 2], *ap;
    847 	struct inode *ip;
    848 	ufs_daddr_t daddr, lbn, off;
    849 	int error, i, nblocks, num;
    850 
    851 	vp = sp->vp;
    852 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    853 	if (nblocks < 0)
    854 		panic("This is a bad thing\n");
    855 	if (vp == NULL || nblocks == 0)
    856 		return;
    857 
    858 	/* Sort the blocks. */
    859 	/*
    860 	 * XXX KS - We have to sort even if the blocks come from the
    861 	 * cleaner, because there might be other pending blocks on the
    862 	 * same inode...and if we don't sort, and there are fragments
    863 	 * present, blocks may be written in the wrong place.
    864 	 */
    865 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
    866 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    867 
    868 	/*
    869 	 * Record the length of the last block in case it's a fragment.
    870 	 * If there are indirect blocks present, they sort last.  An
    871 	 * indirect block will be lfs_bsize and its presence indicates
    872 	 * that you cannot have fragments.
    873 	 */
    874 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    875 
    876 	/*
    877 	 * Assign disk addresses, and update references to the logical
    878 	 * block and the segment usage information.
    879 	 */
    880 	fs = sp->fs;
    881 	for (i = nblocks; i--; ++sp->start_bpp) {
    882 		lbn = *sp->start_lbp++;
    883 
    884 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    885 		if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
    886 			printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
    887 		}
    888 		fs->lfs_offset +=
    889 			fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    890 
    891 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    892 		if (error)
    893 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    894 		ip = VTOI(vp);
    895 		switch (num) {
    896 		case 0:
    897 			ip->i_ffs_db[lbn] = off;
    898 			break;
    899 		case 1:
    900 			ip->i_ffs_ib[a[0].in_off] = off;
    901 			break;
    902 		default:
    903 			ap = &a[num - 1];
    904 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    905 				panic("lfs_updatemeta: bread bno %d",
    906 				      ap->in_lbn);
    907 			/*
    908 			 * Bread may create a new (indirect) block which needs
    909 			 * to get counted for the inode.
    910 			 */
    911 			if (/* bp->b_blkno == -1 && */
    912 			    !(bp->b_flags & (B_DELWRI|B_DONE))) {
    913 				ip->i_ffs_blocks += fsbtodb(fs, 1);
    914 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    915 			}
    916 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    917 			VOP_BWRITE(bp);
    918 		}
    919 		/* Update segment usage information. */
    920 		if (daddr != UNASSIGNED &&
    921 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    922 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    923 #ifdef DIAGNOSTIC
    924 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
    925 				/* XXX -- Change to a panic. */
    926 				printf("lfs_updatemeta: negative bytes (segment %d)\n",
    927 				       datosn(fs, daddr));
    928 				printf("lfs_updatemeta: bp = 0x%p, addr = 0x%p\n",
    929 				       bp, bp->b_un.b_addr);
    930 				/* panic ("Negative Bytes"); */
    931 			}
    932 #endif
    933 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
    934 			error = VOP_BWRITE(bp);
    935 		}
    936 	}
    937 }
    938 
    939 /*
    940  * Start a new segment.
    941  */
    942 int
    943 lfs_initseg(fs)
    944 	struct lfs *fs;
    945 {
    946 	struct segment *sp;
    947 	SEGUSE *sup;
    948 	SEGSUM *ssp;
    949 	struct buf *bp;
    950 	int repeat;
    951 
    952 	sp = fs->lfs_sp;
    953 
    954 	repeat = 0;
    955 	/* Advance to the next segment. */
    956 	if (!LFS_PARTIAL_FITS(fs)) {
    957 		/* Wake up any cleaning procs waiting on this file system. */
    958 		wakeup(&lfs_allclean_wakeup);
    959 		wakeup(&fs->lfs_nextseg);
    960 		lfs_newseg(fs);
    961 		repeat = 1;
    962 		fs->lfs_offset = fs->lfs_curseg;
    963 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    964 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    965 		/*
    966 		 * If the segment contains a superblock, update the offset
    967 		 * and summary address to skip over it.
    968 		 */
    969 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    970 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    971 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    972 			sp->seg_bytes_left -= LFS_SBPAD;
    973 		}
    974 		brelse(bp);
    975 	} else {
    976 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    977 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    978 				      (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    979 	}
    980 	fs->lfs_lastpseg = fs->lfs_offset;
    981 
    982 	sp->fs = fs;
    983 	sp->ibp = NULL;
    984 	sp->ninodes = 0;
    985 
    986 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    987 	sp->cbpp = sp->bpp;
    988 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    989 			       fs->lfs_offset, LFS_SUMMARY_SIZE);
    990 	sp->segsum = (*sp->cbpp)->b_data;
    991 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    992 	sp->start_bpp = ++sp->cbpp;
    993 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    994 
    995 	/* Set point to SEGSUM, initialize it. */
    996 	ssp = sp->segsum;
    997 	ssp->ss_next = fs->lfs_nextseg;
    998 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    999 	ssp->ss_magic = SS_MAGIC;
   1000 
   1001 	/* Set pointer to first FINFO, initialize it. */
   1002 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
   1003 	sp->fip->fi_nblocks = 0;
   1004 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1005 	sp->fip->fi_lastlength = 0;
   1006 
   1007 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
   1008 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
   1009 
   1010 	return(repeat);
   1011 }
   1012 
   1013 /*
   1014  * Return the next segment to write.
   1015  */
   1016 void
   1017 lfs_newseg(fs)
   1018 	struct lfs *fs;
   1019 {
   1020 	CLEANERINFO *cip;
   1021 	SEGUSE *sup;
   1022 	struct buf *bp;
   1023 	int curseg, isdirty, sn;
   1024 
   1025 	LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
   1026 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1027 	sup->su_nbytes = 0;
   1028 	sup->su_nsums = 0;
   1029 	sup->su_ninos = 0;
   1030 	(void) VOP_BWRITE(bp);
   1031 
   1032 	LFS_CLEANERINFO(cip, fs, bp);
   1033 	--cip->clean;
   1034 	++cip->dirty;
   1035 	fs->lfs_nclean = cip->clean;
   1036 	(void) VOP_BWRITE(bp);
   1037 
   1038 	fs->lfs_lastseg = fs->lfs_curseg;
   1039 	fs->lfs_curseg = fs->lfs_nextseg;
   1040 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
   1041 		sn = (sn + 1) % fs->lfs_nseg;
   1042 		if (sn == curseg)
   1043 			panic("lfs_nextseg: no clean segments");
   1044 		LFS_SEGENTRY(sup, fs, sn, bp);
   1045 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1046 		brelse(bp);
   1047 		if (!isdirty)
   1048 			break;
   1049 	}
   1050 
   1051 	++fs->lfs_nactive;
   1052 	fs->lfs_nextseg = sntoda(fs, sn);
   1053 	if(lfs_dostats) {
   1054 		++lfs_stats.segsused;
   1055 	}
   1056 }
   1057 
   1058 int
   1059 lfs_writeseg(fs, sp)
   1060 	struct lfs *fs;
   1061 	struct segment *sp;
   1062 {
   1063 	extern int locked_queue_count;
   1064 	extern long locked_queue_bytes;
   1065 	struct buf **bpp, *bp, *cbp;
   1066 	SEGUSE *sup;
   1067 	SEGSUM *ssp;
   1068 	dev_t i_dev;
   1069 	u_long *datap, *dp;
   1070 	int do_again, i, nblocks, s;
   1071 #ifdef LFS_TRACK_IOS
   1072 	int j;
   1073 #endif
   1074 	int (*strategy)__P((void *));
   1075 	struct vop_strategy_args vop_strategy_a;
   1076 	u_short ninos;
   1077 	struct vnode *devvp;
   1078 	char *p;
   1079 	struct vnode *vn;
   1080 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1081 	static int propeller;
   1082 	char propstring[4] = "-\\|/";
   1083 
   1084 	printf("%c\b",propstring[propeller++]);
   1085 	if(propeller==4)
   1086 		propeller = 0;
   1087 #endif
   1088 
   1089 	/*
   1090 	 * If there are no buffers other than the segment summary to write
   1091 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1092 	 * even if there aren't any buffers, you need to write the superblock.
   1093 	 */
   1094 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1095 		return (0);
   1096 
   1097 #ifdef DEBUG_LFS
   1098 	lfs_check_bpp(fs,sp,__FILE__,__LINE__);
   1099 #endif
   1100 
   1101 	/* Update the segment usage information. */
   1102 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1103 
   1104 	/* Loop through all blocks, except the segment summary. */
   1105 	for (bpp = sp->bpp; ++bpp < sp->cbpp; )
   1106 		sup->su_nbytes += (*bpp)->b_bcount;
   1107 
   1108 	ssp = (SEGSUM *)sp->segsum;
   1109 
   1110 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1111 	/* sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE; */
   1112 	sup->su_nbytes += LFS_SUMMARY_SIZE;
   1113 	sup->su_lastmod = time.tv_sec;
   1114 	sup->su_ninos += ninos;
   1115 	++sup->su_nsums;
   1116 
   1117 	do_again = !(bp->b_flags & B_GATHERED);
   1118 	(void)VOP_BWRITE(bp);
   1119 	/*
   1120 	 * Compute checksum across data and then across summary; the first
   1121 	 * block (the summary block) is skipped.  Set the create time here
   1122 	 * so that it's guaranteed to be later than the inode mod times.
   1123 	 *
   1124 	 * XXX
   1125 	 * Fix this to do it inline, instead of malloc/copy.
   1126 	 */
   1127 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
   1128 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1129 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1130 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
   1131 				panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
   1132 		} else {
   1133 			if( !((*bpp)->b_flags & B_CALL) ) {
   1134 				/*
   1135 				 * Before we record data for a checksm,
   1136 				 * make sure the data won't change in between
   1137 				 * the checksum calculation and the write,
   1138 				 * by marking the buffer B_BUSY.  It will
   1139 				 * be freed later by brelse().
   1140 				 */
   1141 			again:
   1142 				s = splbio();
   1143 				if((*bpp)->b_flags & B_BUSY) {
   1144 #ifdef DEBUG
   1145 					printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
   1146 					       VTOI((*bpp)->b_vp)->i_number,
   1147 					       bp->b_lblkno);
   1148 #endif
   1149 					(*bpp)->b_flags |= B_WANTED;
   1150 					tsleep((*bpp), (PRIBIO + 1),
   1151 					       "lfs_writeseg", 0);
   1152 					splx(s);
   1153 					goto again;
   1154 				}
   1155 				(*bpp)->b_flags |= B_BUSY;
   1156 				splx(s);
   1157 			}
   1158 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
   1159 		}
   1160 	}
   1161 	ssp->ss_create = time.tv_sec;
   1162 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
   1163 	ssp->ss_sumsum =
   1164 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
   1165 	free(datap, M_SEGMENT);
   1166 #ifdef DIAGNOSTIC
   1167 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
   1168 		panic("lfs_writeseg: No diskspace for summary");
   1169 #endif
   1170 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
   1171 
   1172 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1173 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1174 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1175 
   1176 	/*
   1177 	 * When we simply write the blocks we lose a rotation for every block
   1178 	 * written.  To avoid this problem, we allocate memory in chunks, copy
   1179 	 * the buffers into the chunk and write the chunk.  CHUNKSIZE is the
   1180 	 * largest size I/O devices can handle.
   1181 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
   1182 	 * and brelse the buffer (which will move them to the LRU list).  Add
   1183 	 * the B_CALL flag to the buffer header so we can count I/O's for the
   1184 	 * checkpoints and so we can release the allocated memory.
   1185 	 *
   1186 	 * XXX
   1187 	 * This should be removed if the new virtual memory system allows us to
   1188 	 * easily make the buffers contiguous in kernel memory and if that's
   1189 	 * fast enough.
   1190 	 */
   1191 
   1192 #define CHUNKSIZE MAXPHYS
   1193 
   1194 	if(devvp==NULL)
   1195 		panic("devvp is NULL");
   1196 	for (bpp = sp->bpp,i = nblocks; i;) {
   1197 		cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
   1198 		cbp->b_dev = i_dev;
   1199 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1200 		cbp->b_bcount = 0;
   1201 
   1202 #ifdef DIAGNOSTIC
   1203 		if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
   1204 			panic("lfs_writeseg: Segment overwrite");
   1205 		}
   1206 #endif
   1207 
   1208 		if(fs->lfs_iocount >= LFS_THROTTLE) {
   1209 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
   1210 		}
   1211 		s = splbio();
   1212 		++fs->lfs_iocount;
   1213 #ifdef LFS_TRACK_IOS
   1214 		for(j=0;j<LFS_THROTTLE;j++) {
   1215 			if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
   1216 				fs->lfs_pending[j] = cbp->b_blkno;
   1217 				break;
   1218 			}
   1219 		}
   1220 #endif /* LFS_TRACK_IOS */
   1221 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
   1222 			bp = *bpp;
   1223 
   1224 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1225 				break;
   1226 
   1227 			/*
   1228 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1229 			 * We need to copy the data from user space rather than
   1230 			 * from the buffer indicated.
   1231 			 * XXX == what do I do on an error?
   1232 			 */
   1233 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1234 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1235 					panic("lfs_writeseg: copyin failed [2]");
   1236 			} else
   1237 				bcopy(bp->b_data, p, bp->b_bcount);
   1238 			p += bp->b_bcount;
   1239 			cbp->b_bcount += bp->b_bcount;
   1240 			if (bp->b_flags & B_LOCKED) {
   1241 				--locked_queue_count;
   1242 				locked_queue_bytes -= bp->b_bufsize;
   1243 			}
   1244 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
   1245 					 B_LOCKED | B_GATHERED);
   1246 			vn = bp->b_vp;
   1247 			if (bp->b_flags & B_CALL) {
   1248 				/* if B_CALL, it was created with newbuf */
   1249 				lfs_freebuf(bp);
   1250 			} else {
   1251 				bremfree(bp);
   1252 				bp->b_flags |= B_DONE;
   1253 				if(vn)
   1254 					reassignbuf(bp, vn);
   1255 				brelse(bp);
   1256 			}
   1257 			if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
   1258 				bp->b_flags &= ~B_NEEDCOMMIT;
   1259 				wakeup(bp);
   1260 			}
   1261 			/* if(vn->v_dirtyblkhd.lh_first == NULL) */
   1262 				wakeup(vn);
   1263 			bpp++;
   1264 		}
   1265 		++cbp->b_vp->v_numoutput;
   1266 		splx(s);
   1267 		/*
   1268 		 * XXXX This is a gross and disgusting hack.  Since these
   1269 		 * buffers are physically addressed, they hang off the
   1270 		 * device vnode (devvp).  As a result, they have no way
   1271 		 * of getting to the LFS superblock or lfs structure to
   1272 		 * keep track of the number of I/O's pending.  So, I am
   1273 		 * going to stuff the fs into the saveaddr field of
   1274 		 * the buffer (yuk).
   1275 		 */
   1276 		cbp->b_saveaddr = (caddr_t)fs;
   1277 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   1278 		vop_strategy_a.a_bp = cbp;
   1279 		(strategy)(&vop_strategy_a);
   1280 	}
   1281 	/*
   1282 	 * XXX
   1283 	 * Vinvalbuf can move locked buffers off the locked queue
   1284 	 * and we have no way of knowing about this.  So, after
   1285 	 * doing a big write, we recalculate how many buffers are
   1286 	 * really still left on the locked queue.
   1287 	 */
   1288 	lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
   1289 	wakeup(&locked_queue_count);
   1290 	if(lfs_dostats) {
   1291 		++lfs_stats.psegwrites;
   1292 		lfs_stats.blocktot += nblocks - 1;
   1293 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1294 			++lfs_stats.psyncwrites;
   1295 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1296 			++lfs_stats.pcleanwrites;
   1297 			lfs_stats.cleanblocks += nblocks - 1;
   1298 		}
   1299 	}
   1300 	return (lfs_initseg(fs) || do_again);
   1301 }
   1302 
   1303 void
   1304 lfs_writesuper(fs, daddr)
   1305 	struct lfs *fs;
   1306 	daddr_t daddr;
   1307 {
   1308 	struct buf *bp;
   1309 	dev_t i_dev;
   1310 	int (*strategy) __P((void *));
   1311 	int s;
   1312 	struct vop_strategy_args vop_strategy_a;
   1313 
   1314 #ifdef LFS_CANNOT_ROLLFW
   1315 	/*
   1316 	 * If we can write one superblock while another is in
   1317 	 * progress, we risk not having a complete checkpoint if we crash.
   1318 	 * So, block here if a superblock write is in progress.
   1319 	 *
   1320 	 * XXX - should be a proper lock, not this hack
   1321 	 */
   1322 	while(fs->lfs_sbactive) {
   1323 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   1324 	}
   1325 	fs->lfs_sbactive = daddr;
   1326 #endif
   1327 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1328 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   1329 
   1330 	/* Set timestamp of this version of the superblock */
   1331 	fs->lfs_tstamp = time.tv_sec;
   1332 
   1333 	/* Checksum the superblock and copy it into a buffer. */
   1334 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1335 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
   1336 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   1337 
   1338 	bp->b_dev = i_dev;
   1339 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   1340 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   1341 	bp->b_iodone = lfs_supercallback;
   1342 	/* XXX KS - same nasty hack as above */
   1343 	bp->b_saveaddr = (caddr_t)fs;
   1344 
   1345 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   1346 	vop_strategy_a.a_bp = bp;
   1347 	s = splbio();
   1348 	++bp->b_vp->v_numoutput;
   1349 	splx(s);
   1350 	(strategy)(&vop_strategy_a);
   1351 }
   1352 
   1353 /*
   1354  * Logical block number match routines used when traversing the dirty block
   1355  * chain.
   1356  */
   1357 int
   1358 lfs_match_fake(fs, bp)
   1359 	struct lfs *fs;
   1360 	struct buf *bp;
   1361 {
   1362 	return (bp->b_flags & B_CALL);
   1363 }
   1364 
   1365 int
   1366 lfs_match_data(fs, bp)
   1367 	struct lfs *fs;
   1368 	struct buf *bp;
   1369 {
   1370 	return (bp->b_lblkno >= 0);
   1371 }
   1372 
   1373 int
   1374 lfs_match_indir(fs, bp)
   1375 	struct lfs *fs;
   1376 	struct buf *bp;
   1377 {
   1378 	int lbn;
   1379 
   1380 	lbn = bp->b_lblkno;
   1381 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1382 }
   1383 
   1384 int
   1385 lfs_match_dindir(fs, bp)
   1386 	struct lfs *fs;
   1387 	struct buf *bp;
   1388 {
   1389 	int lbn;
   1390 
   1391 	lbn = bp->b_lblkno;
   1392 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1393 }
   1394 
   1395 int
   1396 lfs_match_tindir(fs, bp)
   1397 	struct lfs *fs;
   1398 	struct buf *bp;
   1399 {
   1400 	int lbn;
   1401 
   1402 	lbn = bp->b_lblkno;
   1403 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1404 }
   1405 
   1406 /*
   1407  * XXX - The only buffers that are going to hit these functions are the
   1408  * segment write blocks, or the segment summaries, or the superblocks.
   1409  *
   1410  * All of the above are created by lfs_newbuf, and so do not need to be
   1411  * released via brelse.
   1412  */
   1413 void
   1414 lfs_callback(bp)
   1415 	struct buf *bp;
   1416 {
   1417 	struct lfs *fs;
   1418 #ifdef LFS_TRACK_IOS
   1419 	int j;
   1420 #endif
   1421 
   1422 	fs = (struct lfs *)bp->b_saveaddr;
   1423 #ifdef DIAGNOSTIC
   1424 	if (fs->lfs_iocount == 0)
   1425 		panic("lfs_callback: zero iocount\n");
   1426 #endif
   1427 	if (--fs->lfs_iocount < LFS_THROTTLE)
   1428 		wakeup(&fs->lfs_iocount);
   1429 #ifdef LFS_TRACK_IOS
   1430 	for(j=0;j<LFS_THROTTLE;j++) {
   1431 		if(fs->lfs_pending[j]==bp->b_blkno) {
   1432 			fs->lfs_pending[j] = LFS_UNUSED_DADDR;
   1433 			wakeup(&(fs->lfs_pending[j]));
   1434 			break;
   1435 		}
   1436 	}
   1437 #endif /* LFS_TRACK_IOS */
   1438 
   1439 	lfs_freebuf(bp);
   1440 }
   1441 
   1442 void
   1443 lfs_supercallback(bp)
   1444 	struct buf *bp;
   1445 {
   1446 #ifdef LFS_CANNOT_ROLLFW
   1447 	struct lfs *fs;
   1448 
   1449 	fs = (struct lfs *)bp->b_saveaddr;
   1450 	fs->lfs_sbactive=NULL;
   1451 	wakeup(&fs->lfs_sbactive);
   1452 #endif
   1453 	lfs_freebuf(bp);
   1454 }
   1455 
   1456 /*
   1457  * Shellsort (diminishing increment sort) from Data Structures and
   1458  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1459  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1460  * formula (8), page 95.  Roughly O(N^3/2).
   1461  */
   1462 /*
   1463  * This is our own private copy of shellsort because we want to sort
   1464  * two parallel arrays (the array of buffer pointers and the array of
   1465  * logical block numbers) simultaneously.  Note that we cast the array
   1466  * of logical block numbers to a unsigned in this routine so that the
   1467  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1468  */
   1469 
   1470 void
   1471 lfs_shellsort(bp_array, lb_array, nmemb)
   1472 	struct buf **bp_array;
   1473 	ufs_daddr_t *lb_array;
   1474 	register int nmemb;
   1475 {
   1476 	static int __rsshell_increments[] = { 4, 1, 0 };
   1477 	register int incr, *incrp, t1, t2;
   1478 	struct buf *bp_temp;
   1479 	u_long lb_temp;
   1480 
   1481 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1482 		for (t1 = incr; t1 < nmemb; ++t1)
   1483 			for (t2 = t1 - incr; t2 >= 0;)
   1484 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1485 					lb_temp = lb_array[t2];
   1486 					lb_array[t2] = lb_array[t2 + incr];
   1487 					lb_array[t2 + incr] = lb_temp;
   1488 					bp_temp = bp_array[t2];
   1489 					bp_array[t2] = bp_array[t2 + incr];
   1490 					bp_array[t2 + incr] = bp_temp;
   1491 					t2 -= incr;
   1492 				} else
   1493 					break;
   1494 }
   1495 
   1496 /*
   1497  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1498  */
   1499 int
   1500 lfs_vref(vp)
   1501 	register struct vnode *vp;
   1502 {
   1503 	/*
   1504 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   1505 	 * being able to flush all of the pages from this vnode, which
   1506 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   1507 	 */
   1508 	if (vp->v_flag & VXLOCK) {
   1509 		if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1510 			return 0;
   1511 		}
   1512 		return(1);
   1513 	}
   1514 	return (vget(vp, 0));
   1515 }
   1516 
   1517 /*
   1518  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1519  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1520  */
   1521 void
   1522 lfs_vunref(vp)
   1523 	register struct vnode *vp;
   1524 {
   1525 	/*
   1526 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   1527 	 */
   1528 	if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1529 		return;
   1530 	}
   1531 
   1532 	simple_lock(&vp->v_interlock);
   1533 #ifdef DIAGNOSTIC
   1534 	if(vp->v_usecount<=0) {
   1535 		printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
   1536 		printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
   1537 		panic("lfs_vunref: v_usecount<0");
   1538 	}
   1539 #endif
   1540 	vp->v_usecount--;
   1541 	if (vp->v_usecount > 0) {
   1542 		simple_unlock(&vp->v_interlock);
   1543 		return;
   1544 	}
   1545 #ifdef DIAGNOSTIC
   1546 	if(VOP_ISLOCKED(vp))
   1547 		panic("lfs_vunref: vnode locked");
   1548 #endif
   1549 	/*
   1550 	 * insert at tail of LRU list
   1551 	 */
   1552 	simple_lock(&vnode_free_list_slock);
   1553 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1554 	simple_unlock(&vnode_free_list_slock);
   1555 	simple_unlock(&vp->v_interlock);
   1556 }
   1557 
   1558 /*
   1559  * We use this when we have vnodes that were loaded in solely for cleaning.
   1560  * There is no reason to believe that these vnodes will be referenced again
   1561  * soon, since the cleaning process is unrelated to normal filesystem
   1562  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   1563  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   1564  * cleaning at the head of the list, instead.
   1565  */
   1566 void
   1567 lfs_vunref_head(vp)
   1568 	register struct vnode *vp;
   1569 {
   1570 	simple_lock(&vp->v_interlock);
   1571 #ifdef DIAGNOSTIC
   1572 	if(vp->v_usecount==0) {
   1573 		panic("lfs_vunref: v_usecount<0");
   1574 	}
   1575 #endif
   1576 	vp->v_usecount--;
   1577 	if (vp->v_usecount > 0) {
   1578 		simple_unlock(&vp->v_interlock);
   1579 		return;
   1580 	}
   1581 #ifdef DIAGNOSTIC
   1582 	if(VOP_ISLOCKED(vp))
   1583 		panic("lfs_vunref_head: vnode locked");
   1584 #endif
   1585 	/*
   1586 	 * insert at head of LRU list
   1587 	 */
   1588 	simple_lock(&vnode_free_list_slock);
   1589 	TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   1590 	simple_unlock(&vnode_free_list_slock);
   1591 	simple_unlock(&vp->v_interlock);
   1592 }
   1593 
   1594