lfs_segment.c revision 1.256 1 /* $NetBSD: lfs_segment.c,v 1.256 2015/08/12 18:28:01 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.256 2015/08/12 18:28:01 dholland Exp $");
64
65 #define _VFS_VNODE_PRIVATE /* XXX: check for VI_MARKER, this has to go */
66
67 #ifdef DEBUG
68 # define vndebug(vp, str) do { \
69 if (VTOI(vp)->i_flag & IN_CLEANING) \
70 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
71 VTOI(vp)->i_number, (str), op)); \
72 } while(0)
73 #else
74 # define vndebug(vp, str)
75 #endif
76 #define ivndebug(vp, str) \
77 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
78
79 #if defined(_KERNEL_OPT)
80 #include "opt_ddb.h"
81 #endif
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/namei.h>
86 #include <sys/kernel.h>
87 #include <sys/resourcevar.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/buf.h>
91 #include <sys/proc.h>
92 #include <sys/vnode.h>
93 #include <sys/mount.h>
94 #include <sys/kauth.h>
95 #include <sys/syslog.h>
96
97 #include <miscfs/specfs/specdev.h>
98 #include <miscfs/fifofs/fifo.h>
99
100 #include <ufs/lfs/ulfs_inode.h>
101 #include <ufs/lfs/ulfsmount.h>
102 #include <ufs/lfs/ulfs_extern.h>
103
104 #include <ufs/lfs/lfs.h>
105 #include <ufs/lfs/lfs_accessors.h>
106 #include <ufs/lfs/lfs_kernel.h>
107 #include <ufs/lfs/lfs_extern.h>
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
113
114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 static void lfs_free_aiodone(struct buf *);
116 static void lfs_super_aiodone(struct buf *);
117 static void lfs_cluster_aiodone(struct buf *);
118 static void lfs_cluster_callback(struct buf *);
119
120 /*
121 * Determine if it's OK to start a partial in this segment, or if we need
122 * to go on to a new segment.
123 */
124 #define LFS_PARTIAL_FITS(fs) \
125 (lfs_sb_getfsbpseg(fs) - \
126 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
127 lfs_sb_getfrag(fs))
128
129 /*
130 * Figure out whether we should do a checkpoint write or go ahead with
131 * an ordinary write.
132 */
133 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
134 ((flags & SEGM_CLEAN) == 0 && \
135 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
136 (flags & SEGM_CKP) || \
137 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
138
139 int lfs_match_fake(struct lfs *, struct buf *);
140 void lfs_newseg(struct lfs *);
141 void lfs_supercallback(struct buf *);
142 void lfs_updatemeta(struct segment *);
143 void lfs_writesuper(struct lfs *, daddr_t);
144 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
145 struct segment *sp, int dirops);
146
147 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
148 int, int);
149
150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
153 int lfs_dirvcount = 0; /* # active dirops */
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 /* op values to lfs_writevnodes */
160 #define VN_REG 0
161 #define VN_DIROP 1
162 #define VN_EMPTY 2
163 #define VN_CLEAN 3
164
165 /*
166 * XXX KS - Set modification time on the Ifile, so the cleaner can
167 * read the fs mod time off of it. We don't set IN_UPDATE here,
168 * since we don't really need this to be flushed to disk (and in any
169 * case that wouldn't happen to the Ifile until we checkpoint).
170 */
171 void
172 lfs_imtime(struct lfs *fs)
173 {
174 struct timespec ts;
175 struct inode *ip;
176
177 ASSERT_MAYBE_SEGLOCK(fs);
178 vfs_timestamp(&ts);
179 ip = VTOI(fs->lfs_ivnode);
180 ip->i_ffs1_mtime = ts.tv_sec;
181 ip->i_ffs1_mtimensec = ts.tv_nsec;
182 }
183
184 /*
185 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
186 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
187 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
188 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
189 */
190
191 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
192
193 int
194 lfs_vflush(struct vnode *vp)
195 {
196 struct inode *ip;
197 struct lfs *fs;
198 struct segment *sp;
199 struct buf *bp, *nbp, *tbp, *tnbp;
200 int error;
201 int flushed;
202 int relock;
203
204 ip = VTOI(vp);
205 fs = VFSTOULFS(vp->v_mount)->um_lfs;
206 relock = 0;
207
208 top:
209 KASSERT(mutex_owned(vp->v_interlock) == false);
210 KASSERT(mutex_owned(&lfs_lock) == false);
211 KASSERT(mutex_owned(&bufcache_lock) == false);
212 ASSERT_NO_SEGLOCK(fs);
213 if (ip->i_flag & IN_CLEANING) {
214 ivndebug(vp,"vflush/in_cleaning");
215 mutex_enter(&lfs_lock);
216 LFS_CLR_UINO(ip, IN_CLEANING);
217 LFS_SET_UINO(ip, IN_MODIFIED);
218 mutex_exit(&lfs_lock);
219
220 /*
221 * Toss any cleaning buffers that have real counterparts
222 * to avoid losing new data.
223 */
224 mutex_enter(vp->v_interlock);
225 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
226 nbp = LIST_NEXT(bp, b_vnbufs);
227 if (!LFS_IS_MALLOC_BUF(bp))
228 continue;
229 /*
230 * Look for pages matching the range covered
231 * by cleaning blocks. It's okay if more dirty
232 * pages appear, so long as none disappear out
233 * from under us.
234 */
235 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
236 vp != fs->lfs_ivnode) {
237 struct vm_page *pg;
238 voff_t off;
239
240 for (off = lfs_lblktosize(fs, bp->b_lblkno);
241 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
242 off += PAGE_SIZE) {
243 pg = uvm_pagelookup(&vp->v_uobj, off);
244 if (pg == NULL)
245 continue;
246 if ((pg->flags & PG_CLEAN) == 0 ||
247 pmap_is_modified(pg)) {
248 lfs_sb_addavail(fs,
249 lfs_btofsb(fs,
250 bp->b_bcount));
251 wakeup(&fs->lfs_availsleep);
252 mutex_exit(vp->v_interlock);
253 lfs_freebuf(fs, bp);
254 mutex_enter(vp->v_interlock);
255 bp = NULL;
256 break;
257 }
258 }
259 }
260 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
261 tbp = tnbp)
262 {
263 tnbp = LIST_NEXT(tbp, b_vnbufs);
264 if (tbp->b_vp == bp->b_vp
265 && tbp->b_lblkno == bp->b_lblkno
266 && tbp != bp)
267 {
268 lfs_sb_addavail(fs, lfs_btofsb(fs,
269 bp->b_bcount));
270 wakeup(&fs->lfs_availsleep);
271 mutex_exit(vp->v_interlock);
272 lfs_freebuf(fs, bp);
273 mutex_enter(vp->v_interlock);
274 bp = NULL;
275 break;
276 }
277 }
278 }
279 } else {
280 mutex_enter(vp->v_interlock);
281 }
282
283 /* If the node is being written, wait until that is done */
284 while (WRITEINPROG(vp)) {
285 ivndebug(vp,"vflush/writeinprog");
286 cv_wait(&vp->v_cv, vp->v_interlock);
287 }
288 error = vdead_check(vp, VDEAD_NOWAIT);
289 mutex_exit(vp->v_interlock);
290
291 /* Protect against deadlock in vinvalbuf() */
292 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
293 if (error != 0) {
294 fs->lfs_reclino = ip->i_number;
295 }
296
297 /* If we're supposed to flush a freed inode, just toss it */
298 if (ip->i_lfs_iflags & LFSI_DELETED) {
299 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
300 ip->i_number));
301 /* Drain v_numoutput */
302 mutex_enter(vp->v_interlock);
303 while (vp->v_numoutput > 0) {
304 cv_wait(&vp->v_cv, vp->v_interlock);
305 }
306 KASSERT(vp->v_numoutput == 0);
307 mutex_exit(vp->v_interlock);
308
309 mutex_enter(&bufcache_lock);
310 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
311 nbp = LIST_NEXT(bp, b_vnbufs);
312
313 KASSERT((bp->b_flags & B_GATHERED) == 0);
314 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
315 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
316 wakeup(&fs->lfs_availsleep);
317 }
318 /* Copied from lfs_writeseg */
319 if (bp->b_iodone != NULL) {
320 mutex_exit(&bufcache_lock);
321 biodone(bp);
322 mutex_enter(&bufcache_lock);
323 } else {
324 bremfree(bp);
325 LFS_UNLOCK_BUF(bp);
326 mutex_enter(vp->v_interlock);
327 bp->b_flags &= ~(B_READ | B_GATHERED);
328 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
329 bp->b_error = 0;
330 reassignbuf(bp, vp);
331 mutex_exit(vp->v_interlock);
332 brelse(bp, 0);
333 }
334 }
335 mutex_exit(&bufcache_lock);
336 LFS_CLR_UINO(ip, IN_CLEANING);
337 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
338 ip->i_flag &= ~IN_ALLMOD;
339 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
340 ip->i_number));
341 lfs_segunlock(fs);
342
343 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
344
345 return 0;
346 }
347
348 fs->lfs_flushvp = vp;
349 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
350 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
351 fs->lfs_flushvp = NULL;
352 KASSERT(fs->lfs_flushvp_fakevref == 0);
353 lfs_segunlock(fs);
354
355 /* Make sure that any pending buffers get written */
356 mutex_enter(vp->v_interlock);
357 while (vp->v_numoutput > 0) {
358 cv_wait(&vp->v_cv, vp->v_interlock);
359 }
360 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
361 KASSERT(vp->v_numoutput == 0);
362 mutex_exit(vp->v_interlock);
363
364 return error;
365 }
366 sp = fs->lfs_sp;
367
368 flushed = 0;
369 if (VPISEMPTY(vp)) {
370 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
371 ++flushed;
372 } else if ((ip->i_flag & IN_CLEANING) &&
373 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
374 ivndebug(vp,"vflush/clean");
375 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
376 ++flushed;
377 } else if (lfs_dostats) {
378 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
379 ++lfs_stats.vflush_invoked;
380 ivndebug(vp,"vflush");
381 }
382
383 #ifdef DIAGNOSTIC
384 if (vp->v_uflag & VU_DIROP) {
385 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
386 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
387 }
388 #endif
389
390 do {
391 #ifdef DEBUG
392 int loopcount = 0;
393 #endif
394 do {
395 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
396 relock = lfs_writefile(fs, sp, vp);
397 if (relock && vp != fs->lfs_ivnode) {
398 /*
399 * Might have to wait for the
400 * cleaner to run; but we're
401 * still not done with this vnode.
402 * XXX we can do better than this.
403 */
404 KDASSERT(ip->i_number != LFS_IFILE_INUM);
405 lfs_writeinode(fs, sp, ip);
406 mutex_enter(&lfs_lock);
407 LFS_SET_UINO(ip, IN_MODIFIED);
408 mutex_exit(&lfs_lock);
409 lfs_writeseg(fs, sp);
410 lfs_segunlock(fs);
411 lfs_segunlock_relock(fs);
412 goto top;
413 }
414 }
415 /*
416 * If we begin a new segment in the middle of writing
417 * the Ifile, it creates an inconsistent checkpoint,
418 * since the Ifile information for the new segment
419 * is not up-to-date. Take care of this here by
420 * sending the Ifile through again in case there
421 * are newly dirtied blocks. But wait, there's more!
422 * This second Ifile write could *also* cross a segment
423 * boundary, if the first one was large. The second
424 * one is guaranteed to be no more than 8 blocks,
425 * though (two segment blocks and supporting indirects)
426 * so the third write *will not* cross the boundary.
427 */
428 if (vp == fs->lfs_ivnode) {
429 lfs_writefile(fs, sp, vp);
430 lfs_writefile(fs, sp, vp);
431 }
432 #ifdef DEBUG
433 if (++loopcount > 2)
434 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
435 #endif
436 } while (lfs_writeinode(fs, sp, ip));
437 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
438
439 if (lfs_dostats) {
440 ++lfs_stats.nwrites;
441 if (sp->seg_flags & SEGM_SYNC)
442 ++lfs_stats.nsync_writes;
443 if (sp->seg_flags & SEGM_CKP)
444 ++lfs_stats.ncheckpoints;
445 }
446 /*
447 * If we were called from somewhere that has already held the seglock
448 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
449 * the write to complete because we are still locked.
450 * Since lfs_vflush() must return the vnode with no dirty buffers,
451 * we must explicitly wait, if that is the case.
452 *
453 * We compare the iocount against 1, not 0, because it is
454 * artificially incremented by lfs_seglock().
455 */
456 mutex_enter(&lfs_lock);
457 if (fs->lfs_seglock > 1) {
458 while (fs->lfs_iocount > 1)
459 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
460 "lfs_vflush", 0, &lfs_lock);
461 }
462 mutex_exit(&lfs_lock);
463
464 lfs_segunlock(fs);
465
466 /* Wait for these buffers to be recovered by aiodoned */
467 mutex_enter(vp->v_interlock);
468 while (vp->v_numoutput > 0) {
469 cv_wait(&vp->v_cv, vp->v_interlock);
470 }
471 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
472 KASSERT(vp->v_numoutput == 0);
473 mutex_exit(vp->v_interlock);
474
475 fs->lfs_flushvp = NULL;
476 KASSERT(fs->lfs_flushvp_fakevref == 0);
477
478 return (0);
479 }
480
481 int
482 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
483 {
484 struct inode *ip;
485 struct vnode *vp;
486 int inodes_written = 0;
487 int error = 0;
488
489 ASSERT_SEGLOCK(fs);
490 loop:
491 /* start at last (newest) vnode. */
492 mutex_enter(&mntvnode_lock);
493 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
494 /*
495 * If the vnode that we are about to sync is no longer
496 * associated with this mount point, start over.
497 */
498 if (vp->v_mount != mp) {
499 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
500 /*
501 * After this, pages might be busy
502 * due to our own previous putpages.
503 * Start actual segment write here to avoid deadlock.
504 * If we were just writing one segment and we've done
505 * that, break out.
506 */
507 mutex_exit(&mntvnode_lock);
508 if (lfs_writeseg(fs, sp) &&
509 (sp->seg_flags & SEGM_SINGLE) &&
510 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
511 DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
512 break;
513 }
514 goto loop;
515 }
516
517 mutex_enter(vp->v_interlock);
518 if (vp->v_type == VNON || (vp->v_iflag & VI_MARKER) ||
519 vdead_check(vp, VDEAD_NOWAIT) != 0) {
520 mutex_exit(vp->v_interlock);
521 continue;
522 }
523
524 ip = VTOI(vp);
525 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
526 (op != VN_DIROP && op != VN_CLEAN &&
527 (vp->v_uflag & VU_DIROP))) {
528 mutex_exit(vp->v_interlock);
529 vndebug(vp,"dirop");
530 continue;
531 }
532
533 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
534 mutex_exit(vp->v_interlock);
535 vndebug(vp,"empty");
536 continue;
537 }
538
539 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
540 && vp != fs->lfs_flushvp
541 && !(ip->i_flag & IN_CLEANING)) {
542 mutex_exit(vp->v_interlock);
543 vndebug(vp,"cleaning");
544 continue;
545 }
546
547 mutex_exit(&mntvnode_lock);
548 if (vget(vp, LK_NOWAIT, false /* !wait */)) {
549 vndebug(vp,"vget");
550 mutex_enter(&mntvnode_lock);
551 continue;
552 }
553
554 /*
555 * Write the inode/file if dirty and it's not the IFILE.
556 */
557 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
558 if (ip->i_number != LFS_IFILE_INUM) {
559 error = lfs_writefile(fs, sp, vp);
560 if (error) {
561 vrele(vp);
562 if (error == EAGAIN) {
563 /*
564 * This error from lfs_putpages
565 * indicates we need to drop
566 * the segment lock and start
567 * over after the cleaner has
568 * had a chance to run.
569 */
570 lfs_writeinode(fs, sp, ip);
571 lfs_writeseg(fs, sp);
572 if (!VPISEMPTY(vp) &&
573 !WRITEINPROG(vp) &&
574 !(ip->i_flag & IN_ALLMOD)) {
575 mutex_enter(&lfs_lock);
576 LFS_SET_UINO(ip, IN_MODIFIED);
577 mutex_exit(&lfs_lock);
578 }
579 mutex_enter(&mntvnode_lock);
580 break;
581 }
582 error = 0; /* XXX not quite right */
583 mutex_enter(&mntvnode_lock);
584 continue;
585 }
586
587 if (!VPISEMPTY(vp)) {
588 if (WRITEINPROG(vp)) {
589 ivndebug(vp,"writevnodes/write2");
590 } else if (!(ip->i_flag & IN_ALLMOD)) {
591 mutex_enter(&lfs_lock);
592 LFS_SET_UINO(ip, IN_MODIFIED);
593 mutex_exit(&lfs_lock);
594 }
595 }
596 (void) lfs_writeinode(fs, sp, ip);
597 inodes_written++;
598 }
599 }
600
601 vrele(vp);
602
603 mutex_enter(&mntvnode_lock);
604 }
605 mutex_exit(&mntvnode_lock);
606 return error;
607 }
608
609 /*
610 * Do a checkpoint.
611 */
612 int
613 lfs_segwrite(struct mount *mp, int flags)
614 {
615 struct buf *bp;
616 struct inode *ip;
617 struct lfs *fs;
618 struct segment *sp;
619 struct vnode *vp;
620 SEGUSE *segusep;
621 int do_ckp, did_ckp, error;
622 unsigned n, segleft, maxseg, sn, i, curseg;
623 int writer_set = 0;
624 int dirty;
625 int redo;
626 SEGSUM *ssp;
627 int um_error;
628
629 fs = VFSTOULFS(mp)->um_lfs;
630 ASSERT_MAYBE_SEGLOCK(fs);
631
632 if (fs->lfs_ronly)
633 return EROFS;
634
635 lfs_imtime(fs);
636
637 /*
638 * Allocate a segment structure and enough space to hold pointers to
639 * the maximum possible number of buffers which can be described in a
640 * single summary block.
641 */
642 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
643
644 /* We can't do a partial write and checkpoint at the same time. */
645 if (do_ckp)
646 flags &= ~SEGM_SINGLE;
647
648 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
649 sp = fs->lfs_sp;
650 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
651 do_ckp = 1;
652
653 /*
654 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
655 * in which case we have to flush *all* buffers off of this vnode.
656 * We don't care about other nodes, but write any non-dirop nodes
657 * anyway in anticipation of another getnewvnode().
658 *
659 * If we're cleaning we only write cleaning and ifile blocks, and
660 * no dirops, since otherwise we'd risk corruption in a crash.
661 */
662 if (sp->seg_flags & SEGM_CLEAN)
663 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
664 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
665 do {
666 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
667 if ((sp->seg_flags & SEGM_SINGLE) &&
668 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
669 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
670 break;
671 }
672
673 if (do_ckp || fs->lfs_dirops == 0) {
674 if (!writer_set) {
675 lfs_writer_enter(fs, "lfs writer");
676 writer_set = 1;
677 }
678 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
679 if (um_error == 0)
680 um_error = error;
681 /* In case writevnodes errored out */
682 lfs_flush_dirops(fs);
683 ssp = (SEGSUM *)(sp->segsum);
684 lfs_ss_setflags(fs, ssp,
685 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
686 lfs_finalize_fs_seguse(fs);
687 }
688 if (do_ckp && um_error) {
689 lfs_segunlock_relock(fs);
690 sp = fs->lfs_sp;
691 }
692 } while (do_ckp && um_error != 0);
693 }
694
695 /*
696 * If we are doing a checkpoint, mark everything since the
697 * last checkpoint as no longer ACTIVE.
698 */
699 if (do_ckp || fs->lfs_doifile) {
700 segleft = lfs_sb_getnseg(fs);
701 curseg = 0;
702 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
703 dirty = 0;
704 if (bread(fs->lfs_ivnode, lfs_sb_getcleansz(fs) + n,
705 lfs_sb_getbsize(fs), B_MODIFY, &bp))
706 panic("lfs_segwrite: ifile read");
707 segusep = (SEGUSE *)bp->b_data;
708 maxseg = min(segleft, lfs_sb_getsepb(fs));
709 for (i = 0; i < maxseg; i++) {
710 sn = curseg + i;
711 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
712 segusep->su_flags & SEGUSE_ACTIVE) {
713 segusep->su_flags &= ~SEGUSE_ACTIVE;
714 --fs->lfs_nactive;
715 ++dirty;
716 }
717 fs->lfs_suflags[fs->lfs_activesb][sn] =
718 segusep->su_flags;
719 if (lfs_sb_getversion(fs) > 1)
720 ++segusep;
721 else
722 segusep = (SEGUSE *)
723 ((SEGUSE_V1 *)segusep + 1);
724 }
725
726 if (dirty)
727 error = LFS_BWRITE_LOG(bp); /* Ifile */
728 else
729 brelse(bp, 0);
730 segleft -= lfs_sb_getsepb(fs);
731 curseg += lfs_sb_getsepb(fs);
732 }
733 }
734
735 KASSERT(LFS_SEGLOCK_HELD(fs));
736
737 did_ckp = 0;
738 if (do_ckp || fs->lfs_doifile) {
739 vp = fs->lfs_ivnode;
740 #ifdef DEBUG
741 int loopcount = 0;
742 #endif
743 do {
744 #ifdef DEBUG
745 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
746 #endif
747 mutex_enter(&lfs_lock);
748 fs->lfs_flags &= ~LFS_IFDIRTY;
749 mutex_exit(&lfs_lock);
750
751 ip = VTOI(vp);
752
753 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
754 /*
755 * Ifile has no pages, so we don't need
756 * to check error return here.
757 */
758 lfs_writefile(fs, sp, vp);
759 /*
760 * Ensure the Ifile takes the current segment
761 * into account. See comment in lfs_vflush.
762 */
763 lfs_writefile(fs, sp, vp);
764 lfs_writefile(fs, sp, vp);
765 }
766
767 if (ip->i_flag & IN_ALLMOD)
768 ++did_ckp;
769 #if 0
770 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
771 #else
772 redo = lfs_writeinode(fs, sp, ip);
773 #endif
774 redo += lfs_writeseg(fs, sp);
775 mutex_enter(&lfs_lock);
776 redo += (fs->lfs_flags & LFS_IFDIRTY);
777 mutex_exit(&lfs_lock);
778 #ifdef DEBUG
779 if (++loopcount > 2)
780 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
781 loopcount);
782 #endif
783 } while (redo && do_ckp);
784
785 /*
786 * Unless we are unmounting, the Ifile may continue to have
787 * dirty blocks even after a checkpoint, due to changes to
788 * inodes' atime. If we're checkpointing, it's "impossible"
789 * for other parts of the Ifile to be dirty after the loop
790 * above, since we hold the segment lock.
791 */
792 mutex_enter(vp->v_interlock);
793 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
794 LFS_CLR_UINO(ip, IN_ALLMOD);
795 }
796 #ifdef DIAGNOSTIC
797 else if (do_ckp) {
798 int do_panic = 0;
799 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
800 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
801 lfs_sb_getsegtabsz(fs) &&
802 !(bp->b_flags & B_GATHERED)) {
803 printf("ifile lbn %ld still dirty (flags %lx)\n",
804 (long)bp->b_lblkno,
805 (long)bp->b_flags);
806 ++do_panic;
807 }
808 }
809 if (do_panic)
810 panic("dirty blocks");
811 }
812 #endif
813 mutex_exit(vp->v_interlock);
814 } else {
815 (void) lfs_writeseg(fs, sp);
816 }
817
818 /* Note Ifile no longer needs to be written */
819 fs->lfs_doifile = 0;
820 if (writer_set)
821 lfs_writer_leave(fs);
822
823 /*
824 * If we didn't write the Ifile, we didn't really do anything.
825 * That means that (1) there is a checkpoint on disk and (2)
826 * nothing has changed since it was written.
827 *
828 * Take the flags off of the segment so that lfs_segunlock
829 * doesn't have to write the superblock either.
830 */
831 if (do_ckp && !did_ckp) {
832 sp->seg_flags &= ~SEGM_CKP;
833 }
834
835 if (lfs_dostats) {
836 ++lfs_stats.nwrites;
837 if (sp->seg_flags & SEGM_SYNC)
838 ++lfs_stats.nsync_writes;
839 if (sp->seg_flags & SEGM_CKP)
840 ++lfs_stats.ncheckpoints;
841 }
842 lfs_segunlock(fs);
843 return (0);
844 }
845
846 /*
847 * Write the dirty blocks associated with a vnode.
848 */
849 int
850 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
851 {
852 struct inode *ip;
853 int i, frag;
854 SEGSUM *ssp;
855 int error;
856
857 ASSERT_SEGLOCK(fs);
858 error = 0;
859 ip = VTOI(vp);
860
861 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
862
863 if (vp->v_uflag & VU_DIROP) {
864 ssp = (SEGSUM *)sp->segsum;
865 lfs_ss_setflags(fs, ssp,
866 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
867 }
868
869 if (sp->seg_flags & SEGM_CLEAN) {
870 lfs_gather(fs, sp, vp, lfs_match_fake);
871 /*
872 * For a file being flushed, we need to write *all* blocks.
873 * This means writing the cleaning blocks first, and then
874 * immediately following with any non-cleaning blocks.
875 * The same is true of the Ifile since checkpoints assume
876 * that all valid Ifile blocks are written.
877 */
878 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
879 lfs_gather(fs, sp, vp, lfs_match_data);
880 /*
881 * Don't call VOP_PUTPAGES: if we're flushing,
882 * we've already done it, and the Ifile doesn't
883 * use the page cache.
884 */
885 }
886 } else {
887 lfs_gather(fs, sp, vp, lfs_match_data);
888 /*
889 * If we're flushing, we've already called VOP_PUTPAGES
890 * so don't do it again. Otherwise, we want to write
891 * everything we've got.
892 */
893 if (!IS_FLUSHING(fs, vp)) {
894 mutex_enter(vp->v_interlock);
895 error = VOP_PUTPAGES(vp, 0, 0,
896 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
897 }
898 }
899
900 /*
901 * It may not be necessary to write the meta-data blocks at this point,
902 * as the roll-forward recovery code should be able to reconstruct the
903 * list.
904 *
905 * We have to write them anyway, though, under two conditions: (1) the
906 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
907 * checkpointing.
908 *
909 * BUT if we are cleaning, we might have indirect blocks that refer to
910 * new blocks not being written yet, in addition to fragments being
911 * moved out of a cleaned segment. If that is the case, don't
912 * write the indirect blocks, or the finfo will have a small block
913 * in the middle of it!
914 * XXX in this case isn't the inode size wrong too?
915 */
916 frag = 0;
917 if (sp->seg_flags & SEGM_CLEAN) {
918 for (i = 0; i < ULFS_NDADDR; i++)
919 if (ip->i_lfs_fragsize[i] > 0 &&
920 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
921 ++frag;
922 }
923 #ifdef DIAGNOSTIC
924 if (frag > 1)
925 panic("lfs_writefile: more than one fragment!");
926 #endif
927 if (IS_FLUSHING(fs, vp) ||
928 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
929 lfs_gather(fs, sp, vp, lfs_match_indir);
930 lfs_gather(fs, sp, vp, lfs_match_dindir);
931 lfs_gather(fs, sp, vp, lfs_match_tindir);
932 }
933 lfs_release_finfo(fs);
934
935 return error;
936 }
937
938 /*
939 * Update segment accounting to reflect this inode's change of address.
940 */
941 static int
942 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
943 {
944 struct buf *bp;
945 daddr_t daddr;
946 IFILE *ifp;
947 SEGUSE *sup;
948 ino_t ino;
949 int redo_ifile;
950 u_int32_t sn;
951
952 redo_ifile = 0;
953
954 /*
955 * If updating the ifile, update the super-block. Update the disk
956 * address and access times for this inode in the ifile.
957 */
958 ino = ip->i_number;
959 if (ino == LFS_IFILE_INUM) {
960 daddr = lfs_sb_getidaddr(fs);
961 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
962 } else {
963 LFS_IENTRY(ifp, fs, ino, bp);
964 daddr = lfs_if_getdaddr(fs, ifp);
965 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
966 (void)LFS_BWRITE_LOG(bp); /* Ifile */
967 }
968
969 /*
970 * If this is the Ifile and lfs_offset is set to the first block
971 * in the segment, dirty the new segment's accounting block
972 * (XXX should already be dirty?) and tell the caller to do it again.
973 */
974 if (ip->i_number == LFS_IFILE_INUM) {
975 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
976 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
977 lfs_sb_getoffset(fs)) {
978 LFS_SEGENTRY(sup, fs, sn, bp);
979 KASSERT(bp->b_oflags & BO_DELWRI);
980 LFS_WRITESEGENTRY(sup, fs, sn, bp);
981 /* fs->lfs_flags |= LFS_IFDIRTY; */
982 redo_ifile |= 1;
983 }
984 }
985
986 /*
987 * The inode's last address should not be in the current partial
988 * segment, except under exceptional circumstances (lfs_writevnodes
989 * had to start over, and in the meantime more blocks were written
990 * to a vnode). Both inodes will be accounted to this segment
991 * in lfs_writeseg so we need to subtract the earlier version
992 * here anyway. The segment count can temporarily dip below
993 * zero here; keep track of how many duplicates we have in
994 * "dupino" so we don't panic below.
995 */
996 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
997 ++sp->ndupino;
998 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
999 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1000 (long long)daddr, sp->ndupino));
1001 }
1002 /*
1003 * Account the inode: it no longer belongs to its former segment,
1004 * though it will not belong to the new segment until that segment
1005 * is actually written.
1006 */
1007 if (daddr != LFS_UNUSED_DADDR) {
1008 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1009 #ifdef DIAGNOSTIC
1010 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1011 #endif
1012 LFS_SEGENTRY(sup, fs, oldsn, bp);
1013 #ifdef DIAGNOSTIC
1014 if (sup->su_nbytes + DINOSIZE(fs) * ndupino < DINOSIZE(fs)) {
1015 printf("lfs_writeinode: negative bytes "
1016 "(segment %" PRIu32 " short by %d, "
1017 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1018 ", daddr=%" PRId64 ", su_nbytes=%u, "
1019 "ndupino=%d)\n",
1020 lfs_dtosn(fs, daddr),
1021 (int)DINOSIZE(fs) *
1022 (1 - sp->ndupino) - sup->su_nbytes,
1023 oldsn, sp->seg_number, daddr,
1024 (unsigned int)sup->su_nbytes,
1025 sp->ndupino);
1026 panic("lfs_writeinode: negative bytes");
1027 sup->su_nbytes = DINOSIZE(fs);
1028 }
1029 #endif
1030 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1031 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1032 sup->su_nbytes -= DINOSIZE(fs);
1033 redo_ifile |=
1034 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1035 if (redo_ifile) {
1036 mutex_enter(&lfs_lock);
1037 fs->lfs_flags |= LFS_IFDIRTY;
1038 mutex_exit(&lfs_lock);
1039 /* Don't double-account */
1040 lfs_sb_setidaddr(fs, 0x0);
1041 }
1042 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1043 }
1044
1045 return redo_ifile;
1046 }
1047
1048 int
1049 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1050 {
1051 struct buf *bp;
1052 union lfs_dinode *cdp;
1053 struct vnode *vp = ITOV(ip);
1054 daddr_t daddr;
1055 int i, ndx;
1056 int redo_ifile = 0;
1057 int gotblk = 0;
1058 int count;
1059 SEGSUM *ssp;
1060
1061 ASSERT_SEGLOCK(fs);
1062 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1063 return (0);
1064
1065 /* Can't write ifile when writer is not set */
1066 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1067 (sp->seg_flags & SEGM_CLEAN));
1068
1069 /*
1070 * If this is the Ifile, see if writing it here will generate a
1071 * temporary misaccounting. If it will, do the accounting and write
1072 * the blocks, postponing the inode write until the accounting is
1073 * solid.
1074 */
1075 count = 0;
1076 while (vp == fs->lfs_ivnode) {
1077 int redo = 0;
1078
1079 if (sp->idp == NULL && sp->ibp == NULL &&
1080 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1081 sp->sum_bytes_left < sizeof(int32_t))) {
1082 (void) lfs_writeseg(fs, sp);
1083 continue;
1084 }
1085
1086 /* Look for dirty Ifile blocks */
1087 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1088 if (!(bp->b_flags & B_GATHERED)) {
1089 redo = 1;
1090 break;
1091 }
1092 }
1093
1094 if (redo == 0)
1095 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1096 if (redo == 0)
1097 break;
1098
1099 if (sp->idp) {
1100 lfs_dino_setinumber(fs, sp->idp, 0);
1101 sp->idp = NULL;
1102 }
1103 ++count;
1104 if (count > 2)
1105 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1106 lfs_writefile(fs, sp, fs->lfs_ivnode);
1107 }
1108
1109 /* Allocate a new inode block if necessary. */
1110 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1111 sp->ibp == NULL) {
1112 /* Allocate a new segment if necessary. */
1113 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1114 sp->sum_bytes_left < sizeof(int32_t))
1115 (void) lfs_writeseg(fs, sp);
1116
1117 /* Get next inode block. */
1118 daddr = lfs_sb_getoffset(fs);
1119 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1120 sp->ibp = *sp->cbpp++ =
1121 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1122 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1123 gotblk++;
1124
1125 /* Zero out inode numbers */
1126 for (i = 0; i < LFS_INOPB(fs); ++i) {
1127 union lfs_dinode *tmpdi;
1128
1129 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1130 DINOSIZE(fs) * i);
1131 lfs_dino_setinumber(fs, tmpdi, 0);
1132 }
1133
1134 ++sp->start_bpp;
1135 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1136 /* Set remaining space counters. */
1137 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1138 sp->sum_bytes_left -= sizeof(int32_t);
1139 ndx = lfs_sb_getsumsize(fs) / sizeof(int32_t) -
1140 sp->ninodes / LFS_INOPB(fs) - 1;
1141 /* XXX ondisk32 */
1142 ((int32_t *)(sp->segsum))[ndx] = daddr;
1143 }
1144
1145 /* Check VU_DIROP in case there is a new file with no data blocks */
1146 if (vp->v_uflag & VU_DIROP) {
1147 ssp = (SEGSUM *)sp->segsum;
1148 lfs_ss_setflags(fs, ssp,
1149 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1150 }
1151
1152 /* Update the inode times and copy the inode onto the inode page. */
1153 /* XXX kludge --- don't redirty the ifile just to put times on it */
1154 if (ip->i_number != LFS_IFILE_INUM)
1155 LFS_ITIMES(ip, NULL, NULL, NULL);
1156
1157 /*
1158 * If this is the Ifile, and we've already written the Ifile in this
1159 * partial segment, just overwrite it (it's not on disk yet) and
1160 * continue.
1161 *
1162 * XXX we know that the bp that we get the second time around has
1163 * already been gathered.
1164 */
1165 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1166 if (fs->lfs_is64) {
1167 sp->idp->u_64 = *ip->i_din.ffs2_din;
1168 } else {
1169 sp->idp->u_32 = *ip->i_din.ffs1_din;
1170 }
1171 ip->i_lfs_osize = ip->i_size;
1172 return 0;
1173 }
1174
1175 bp = sp->ibp;
1176 cdp = (union lfs_dinode *)((char *)bp->b_data + DINOSIZE(fs) * (sp->ninodes % LFS_INOPB(fs)));
1177 if (fs->lfs_is64) {
1178 cdp->u_64 = *ip->i_din.ffs2_din;
1179 } else {
1180 cdp->u_32 = *ip->i_din.ffs1_din;
1181 }
1182
1183 /*
1184 * This inode is on its way to disk; clear its VU_DIROP status when
1185 * the write is complete.
1186 */
1187 if (vp->v_uflag & VU_DIROP) {
1188 if (!(sp->seg_flags & SEGM_CLEAN))
1189 ip->i_flag |= IN_CDIROP;
1190 else {
1191 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1192 }
1193 }
1194
1195 /*
1196 * If cleaning, link counts and directory file sizes cannot change,
1197 * since those would be directory operations---even if the file
1198 * we are writing is marked VU_DIROP we should write the old values.
1199 * If we're not cleaning, of course, update the values so we get
1200 * current values the next time we clean.
1201 */
1202 if (sp->seg_flags & SEGM_CLEAN) {
1203 if (vp->v_uflag & VU_DIROP) {
1204 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1205 /* if (vp->v_type == VDIR) */
1206 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1207 }
1208 } else {
1209 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1210 ip->i_lfs_osize = ip->i_size;
1211 }
1212
1213
1214 /* We can finish the segment accounting for truncations now */
1215 lfs_finalize_ino_seguse(fs, ip);
1216
1217 /*
1218 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1219 * addresses to disk; possibly change the on-disk record of
1220 * the inode size, either by reverting to the previous size
1221 * (in the case of cleaning) or by verifying the inode's block
1222 * holdings (in the case of files being allocated as they are being
1223 * written).
1224 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1225 * XXX count on disk wrong by the same amount. We should be
1226 * XXX able to "borrow" from lfs_avail and return it after the
1227 * XXX Ifile is written. See also in lfs_writeseg.
1228 */
1229
1230 /* Check file size based on highest allocated block */
1231 if (((ip->i_ffs1_mode & LFS_IFMT) == LFS_IFREG ||
1232 (ip->i_ffs1_mode & LFS_IFMT) == LFS_IFDIR) &&
1233 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1234 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1235 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1236 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1237 }
1238 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1239 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1240 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1241 ip->i_ffs1_blocks, (uintmax_t)lfs_sb_getoffset(fs)));
1242 for (i=0; i<ULFS_NDADDR; i++) {
1243 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1244 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1245 lfs_dino_setdb(fs, cdp, i, 0);
1246 }
1247 }
1248 for (i=0; i<ULFS_NIADDR; i++) {
1249 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1250 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1251 lfs_dino_setib(fs, cdp, i, 0);
1252 }
1253 }
1254 }
1255
1256 #ifdef DIAGNOSTIC
1257 /*
1258 * Check dinode held blocks against dinode size.
1259 * This should be identical to the check in lfs_vget().
1260 */
1261 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1262 i < ULFS_NDADDR; i++) {
1263 KASSERT(i >= 0);
1264 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1265 continue;
1266 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1267 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1268 continue;
1269 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1270 # ifdef DEBUG
1271 lfs_dump_dinode(fs, cdp);
1272 # endif
1273 panic("writing inconsistent inode");
1274 }
1275 }
1276 #endif /* DIAGNOSTIC */
1277
1278 if (ip->i_flag & IN_CLEANING)
1279 LFS_CLR_UINO(ip, IN_CLEANING);
1280 else {
1281 /* XXX IN_ALLMOD */
1282 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1283 IN_UPDATE | IN_MODIFY);
1284 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1285 LFS_CLR_UINO(ip, IN_MODIFIED);
1286 else {
1287 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1288 "blks=%d, eff=%jd\n", ip->i_number,
1289 ip->i_ffs1_blocks, (intmax_t)ip->i_lfs_effnblks));
1290 }
1291 }
1292
1293 if (ip->i_number == LFS_IFILE_INUM) {
1294 /* We know sp->idp == NULL */
1295 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1296
1297 /* Not dirty any more */
1298 mutex_enter(&lfs_lock);
1299 fs->lfs_flags &= ~LFS_IFDIRTY;
1300 mutex_exit(&lfs_lock);
1301 }
1302
1303 if (gotblk) {
1304 mutex_enter(&bufcache_lock);
1305 LFS_LOCK_BUF(bp);
1306 brelsel(bp, 0);
1307 mutex_exit(&bufcache_lock);
1308 }
1309
1310 /* Increment inode count in segment summary block. */
1311
1312 ssp = (SEGSUM *)sp->segsum;
1313 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1314
1315 /* If this page is full, set flag to allocate a new page. */
1316 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1317 sp->ibp = NULL;
1318
1319 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1320
1321 KASSERT(redo_ifile == 0);
1322 return (redo_ifile);
1323 }
1324
1325 int
1326 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1327 {
1328 struct lfs *fs;
1329 int vers;
1330 int j, blksinblk;
1331
1332 ASSERT_SEGLOCK(sp->fs);
1333 /*
1334 * If full, finish this segment. We may be doing I/O, so
1335 * release and reacquire the splbio().
1336 */
1337 #ifdef DIAGNOSTIC
1338 if (sp->vp == NULL)
1339 panic ("lfs_gatherblock: Null vp in segment");
1340 #endif
1341 fs = sp->fs;
1342 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1343 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1344 sp->seg_bytes_left < bp->b_bcount) {
1345 if (mptr)
1346 mutex_exit(mptr);
1347 lfs_updatemeta(sp);
1348
1349 vers = lfs_fi_getversion(fs, sp->fip);
1350 (void) lfs_writeseg(fs, sp);
1351
1352 /* Add the current file to the segment summary. */
1353 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1354
1355 if (mptr)
1356 mutex_enter(mptr);
1357 return (1);
1358 }
1359
1360 if (bp->b_flags & B_GATHERED) {
1361 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1362 " lbn %" PRId64 "\n",
1363 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1364 return (0);
1365 }
1366
1367 /* Insert into the buffer list, update the FINFO block. */
1368 bp->b_flags |= B_GATHERED;
1369
1370 *sp->cbpp++ = bp;
1371 for (j = 0; j < blksinblk; j++) {
1372 unsigned bn;
1373
1374 bn = lfs_fi_getnblocks(fs, sp->fip);
1375 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1376 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1377 /* This block's accounting moves from lfs_favail to lfs_avail */
1378 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1379 }
1380
1381 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1382 sp->seg_bytes_left -= bp->b_bcount;
1383 return (0);
1384 }
1385
1386 int
1387 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1388 int (*match)(struct lfs *, struct buf *))
1389 {
1390 struct buf *bp, *nbp;
1391 int count = 0;
1392
1393 ASSERT_SEGLOCK(fs);
1394 if (vp->v_type == VBLK)
1395 return 0;
1396 KASSERT(sp->vp == NULL);
1397 sp->vp = vp;
1398 mutex_enter(&bufcache_lock);
1399
1400 #ifndef LFS_NO_BACKBUF_HACK
1401 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1402 # define BUF_OFFSET \
1403 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1404 # define BACK_BUF(BP) \
1405 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1406 # define BEG_OF_LIST \
1407 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1408
1409 loop:
1410 /* Find last buffer. */
1411 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1412 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1413 bp = LIST_NEXT(bp, b_vnbufs))
1414 /* nothing */;
1415 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1416 nbp = BACK_BUF(bp);
1417 #else /* LFS_NO_BACKBUF_HACK */
1418 loop:
1419 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1420 nbp = LIST_NEXT(bp, b_vnbufs);
1421 #endif /* LFS_NO_BACKBUF_HACK */
1422 if ((bp->b_cflags & BC_BUSY) != 0 ||
1423 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1424 #ifdef DEBUG
1425 if (vp == fs->lfs_ivnode &&
1426 (bp->b_cflags & BC_BUSY) != 0 &&
1427 (bp->b_flags & B_GATHERED) == 0)
1428 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1429 PRId64 " busy (%x) at 0x%jx",
1430 bp->b_lblkno, bp->b_flags,
1431 (uintmax_t)lfs_sb_getoffset(fs));
1432 #endif
1433 continue;
1434 }
1435 #ifdef DIAGNOSTIC
1436 # ifdef LFS_USE_B_INVAL
1437 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1438 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1439 " is BC_INVAL\n", bp->b_lblkno));
1440 VOP_PRINT(bp->b_vp);
1441 }
1442 # endif /* LFS_USE_B_INVAL */
1443 if (!(bp->b_oflags & BO_DELWRI))
1444 panic("lfs_gather: bp not BO_DELWRI");
1445 if (!(bp->b_flags & B_LOCKED)) {
1446 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1447 " blk %" PRId64 " not B_LOCKED\n",
1448 bp->b_lblkno,
1449 LFS_DBTOFSB(fs, bp->b_blkno)));
1450 VOP_PRINT(bp->b_vp);
1451 panic("lfs_gather: bp not B_LOCKED");
1452 }
1453 #endif
1454 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1455 goto loop;
1456 }
1457 count++;
1458 }
1459 mutex_exit(&bufcache_lock);
1460 lfs_updatemeta(sp);
1461 KASSERT(sp->vp == vp);
1462 sp->vp = NULL;
1463 return count;
1464 }
1465
1466 #if DEBUG
1467 # define DEBUG_OOFF(n) do { \
1468 if (ooff == 0) { \
1469 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1470 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1471 ", was 0x0 (or %" PRId64 ")\n", \
1472 (n), ip->i_number, lbn, ndaddr, daddr)); \
1473 } \
1474 } while (0)
1475 #else
1476 # define DEBUG_OOFF(n)
1477 #endif
1478
1479 /*
1480 * Change the given block's address to ndaddr, finding its previous
1481 * location using ulfs_bmaparray().
1482 *
1483 * Account for this change in the segment table.
1484 *
1485 * called with sp == NULL by roll-forwarding code.
1486 */
1487 void
1488 lfs_update_single(struct lfs *fs, struct segment *sp,
1489 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1490 {
1491 SEGUSE *sup;
1492 struct buf *bp;
1493 struct indir a[ULFS_NIADDR + 2], *ap;
1494 struct inode *ip;
1495 daddr_t daddr, ooff;
1496 int num, error;
1497 int bb, osize, obb;
1498
1499 ASSERT_SEGLOCK(fs);
1500 KASSERT(sp == NULL || sp->vp == vp);
1501 ip = VTOI(vp);
1502
1503 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1504 if (error)
1505 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1506
1507 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1508 if (daddr > 0)
1509 daddr = LFS_DBTOFSB(fs, daddr);
1510
1511 bb = lfs_numfrags(fs, size);
1512 switch (num) {
1513 case 0:
1514 ooff = ip->i_ffs1_db[lbn];
1515 DEBUG_OOFF(0);
1516 if (ooff == UNWRITTEN)
1517 ip->i_ffs1_blocks += bb;
1518 else {
1519 /* possible fragment truncation or extension */
1520 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1521 ip->i_ffs1_blocks += (bb - obb);
1522 }
1523 ip->i_ffs1_db[lbn] = ndaddr;
1524 break;
1525 case 1:
1526 ooff = ip->i_ffs1_ib[a[0].in_off];
1527 DEBUG_OOFF(1);
1528 if (ooff == UNWRITTEN)
1529 ip->i_ffs1_blocks += bb;
1530 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1531 break;
1532 default:
1533 ap = &a[num - 1];
1534 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1535 B_MODIFY, &bp))
1536 panic("lfs_updatemeta: bread bno %" PRId64,
1537 ap->in_lbn);
1538
1539 /* XXX ondisk32 */
1540 ooff = ((int32_t *)bp->b_data)[ap->in_off];
1541 DEBUG_OOFF(num);
1542 if (ooff == UNWRITTEN)
1543 ip->i_ffs1_blocks += bb;
1544 /* XXX ondisk32 */
1545 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1546 (void) VOP_BWRITE(bp->b_vp, bp);
1547 }
1548
1549 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1550
1551 /* Update hiblk when extending the file */
1552 if (lbn > ip->i_lfs_hiblk)
1553 ip->i_lfs_hiblk = lbn;
1554
1555 /*
1556 * Though we'd rather it couldn't, this *can* happen right now
1557 * if cleaning blocks and regular blocks coexist.
1558 */
1559 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1560
1561 /*
1562 * Update segment usage information, based on old size
1563 * and location.
1564 */
1565 if (daddr > 0) {
1566 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1567 #ifdef DIAGNOSTIC
1568 int ndupino;
1569
1570 if (sp && sp->seg_number == oldsn) {
1571 ndupino = sp->ndupino;
1572 } else {
1573 ndupino = 0;
1574 }
1575 #endif
1576 KASSERT(oldsn < lfs_sb_getnseg(fs));
1577 if (lbn >= 0 && lbn < ULFS_NDADDR)
1578 osize = ip->i_lfs_fragsize[lbn];
1579 else
1580 osize = lfs_sb_getbsize(fs);
1581 LFS_SEGENTRY(sup, fs, oldsn, bp);
1582 #ifdef DIAGNOSTIC
1583 if (sup->su_nbytes + DINOSIZE(fs) * ndupino < osize) {
1584 printf("lfs_updatemeta: negative bytes "
1585 "(segment %" PRIu32 " short by %" PRId64
1586 ")\n", lfs_dtosn(fs, daddr),
1587 (int64_t)osize -
1588 (DINOSIZE(fs) * ndupino + sup->su_nbytes));
1589 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1590 ", addr = 0x%" PRIx64 "\n",
1591 (unsigned long long)ip->i_number, lbn, daddr);
1592 printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1593 panic("lfs_updatemeta: negative bytes");
1594 sup->su_nbytes = osize -
1595 DINOSIZE(fs) * ndupino;
1596 }
1597 #endif
1598 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1599 " db 0x%" PRIx64 "\n",
1600 lfs_dtosn(fs, daddr), osize,
1601 ip->i_number, lbn, daddr));
1602 sup->su_nbytes -= osize;
1603 if (!(bp->b_flags & B_GATHERED)) {
1604 mutex_enter(&lfs_lock);
1605 fs->lfs_flags |= LFS_IFDIRTY;
1606 mutex_exit(&lfs_lock);
1607 }
1608 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1609 }
1610 /*
1611 * Now that this block has a new address, and its old
1612 * segment no longer owns it, we can forget about its
1613 * old size.
1614 */
1615 if (lbn >= 0 && lbn < ULFS_NDADDR)
1616 ip->i_lfs_fragsize[lbn] = size;
1617 }
1618
1619 /*
1620 * Update the metadata that points to the blocks listed in the FINFO
1621 * array.
1622 */
1623 void
1624 lfs_updatemeta(struct segment *sp)
1625 {
1626 struct buf *sbp;
1627 struct lfs *fs;
1628 struct vnode *vp;
1629 daddr_t lbn;
1630 int i, nblocks, num;
1631 int __diagused nblocks_orig;
1632 int bb;
1633 int bytesleft, size;
1634 unsigned lastlength;
1635 union lfs_blocks tmpptr;
1636
1637 fs = sp->fs;
1638 vp = sp->vp;
1639 ASSERT_SEGLOCK(fs);
1640
1641 /*
1642 * This used to be:
1643 *
1644 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1645 *
1646 * that is, it allowed for the possibility that start_lbp did
1647 * not point to the beginning of the finfo block pointer area.
1648 * This particular formulation is six kinds of painful in the
1649 * lfs64 world where we have two sizes of block pointer, so
1650 * unless/until everything can be cleaned up to not move
1651 * start_lbp around but instead use an offset, we do the
1652 * following:
1653 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1654 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1655 * type. (Ugh.)
1656 * 2. Cast it to void *, then assign it to a temporary
1657 * union lfs_blocks.
1658 * 3. Subtract start_lbp from that.
1659 * 4. Save the value of nblocks in blocks_orig so we can
1660 * assert below that it hasn't changed without repeating this
1661 * rubbish.
1662 *
1663 * XXX.
1664 */
1665 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1666 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1667 nblocks_orig = nblocks;
1668
1669 KASSERT(nblocks >= 0);
1670 KASSERT(vp != NULL);
1671 if (nblocks == 0)
1672 return;
1673
1674 /*
1675 * This count may be high due to oversize blocks from lfs_gop_write.
1676 * Correct for this. (XXX we should be able to keep track of these.)
1677 */
1678 for (i = 0; i < nblocks; i++) {
1679 if (sp->start_bpp[i] == NULL) {
1680 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1681 nblocks = i;
1682 break;
1683 }
1684 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1685 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1686 nblocks -= num - 1;
1687 }
1688
1689 #if 0
1690 /* pre-lfs64 assertion */
1691 KASSERT(vp->v_type == VREG ||
1692 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1693 #else
1694 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1695 #endif
1696 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1697
1698 /*
1699 * Sort the blocks.
1700 *
1701 * We have to sort even if the blocks come from the
1702 * cleaner, because there might be other pending blocks on the
1703 * same inode...and if we don't sort, and there are fragments
1704 * present, blocks may be written in the wrong place.
1705 */
1706 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1707
1708 /*
1709 * Record the length of the last block in case it's a fragment.
1710 * If there are indirect blocks present, they sort last. An
1711 * indirect block will be lfs_bsize and its presence indicates
1712 * that you cannot have fragments.
1713 *
1714 * XXX This last is a lie. A cleaned fragment can coexist with
1715 * XXX a later indirect block. This will continue to be
1716 * XXX true until lfs_markv is fixed to do everything with
1717 * XXX fake blocks (including fake inodes and fake indirect blocks).
1718 */
1719 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1720 lfs_sb_getbmask(fs)) + 1;
1721 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1722
1723 /*
1724 * Assign disk addresses, and update references to the logical
1725 * block and the segment usage information.
1726 */
1727 for (i = nblocks; i--; ++sp->start_bpp) {
1728 sbp = *sp->start_bpp;
1729 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1730 KASSERT(sbp->b_lblkno == lbn);
1731
1732 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1733
1734 /*
1735 * If we write a frag in the wrong place, the cleaner won't
1736 * be able to correctly identify its size later, and the
1737 * segment will be uncleanable. (Even worse, it will assume
1738 * that the indirect block that actually ends the list
1739 * is of a smaller size!)
1740 */
1741 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1742 panic("lfs_updatemeta: fragment is not last block");
1743
1744 /*
1745 * For each subblock in this possibly oversized block,
1746 * update its address on disk.
1747 */
1748 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1749 KASSERT(vp == sbp->b_vp);
1750 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1751 bytesleft -= lfs_sb_getbsize(fs)) {
1752 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1753 bb = lfs_numfrags(fs, size);
1754 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1755 lfs_blocks_inc(fs, &sp->start_lbp);
1756 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1757 size);
1758 lfs_sb_addoffset(fs, bb);
1759 }
1760
1761 }
1762
1763 /* This inode has been modified */
1764 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1765 }
1766
1767 /*
1768 * Move lfs_offset to a segment earlier than newsn.
1769 */
1770 int
1771 lfs_rewind(struct lfs *fs, int newsn)
1772 {
1773 int sn, osn, isdirty;
1774 struct buf *bp;
1775 SEGUSE *sup;
1776
1777 ASSERT_SEGLOCK(fs);
1778
1779 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1780 if (osn < newsn)
1781 return 0;
1782
1783 /* lfs_avail eats the remaining space in this segment */
1784 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1785
1786 /* Find a low-numbered segment */
1787 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1788 LFS_SEGENTRY(sup, fs, sn, bp);
1789 isdirty = sup->su_flags & SEGUSE_DIRTY;
1790 brelse(bp, 0);
1791
1792 if (!isdirty)
1793 break;
1794 }
1795 if (sn == lfs_sb_getnseg(fs))
1796 panic("lfs_rewind: no clean segments");
1797 if (newsn >= 0 && sn >= newsn)
1798 return ENOENT;
1799 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1800 lfs_newseg(fs);
1801 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1802
1803 return 0;
1804 }
1805
1806 /*
1807 * Start a new partial segment.
1808 *
1809 * Return 1 when we entered to a new segment.
1810 * Otherwise, return 0.
1811 */
1812 int
1813 lfs_initseg(struct lfs *fs)
1814 {
1815 struct segment *sp = fs->lfs_sp;
1816 SEGSUM *ssp;
1817 struct buf *sbp; /* buffer for SEGSUM */
1818 int repeat = 0; /* return value */
1819
1820 ASSERT_SEGLOCK(fs);
1821 /* Advance to the next segment. */
1822 if (!LFS_PARTIAL_FITS(fs)) {
1823 SEGUSE *sup;
1824 struct buf *bp;
1825
1826 /* lfs_avail eats the remaining space */
1827 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1828 lfs_sb_getcurseg(fs)));
1829 /* Wake up any cleaning procs waiting on this file system. */
1830 lfs_wakeup_cleaner(fs);
1831 lfs_newseg(fs);
1832 repeat = 1;
1833 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1834
1835 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1836 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1837
1838 /*
1839 * If the segment contains a superblock, update the offset
1840 * and summary address to skip over it.
1841 */
1842 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1843 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1844 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1845 sp->seg_bytes_left -= LFS_SBPAD;
1846 }
1847 brelse(bp, 0);
1848 /* Segment zero could also contain the labelpad */
1849 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1850 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1851 lfs_sb_addoffset(fs,
1852 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1853 sp->seg_bytes_left -=
1854 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1855 }
1856 } else {
1857 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1858 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1859 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1860 }
1861 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1862
1863 /* Record first address of this partial segment */
1864 if (sp->seg_flags & SEGM_CLEAN) {
1865 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1866 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1867 /* "1" is the artificial inc in lfs_seglock */
1868 mutex_enter(&lfs_lock);
1869 while (fs->lfs_iocount > 1) {
1870 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1871 "lfs_initseg", 0, &lfs_lock);
1872 }
1873 mutex_exit(&lfs_lock);
1874 fs->lfs_cleanind = 0;
1875 }
1876 }
1877
1878 sp->fs = fs;
1879 sp->ibp = NULL;
1880 sp->idp = NULL;
1881 sp->ninodes = 0;
1882 sp->ndupino = 0;
1883
1884 sp->cbpp = sp->bpp;
1885
1886 /* Get a new buffer for SEGSUM */
1887 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1888 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1889
1890 /* ... and enter it into the buffer list. */
1891 *sp->cbpp = sbp;
1892 sp->cbpp++;
1893 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1894
1895 sp->start_bpp = sp->cbpp;
1896
1897 /* Set point to SEGSUM, initialize it. */
1898 ssp = sp->segsum = sbp->b_data;
1899 memset(ssp, 0, lfs_sb_getsumsize(fs));
1900 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1901 lfs_ss_setnfinfo(fs, ssp, 0);
1902 lfs_ss_setninos(fs, ssp, 0);
1903 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1904
1905 /* Set pointer to first FINFO, initialize it. */
1906 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1907 lfs_fi_setnblocks(fs, sp->fip, 0);
1908 lfs_fi_setlastlength(fs, sp->fip, 0);
1909 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1910
1911 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1912 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1913
1914 return (repeat);
1915 }
1916
1917 /*
1918 * Remove SEGUSE_INVAL from all segments.
1919 */
1920 void
1921 lfs_unset_inval_all(struct lfs *fs)
1922 {
1923 SEGUSE *sup;
1924 struct buf *bp;
1925 int i;
1926
1927 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1928 LFS_SEGENTRY(sup, fs, i, bp);
1929 if (sup->su_flags & SEGUSE_INVAL) {
1930 sup->su_flags &= ~SEGUSE_INVAL;
1931 LFS_WRITESEGENTRY(sup, fs, i, bp);
1932 } else
1933 brelse(bp, 0);
1934 }
1935 }
1936
1937 /*
1938 * Return the next segment to write.
1939 */
1940 void
1941 lfs_newseg(struct lfs *fs)
1942 {
1943 CLEANERINFO *cip;
1944 SEGUSE *sup;
1945 struct buf *bp;
1946 int curseg, isdirty, sn, skip_inval;
1947
1948 ASSERT_SEGLOCK(fs);
1949
1950 /* Honor LFCNWRAPSTOP */
1951 mutex_enter(&lfs_lock);
1952 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1953 if (fs->lfs_wrappass) {
1954 log(LOG_NOTICE, "%s: wrappass=%d\n",
1955 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1956 fs->lfs_wrappass = 0;
1957 break;
1958 }
1959 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1960 wakeup(&fs->lfs_nowrap);
1961 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1962 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1963 &lfs_lock);
1964 }
1965 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1966 mutex_exit(&lfs_lock);
1967
1968 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1969 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1970 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1971 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1972 sup->su_nbytes = 0;
1973 sup->su_nsums = 0;
1974 sup->su_ninos = 0;
1975 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1976
1977 LFS_CLEANERINFO(cip, fs, bp);
1978 lfs_ci_shiftcleantodirty(fs, cip, 1);
1979 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1980 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1981
1982 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1983 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1984 skip_inval = 1;
1985 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1986 sn = (sn + 1) % lfs_sb_getnseg(fs);
1987
1988 if (sn == curseg) {
1989 if (skip_inval)
1990 skip_inval = 0;
1991 else
1992 panic("lfs_nextseg: no clean segments");
1993 }
1994 LFS_SEGENTRY(sup, fs, sn, bp);
1995 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1996 /* Check SEGUSE_EMPTY as we go along */
1997 if (isdirty && sup->su_nbytes == 0 &&
1998 !(sup->su_flags & SEGUSE_EMPTY))
1999 LFS_WRITESEGENTRY(sup, fs, sn, bp);
2000 else
2001 brelse(bp, 0);
2002
2003 if (!isdirty)
2004 break;
2005 }
2006 if (skip_inval == 0)
2007 lfs_unset_inval_all(fs);
2008
2009 ++fs->lfs_nactive;
2010 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
2011 if (lfs_dostats) {
2012 ++lfs_stats.segsused;
2013 }
2014 }
2015
2016 static struct buf *
2017 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
2018 int n)
2019 {
2020 struct lfs_cluster *cl;
2021 struct buf **bpp, *bp;
2022
2023 ASSERT_SEGLOCK(fs);
2024 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
2025 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
2026 memset(cl, 0, sizeof(*cl));
2027 cl->fs = fs;
2028 cl->bpp = bpp;
2029 cl->bufcount = 0;
2030 cl->bufsize = 0;
2031
2032 /* If this segment is being written synchronously, note that */
2033 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2034 cl->flags |= LFS_CL_SYNC;
2035 cl->seg = fs->lfs_sp;
2036 ++cl->seg->seg_iocount;
2037 }
2038
2039 /* Get an empty buffer header, or maybe one with something on it */
2040 bp = getiobuf(vp, true);
2041 bp->b_dev = NODEV;
2042 bp->b_blkno = bp->b_lblkno = addr;
2043 bp->b_iodone = lfs_cluster_callback;
2044 bp->b_private = cl;
2045
2046 return bp;
2047 }
2048
2049 int
2050 lfs_writeseg(struct lfs *fs, struct segment *sp)
2051 {
2052 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2053 SEGUSE *sup;
2054 SEGSUM *ssp;
2055 int i;
2056 int do_again, nblocks, byteoffset;
2057 size_t el_size;
2058 struct lfs_cluster *cl;
2059 u_short ninos;
2060 struct vnode *devvp;
2061 char *p = NULL;
2062 struct vnode *vp;
2063 int32_t *daddrp; /* XXX ondisk32 */
2064 int changed;
2065 u_int32_t sum;
2066 size_t sumstart;
2067 #ifdef DEBUG
2068 FINFO *fip;
2069 int findex;
2070 #endif
2071
2072 ASSERT_SEGLOCK(fs);
2073
2074 ssp = (SEGSUM *)sp->segsum;
2075
2076 /*
2077 * If there are no buffers other than the segment summary to write,
2078 * don't do anything. If we are the end of a dirop sequence, however,
2079 * write the empty segment summary anyway, to help out the
2080 * roll-forward agent.
2081 */
2082 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2083 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2084 return 0;
2085 }
2086
2087 /* Note if partial segment is being written by the cleaner */
2088 if (sp->seg_flags & SEGM_CLEAN)
2089 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2090
2091 /* Note if we are writing to reclaim */
2092 if (sp->seg_flags & SEGM_RECLAIM) {
2093 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2094 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2095 }
2096
2097 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2098
2099 /* Update the segment usage information. */
2100 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2101
2102 /* Loop through all blocks, except the segment summary. */
2103 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2104 if ((*bpp)->b_vp != devvp) {
2105 sup->su_nbytes += (*bpp)->b_bcount;
2106 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2107 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2108 sp->seg_number, (*bpp)->b_bcount,
2109 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2110 (*bpp)->b_blkno));
2111 }
2112 }
2113
2114 #ifdef DEBUG
2115 /* Check for zero-length and zero-version FINFO entries. */
2116 fip = SEGSUM_FINFOBASE(fs, ssp);
2117 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2118 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2119 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2120 fip = NEXT_FINFO(fs, fip);
2121 }
2122 #endif /* DEBUG */
2123
2124 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2125 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2126 sp->seg_number,
2127 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2128 lfs_ss_getninos(fs, ssp)));
2129 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2130 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2131 if (lfs_sb_getversion(fs) == 1)
2132 sup->su_olastmod = time_second;
2133 else
2134 sup->su_lastmod = time_second;
2135 sup->su_ninos += ninos;
2136 ++sup->su_nsums;
2137 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2138
2139 do_again = !(bp->b_flags & B_GATHERED);
2140 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2141
2142 /*
2143 * Mark blocks B_BUSY, to prevent then from being changed between
2144 * the checksum computation and the actual write.
2145 *
2146 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2147 * there are any, replace them with copies that have UNASSIGNED
2148 * instead.
2149 */
2150 mutex_enter(&bufcache_lock);
2151 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2152 ++bpp;
2153 bp = *bpp;
2154 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2155 bp->b_cflags |= BC_BUSY;
2156 continue;
2157 }
2158
2159 while (bp->b_cflags & BC_BUSY) {
2160 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2161 " data summary corruption for ino %d, lbn %"
2162 PRId64 "\n",
2163 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2164 bp->b_cflags |= BC_WANTED;
2165 cv_wait(&bp->b_busy, &bufcache_lock);
2166 }
2167 bp->b_cflags |= BC_BUSY;
2168 mutex_exit(&bufcache_lock);
2169 unbusybp = NULL;
2170
2171 /*
2172 * Check and replace indirect block UNWRITTEN bogosity.
2173 * XXX See comment in lfs_writefile.
2174 */
2175 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2176 VTOI(bp->b_vp)->i_ffs1_blocks !=
2177 VTOI(bp->b_vp)->i_lfs_effnblks) {
2178 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2179 VTOI(bp->b_vp)->i_number,
2180 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2181 VTOI(bp->b_vp)->i_ffs1_blocks));
2182 /* Make a copy we'll make changes to */
2183 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2184 bp->b_bcount, LFS_NB_IBLOCK);
2185 newbp->b_blkno = bp->b_blkno;
2186 memcpy(newbp->b_data, bp->b_data,
2187 newbp->b_bcount);
2188
2189 changed = 0;
2190 /* XXX ondisk32 */
2191 for (daddrp = (int32_t *)(newbp->b_data);
2192 daddrp < (int32_t *)((char *)newbp->b_data +
2193 newbp->b_bcount); daddrp++) {
2194 if (*daddrp == UNWRITTEN) {
2195 ++changed;
2196 *daddrp = 0;
2197 }
2198 }
2199 /*
2200 * Get rid of the old buffer. Don't mark it clean,
2201 * though, if it still has dirty data on it.
2202 */
2203 if (changed) {
2204 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2205 " bp = %p newbp = %p\n", changed, bp,
2206 newbp));
2207 *bpp = newbp;
2208 bp->b_flags &= ~B_GATHERED;
2209 bp->b_error = 0;
2210 if (bp->b_iodone != NULL) {
2211 DLOG((DLOG_SEG, "lfs_writeseg: "
2212 "indir bp should not be B_CALL\n"));
2213 biodone(bp);
2214 bp = NULL;
2215 } else {
2216 /* Still on free list, leave it there */
2217 unbusybp = bp;
2218 /*
2219 * We have to re-decrement lfs_avail
2220 * since this block is going to come
2221 * back around to us in the next
2222 * segment.
2223 */
2224 lfs_sb_subavail(fs,
2225 lfs_btofsb(fs, bp->b_bcount));
2226 }
2227 } else {
2228 lfs_freebuf(fs, newbp);
2229 }
2230 }
2231 mutex_enter(&bufcache_lock);
2232 if (unbusybp != NULL) {
2233 unbusybp->b_cflags &= ~BC_BUSY;
2234 if (unbusybp->b_cflags & BC_WANTED)
2235 cv_broadcast(&bp->b_busy);
2236 }
2237 }
2238 mutex_exit(&bufcache_lock);
2239
2240 /*
2241 * Compute checksum across data and then across summary; the first
2242 * block (the summary block) is skipped. Set the create time here
2243 * so that it's guaranteed to be later than the inode mod times.
2244 */
2245 sum = 0;
2246 if (lfs_sb_getversion(fs) == 1)
2247 el_size = sizeof(u_long);
2248 else
2249 el_size = sizeof(u_int32_t);
2250 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2251 ++bpp;
2252 /* Loop through gop_write cluster blocks */
2253 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2254 byteoffset += lfs_sb_getbsize(fs)) {
2255 #ifdef LFS_USE_B_INVAL
2256 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2257 (*bpp)->b_iodone != NULL) {
2258 if (copyin((void *)(*bpp)->b_saveaddr +
2259 byteoffset, dp, el_size)) {
2260 panic("lfs_writeseg: copyin failed [1]:"
2261 " ino %d blk %" PRId64,
2262 VTOI((*bpp)->b_vp)->i_number,
2263 (*bpp)->b_lblkno);
2264 }
2265 } else
2266 #endif /* LFS_USE_B_INVAL */
2267 {
2268 sum = lfs_cksum_part((char *)
2269 (*bpp)->b_data + byteoffset, el_size, sum);
2270 }
2271 }
2272 }
2273 if (lfs_sb_getversion(fs) == 1)
2274 lfs_ss_setocreate(fs, ssp, time_second);
2275 else {
2276 lfs_ss_setcreate(fs, ssp, time_second);
2277 lfs_sb_addserial(fs, 1);
2278 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2279 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2280 }
2281 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2282 sumstart = lfs_ss_getsumstart(fs);
2283 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2284 lfs_sb_getsumsize(fs) - sumstart));
2285
2286 mutex_enter(&lfs_lock);
2287 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2288 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2289 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2290 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2291 mutex_exit(&lfs_lock);
2292
2293 /*
2294 * When we simply write the blocks we lose a rotation for every block
2295 * written. To avoid this problem, we cluster the buffers into a
2296 * chunk and write the chunk. MAXPHYS is the largest size I/O
2297 * devices can handle, use that for the size of the chunks.
2298 *
2299 * Blocks that are already clusters (from GOP_WRITE), however, we
2300 * don't bother to copy into other clusters.
2301 */
2302
2303 #define CHUNKSIZE MAXPHYS
2304
2305 if (devvp == NULL)
2306 panic("devvp is NULL");
2307 for (bpp = sp->bpp, i = nblocks; i;) {
2308 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2309 cl = cbp->b_private;
2310
2311 cbp->b_flags |= B_ASYNC;
2312 cbp->b_cflags |= BC_BUSY;
2313 cbp->b_bcount = 0;
2314
2315 #if defined(DEBUG) && defined(DIAGNOSTIC)
2316 if (bpp - sp->bpp > (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2317 / sizeof(int32_t)) {
2318 panic("lfs_writeseg: real bpp overwrite");
2319 }
2320 if (bpp - sp->bpp > lfs_segsize(fs) / lfs_sb_getfsize(fs)) {
2321 panic("lfs_writeseg: theoretical bpp overwrite");
2322 }
2323 #endif
2324
2325 /*
2326 * Construct the cluster.
2327 */
2328 mutex_enter(&lfs_lock);
2329 ++fs->lfs_iocount;
2330 mutex_exit(&lfs_lock);
2331 while (i && cbp->b_bcount < CHUNKSIZE) {
2332 bp = *bpp;
2333
2334 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2335 break;
2336 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2337 break;
2338
2339 /* Clusters from GOP_WRITE are expedited */
2340 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2341 if (cbp->b_bcount > 0)
2342 /* Put in its own buffer */
2343 break;
2344 else {
2345 cbp->b_data = bp->b_data;
2346 }
2347 } else if (cbp->b_bcount == 0) {
2348 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2349 LFS_NB_CLUSTER);
2350 cl->flags |= LFS_CL_MALLOC;
2351 }
2352 #ifdef DIAGNOSTIC
2353 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2354 btodb(bp->b_bcount - 1))) !=
2355 sp->seg_number) {
2356 printf("blk size %d daddr %" PRIx64
2357 " not in seg %d\n",
2358 bp->b_bcount, bp->b_blkno,
2359 sp->seg_number);
2360 panic("segment overwrite");
2361 }
2362 #endif
2363
2364 #ifdef LFS_USE_B_INVAL
2365 /*
2366 * Fake buffers from the cleaner are marked as B_INVAL.
2367 * We need to copy the data from user space rather than
2368 * from the buffer indicated.
2369 * XXX == what do I do on an error?
2370 */
2371 if ((bp->b_cflags & BC_INVAL) != 0 &&
2372 bp->b_iodone != NULL) {
2373 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2374 panic("lfs_writeseg: "
2375 "copyin failed [2]");
2376 } else
2377 #endif /* LFS_USE_B_INVAL */
2378 if (cl->flags & LFS_CL_MALLOC) {
2379 /* copy data into our cluster. */
2380 memcpy(p, bp->b_data, bp->b_bcount);
2381 p += bp->b_bcount;
2382 }
2383
2384 cbp->b_bcount += bp->b_bcount;
2385 cl->bufsize += bp->b_bcount;
2386
2387 bp->b_flags &= ~B_READ;
2388 bp->b_error = 0;
2389 cl->bpp[cl->bufcount++] = bp;
2390
2391 vp = bp->b_vp;
2392 mutex_enter(&bufcache_lock);
2393 mutex_enter(vp->v_interlock);
2394 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2395 reassignbuf(bp, vp);
2396 vp->v_numoutput++;
2397 mutex_exit(vp->v_interlock);
2398 mutex_exit(&bufcache_lock);
2399
2400 bpp++;
2401 i--;
2402 }
2403 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2404 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2405 else
2406 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2407 mutex_enter(devvp->v_interlock);
2408 devvp->v_numoutput++;
2409 mutex_exit(devvp->v_interlock);
2410 VOP_STRATEGY(devvp, cbp);
2411 curlwp->l_ru.ru_oublock++;
2412 }
2413
2414 if (lfs_dostats) {
2415 ++lfs_stats.psegwrites;
2416 lfs_stats.blocktot += nblocks - 1;
2417 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2418 ++lfs_stats.psyncwrites;
2419 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2420 ++lfs_stats.pcleanwrites;
2421 lfs_stats.cleanblocks += nblocks - 1;
2422 }
2423 }
2424
2425 return (lfs_initseg(fs) || do_again);
2426 }
2427
2428 void
2429 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2430 {
2431 struct buf *bp;
2432 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2433 int s;
2434
2435 ASSERT_MAYBE_SEGLOCK(fs);
2436 #ifdef DIAGNOSTIC
2437 if (fs->lfs_is64) {
2438 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2439 } else {
2440 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2441 }
2442 #endif
2443 /*
2444 * If we can write one superblock while another is in
2445 * progress, we risk not having a complete checkpoint if we crash.
2446 * So, block here if a superblock write is in progress.
2447 */
2448 mutex_enter(&lfs_lock);
2449 s = splbio();
2450 while (fs->lfs_sbactive) {
2451 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2452 &lfs_lock);
2453 }
2454 fs->lfs_sbactive = daddr;
2455 splx(s);
2456 mutex_exit(&lfs_lock);
2457
2458 /* Set timestamp of this version of the superblock */
2459 if (lfs_sb_getversion(fs) == 1)
2460 lfs_sb_setotstamp(fs, time_second);
2461 lfs_sb_settstamp(fs, time_second);
2462
2463 /* The next chunk of code relies on this assumption */
2464 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2465
2466 /* Checksum the superblock and copy it into a buffer. */
2467 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2468 bp = lfs_newbuf(fs, devvp,
2469 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2470 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2471 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2472 LFS_SBPAD - sizeof(struct dlfs));
2473
2474 bp->b_cflags |= BC_BUSY;
2475 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2476 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2477 bp->b_error = 0;
2478 bp->b_iodone = lfs_supercallback;
2479
2480 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2481 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2482 else
2483 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2484 curlwp->l_ru.ru_oublock++;
2485
2486 mutex_enter(devvp->v_interlock);
2487 devvp->v_numoutput++;
2488 mutex_exit(devvp->v_interlock);
2489
2490 mutex_enter(&lfs_lock);
2491 ++fs->lfs_iocount;
2492 mutex_exit(&lfs_lock);
2493 VOP_STRATEGY(devvp, bp);
2494 }
2495
2496 /*
2497 * Logical block number match routines used when traversing the dirty block
2498 * chain.
2499 */
2500 int
2501 lfs_match_fake(struct lfs *fs, struct buf *bp)
2502 {
2503
2504 ASSERT_SEGLOCK(fs);
2505 return LFS_IS_MALLOC_BUF(bp);
2506 }
2507
2508 #if 0
2509 int
2510 lfs_match_real(struct lfs *fs, struct buf *bp)
2511 {
2512
2513 ASSERT_SEGLOCK(fs);
2514 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2515 }
2516 #endif
2517
2518 int
2519 lfs_match_data(struct lfs *fs, struct buf *bp)
2520 {
2521
2522 ASSERT_SEGLOCK(fs);
2523 return (bp->b_lblkno >= 0);
2524 }
2525
2526 int
2527 lfs_match_indir(struct lfs *fs, struct buf *bp)
2528 {
2529 daddr_t lbn;
2530
2531 ASSERT_SEGLOCK(fs);
2532 lbn = bp->b_lblkno;
2533 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2534 }
2535
2536 int
2537 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2538 {
2539 daddr_t lbn;
2540
2541 ASSERT_SEGLOCK(fs);
2542 lbn = bp->b_lblkno;
2543 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2544 }
2545
2546 int
2547 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2548 {
2549 daddr_t lbn;
2550
2551 ASSERT_SEGLOCK(fs);
2552 lbn = bp->b_lblkno;
2553 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2554 }
2555
2556 static void
2557 lfs_free_aiodone(struct buf *bp)
2558 {
2559 struct lfs *fs;
2560
2561 KERNEL_LOCK(1, curlwp);
2562 fs = bp->b_private;
2563 ASSERT_NO_SEGLOCK(fs);
2564 lfs_freebuf(fs, bp);
2565 KERNEL_UNLOCK_LAST(curlwp);
2566 }
2567
2568 static void
2569 lfs_super_aiodone(struct buf *bp)
2570 {
2571 struct lfs *fs;
2572
2573 KERNEL_LOCK(1, curlwp);
2574 fs = bp->b_private;
2575 ASSERT_NO_SEGLOCK(fs);
2576 mutex_enter(&lfs_lock);
2577 fs->lfs_sbactive = 0;
2578 if (--fs->lfs_iocount <= 1)
2579 wakeup(&fs->lfs_iocount);
2580 wakeup(&fs->lfs_sbactive);
2581 mutex_exit(&lfs_lock);
2582 lfs_freebuf(fs, bp);
2583 KERNEL_UNLOCK_LAST(curlwp);
2584 }
2585
2586 static void
2587 lfs_cluster_aiodone(struct buf *bp)
2588 {
2589 struct lfs_cluster *cl;
2590 struct lfs *fs;
2591 struct buf *tbp, *fbp;
2592 struct vnode *vp, *devvp, *ovp;
2593 struct inode *ip;
2594 int error;
2595
2596 KERNEL_LOCK(1, curlwp);
2597
2598 error = bp->b_error;
2599 cl = bp->b_private;
2600 fs = cl->fs;
2601 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2602 ASSERT_NO_SEGLOCK(fs);
2603
2604 /* Put the pages back, and release the buffer */
2605 while (cl->bufcount--) {
2606 tbp = cl->bpp[cl->bufcount];
2607 KASSERT(tbp->b_cflags & BC_BUSY);
2608 if (error) {
2609 tbp->b_error = error;
2610 }
2611
2612 /*
2613 * We're done with tbp. If it has not been re-dirtied since
2614 * the cluster was written, free it. Otherwise, keep it on
2615 * the locked list to be written again.
2616 */
2617 vp = tbp->b_vp;
2618
2619 tbp->b_flags &= ~B_GATHERED;
2620
2621 LFS_BCLEAN_LOG(fs, tbp);
2622
2623 mutex_enter(&bufcache_lock);
2624 if (tbp->b_iodone == NULL) {
2625 KASSERT(tbp->b_flags & B_LOCKED);
2626 bremfree(tbp);
2627 if (vp) {
2628 mutex_enter(vp->v_interlock);
2629 reassignbuf(tbp, vp);
2630 mutex_exit(vp->v_interlock);
2631 }
2632 tbp->b_flags |= B_ASYNC; /* for biodone */
2633 }
2634
2635 if (((tbp->b_flags | tbp->b_oflags) &
2636 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2637 LFS_UNLOCK_BUF(tbp);
2638
2639 if (tbp->b_oflags & BO_DONE) {
2640 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2641 cl->bufcount, (long)tbp->b_flags));
2642 }
2643
2644 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2645 /*
2646 * A buffer from the page daemon.
2647 * We use the same iodone as it does,
2648 * so we must manually disassociate its
2649 * buffers from the vp.
2650 */
2651 if ((ovp = tbp->b_vp) != NULL) {
2652 /* This is just silly */
2653 mutex_enter(ovp->v_interlock);
2654 brelvp(tbp);
2655 mutex_exit(ovp->v_interlock);
2656 tbp->b_vp = vp;
2657 tbp->b_objlock = vp->v_interlock;
2658 }
2659 /* Put it back the way it was */
2660 tbp->b_flags |= B_ASYNC;
2661 /* Master buffers have BC_AGE */
2662 if (tbp->b_private == tbp)
2663 tbp->b_cflags |= BC_AGE;
2664 }
2665 mutex_exit(&bufcache_lock);
2666
2667 biodone(tbp);
2668
2669 /*
2670 * If this is the last block for this vnode, but
2671 * there are other blocks on its dirty list,
2672 * set IN_MODIFIED/IN_CLEANING depending on what
2673 * sort of block. Only do this for our mount point,
2674 * not for, e.g., inode blocks that are attached to
2675 * the devvp.
2676 * XXX KS - Shouldn't we set *both* if both types
2677 * of blocks are present (traverse the dirty list?)
2678 */
2679 mutex_enter(vp->v_interlock);
2680 mutex_enter(&lfs_lock);
2681 if (vp != devvp && vp->v_numoutput == 0 &&
2682 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2683 ip = VTOI(vp);
2684 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2685 ip->i_number));
2686 if (LFS_IS_MALLOC_BUF(fbp))
2687 LFS_SET_UINO(ip, IN_CLEANING);
2688 else
2689 LFS_SET_UINO(ip, IN_MODIFIED);
2690 }
2691 cv_broadcast(&vp->v_cv);
2692 mutex_exit(&lfs_lock);
2693 mutex_exit(vp->v_interlock);
2694 }
2695
2696 /* Fix up the cluster buffer, and release it */
2697 if (cl->flags & LFS_CL_MALLOC)
2698 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2699 putiobuf(bp);
2700
2701 /* Note i/o done */
2702 if (cl->flags & LFS_CL_SYNC) {
2703 if (--cl->seg->seg_iocount == 0)
2704 wakeup(&cl->seg->seg_iocount);
2705 }
2706 mutex_enter(&lfs_lock);
2707 #ifdef DIAGNOSTIC
2708 if (fs->lfs_iocount == 0)
2709 panic("lfs_cluster_aiodone: zero iocount");
2710 #endif
2711 if (--fs->lfs_iocount <= 1)
2712 wakeup(&fs->lfs_iocount);
2713 mutex_exit(&lfs_lock);
2714
2715 KERNEL_UNLOCK_LAST(curlwp);
2716
2717 pool_put(&fs->lfs_bpppool, cl->bpp);
2718 cl->bpp = NULL;
2719 pool_put(&fs->lfs_clpool, cl);
2720 }
2721
2722 static void
2723 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2724 {
2725 /* reset b_iodone for when this is a single-buf i/o. */
2726 bp->b_iodone = aiodone;
2727
2728 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2729 }
2730
2731 static void
2732 lfs_cluster_callback(struct buf *bp)
2733 {
2734
2735 lfs_generic_callback(bp, lfs_cluster_aiodone);
2736 }
2737
2738 void
2739 lfs_supercallback(struct buf *bp)
2740 {
2741
2742 lfs_generic_callback(bp, lfs_super_aiodone);
2743 }
2744
2745 /*
2746 * The only buffers that are going to hit these functions are the
2747 * segment write blocks, or the segment summaries, or the superblocks.
2748 *
2749 * All of the above are created by lfs_newbuf, and so do not need to be
2750 * released via brelse.
2751 */
2752 void
2753 lfs_callback(struct buf *bp)
2754 {
2755
2756 lfs_generic_callback(bp, lfs_free_aiodone);
2757 }
2758
2759 /*
2760 * Shellsort (diminishing increment sort) from Data Structures and
2761 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2762 * see also Knuth Vol. 3, page 84. The increments are selected from
2763 * formula (8), page 95. Roughly O(N^3/2).
2764 */
2765 /*
2766 * This is our own private copy of shellsort because we want to sort
2767 * two parallel arrays (the array of buffer pointers and the array of
2768 * logical block numbers) simultaneously. Note that we cast the array
2769 * of logical block numbers to a unsigned in this routine so that the
2770 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2771 */
2772
2773 static void
2774 lfs_shellsort(struct lfs *fs,
2775 struct buf **bp_array, union lfs_blocks *lb_array,
2776 int nmemb, int size)
2777 {
2778 static int __rsshell_increments[] = { 4, 1, 0 };
2779 int incr, *incrp, t1, t2;
2780 struct buf *bp_temp;
2781
2782 #ifdef DEBUG
2783 incr = 0;
2784 for (t1 = 0; t1 < nmemb; t1++) {
2785 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2786 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2787 /* dump before panic */
2788 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2789 nmemb, size);
2790 incr = 0;
2791 for (t1 = 0; t1 < nmemb; t1++) {
2792 const struct buf *bp = bp_array[t1];
2793
2794 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2795 PRIu64 "\n", t1,
2796 (uint64_t)bp->b_bcount,
2797 (uint64_t)bp->b_lblkno);
2798 printf("lbns:");
2799 for (t2 = 0; t2 * size < bp->b_bcount;
2800 t2++) {
2801 printf(" %jd",
2802 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2803 }
2804 printf("\n");
2805 }
2806 panic("lfs_shellsort: inconsistent input");
2807 }
2808 }
2809 }
2810 #endif
2811
2812 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2813 for (t1 = incr; t1 < nmemb; ++t1)
2814 for (t2 = t1 - incr; t2 >= 0;)
2815 if ((u_int64_t)bp_array[t2]->b_lblkno >
2816 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2817 bp_temp = bp_array[t2];
2818 bp_array[t2] = bp_array[t2 + incr];
2819 bp_array[t2 + incr] = bp_temp;
2820 t2 -= incr;
2821 } else
2822 break;
2823
2824 /* Reform the list of logical blocks */
2825 incr = 0;
2826 for (t1 = 0; t1 < nmemb; t1++) {
2827 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2828 lfs_blocks_set(fs, lb_array, incr++,
2829 bp_array[t1]->b_lblkno + t2);
2830 }
2831 }
2832 }
2833
2834 /*
2835 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2836 * point at uninitialized space.
2837 */
2838 void
2839 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2840 {
2841 struct segment *sp = fs->lfs_sp;
2842 SEGSUM *ssp;
2843
2844 KASSERT(vers > 0);
2845
2846 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2847 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2848 (void) lfs_writeseg(fs, fs->lfs_sp);
2849
2850 sp->sum_bytes_left -= FINFOSIZE(fs);
2851 ssp = (SEGSUM *)sp->segsum;
2852 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2853 lfs_fi_setnblocks(fs, sp->fip, 0);
2854 lfs_fi_setino(fs, sp->fip, ino);
2855 lfs_fi_setversion(fs, sp->fip, vers);
2856 }
2857
2858 /*
2859 * Release the FINFO entry, either clearing out an unused entry or
2860 * advancing us to the next available entry.
2861 */
2862 void
2863 lfs_release_finfo(struct lfs *fs)
2864 {
2865 struct segment *sp = fs->lfs_sp;
2866 SEGSUM *ssp;
2867
2868 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2869 sp->fip = NEXT_FINFO(fs, sp->fip);
2870 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2871 } else {
2872 /* XXX shouldn't this update sp->fip? */
2873 sp->sum_bytes_left += FINFOSIZE(fs);
2874 ssp = (SEGSUM *)sp->segsum;
2875 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2876 }
2877 }
2878