lfs_segment.c revision 1.271 1 /* $NetBSD: lfs_segment.c,v 1.271 2017/06/12 15:02:32 maya Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.271 2017/06/12 15:02:32 maya Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_state & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_accessors.h>
104 #include <ufs/lfs/lfs_kernel.h>
105 #include <ufs/lfs/lfs_extern.h>
106
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_extern.h>
109
110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
111
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_free_aiodone(struct buf *);
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 (lfs_sb_getfsbpseg(fs) - \
124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
125 lfs_sb_getfrag(fs))
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
146 int, int);
147
148 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount = 0; /* # active dirops */
152
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156
157 /* op values to lfs_writevnodes */
158 #define VN_REG 0
159 #define VN_DIROP 1
160 #define VN_EMPTY 2
161 #define VN_CLEAN 3
162
163 /*
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
168 */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 struct timespec ts;
173 struct inode *ip;
174
175 ASSERT_MAYBE_SEGLOCK(fs);
176 vfs_timestamp(&ts);
177 ip = VTOI(fs->lfs_ivnode);
178 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
179 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
180 }
181
182 /*
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 */
188
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190
191 int
192 lfs_vflush(struct vnode *vp)
193 {
194 struct inode *ip;
195 struct lfs *fs;
196 struct segment *sp;
197 struct buf *bp, *nbp, *tbp, *tnbp;
198 int error;
199 int flushed;
200 int relock;
201
202 ip = VTOI(vp);
203 fs = VFSTOULFS(vp->v_mount)->um_lfs;
204 relock = 0;
205
206 top:
207 KASSERT(mutex_owned(vp->v_interlock) == false);
208 KASSERT(mutex_owned(&lfs_lock) == false);
209 KASSERT(mutex_owned(&bufcache_lock) == false);
210 ASSERT_NO_SEGLOCK(fs);
211 if (ip->i_state & IN_CLEANING) {
212 ivndebug(vp,"vflush/in_cleaning");
213 mutex_enter(&lfs_lock);
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216 mutex_exit(&lfs_lock);
217
218 /*
219 * Toss any cleaning buffers that have real counterparts
220 * to avoid losing new data.
221 */
222 mutex_enter(vp->v_interlock);
223 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 nbp = LIST_NEXT(bp, b_vnbufs);
225 if (!LFS_IS_MALLOC_BUF(bp))
226 continue;
227 /*
228 * Look for pages matching the range covered
229 * by cleaning blocks. It's okay if more dirty
230 * pages appear, so long as none disappear out
231 * from under us.
232 */
233 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
234 vp != fs->lfs_ivnode) {
235 struct vm_page *pg;
236 voff_t off;
237
238 for (off = lfs_lblktosize(fs, bp->b_lblkno);
239 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if ((pg->flags & PG_CLEAN) == 0 ||
245 pmap_is_modified(pg)) {
246 lfs_sb_addavail(fs,
247 lfs_btofsb(fs,
248 bp->b_bcount));
249 wakeup(&fs->lfs_availsleep);
250 mutex_exit(vp->v_interlock);
251 lfs_freebuf(fs, bp);
252 mutex_enter(vp->v_interlock);
253 bp = NULL;
254 break;
255 }
256 }
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 lfs_sb_addavail(fs, lfs_btofsb(fs,
267 bp->b_bcount));
268 wakeup(&fs->lfs_availsleep);
269 mutex_exit(vp->v_interlock);
270 lfs_freebuf(fs, bp);
271 mutex_enter(vp->v_interlock);
272 bp = NULL;
273 break;
274 }
275 }
276 }
277 } else {
278 mutex_enter(vp->v_interlock);
279 }
280
281 /* If the node is being written, wait until that is done */
282 while (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 cv_wait(&vp->v_cv, vp->v_interlock);
285 }
286 error = vdead_check(vp, VDEAD_NOWAIT);
287 mutex_exit(vp->v_interlock);
288
289 /* Protect against deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
291 if (error != 0) {
292 fs->lfs_reclino = ip->i_number;
293 }
294
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip->i_lfs_iflags & LFSI_DELETED) {
297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 ip->i_number));
299 /* Drain v_numoutput */
300 mutex_enter(vp->v_interlock);
301 while (vp->v_numoutput > 0) {
302 cv_wait(&vp->v_cv, vp->v_interlock);
303 }
304 KASSERT(vp->v_numoutput == 0);
305 mutex_exit(vp->v_interlock);
306
307 mutex_enter(&bufcache_lock);
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
314 wakeup(&fs->lfs_availsleep);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_iodone != NULL) {
318 mutex_exit(&bufcache_lock);
319 biodone(bp);
320 mutex_enter(&bufcache_lock);
321 } else {
322 bremfree(bp);
323 LFS_UNLOCK_BUF(bp);
324 mutex_enter(vp->v_interlock);
325 bp->b_flags &= ~(B_READ | B_GATHERED);
326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 bp->b_error = 0;
328 reassignbuf(bp, vp);
329 mutex_exit(vp->v_interlock);
330 brelse(bp, 0);
331 }
332 }
333 mutex_exit(&bufcache_lock);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_state &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 mutex_enter(vp->v_interlock);
355 while (vp->v_numoutput > 0) {
356 cv_wait(&vp->v_cv, vp->v_interlock);
357 }
358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 KASSERT(vp->v_numoutput == 0);
360 mutex_exit(vp->v_interlock);
361
362 return error;
363 }
364 sp = fs->lfs_sp;
365
366 flushed = 0;
367 if (VPISEMPTY(vp)) {
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 ++flushed;
370 } else if ((ip->i_state & IN_CLEANING) &&
371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 ivndebug(vp,"vflush/clean");
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 ++flushed;
375 } else if (lfs_dostats) {
376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD))
377 ++lfs_stats.vflush_invoked;
378 ivndebug(vp,"vflush");
379 }
380
381 #ifdef DIAGNOSTIC
382 if (vp->v_uflag & VU_DIROP) {
383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 }
386 #endif
387
388 do {
389 #ifdef DEBUG
390 int loopcount = 0;
391 #endif
392 do {
393 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
394 relock = lfs_writefile(fs, sp, vp);
395 if (relock && vp != fs->lfs_ivnode) {
396 /*
397 * Might have to wait for the
398 * cleaner to run; but we're
399 * still not done with this vnode.
400 * XXX we can do better than this.
401 */
402 KDASSERT(ip->i_number != LFS_IFILE_INUM);
403 lfs_writeinode(fs, sp, ip);
404 mutex_enter(&lfs_lock);
405 LFS_SET_UINO(ip, IN_MODIFIED);
406 mutex_exit(&lfs_lock);
407 lfs_writeseg(fs, sp);
408 lfs_segunlock(fs);
409 lfs_segunlock_relock(fs);
410 goto top;
411 }
412 }
413 /*
414 * If we begin a new segment in the middle of writing
415 * the Ifile, it creates an inconsistent checkpoint,
416 * since the Ifile information for the new segment
417 * is not up-to-date. Take care of this here by
418 * sending the Ifile through again in case there
419 * are newly dirtied blocks. But wait, there's more!
420 * This second Ifile write could *also* cross a segment
421 * boundary, if the first one was large. The second
422 * one is guaranteed to be no more than 8 blocks,
423 * though (two segment blocks and supporting indirects)
424 * so the third write *will not* cross the boundary.
425 */
426 if (vp == fs->lfs_ivnode) {
427 lfs_writefile(fs, sp, vp);
428 lfs_writefile(fs, sp, vp);
429 }
430 #ifdef DEBUG
431 if (++loopcount > 2)
432 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
433 #endif
434 } while (lfs_writeinode(fs, sp, ip));
435 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
436
437 if (lfs_dostats) {
438 ++lfs_stats.nwrites;
439 if (sp->seg_flags & SEGM_SYNC)
440 ++lfs_stats.nsync_writes;
441 if (sp->seg_flags & SEGM_CKP)
442 ++lfs_stats.ncheckpoints;
443 }
444 /*
445 * If we were called from somewhere that has already held the seglock
446 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
447 * the write to complete because we are still locked.
448 * Since lfs_vflush() must return the vnode with no dirty buffers,
449 * we must explicitly wait, if that is the case.
450 *
451 * We compare the iocount against 1, not 0, because it is
452 * artificially incremented by lfs_seglock().
453 */
454 mutex_enter(&lfs_lock);
455 if (fs->lfs_seglock > 1) {
456 while (fs->lfs_iocount > 1)
457 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
458 "lfs_vflush", 0, &lfs_lock);
459 }
460 mutex_exit(&lfs_lock);
461
462 lfs_segunlock(fs);
463
464 /* Wait for these buffers to be recovered by aiodoned */
465 mutex_enter(vp->v_interlock);
466 while (vp->v_numoutput > 0) {
467 cv_wait(&vp->v_cv, vp->v_interlock);
468 }
469 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
470 KASSERT(vp->v_numoutput == 0);
471 mutex_exit(vp->v_interlock);
472
473 fs->lfs_flushvp = NULL;
474 KASSERT(fs->lfs_flushvp_fakevref == 0);
475
476 return (0);
477 }
478
479 struct lfs_writevnodes_ctx {
480 int op;
481 struct lfs *fs;
482 };
483 static bool
484 lfs_writevnodes_selector(void *cl, struct vnode *vp)
485 {
486 struct lfs_writevnodes_ctx *c = cl;
487 struct inode *ip;
488 int op = c->op;
489
490 KASSERT(mutex_owned(vp->v_interlock));
491
492 ip = VTOI(vp);
493 if (ip == NULL || vp->v_type == VNON)
494 return false;
495 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
496 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
497 vndebug(vp, "dirop");
498 return false;
499 }
500 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
501 vndebug(vp,"empty");
502 return false;;
503 }
504 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
505 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) {
506 vndebug(vp,"cleaning");
507 return false;
508 }
509 mutex_enter(&lfs_lock);
510 if (vp == c->fs->lfs_unlockvp) {
511 mutex_exit(&lfs_lock);
512 return false;
513 }
514 mutex_exit(&lfs_lock);
515
516 return true;
517 }
518
519 int
520 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
521 {
522 struct inode *ip;
523 struct vnode *vp;
524 struct vnode_iterator *marker;
525 struct lfs_writevnodes_ctx ctx;
526 int inodes_written = 0;
527 int error = 0;
528
529 /*
530 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
531 * XXX The rationale is unclear, the initial commit had no information.
532 * XXX If the order really matters we have to sort the vnodes first.
533 */
534
535 ASSERT_SEGLOCK(fs);
536 vfs_vnode_iterator_init(mp, &marker);
537 ctx.op = op;
538 ctx.fs = fs;
539 while ((vp = vfs_vnode_iterator_next(marker,
540 lfs_writevnodes_selector, &ctx)) != NULL) {
541 ip = VTOI(vp);
542
543 /*
544 * Write the inode/file if dirty and it's not the IFILE.
545 */
546 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) &&
547 ip->i_number != LFS_IFILE_INUM) {
548 error = lfs_writefile(fs, sp, vp);
549 if (error) {
550 vrele(vp);
551 if (error == EAGAIN) {
552 /*
553 * This error from lfs_putpages
554 * indicates we need to drop
555 * the segment lock and start
556 * over after the cleaner has
557 * had a chance to run.
558 */
559 lfs_writeinode(fs, sp, ip);
560 lfs_writeseg(fs, sp);
561 if (!VPISEMPTY(vp) &&
562 !WRITEINPROG(vp) &&
563 !(ip->i_state & IN_ALLMOD)) {
564 mutex_enter(&lfs_lock);
565 LFS_SET_UINO(ip, IN_MODIFIED);
566 mutex_exit(&lfs_lock);
567 }
568 break;
569 }
570 error = 0; /* XXX not quite right */
571 continue;
572 }
573
574 if (!VPISEMPTY(vp)) {
575 if (WRITEINPROG(vp)) {
576 ivndebug(vp,"writevnodes/write2");
577 } else if (!(ip->i_state & IN_ALLMOD)) {
578 mutex_enter(&lfs_lock);
579 LFS_SET_UINO(ip, IN_MODIFIED);
580 mutex_exit(&lfs_lock);
581 }
582 }
583 (void) lfs_writeinode(fs, sp, ip);
584 inodes_written++;
585 }
586 vrele(vp);
587 }
588 vfs_vnode_iterator_destroy(marker);
589 return error;
590 }
591
592 /*
593 * Do a checkpoint.
594 */
595 int
596 lfs_segwrite(struct mount *mp, int flags)
597 {
598 struct buf *bp;
599 struct inode *ip;
600 struct lfs *fs;
601 struct segment *sp;
602 struct vnode *vp;
603 SEGUSE *segusep;
604 int do_ckp, did_ckp, error;
605 unsigned n, segleft, maxseg, sn, i, curseg;
606 int writer_set = 0;
607 int dirty;
608 int redo;
609 SEGSUM *ssp;
610 int um_error;
611
612 fs = VFSTOULFS(mp)->um_lfs;
613 ASSERT_MAYBE_SEGLOCK(fs);
614
615 if (fs->lfs_ronly)
616 return EROFS;
617
618 lfs_imtime(fs);
619
620 /*
621 * Allocate a segment structure and enough space to hold pointers to
622 * the maximum possible number of buffers which can be described in a
623 * single summary block.
624 */
625 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
626
627 /* We can't do a partial write and checkpoint at the same time. */
628 if (do_ckp)
629 flags &= ~SEGM_SINGLE;
630
631 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
632 sp = fs->lfs_sp;
633 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
634 do_ckp = 1;
635
636 /*
637 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
638 * in which case we have to flush *all* buffers off of this vnode.
639 * We don't care about other nodes, but write any non-dirop nodes
640 * anyway in anticipation of another getnewvnode().
641 *
642 * If we're cleaning we only write cleaning and ifile blocks, and
643 * no dirops, since otherwise we'd risk corruption in a crash.
644 */
645 if (sp->seg_flags & SEGM_CLEAN)
646 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
647 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
648 do {
649 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
650 if ((sp->seg_flags & SEGM_SINGLE) &&
651 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
652 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
653 break;
654 }
655
656 if (do_ckp || fs->lfs_dirops == 0) {
657 if (!writer_set) {
658 lfs_writer_enter(fs, "lfs writer");
659 writer_set = 1;
660 }
661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
662 if (um_error == 0)
663 um_error = error;
664 /* In case writevnodes errored out */
665 lfs_flush_dirops(fs);
666 ssp = (SEGSUM *)(sp->segsum);
667 lfs_ss_setflags(fs, ssp,
668 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
669 lfs_finalize_fs_seguse(fs);
670 }
671 if (do_ckp && um_error) {
672 lfs_segunlock_relock(fs);
673 sp = fs->lfs_sp;
674 }
675 } while (do_ckp && um_error != 0);
676 }
677
678 /*
679 * If we are doing a checkpoint, mark everything since the
680 * last checkpoint as no longer ACTIVE.
681 */
682 if (do_ckp || fs->lfs_doifile) {
683 segleft = lfs_sb_getnseg(fs);
684 curseg = 0;
685 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
686 int bread_error;
687
688 dirty = 0;
689 bread_error = bread(fs->lfs_ivnode,
690 lfs_sb_getcleansz(fs) + n,
691 lfs_sb_getbsize(fs), B_MODIFY, &bp);
692 if (bread_error)
693 panic("lfs_segwrite: ifile read: "
694 "seguse %u: error %d\n",
695 n, bread_error);
696 segusep = (SEGUSE *)bp->b_data;
697 maxseg = min(segleft, lfs_sb_getsepb(fs));
698 for (i = 0; i < maxseg; i++) {
699 sn = curseg + i;
700 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
701 segusep->su_flags & SEGUSE_ACTIVE) {
702 segusep->su_flags &= ~SEGUSE_ACTIVE;
703 --fs->lfs_nactive;
704 ++dirty;
705 }
706 fs->lfs_suflags[fs->lfs_activesb][sn] =
707 segusep->su_flags;
708 if (lfs_sb_getversion(fs) > 1)
709 ++segusep;
710 else
711 segusep = (SEGUSE *)
712 ((SEGUSE_V1 *)segusep + 1);
713 }
714
715 if (dirty)
716 error = LFS_BWRITE_LOG(bp); /* Ifile */
717 else
718 brelse(bp, 0);
719 segleft -= lfs_sb_getsepb(fs);
720 curseg += lfs_sb_getsepb(fs);
721 }
722 }
723
724 KASSERT(LFS_SEGLOCK_HELD(fs));
725
726 did_ckp = 0;
727 if (do_ckp || fs->lfs_doifile) {
728 vp = fs->lfs_ivnode;
729 #ifdef DEBUG
730 int loopcount = 0;
731 #endif
732 do {
733
734 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
735
736 mutex_enter(&lfs_lock);
737 fs->lfs_flags &= ~LFS_IFDIRTY;
738 mutex_exit(&lfs_lock);
739
740 ip = VTOI(vp);
741
742 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
743 /*
744 * Ifile has no pages, so we don't need
745 * to check error return here.
746 */
747 lfs_writefile(fs, sp, vp);
748 /*
749 * Ensure the Ifile takes the current segment
750 * into account. See comment in lfs_vflush.
751 */
752 lfs_writefile(fs, sp, vp);
753 lfs_writefile(fs, sp, vp);
754 }
755
756 if (ip->i_state & IN_ALLMOD)
757 ++did_ckp;
758 #if 0
759 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
760 #else
761 redo = lfs_writeinode(fs, sp, ip);
762 #endif
763 redo += lfs_writeseg(fs, sp);
764 mutex_enter(&lfs_lock);
765 redo += (fs->lfs_flags & LFS_IFDIRTY);
766 mutex_exit(&lfs_lock);
767 #ifdef DEBUG
768 if (++loopcount > 2)
769 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
770 loopcount);
771 #endif
772 } while (redo && do_ckp);
773
774 /*
775 * Unless we are unmounting, the Ifile may continue to have
776 * dirty blocks even after a checkpoint, due to changes to
777 * inodes' atime. If we're checkpointing, it's "impossible"
778 * for other parts of the Ifile to be dirty after the loop
779 * above, since we hold the segment lock.
780 */
781 mutex_enter(vp->v_interlock);
782 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
783 LFS_CLR_UINO(ip, IN_ALLMOD);
784 }
785 #ifdef DIAGNOSTIC
786 else if (do_ckp) {
787 int do_panic = 0;
788 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
789 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
790 lfs_sb_getsegtabsz(fs) &&
791 !(bp->b_flags & B_GATHERED)) {
792 printf("ifile lbn %ld still dirty (flags %lx)\n",
793 (long)bp->b_lblkno,
794 (long)bp->b_flags);
795 ++do_panic;
796 }
797 }
798 if (do_panic)
799 panic("dirty blocks");
800 }
801 #endif
802 mutex_exit(vp->v_interlock);
803 } else {
804 (void) lfs_writeseg(fs, sp);
805 }
806
807 /* Note Ifile no longer needs to be written */
808 fs->lfs_doifile = 0;
809 if (writer_set)
810 lfs_writer_leave(fs);
811
812 /*
813 * If we didn't write the Ifile, we didn't really do anything.
814 * That means that (1) there is a checkpoint on disk and (2)
815 * nothing has changed since it was written.
816 *
817 * Take the flags off of the segment so that lfs_segunlock
818 * doesn't have to write the superblock either.
819 */
820 if (do_ckp && !did_ckp) {
821 sp->seg_flags &= ~SEGM_CKP;
822 }
823
824 if (lfs_dostats) {
825 ++lfs_stats.nwrites;
826 if (sp->seg_flags & SEGM_SYNC)
827 ++lfs_stats.nsync_writes;
828 if (sp->seg_flags & SEGM_CKP)
829 ++lfs_stats.ncheckpoints;
830 }
831 lfs_segunlock(fs);
832 return (0);
833 }
834
835 /*
836 * Write the dirty blocks associated with a vnode.
837 */
838 int
839 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
840 {
841 struct inode *ip;
842 int i, frag;
843 SEGSUM *ssp;
844 int error;
845
846 ASSERT_SEGLOCK(fs);
847 error = 0;
848 ip = VTOI(vp);
849
850 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
851
852 if (vp->v_uflag & VU_DIROP) {
853 ssp = (SEGSUM *)sp->segsum;
854 lfs_ss_setflags(fs, ssp,
855 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
856 }
857
858 if (sp->seg_flags & SEGM_CLEAN) {
859 lfs_gather(fs, sp, vp, lfs_match_fake);
860 /*
861 * For a file being flushed, we need to write *all* blocks.
862 * This means writing the cleaning blocks first, and then
863 * immediately following with any non-cleaning blocks.
864 * The same is true of the Ifile since checkpoints assume
865 * that all valid Ifile blocks are written.
866 */
867 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
868 lfs_gather(fs, sp, vp, lfs_match_data);
869 /*
870 * Don't call VOP_PUTPAGES: if we're flushing,
871 * we've already done it, and the Ifile doesn't
872 * use the page cache.
873 */
874 }
875 } else {
876 lfs_gather(fs, sp, vp, lfs_match_data);
877 /*
878 * If we're flushing, we've already called VOP_PUTPAGES
879 * so don't do it again. Otherwise, we want to write
880 * everything we've got.
881 */
882 if (!IS_FLUSHING(fs, vp)) {
883 mutex_enter(vp->v_interlock);
884 error = VOP_PUTPAGES(vp, 0, 0,
885 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
886 }
887 }
888
889 /*
890 * It may not be necessary to write the meta-data blocks at this point,
891 * as the roll-forward recovery code should be able to reconstruct the
892 * list.
893 *
894 * We have to write them anyway, though, under two conditions: (1) the
895 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
896 * checkpointing.
897 *
898 * BUT if we are cleaning, we might have indirect blocks that refer to
899 * new blocks not being written yet, in addition to fragments being
900 * moved out of a cleaned segment. If that is the case, don't
901 * write the indirect blocks, or the finfo will have a small block
902 * in the middle of it!
903 * XXX in this case isn't the inode size wrong too?
904 */
905 frag = 0;
906 if (sp->seg_flags & SEGM_CLEAN) {
907 for (i = 0; i < ULFS_NDADDR; i++)
908 if (ip->i_lfs_fragsize[i] > 0 &&
909 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
910 ++frag;
911 }
912 KASSERTMSG((frag <= 1),
913 "lfs_writefile: more than one fragment! frag=%d", frag);
914 if (IS_FLUSHING(fs, vp) ||
915 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
916 lfs_gather(fs, sp, vp, lfs_match_indir);
917 lfs_gather(fs, sp, vp, lfs_match_dindir);
918 lfs_gather(fs, sp, vp, lfs_match_tindir);
919 }
920 lfs_release_finfo(fs);
921
922 return error;
923 }
924
925 /*
926 * Update segment accounting to reflect this inode's change of address.
927 */
928 static int
929 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
930 {
931 struct buf *bp;
932 daddr_t daddr;
933 IFILE *ifp;
934 SEGUSE *sup;
935 ino_t ino;
936 int redo_ifile;
937 u_int32_t sn;
938
939 redo_ifile = 0;
940
941 /*
942 * If updating the ifile, update the super-block. Update the disk
943 * address and access times for this inode in the ifile.
944 */
945 ino = ip->i_number;
946 if (ino == LFS_IFILE_INUM) {
947 daddr = lfs_sb_getidaddr(fs);
948 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
949 } else {
950 LFS_IENTRY(ifp, fs, ino, bp);
951 daddr = lfs_if_getdaddr(fs, ifp);
952 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
953 (void)LFS_BWRITE_LOG(bp); /* Ifile */
954 }
955
956 /*
957 * If this is the Ifile and lfs_offset is set to the first block
958 * in the segment, dirty the new segment's accounting block
959 * (XXX should already be dirty?) and tell the caller to do it again.
960 */
961 if (ip->i_number == LFS_IFILE_INUM) {
962 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
963 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
964 lfs_sb_getoffset(fs)) {
965 LFS_SEGENTRY(sup, fs, sn, bp);
966 KASSERT(bp->b_oflags & BO_DELWRI);
967 LFS_WRITESEGENTRY(sup, fs, sn, bp);
968 /* fs->lfs_flags |= LFS_IFDIRTY; */
969 redo_ifile |= 1;
970 }
971 }
972
973 /*
974 * The inode's last address should not be in the current partial
975 * segment, except under exceptional circumstances (lfs_writevnodes
976 * had to start over, and in the meantime more blocks were written
977 * to a vnode). Both inodes will be accounted to this segment
978 * in lfs_writeseg so we need to subtract the earlier version
979 * here anyway. The segment count can temporarily dip below
980 * zero here; keep track of how many duplicates we have in
981 * "dupino" so we don't panic below.
982 */
983 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
984 ++sp->ndupino;
985 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
986 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
987 (long long)daddr, sp->ndupino));
988 }
989 /*
990 * Account the inode: it no longer belongs to its former segment,
991 * though it will not belong to the new segment until that segment
992 * is actually written.
993 */
994 if (daddr != LFS_UNUSED_DADDR) {
995 u_int32_t oldsn = lfs_dtosn(fs, daddr);
996 int ndupino __diagused =
997 (sp->seg_number == oldsn) ? sp->ndupino : 0;
998 LFS_SEGENTRY(sup, fs, oldsn, bp);
999 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino)
1000 >= DINOSIZE(fs)),
1001 "lfs_writeinode: negative bytes "
1002 "(segment %" PRIu32 " short by %d, "
1003 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1004 ", daddr=%" PRId64 ", su_nbytes=%u, "
1005 "ndupino=%d)\n",
1006 lfs_dtosn(fs, daddr),
1007 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes,
1008 oldsn, sp->seg_number, daddr,
1009 (unsigned int)sup->su_nbytes,
1010 sp->ndupino);
1011 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1012 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1013 sup->su_nbytes -= DINOSIZE(fs);
1014 redo_ifile |=
1015 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1016 if (redo_ifile) {
1017 mutex_enter(&lfs_lock);
1018 fs->lfs_flags |= LFS_IFDIRTY;
1019 mutex_exit(&lfs_lock);
1020 /* Don't double-account */
1021 lfs_sb_setidaddr(fs, 0x0);
1022 }
1023 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1024 }
1025
1026 return redo_ifile;
1027 }
1028
1029 int
1030 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1031 {
1032 struct buf *bp;
1033 union lfs_dinode *cdp;
1034 struct vnode *vp = ITOV(ip);
1035 daddr_t daddr;
1036 IINFO *iip;
1037 int i;
1038 int redo_ifile = 0;
1039 int gotblk = 0;
1040 int count;
1041 SEGSUM *ssp;
1042
1043 ASSERT_SEGLOCK(fs);
1044 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1045 return (0);
1046
1047 /* Can't write ifile when writer is not set */
1048 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1049 (sp->seg_flags & SEGM_CLEAN));
1050
1051 /*
1052 * If this is the Ifile, see if writing it here will generate a
1053 * temporary misaccounting. If it will, do the accounting and write
1054 * the blocks, postponing the inode write until the accounting is
1055 * solid.
1056 */
1057 count = 0;
1058 while (vp == fs->lfs_ivnode) {
1059 int redo = 0;
1060
1061 if (sp->idp == NULL && sp->ibp == NULL &&
1062 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1063 sp->sum_bytes_left < sizeof(int32_t))) {
1064 (void) lfs_writeseg(fs, sp);
1065 continue;
1066 }
1067
1068 /* Look for dirty Ifile blocks */
1069 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1070 if (!(bp->b_flags & B_GATHERED)) {
1071 redo = 1;
1072 break;
1073 }
1074 }
1075
1076 if (redo == 0)
1077 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1078 if (redo == 0)
1079 break;
1080
1081 if (sp->idp) {
1082 lfs_dino_setinumber(fs, sp->idp, 0);
1083 sp->idp = NULL;
1084 }
1085 ++count;
1086 if (count > 2)
1087 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1088 lfs_writefile(fs, sp, fs->lfs_ivnode);
1089 }
1090
1091 /* Allocate a new inode block if necessary. */
1092 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1093 sp->ibp == NULL) {
1094 /* Allocate a new segment if necessary. */
1095 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1096 sp->sum_bytes_left < sizeof(int32_t))
1097 (void) lfs_writeseg(fs, sp);
1098
1099 /* Get next inode block. */
1100 daddr = lfs_sb_getoffset(fs);
1101 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1102 sp->ibp = *sp->cbpp++ =
1103 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1104 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1105 gotblk++;
1106
1107 /* Zero out inode numbers */
1108 for (i = 0; i < LFS_INOPB(fs); ++i) {
1109 union lfs_dinode *tmpdi;
1110
1111 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1112 DINOSIZE(fs) * i);
1113 lfs_dino_setinumber(fs, tmpdi, 0);
1114 }
1115
1116 ++sp->start_bpp;
1117 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1118 /* Set remaining space counters. */
1119 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1120 sp->sum_bytes_left -= sizeof(int32_t);
1121
1122 /* Store the address in the segment summary. */
1123 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1124 lfs_ii_setblock(fs, iip, daddr);
1125 }
1126
1127 /* Check VU_DIROP in case there is a new file with no data blocks */
1128 if (vp->v_uflag & VU_DIROP) {
1129 ssp = (SEGSUM *)sp->segsum;
1130 lfs_ss_setflags(fs, ssp,
1131 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1132 }
1133
1134 /* Update the inode times and copy the inode onto the inode page. */
1135 /* XXX kludge --- don't redirty the ifile just to put times on it */
1136 if (ip->i_number != LFS_IFILE_INUM)
1137 LFS_ITIMES(ip, NULL, NULL, NULL);
1138
1139 /*
1140 * If this is the Ifile, and we've already written the Ifile in this
1141 * partial segment, just overwrite it (it's not on disk yet) and
1142 * continue.
1143 *
1144 * XXX we know that the bp that we get the second time around has
1145 * already been gathered.
1146 */
1147 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1148 lfs_copy_dinode(fs, sp->idp, ip->i_din);
1149 ip->i_lfs_osize = ip->i_size;
1150 return 0;
1151 }
1152
1153 bp = sp->ibp;
1154 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1155 lfs_copy_dinode(fs, cdp, ip->i_din);
1156
1157 /*
1158 * This inode is on its way to disk; clear its VU_DIROP status when
1159 * the write is complete.
1160 */
1161 if (vp->v_uflag & VU_DIROP) {
1162 if (!(sp->seg_flags & SEGM_CLEAN))
1163 ip->i_state |= IN_CDIROP;
1164 else {
1165 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1166 }
1167 }
1168
1169 /*
1170 * If cleaning, link counts and directory file sizes cannot change,
1171 * since those would be directory operations---even if the file
1172 * we are writing is marked VU_DIROP we should write the old values.
1173 * If we're not cleaning, of course, update the values so we get
1174 * current values the next time we clean.
1175 */
1176 if (sp->seg_flags & SEGM_CLEAN) {
1177 if (vp->v_uflag & VU_DIROP) {
1178 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1179 /* if (vp->v_type == VDIR) */
1180 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1181 }
1182 } else {
1183 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1184 ip->i_lfs_osize = ip->i_size;
1185 }
1186
1187
1188 /* We can finish the segment accounting for truncations now */
1189 lfs_finalize_ino_seguse(fs, ip);
1190
1191 /*
1192 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1193 * addresses to disk; possibly change the on-disk record of
1194 * the inode size, either by reverting to the previous size
1195 * (in the case of cleaning) or by verifying the inode's block
1196 * holdings (in the case of files being allocated as they are being
1197 * written).
1198 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1199 * XXX count on disk wrong by the same amount. We should be
1200 * XXX able to "borrow" from lfs_avail and return it after the
1201 * XXX Ifile is written. See also in lfs_writeseg.
1202 */
1203
1204 /* Check file size based on highest allocated block */
1205 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1206 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1207 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1208 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1209 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1210 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1211 }
1212 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1213 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1214 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1215 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1216 for (i=0; i<ULFS_NDADDR; i++) {
1217 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1218 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1219 lfs_dino_setdb(fs, cdp, i, 0);
1220 }
1221 }
1222 for (i=0; i<ULFS_NIADDR; i++) {
1223 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1224 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1225 lfs_dino_setib(fs, cdp, i, 0);
1226 }
1227 }
1228 }
1229
1230 #ifdef DIAGNOSTIC
1231 /*
1232 * Check dinode held blocks against dinode size.
1233 * This should be identical to the check in lfs_vget().
1234 */
1235 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1236 i < ULFS_NDADDR; i++) {
1237 KASSERT(i >= 0);
1238 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1239 continue;
1240 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1241 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1242 continue;
1243 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1244 # ifdef DEBUG
1245 lfs_dump_dinode(fs, cdp);
1246 # endif
1247 panic("writing inconsistent inode");
1248 }
1249 }
1250 #endif /* DIAGNOSTIC */
1251
1252 if (ip->i_state & IN_CLEANING)
1253 LFS_CLR_UINO(ip, IN_CLEANING);
1254 else {
1255 /* XXX IN_ALLMOD */
1256 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1257 IN_UPDATE | IN_MODIFY);
1258 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1259 LFS_CLR_UINO(ip, IN_MODIFIED);
1260 else {
1261 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1262 "blks=%d, eff=%jd\n", ip->i_number,
1263 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1264 }
1265 }
1266
1267 if (ip->i_number == LFS_IFILE_INUM) {
1268 /* We know sp->idp == NULL */
1269 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1270
1271 /* Not dirty any more */
1272 mutex_enter(&lfs_lock);
1273 fs->lfs_flags &= ~LFS_IFDIRTY;
1274 mutex_exit(&lfs_lock);
1275 }
1276
1277 if (gotblk) {
1278 mutex_enter(&bufcache_lock);
1279 LFS_LOCK_BUF(bp);
1280 brelsel(bp, 0);
1281 mutex_exit(&bufcache_lock);
1282 }
1283
1284 /* Increment inode count in segment summary block. */
1285
1286 ssp = (SEGSUM *)sp->segsum;
1287 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1288
1289 /* If this page is full, set flag to allocate a new page. */
1290 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1291 sp->ibp = NULL;
1292
1293 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1294
1295 KASSERT(redo_ifile == 0);
1296 return (redo_ifile);
1297 }
1298
1299 int
1300 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1301 {
1302 struct lfs *fs;
1303 int vers;
1304 int j, blksinblk;
1305
1306 ASSERT_SEGLOCK(sp->fs);
1307 KASSERTMSG((sp->vp != NULL),
1308 "lfs_gatherblock: Null vp in segment");
1309
1310 /* If full, finish this segment. */
1311 fs = sp->fs;
1312 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1313 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1314 sp->seg_bytes_left < bp->b_bcount) {
1315 if (mptr)
1316 mutex_exit(mptr);
1317 lfs_updatemeta(sp);
1318
1319 vers = lfs_fi_getversion(fs, sp->fip);
1320 (void) lfs_writeseg(fs, sp);
1321
1322 /* Add the current file to the segment summary. */
1323 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1324
1325 if (mptr)
1326 mutex_enter(mptr);
1327 return (1);
1328 }
1329
1330 if (bp->b_flags & B_GATHERED) {
1331 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1332 " lbn %" PRId64 "\n",
1333 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1334 return (0);
1335 }
1336
1337 /* Insert into the buffer list, update the FINFO block. */
1338 bp->b_flags |= B_GATHERED;
1339
1340 *sp->cbpp++ = bp;
1341 for (j = 0; j < blksinblk; j++) {
1342 unsigned bn;
1343
1344 bn = lfs_fi_getnblocks(fs, sp->fip);
1345 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1346 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1347 /* This block's accounting moves from lfs_favail to lfs_avail */
1348 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1349 }
1350
1351 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1352 sp->seg_bytes_left -= bp->b_bcount;
1353 return (0);
1354 }
1355
1356 int
1357 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1358 int (*match)(struct lfs *, struct buf *))
1359 {
1360 struct buf *bp, *nbp;
1361 int count = 0;
1362
1363 ASSERT_SEGLOCK(fs);
1364 if (vp->v_type == VBLK)
1365 return 0;
1366 KASSERT(sp->vp == NULL);
1367 sp->vp = vp;
1368 mutex_enter(&bufcache_lock);
1369
1370 #ifndef LFS_NO_BACKBUF_HACK
1371 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1372 # define BUF_OFFSET \
1373 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1374 # define BACK_BUF(BP) \
1375 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1376 # define BEG_OF_LIST \
1377 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1378
1379 loop:
1380 /* Find last buffer. */
1381 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1382 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1383 bp = LIST_NEXT(bp, b_vnbufs))
1384 continue;
1385
1386 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1387 nbp = BACK_BUF(bp);
1388 #else /* LFS_NO_BACKBUF_HACK */
1389 loop:
1390 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1391 nbp = LIST_NEXT(bp, b_vnbufs);
1392 #endif /* LFS_NO_BACKBUF_HACK */
1393 if ((bp->b_cflags & BC_BUSY) != 0 ||
1394 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1395 #ifdef DEBUG
1396 if (vp == fs->lfs_ivnode &&
1397 (bp->b_cflags & BC_BUSY) != 0 &&
1398 (bp->b_flags & B_GATHERED) == 0)
1399 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1400 PRId64 " busy (%x) at 0x%jx",
1401 bp->b_lblkno, bp->b_flags,
1402 (uintmax_t)lfs_sb_getoffset(fs));
1403 #endif
1404 continue;
1405 }
1406 #ifdef DIAGNOSTIC
1407 # ifdef LFS_USE_B_INVAL
1408 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1409 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1410 " is BC_INVAL\n", bp->b_lblkno));
1411 VOP_PRINT(bp->b_vp);
1412 }
1413 # endif /* LFS_USE_B_INVAL */
1414 if (!(bp->b_oflags & BO_DELWRI))
1415 panic("lfs_gather: bp not BO_DELWRI");
1416 if (!(bp->b_flags & B_LOCKED)) {
1417 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1418 " blk %" PRId64 " not B_LOCKED\n",
1419 bp->b_lblkno,
1420 LFS_DBTOFSB(fs, bp->b_blkno)));
1421 VOP_PRINT(bp->b_vp);
1422 panic("lfs_gather: bp not B_LOCKED");
1423 }
1424 #endif
1425 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1426 goto loop;
1427 }
1428 count++;
1429 }
1430 mutex_exit(&bufcache_lock);
1431 lfs_updatemeta(sp);
1432 KASSERT(sp->vp == vp);
1433 sp->vp = NULL;
1434 return count;
1435 }
1436
1437 #if DEBUG
1438 # define DEBUG_OOFF(n) do { \
1439 if (ooff == 0) { \
1440 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1441 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1442 ", was 0x0 (or %" PRId64 ")\n", \
1443 (n), ip->i_number, lbn, ndaddr, daddr)); \
1444 } \
1445 } while (0)
1446 #else
1447 # define DEBUG_OOFF(n)
1448 #endif
1449
1450 /*
1451 * Change the given block's address to ndaddr, finding its previous
1452 * location using ulfs_bmaparray().
1453 *
1454 * Account for this change in the segment table.
1455 *
1456 * called with sp == NULL by roll-forwarding code.
1457 */
1458 void
1459 lfs_update_single(struct lfs *fs, struct segment *sp,
1460 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1461 {
1462 SEGUSE *sup;
1463 struct buf *bp;
1464 struct indir a[ULFS_NIADDR + 2], *ap;
1465 struct inode *ip;
1466 daddr_t daddr, ooff;
1467 int num, error;
1468 int bb, osize, obb;
1469
1470 ASSERT_SEGLOCK(fs);
1471 KASSERT(sp == NULL || sp->vp == vp);
1472 ip = VTOI(vp);
1473
1474 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1475 if (error)
1476 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1477
1478 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1479 if (daddr > 0)
1480 daddr = LFS_DBTOFSB(fs, daddr);
1481
1482 bb = lfs_numfrags(fs, size);
1483 switch (num) {
1484 case 0:
1485 ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1486 DEBUG_OOFF(0);
1487 if (ooff == UNWRITTEN)
1488 lfs_dino_setblocks(fs, ip->i_din,
1489 lfs_dino_getblocks(fs, ip->i_din) + bb);
1490 else {
1491 /* possible fragment truncation or extension */
1492 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1493 lfs_dino_setblocks(fs, ip->i_din,
1494 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1495 }
1496 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1497 break;
1498 case 1:
1499 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1500 DEBUG_OOFF(1);
1501 if (ooff == UNWRITTEN)
1502 lfs_dino_setblocks(fs, ip->i_din,
1503 lfs_dino_getblocks(fs, ip->i_din) + bb);
1504 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1505 break;
1506 default:
1507 ap = &a[num - 1];
1508 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1509 B_MODIFY, &bp))
1510 panic("lfs_updatemeta: bread bno %" PRId64,
1511 ap->in_lbn);
1512
1513 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1514 DEBUG_OOFF(num);
1515 if (ooff == UNWRITTEN)
1516 lfs_dino_setblocks(fs, ip->i_din,
1517 lfs_dino_getblocks(fs, ip->i_din) + bb);
1518 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1519 (void) VOP_BWRITE(bp->b_vp, bp);
1520 }
1521
1522 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1523
1524 /* Update hiblk when extending the file */
1525 if (lbn > ip->i_lfs_hiblk)
1526 ip->i_lfs_hiblk = lbn;
1527
1528 /*
1529 * Though we'd rather it couldn't, this *can* happen right now
1530 * if cleaning blocks and regular blocks coexist.
1531 */
1532 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1533
1534 /*
1535 * Update segment usage information, based on old size
1536 * and location.
1537 */
1538 if (daddr > 0) {
1539 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1540 int ndupino __diagused = (sp && sp->seg_number == oldsn ?
1541 sp->ndupino : 0);
1542
1543 KASSERT(oldsn < lfs_sb_getnseg(fs));
1544 if (lbn >= 0 && lbn < ULFS_NDADDR)
1545 osize = ip->i_lfs_fragsize[lbn];
1546 else
1547 osize = lfs_sb_getbsize(fs);
1548 LFS_SEGENTRY(sup, fs, oldsn, bp);
1549 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize),
1550 "lfs_updatemeta: negative bytes "
1551 "(segment %" PRIu32 " short by %" PRId64
1552 ")\n"
1553 "lfs_updatemeta: ino %llu, lbn %" PRId64
1554 ", addr = 0x%" PRIx64 "\n"
1555 "lfs_updatemeta: ndupino=%d",
1556 lfs_dtosn(fs, daddr),
1557 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes),
1558 (unsigned long long)ip->i_number, lbn, daddr,
1559 ndupino);
1560 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1561 " db 0x%" PRIx64 "\n",
1562 lfs_dtosn(fs, daddr), osize,
1563 ip->i_number, lbn, daddr));
1564 sup->su_nbytes -= osize;
1565 if (!(bp->b_flags & B_GATHERED)) {
1566 mutex_enter(&lfs_lock);
1567 fs->lfs_flags |= LFS_IFDIRTY;
1568 mutex_exit(&lfs_lock);
1569 }
1570 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1571 }
1572 /*
1573 * Now that this block has a new address, and its old
1574 * segment no longer owns it, we can forget about its
1575 * old size.
1576 */
1577 if (lbn >= 0 && lbn < ULFS_NDADDR)
1578 ip->i_lfs_fragsize[lbn] = size;
1579 }
1580
1581 /*
1582 * Update the metadata that points to the blocks listed in the FINFO
1583 * array.
1584 */
1585 void
1586 lfs_updatemeta(struct segment *sp)
1587 {
1588 struct buf *sbp;
1589 struct lfs *fs;
1590 struct vnode *vp;
1591 daddr_t lbn;
1592 int i, nblocks, num;
1593 int __diagused nblocks_orig;
1594 int bb;
1595 int bytesleft, size;
1596 unsigned lastlength;
1597 union lfs_blocks tmpptr;
1598
1599 fs = sp->fs;
1600 vp = sp->vp;
1601 ASSERT_SEGLOCK(fs);
1602
1603 /*
1604 * This used to be:
1605 *
1606 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1607 *
1608 * that is, it allowed for the possibility that start_lbp did
1609 * not point to the beginning of the finfo block pointer area.
1610 * This particular formulation is six kinds of painful in the
1611 * lfs64 world where we have two sizes of block pointer, so
1612 * unless/until everything can be cleaned up to not move
1613 * start_lbp around but instead use an offset, we do the
1614 * following:
1615 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1616 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1617 * type. (Ugh.)
1618 * 2. Cast it to void *, then assign it to a temporary
1619 * union lfs_blocks.
1620 * 3. Subtract start_lbp from that.
1621 * 4. Save the value of nblocks in blocks_orig so we can
1622 * assert below that it hasn't changed without repeating this
1623 * rubbish.
1624 *
1625 * XXX.
1626 */
1627 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1628 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1629 nblocks_orig = nblocks;
1630
1631 KASSERT(nblocks >= 0);
1632 KASSERT(vp != NULL);
1633 if (nblocks == 0)
1634 return;
1635
1636 /*
1637 * This count may be high due to oversize blocks from lfs_gop_write.
1638 * Correct for this. (XXX we should be able to keep track of these.)
1639 */
1640 for (i = 0; i < nblocks; i++) {
1641 if (sp->start_bpp[i] == NULL) {
1642 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1643 nblocks = i;
1644 break;
1645 }
1646 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1647 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1648 nblocks -= num - 1;
1649 }
1650
1651 #if 0
1652 /* pre-lfs64 assertion */
1653 KASSERT(vp->v_type == VREG ||
1654 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1655 #else
1656 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1657 #endif
1658 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1659
1660 /*
1661 * Sort the blocks.
1662 *
1663 * We have to sort even if the blocks come from the
1664 * cleaner, because there might be other pending blocks on the
1665 * same inode...and if we don't sort, and there are fragments
1666 * present, blocks may be written in the wrong place.
1667 */
1668 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1669
1670 /*
1671 * Record the length of the last block in case it's a fragment.
1672 * If there are indirect blocks present, they sort last. An
1673 * indirect block will be lfs_bsize and its presence indicates
1674 * that you cannot have fragments.
1675 *
1676 * XXX This last is a lie. A cleaned fragment can coexist with
1677 * XXX a later indirect block. This will continue to be
1678 * XXX true until lfs_markv is fixed to do everything with
1679 * XXX fake blocks (including fake inodes and fake indirect blocks).
1680 */
1681 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1682 lfs_sb_getbmask(fs)) + 1;
1683 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1684
1685 /*
1686 * Assign disk addresses, and update references to the logical
1687 * block and the segment usage information.
1688 */
1689 for (i = nblocks; i--; ++sp->start_bpp) {
1690 sbp = *sp->start_bpp;
1691 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1692 KASSERT(sbp->b_lblkno == lbn);
1693
1694 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1695
1696 /*
1697 * If we write a frag in the wrong place, the cleaner won't
1698 * be able to correctly identify its size later, and the
1699 * segment will be uncleanable. (Even worse, it will assume
1700 * that the indirect block that actually ends the list
1701 * is of a smaller size!)
1702 */
1703 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1704 panic("lfs_updatemeta: fragment is not last block");
1705
1706 /*
1707 * For each subblock in this possibly oversized block,
1708 * update its address on disk.
1709 */
1710 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1711 KASSERT(vp == sbp->b_vp);
1712 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1713 bytesleft -= lfs_sb_getbsize(fs)) {
1714 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1715 bb = lfs_numfrags(fs, size);
1716 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1717 lfs_blocks_inc(fs, &sp->start_lbp);
1718 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1719 size);
1720 lfs_sb_addoffset(fs, bb);
1721 }
1722
1723 }
1724
1725 /* This inode has been modified */
1726 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1727 }
1728
1729 /*
1730 * Move lfs_offset to a segment earlier than newsn.
1731 */
1732 int
1733 lfs_rewind(struct lfs *fs, int newsn)
1734 {
1735 int sn, osn, isdirty;
1736 struct buf *bp;
1737 SEGUSE *sup;
1738
1739 ASSERT_SEGLOCK(fs);
1740
1741 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1742 if (osn < newsn)
1743 return 0;
1744
1745 /* lfs_avail eats the remaining space in this segment */
1746 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1747
1748 /* Find a low-numbered segment */
1749 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1750 LFS_SEGENTRY(sup, fs, sn, bp);
1751 isdirty = sup->su_flags & SEGUSE_DIRTY;
1752 brelse(bp, 0);
1753
1754 if (!isdirty)
1755 break;
1756 }
1757 if (sn == lfs_sb_getnseg(fs))
1758 panic("lfs_rewind: no clean segments");
1759 if (newsn >= 0 && sn >= newsn)
1760 return ENOENT;
1761 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1762 lfs_newseg(fs);
1763 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * Start a new partial segment.
1770 *
1771 * Return 1 when we entered to a new segment.
1772 * Otherwise, return 0.
1773 */
1774 int
1775 lfs_initseg(struct lfs *fs)
1776 {
1777 struct segment *sp = fs->lfs_sp;
1778 SEGSUM *ssp;
1779 struct buf *sbp; /* buffer for SEGSUM */
1780 int repeat = 0; /* return value */
1781
1782 ASSERT_SEGLOCK(fs);
1783 /* Advance to the next segment. */
1784 if (!LFS_PARTIAL_FITS(fs)) {
1785 SEGUSE *sup;
1786 struct buf *bp;
1787
1788 /* lfs_avail eats the remaining space */
1789 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1790 lfs_sb_getcurseg(fs)));
1791 /* Wake up any cleaning procs waiting on this file system. */
1792 lfs_wakeup_cleaner(fs);
1793 lfs_newseg(fs);
1794 repeat = 1;
1795 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1796
1797 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1798 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1799
1800 /*
1801 * If the segment contains a superblock, update the offset
1802 * and summary address to skip over it.
1803 */
1804 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1805 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1806 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1807 sp->seg_bytes_left -= LFS_SBPAD;
1808 }
1809 brelse(bp, 0);
1810 /* Segment zero could also contain the labelpad */
1811 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1812 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1813 lfs_sb_addoffset(fs,
1814 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1815 sp->seg_bytes_left -=
1816 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1817 }
1818 } else {
1819 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1820 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1821 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1822 }
1823 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1824
1825 /* Record first address of this partial segment */
1826 if (sp->seg_flags & SEGM_CLEAN) {
1827 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1828 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1829 /* "1" is the artificial inc in lfs_seglock */
1830 mutex_enter(&lfs_lock);
1831 while (fs->lfs_iocount > 1) {
1832 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1833 "lfs_initseg", 0, &lfs_lock);
1834 }
1835 mutex_exit(&lfs_lock);
1836 fs->lfs_cleanind = 0;
1837 }
1838 }
1839
1840 sp->fs = fs;
1841 sp->ibp = NULL;
1842 sp->idp = NULL;
1843 sp->ninodes = 0;
1844 sp->ndupino = 0;
1845
1846 sp->cbpp = sp->bpp;
1847
1848 /* Get a new buffer for SEGSUM */
1849 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1850 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1851
1852 /* ... and enter it into the buffer list. */
1853 *sp->cbpp = sbp;
1854 sp->cbpp++;
1855 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1856
1857 sp->start_bpp = sp->cbpp;
1858
1859 /* Set point to SEGSUM, initialize it. */
1860 ssp = sp->segsum = sbp->b_data;
1861 memset(ssp, 0, lfs_sb_getsumsize(fs));
1862 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1863 lfs_ss_setnfinfo(fs, ssp, 0);
1864 lfs_ss_setninos(fs, ssp, 0);
1865 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1866
1867 /* Set pointer to first FINFO, initialize it. */
1868 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1869 lfs_fi_setnblocks(fs, sp->fip, 0);
1870 lfs_fi_setlastlength(fs, sp->fip, 0);
1871 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1872
1873 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1874 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1875
1876 return (repeat);
1877 }
1878
1879 /*
1880 * Remove SEGUSE_INVAL from all segments.
1881 */
1882 void
1883 lfs_unset_inval_all(struct lfs *fs)
1884 {
1885 SEGUSE *sup;
1886 struct buf *bp;
1887 int i;
1888
1889 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1890 LFS_SEGENTRY(sup, fs, i, bp);
1891 if (sup->su_flags & SEGUSE_INVAL) {
1892 sup->su_flags &= ~SEGUSE_INVAL;
1893 LFS_WRITESEGENTRY(sup, fs, i, bp);
1894 } else
1895 brelse(bp, 0);
1896 }
1897 }
1898
1899 /*
1900 * Return the next segment to write.
1901 */
1902 void
1903 lfs_newseg(struct lfs *fs)
1904 {
1905 CLEANERINFO *cip;
1906 SEGUSE *sup;
1907 struct buf *bp;
1908 int curseg, isdirty, sn, skip_inval;
1909
1910 ASSERT_SEGLOCK(fs);
1911
1912 /* Honor LFCNWRAPSTOP */
1913 mutex_enter(&lfs_lock);
1914 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1915 if (fs->lfs_wrappass) {
1916 log(LOG_NOTICE, "%s: wrappass=%d\n",
1917 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1918 fs->lfs_wrappass = 0;
1919 break;
1920 }
1921 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1922 wakeup(&fs->lfs_nowrap);
1923 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1924 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1925 &lfs_lock);
1926 }
1927 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1928 mutex_exit(&lfs_lock);
1929
1930 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1931 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1932 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1933 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1934 sup->su_nbytes = 0;
1935 sup->su_nsums = 0;
1936 sup->su_ninos = 0;
1937 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1938
1939 LFS_CLEANERINFO(cip, fs, bp);
1940 lfs_ci_shiftcleantodirty(fs, cip, 1);
1941 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1942 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1943
1944 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1945 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1946 skip_inval = 1;
1947 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1948 sn = (sn + 1) % lfs_sb_getnseg(fs);
1949
1950 if (sn == curseg) {
1951 if (skip_inval)
1952 skip_inval = 0;
1953 else
1954 panic("lfs_nextseg: no clean segments");
1955 }
1956 LFS_SEGENTRY(sup, fs, sn, bp);
1957 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1958 /* Check SEGUSE_EMPTY as we go along */
1959 if (isdirty && sup->su_nbytes == 0 &&
1960 !(sup->su_flags & SEGUSE_EMPTY))
1961 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1962 else
1963 brelse(bp, 0);
1964
1965 if (!isdirty)
1966 break;
1967 }
1968 if (skip_inval == 0)
1969 lfs_unset_inval_all(fs);
1970
1971 ++fs->lfs_nactive;
1972 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1973 if (lfs_dostats) {
1974 ++lfs_stats.segsused;
1975 }
1976 }
1977
1978 static struct buf *
1979 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1980 int n)
1981 {
1982 struct lfs_cluster *cl;
1983 struct buf **bpp, *bp;
1984
1985 ASSERT_SEGLOCK(fs);
1986 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1987 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1988 memset(cl, 0, sizeof(*cl));
1989 cl->fs = fs;
1990 cl->bpp = bpp;
1991 cl->bufcount = 0;
1992 cl->bufsize = 0;
1993
1994 /* If this segment is being written synchronously, note that */
1995 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1996 cl->flags |= LFS_CL_SYNC;
1997 cl->seg = fs->lfs_sp;
1998 ++cl->seg->seg_iocount;
1999 }
2000
2001 /* Get an empty buffer header, or maybe one with something on it */
2002 bp = getiobuf(vp, true);
2003 bp->b_dev = NODEV;
2004 bp->b_blkno = bp->b_lblkno = addr;
2005 bp->b_iodone = lfs_cluster_callback;
2006 bp->b_private = cl;
2007
2008 return bp;
2009 }
2010
2011 int
2012 lfs_writeseg(struct lfs *fs, struct segment *sp)
2013 {
2014 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2015 SEGUSE *sup;
2016 SEGSUM *ssp;
2017 int i;
2018 int do_again, nblocks, byteoffset;
2019 size_t el_size;
2020 struct lfs_cluster *cl;
2021 u_short ninos;
2022 struct vnode *devvp;
2023 char *p = NULL;
2024 struct vnode *vp;
2025 unsigned ibindex, iblimit;
2026 int changed;
2027 u_int32_t sum;
2028 size_t sumstart;
2029 #ifdef DEBUG
2030 FINFO *fip;
2031 int findex;
2032 #endif
2033
2034 ASSERT_SEGLOCK(fs);
2035
2036 ssp = (SEGSUM *)sp->segsum;
2037
2038 /*
2039 * If there are no buffers other than the segment summary to write,
2040 * don't do anything. If we are the end of a dirop sequence, however,
2041 * write the empty segment summary anyway, to help out the
2042 * roll-forward agent.
2043 */
2044 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2045 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2046 return 0;
2047 }
2048
2049 /* Note if partial segment is being written by the cleaner */
2050 if (sp->seg_flags & SEGM_CLEAN)
2051 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2052
2053 /* Note if we are writing to reclaim */
2054 if (sp->seg_flags & SEGM_RECLAIM) {
2055 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2056 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2057 }
2058
2059 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2060
2061 /* Update the segment usage information. */
2062 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2063
2064 /* Loop through all blocks, except the segment summary. */
2065 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2066 if ((*bpp)->b_vp != devvp) {
2067 sup->su_nbytes += (*bpp)->b_bcount;
2068 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2069 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2070 sp->seg_number, (*bpp)->b_bcount,
2071 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2072 (*bpp)->b_blkno));
2073 }
2074 }
2075
2076 #ifdef DEBUG
2077 /* Check for zero-length and zero-version FINFO entries. */
2078 fip = SEGSUM_FINFOBASE(fs, ssp);
2079 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2080 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2081 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2082 fip = NEXT_FINFO(fs, fip);
2083 }
2084 #endif /* DEBUG */
2085
2086 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2087 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2088 sp->seg_number,
2089 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2090 lfs_ss_getninos(fs, ssp)));
2091 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2092 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2093 if (lfs_sb_getversion(fs) == 1)
2094 sup->su_olastmod = time_second;
2095 else
2096 sup->su_lastmod = time_second;
2097 sup->su_ninos += ninos;
2098 ++sup->su_nsums;
2099 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2100
2101 do_again = !(bp->b_flags & B_GATHERED);
2102 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2103
2104 /*
2105 * Mark blocks B_BUSY, to prevent then from being changed between
2106 * the checksum computation and the actual write.
2107 *
2108 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2109 * there are any, replace them with copies that have UNASSIGNED
2110 * instead.
2111 */
2112 mutex_enter(&bufcache_lock);
2113 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2114 ++bpp;
2115 bp = *bpp;
2116 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2117 bp->b_cflags |= BC_BUSY;
2118 continue;
2119 }
2120
2121 while (bp->b_cflags & BC_BUSY) {
2122 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2123 " data summary corruption for ino %d, lbn %"
2124 PRId64 "\n",
2125 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2126 bp->b_cflags |= BC_WANTED;
2127 cv_wait(&bp->b_busy, &bufcache_lock);
2128 }
2129 bp->b_cflags |= BC_BUSY;
2130 mutex_exit(&bufcache_lock);
2131 unbusybp = NULL;
2132
2133 /*
2134 * Check and replace indirect block UNWRITTEN bogosity.
2135 * XXX See comment in lfs_writefile.
2136 */
2137 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2138 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2139 VTOI(bp->b_vp)->i_lfs_effnblks) {
2140 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2141 VTOI(bp->b_vp)->i_number,
2142 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2143 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2144 /* Make a copy we'll make changes to */
2145 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2146 bp->b_bcount, LFS_NB_IBLOCK);
2147 newbp->b_blkno = bp->b_blkno;
2148 memcpy(newbp->b_data, bp->b_data,
2149 newbp->b_bcount);
2150
2151 changed = 0;
2152 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs);
2153 for (ibindex = 0; ibindex < iblimit; ibindex++) {
2154 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) {
2155 ++changed;
2156 lfs_iblock_set(fs, newbp->b_data,
2157 ibindex, 0);
2158 }
2159 }
2160 /*
2161 * Get rid of the old buffer. Don't mark it clean,
2162 * though, if it still has dirty data on it.
2163 */
2164 if (changed) {
2165 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2166 " bp = %p newbp = %p\n", changed, bp,
2167 newbp));
2168 *bpp = newbp;
2169 bp->b_flags &= ~B_GATHERED;
2170 bp->b_error = 0;
2171 if (bp->b_iodone != NULL) {
2172 DLOG((DLOG_SEG, "lfs_writeseg: "
2173 "indir bp should not be B_CALL\n"));
2174 biodone(bp);
2175 bp = NULL;
2176 } else {
2177 /* Still on free list, leave it there */
2178 unbusybp = bp;
2179 /*
2180 * We have to re-decrement lfs_avail
2181 * since this block is going to come
2182 * back around to us in the next
2183 * segment.
2184 */
2185 lfs_sb_subavail(fs,
2186 lfs_btofsb(fs, bp->b_bcount));
2187 }
2188 } else {
2189 lfs_freebuf(fs, newbp);
2190 }
2191 }
2192 mutex_enter(&bufcache_lock);
2193 if (unbusybp != NULL) {
2194 unbusybp->b_cflags &= ~BC_BUSY;
2195 if (unbusybp->b_cflags & BC_WANTED)
2196 cv_broadcast(&bp->b_busy);
2197 }
2198 }
2199 mutex_exit(&bufcache_lock);
2200
2201 /*
2202 * Compute checksum across data and then across summary; the first
2203 * block (the summary block) is skipped. Set the create time here
2204 * so that it's guaranteed to be later than the inode mod times.
2205 */
2206 sum = 0;
2207 if (lfs_sb_getversion(fs) == 1)
2208 el_size = sizeof(u_long);
2209 else
2210 el_size = sizeof(u_int32_t);
2211 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2212 ++bpp;
2213 /* Loop through gop_write cluster blocks */
2214 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2215 byteoffset += lfs_sb_getbsize(fs)) {
2216 #ifdef LFS_USE_B_INVAL
2217 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2218 (*bpp)->b_iodone != NULL) {
2219 if (copyin((void *)(*bpp)->b_saveaddr +
2220 byteoffset, dp, el_size)) {
2221 panic("lfs_writeseg: copyin failed [1]:"
2222 " ino %" PRIu64 " blk %" PRId64,
2223 VTOI((*bpp)->b_vp)->i_number,
2224 (*bpp)->b_lblkno);
2225 }
2226 } else
2227 #endif /* LFS_USE_B_INVAL */
2228 {
2229 sum = lfs_cksum_part((char *)
2230 (*bpp)->b_data + byteoffset, el_size, sum);
2231 }
2232 }
2233 }
2234 if (lfs_sb_getversion(fs) == 1)
2235 lfs_ss_setocreate(fs, ssp, time_second);
2236 else {
2237 lfs_ss_setcreate(fs, ssp, time_second);
2238 lfs_sb_addserial(fs, 1);
2239 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2240 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2241 }
2242 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2243 sumstart = lfs_ss_getsumstart(fs);
2244 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2245 lfs_sb_getsumsize(fs) - sumstart));
2246
2247 mutex_enter(&lfs_lock);
2248 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2249 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2250 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2251 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2252 mutex_exit(&lfs_lock);
2253
2254 /*
2255 * When we simply write the blocks we lose a rotation for every block
2256 * written. To avoid this problem, we cluster the buffers into a
2257 * chunk and write the chunk. MAXPHYS is the largest size I/O
2258 * devices can handle, use that for the size of the chunks.
2259 *
2260 * Blocks that are already clusters (from GOP_WRITE), however, we
2261 * don't bother to copy into other clusters.
2262 */
2263
2264 #define CHUNKSIZE MAXPHYS
2265
2266 if (devvp == NULL)
2267 panic("devvp is NULL");
2268 for (bpp = sp->bpp, i = nblocks; i;) {
2269 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2270 cl = cbp->b_private;
2271
2272 cbp->b_flags |= B_ASYNC;
2273 cbp->b_cflags |= BC_BUSY;
2274 cbp->b_bcount = 0;
2275
2276 KASSERTMSG((bpp - sp->bpp <=
2277 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2278 / sizeof(int32_t)),
2279 "lfs_writeseg: real bpp overwrite");
2280 KASSERTMSG((bpp - sp->bpp <=
2281 lfs_segsize(fs) / lfs_sb_getfsize(fs)),
2282 "lfs_writeseg: theoretical bpp overwrite");
2283
2284 /*
2285 * Construct the cluster.
2286 */
2287 mutex_enter(&lfs_lock);
2288 ++fs->lfs_iocount;
2289 mutex_exit(&lfs_lock);
2290 while (i && cbp->b_bcount < CHUNKSIZE) {
2291 bp = *bpp;
2292
2293 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2294 break;
2295 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2296 break;
2297
2298 /* Clusters from GOP_WRITE are expedited */
2299 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2300 if (cbp->b_bcount > 0)
2301 /* Put in its own buffer */
2302 break;
2303 else {
2304 cbp->b_data = bp->b_data;
2305 }
2306 } else if (cbp->b_bcount == 0) {
2307 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2308 LFS_NB_CLUSTER);
2309 cl->flags |= LFS_CL_MALLOC;
2310 }
2311 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2312 btodb(bp->b_bcount - 1))) ==
2313 sp->seg_number),
2314 "segment overwrite: blk size %d daddr %" PRIx64
2315 " not in seg %d\n",
2316 bp->b_bcount, bp->b_blkno,
2317 sp->seg_number);
2318
2319 #ifdef LFS_USE_B_INVAL
2320 /*
2321 * Fake buffers from the cleaner are marked as B_INVAL.
2322 * We need to copy the data from user space rather than
2323 * from the buffer indicated.
2324 * XXX == what do I do on an error?
2325 */
2326 if ((bp->b_cflags & BC_INVAL) != 0 &&
2327 bp->b_iodone != NULL) {
2328 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2329 panic("lfs_writeseg: "
2330 "copyin failed [2]");
2331 } else
2332 #endif /* LFS_USE_B_INVAL */
2333 if (cl->flags & LFS_CL_MALLOC) {
2334 /* copy data into our cluster. */
2335 memcpy(p, bp->b_data, bp->b_bcount);
2336 p += bp->b_bcount;
2337 }
2338
2339 cbp->b_bcount += bp->b_bcount;
2340 cl->bufsize += bp->b_bcount;
2341
2342 bp->b_flags &= ~B_READ;
2343 bp->b_error = 0;
2344 cl->bpp[cl->bufcount++] = bp;
2345
2346 vp = bp->b_vp;
2347 mutex_enter(&bufcache_lock);
2348 mutex_enter(vp->v_interlock);
2349 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2350 reassignbuf(bp, vp);
2351 vp->v_numoutput++;
2352 mutex_exit(vp->v_interlock);
2353 mutex_exit(&bufcache_lock);
2354
2355 bpp++;
2356 i--;
2357 }
2358 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2359 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2360 else
2361 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2362 mutex_enter(devvp->v_interlock);
2363 devvp->v_numoutput++;
2364 mutex_exit(devvp->v_interlock);
2365 VOP_STRATEGY(devvp, cbp);
2366 curlwp->l_ru.ru_oublock++;
2367 }
2368
2369 if (lfs_dostats) {
2370 ++lfs_stats.psegwrites;
2371 lfs_stats.blocktot += nblocks - 1;
2372 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2373 ++lfs_stats.psyncwrites;
2374 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2375 ++lfs_stats.pcleanwrites;
2376 lfs_stats.cleanblocks += nblocks - 1;
2377 }
2378 }
2379
2380 return (lfs_initseg(fs) || do_again);
2381 }
2382
2383 void
2384 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2385 {
2386 struct buf *bp;
2387 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2388
2389 ASSERT_MAYBE_SEGLOCK(fs);
2390 if (fs->lfs_is64) {
2391 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2392 } else {
2393 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2394 }
2395 /*
2396 * If we can write one superblock while another is in
2397 * progress, we risk not having a complete checkpoint if we crash.
2398 * So, block here if a superblock write is in progress.
2399 */
2400 mutex_enter(&lfs_lock);
2401 while (fs->lfs_sbactive) {
2402 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2403 &lfs_lock);
2404 }
2405 fs->lfs_sbactive = daddr;
2406 mutex_exit(&lfs_lock);
2407
2408 /* Set timestamp of this version of the superblock */
2409 if (lfs_sb_getversion(fs) == 1)
2410 lfs_sb_setotstamp(fs, time_second);
2411 lfs_sb_settstamp(fs, time_second);
2412
2413 /* The next chunk of code relies on this assumption */
2414 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2415
2416 /* Checksum the superblock and copy it into a buffer. */
2417 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2418 bp = lfs_newbuf(fs, devvp,
2419 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2420 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2421 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2422 LFS_SBPAD - sizeof(struct dlfs));
2423
2424 bp->b_cflags |= BC_BUSY;
2425 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2426 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2427 bp->b_error = 0;
2428 bp->b_iodone = lfs_supercallback;
2429
2430 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2431 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2432 else
2433 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2434 curlwp->l_ru.ru_oublock++;
2435
2436 mutex_enter(devvp->v_interlock);
2437 devvp->v_numoutput++;
2438 mutex_exit(devvp->v_interlock);
2439
2440 mutex_enter(&lfs_lock);
2441 ++fs->lfs_iocount;
2442 mutex_exit(&lfs_lock);
2443 VOP_STRATEGY(devvp, bp);
2444 }
2445
2446 /*
2447 * Logical block number match routines used when traversing the dirty block
2448 * chain.
2449 */
2450 int
2451 lfs_match_fake(struct lfs *fs, struct buf *bp)
2452 {
2453
2454 ASSERT_SEGLOCK(fs);
2455 return LFS_IS_MALLOC_BUF(bp);
2456 }
2457
2458 #if 0
2459 int
2460 lfs_match_real(struct lfs *fs, struct buf *bp)
2461 {
2462
2463 ASSERT_SEGLOCK(fs);
2464 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2465 }
2466 #endif
2467
2468 int
2469 lfs_match_data(struct lfs *fs, struct buf *bp)
2470 {
2471
2472 ASSERT_SEGLOCK(fs);
2473 return (bp->b_lblkno >= 0);
2474 }
2475
2476 int
2477 lfs_match_indir(struct lfs *fs, struct buf *bp)
2478 {
2479 daddr_t lbn;
2480
2481 ASSERT_SEGLOCK(fs);
2482 lbn = bp->b_lblkno;
2483 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2484 }
2485
2486 int
2487 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2488 {
2489 daddr_t lbn;
2490
2491 ASSERT_SEGLOCK(fs);
2492 lbn = bp->b_lblkno;
2493 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2494 }
2495
2496 int
2497 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2498 {
2499 daddr_t lbn;
2500
2501 ASSERT_SEGLOCK(fs);
2502 lbn = bp->b_lblkno;
2503 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2504 }
2505
2506 static void
2507 lfs_free_aiodone(struct buf *bp)
2508 {
2509 struct lfs *fs;
2510
2511 KERNEL_LOCK(1, curlwp);
2512 fs = bp->b_private;
2513 ASSERT_NO_SEGLOCK(fs);
2514 lfs_freebuf(fs, bp);
2515 KERNEL_UNLOCK_LAST(curlwp);
2516 }
2517
2518 static void
2519 lfs_super_aiodone(struct buf *bp)
2520 {
2521 struct lfs *fs;
2522
2523 KERNEL_LOCK(1, curlwp);
2524 fs = bp->b_private;
2525 ASSERT_NO_SEGLOCK(fs);
2526 mutex_enter(&lfs_lock);
2527 fs->lfs_sbactive = 0;
2528 if (--fs->lfs_iocount <= 1)
2529 wakeup(&fs->lfs_iocount);
2530 wakeup(&fs->lfs_sbactive);
2531 mutex_exit(&lfs_lock);
2532 lfs_freebuf(fs, bp);
2533 KERNEL_UNLOCK_LAST(curlwp);
2534 }
2535
2536 static void
2537 lfs_cluster_aiodone(struct buf *bp)
2538 {
2539 struct lfs_cluster *cl;
2540 struct lfs *fs;
2541 struct buf *tbp, *fbp;
2542 struct vnode *vp, *devvp, *ovp;
2543 struct inode *ip;
2544 int error;
2545
2546 KERNEL_LOCK(1, curlwp);
2547
2548 error = bp->b_error;
2549 cl = bp->b_private;
2550 fs = cl->fs;
2551 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2552 ASSERT_NO_SEGLOCK(fs);
2553
2554 /* Put the pages back, and release the buffer */
2555 while (cl->bufcount--) {
2556 tbp = cl->bpp[cl->bufcount];
2557 KASSERT(tbp->b_cflags & BC_BUSY);
2558 if (error) {
2559 tbp->b_error = error;
2560 }
2561
2562 /*
2563 * We're done with tbp. If it has not been re-dirtied since
2564 * the cluster was written, free it. Otherwise, keep it on
2565 * the locked list to be written again.
2566 */
2567 vp = tbp->b_vp;
2568
2569 tbp->b_flags &= ~B_GATHERED;
2570
2571 #ifdef DEBUG
2572 if ((tbp)->b_vp == (fs)->lfs_ivnode)
2573 LFS_ENTER_LOG("clear", __FILE__, __LINE__,
2574 tbp->b_lblkno, tbp->b_flags, curproc->p_pid);
2575 #endif
2576
2577 mutex_enter(&bufcache_lock);
2578 if (tbp->b_iodone == NULL) {
2579 KASSERT(tbp->b_flags & B_LOCKED);
2580 bremfree(tbp);
2581 if (vp) {
2582 mutex_enter(vp->v_interlock);
2583 reassignbuf(tbp, vp);
2584 mutex_exit(vp->v_interlock);
2585 }
2586 tbp->b_flags |= B_ASYNC; /* for biodone */
2587 }
2588
2589 if (((tbp->b_flags | tbp->b_oflags) &
2590 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2591 LFS_UNLOCK_BUF(tbp);
2592
2593 if (tbp->b_oflags & BO_DONE) {
2594 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2595 cl->bufcount, (long)tbp->b_flags));
2596 }
2597
2598 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2599 /*
2600 * A buffer from the page daemon.
2601 * We use the same iodone as it does,
2602 * so we must manually disassociate its
2603 * buffers from the vp.
2604 */
2605 if ((ovp = tbp->b_vp) != NULL) {
2606 /* This is just silly */
2607 mutex_enter(ovp->v_interlock);
2608 brelvp(tbp);
2609 mutex_exit(ovp->v_interlock);
2610 tbp->b_vp = vp;
2611 tbp->b_objlock = vp->v_interlock;
2612 }
2613 /* Put it back the way it was */
2614 tbp->b_flags |= B_ASYNC;
2615 /* Master buffers have BC_AGE */
2616 if (tbp->b_private == tbp)
2617 tbp->b_cflags |= BC_AGE;
2618 }
2619 mutex_exit(&bufcache_lock);
2620
2621 biodone(tbp);
2622
2623 /*
2624 * If this is the last block for this vnode, but
2625 * there are other blocks on its dirty list,
2626 * set IN_MODIFIED/IN_CLEANING depending on what
2627 * sort of block. Only do this for our mount point,
2628 * not for, e.g., inode blocks that are attached to
2629 * the devvp.
2630 * XXX KS - Shouldn't we set *both* if both types
2631 * of blocks are present (traverse the dirty list?)
2632 */
2633 mutex_enter(vp->v_interlock);
2634 mutex_enter(&lfs_lock);
2635 if (vp != devvp && vp->v_numoutput == 0 &&
2636 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2637 ip = VTOI(vp);
2638 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2639 ip->i_number));
2640 if (LFS_IS_MALLOC_BUF(fbp))
2641 LFS_SET_UINO(ip, IN_CLEANING);
2642 else
2643 LFS_SET_UINO(ip, IN_MODIFIED);
2644 }
2645 cv_broadcast(&vp->v_cv);
2646 mutex_exit(&lfs_lock);
2647 mutex_exit(vp->v_interlock);
2648 }
2649
2650 /* Fix up the cluster buffer, and release it */
2651 if (cl->flags & LFS_CL_MALLOC)
2652 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2653 putiobuf(bp);
2654
2655 /* Note i/o done */
2656 if (cl->flags & LFS_CL_SYNC) {
2657 if (--cl->seg->seg_iocount == 0)
2658 wakeup(&cl->seg->seg_iocount);
2659 }
2660 mutex_enter(&lfs_lock);
2661 KASSERTMSG((fs->lfs_iocount != 0),
2662 "lfs_cluster_aiodone: zero iocount");
2663 if (--fs->lfs_iocount <= 1)
2664 wakeup(&fs->lfs_iocount);
2665 mutex_exit(&lfs_lock);
2666
2667 KERNEL_UNLOCK_LAST(curlwp);
2668
2669 pool_put(&fs->lfs_bpppool, cl->bpp);
2670 cl->bpp = NULL;
2671 pool_put(&fs->lfs_clpool, cl);
2672 }
2673
2674 static void
2675 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2676 {
2677 /* reset b_iodone for when this is a single-buf i/o. */
2678 bp->b_iodone = aiodone;
2679
2680 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2681 }
2682
2683 static void
2684 lfs_cluster_callback(struct buf *bp)
2685 {
2686
2687 lfs_generic_callback(bp, lfs_cluster_aiodone);
2688 }
2689
2690 void
2691 lfs_supercallback(struct buf *bp)
2692 {
2693
2694 lfs_generic_callback(bp, lfs_super_aiodone);
2695 }
2696
2697 /*
2698 * The only buffers that are going to hit these functions are the
2699 * segment write blocks, or the segment summaries, or the superblocks.
2700 *
2701 * All of the above are created by lfs_newbuf, and so do not need to be
2702 * released via brelse.
2703 */
2704 void
2705 lfs_callback(struct buf *bp)
2706 {
2707
2708 lfs_generic_callback(bp, lfs_free_aiodone);
2709 }
2710
2711 /*
2712 * Shellsort (diminishing increment sort) from Data Structures and
2713 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2714 * see also Knuth Vol. 3, page 84. The increments are selected from
2715 * formula (8), page 95. Roughly O(N^3/2).
2716 */
2717 /*
2718 * This is our own private copy of shellsort because we want to sort
2719 * two parallel arrays (the array of buffer pointers and the array of
2720 * logical block numbers) simultaneously. Note that we cast the array
2721 * of logical block numbers to a unsigned in this routine so that the
2722 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2723 */
2724
2725 static void
2726 lfs_shellsort(struct lfs *fs,
2727 struct buf **bp_array, union lfs_blocks *lb_array,
2728 int nmemb, int size)
2729 {
2730 static int __rsshell_increments[] = { 4, 1, 0 };
2731 int incr, *incrp, t1, t2;
2732 struct buf *bp_temp;
2733
2734 #ifdef DEBUG
2735 incr = 0;
2736 for (t1 = 0; t1 < nmemb; t1++) {
2737 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2738 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2739 /* dump before panic */
2740 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2741 nmemb, size);
2742 incr = 0;
2743 for (t1 = 0; t1 < nmemb; t1++) {
2744 const struct buf *bp = bp_array[t1];
2745
2746 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2747 PRIu64 "\n", t1,
2748 (uint64_t)bp->b_bcount,
2749 (uint64_t)bp->b_lblkno);
2750 printf("lbns:");
2751 for (t2 = 0; t2 * size < bp->b_bcount;
2752 t2++) {
2753 printf(" %jd",
2754 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2755 }
2756 printf("\n");
2757 }
2758 panic("lfs_shellsort: inconsistent input");
2759 }
2760 }
2761 }
2762 #endif
2763
2764 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2765 for (t1 = incr; t1 < nmemb; ++t1)
2766 for (t2 = t1 - incr; t2 >= 0;)
2767 if ((u_int64_t)bp_array[t2]->b_lblkno >
2768 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2769 bp_temp = bp_array[t2];
2770 bp_array[t2] = bp_array[t2 + incr];
2771 bp_array[t2 + incr] = bp_temp;
2772 t2 -= incr;
2773 } else
2774 break;
2775
2776 /* Reform the list of logical blocks */
2777 incr = 0;
2778 for (t1 = 0; t1 < nmemb; t1++) {
2779 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2780 lfs_blocks_set(fs, lb_array, incr++,
2781 bp_array[t1]->b_lblkno + t2);
2782 }
2783 }
2784 }
2785
2786 /*
2787 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2788 * point at uninitialized space.
2789 */
2790 void
2791 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2792 {
2793 struct segment *sp = fs->lfs_sp;
2794 SEGSUM *ssp;
2795
2796 KASSERT(vers > 0);
2797
2798 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2799 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2800 (void) lfs_writeseg(fs, fs->lfs_sp);
2801
2802 sp->sum_bytes_left -= FINFOSIZE(fs);
2803 ssp = (SEGSUM *)sp->segsum;
2804 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2805 lfs_fi_setnblocks(fs, sp->fip, 0);
2806 lfs_fi_setino(fs, sp->fip, ino);
2807 lfs_fi_setversion(fs, sp->fip, vers);
2808 }
2809
2810 /*
2811 * Release the FINFO entry, either clearing out an unused entry or
2812 * advancing us to the next available entry.
2813 */
2814 void
2815 lfs_release_finfo(struct lfs *fs)
2816 {
2817 struct segment *sp = fs->lfs_sp;
2818 SEGSUM *ssp;
2819
2820 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2821 sp->fip = NEXT_FINFO(fs, sp->fip);
2822 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2823 } else {
2824 /* XXX shouldn't this update sp->fip? */
2825 sp->sum_bytes_left += FINFOSIZE(fs);
2826 ssp = (SEGSUM *)sp->segsum;
2827 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2828 }
2829 }
2830