lfs_segment.c revision 1.275 1 /* $NetBSD: lfs_segment.c,v 1.275 2017/08/20 00:03:12 maya Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.275 2017/08/20 00:03:12 maya Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_state & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_accessors.h>
104 #include <ufs/lfs/lfs_kernel.h>
105 #include <ufs/lfs/lfs_extern.h>
106
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_extern.h>
109
110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
111
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_free_aiodone(struct buf *);
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 (lfs_sb_getfsbpseg(fs) - \
124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
125 lfs_sb_getfrag(fs))
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
146 int, int);
147
148 kcondvar_t lfs_allclean_wakeup; /* Cleaner wakeup address. */
149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount = 0; /* # active dirops */
152
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156
157 /* op values to lfs_writevnodes */
158 #define VN_REG 0
159 #define VN_DIROP 1
160 #define VN_EMPTY 2
161 #define VN_CLEAN 3
162
163 /*
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
168 */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 struct timespec ts;
173 struct inode *ip;
174
175 ASSERT_MAYBE_SEGLOCK(fs);
176 vfs_timestamp(&ts);
177 ip = VTOI(fs->lfs_ivnode);
178 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
179 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
180 }
181
182 /*
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 */
188
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190
191 int
192 lfs_vflush(struct vnode *vp)
193 {
194 struct inode *ip;
195 struct lfs *fs;
196 struct segment *sp;
197 struct buf *bp, *nbp, *tbp, *tnbp;
198 int error;
199 int flushed;
200 int relock;
201
202 ip = VTOI(vp);
203 fs = VFSTOULFS(vp->v_mount)->um_lfs;
204 relock = 0;
205
206 top:
207 KASSERT(mutex_owned(vp->v_interlock) == false);
208 KASSERT(mutex_owned(&lfs_lock) == false);
209 KASSERT(mutex_owned(&bufcache_lock) == false);
210 ASSERT_NO_SEGLOCK(fs);
211 if (ip->i_state & IN_CLEANING) {
212 ivndebug(vp,"vflush/in_cleaning");
213 mutex_enter(&lfs_lock);
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216 mutex_exit(&lfs_lock);
217
218 /*
219 * Toss any cleaning buffers that have real counterparts
220 * to avoid losing new data.
221 */
222 mutex_enter(vp->v_interlock);
223 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 nbp = LIST_NEXT(bp, b_vnbufs);
225 if (!LFS_IS_MALLOC_BUF(bp))
226 continue;
227 /*
228 * Look for pages matching the range covered
229 * by cleaning blocks. It's okay if more dirty
230 * pages appear, so long as none disappear out
231 * from under us.
232 */
233 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
234 vp != fs->lfs_ivnode) {
235 struct vm_page *pg;
236 voff_t off;
237
238 for (off = lfs_lblktosize(fs, bp->b_lblkno);
239 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if ((pg->flags & PG_CLEAN) == 0 ||
245 pmap_is_modified(pg)) {
246 lfs_sb_addavail(fs,
247 lfs_btofsb(fs,
248 bp->b_bcount));
249 wakeup(&fs->lfs_availsleep);
250 mutex_exit(vp->v_interlock);
251 lfs_freebuf(fs, bp);
252 mutex_enter(vp->v_interlock);
253 bp = NULL;
254 break;
255 }
256 }
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 lfs_sb_addavail(fs, lfs_btofsb(fs,
267 bp->b_bcount));
268 wakeup(&fs->lfs_availsleep);
269 mutex_exit(vp->v_interlock);
270 lfs_freebuf(fs, bp);
271 mutex_enter(vp->v_interlock);
272 bp = NULL;
273 break;
274 }
275 }
276 }
277 } else {
278 mutex_enter(vp->v_interlock);
279 }
280
281 /* If the node is being written, wait until that is done */
282 while (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 cv_wait(&vp->v_cv, vp->v_interlock);
285 }
286 error = vdead_check(vp, VDEAD_NOWAIT);
287 mutex_exit(vp->v_interlock);
288
289 /* Protect against deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
291 if (error != 0) {
292 fs->lfs_reclino = ip->i_number;
293 }
294
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip->i_lfs_iflags & LFSI_DELETED) {
297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 ip->i_number));
299 /* Drain v_numoutput */
300 mutex_enter(vp->v_interlock);
301 while (vp->v_numoutput > 0) {
302 cv_wait(&vp->v_cv, vp->v_interlock);
303 }
304 KASSERT(vp->v_numoutput == 0);
305 mutex_exit(vp->v_interlock);
306
307 mutex_enter(&bufcache_lock);
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
314 wakeup(&fs->lfs_availsleep);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_iodone != NULL) {
318 mutex_exit(&bufcache_lock);
319 biodone(bp);
320 mutex_enter(&bufcache_lock);
321 } else {
322 bremfree(bp);
323 LFS_UNLOCK_BUF(bp);
324 mutex_enter(vp->v_interlock);
325 bp->b_flags &= ~(B_READ | B_GATHERED);
326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 bp->b_error = 0;
328 reassignbuf(bp, vp);
329 mutex_exit(vp->v_interlock);
330 brelse(bp, 0);
331 }
332 }
333 mutex_exit(&bufcache_lock);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_state &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 mutex_enter(vp->v_interlock);
355 while (vp->v_numoutput > 0) {
356 cv_wait(&vp->v_cv, vp->v_interlock);
357 }
358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 KASSERT(vp->v_numoutput == 0);
360 mutex_exit(vp->v_interlock);
361
362 return error;
363 }
364 sp = fs->lfs_sp;
365
366 flushed = 0;
367 if (VPISEMPTY(vp)) {
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 ++flushed;
370 } else if ((ip->i_state & IN_CLEANING) &&
371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 ivndebug(vp,"vflush/clean");
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 ++flushed;
375 } else if (lfs_dostats) {
376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD))
377 ++lfs_stats.vflush_invoked;
378 ivndebug(vp,"vflush");
379 }
380
381 #ifdef DIAGNOSTIC
382 if (vp->v_uflag & VU_DIROP) {
383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 }
386 #endif
387
388 do {
389 #ifdef DEBUG
390 int loopcount = 0;
391 #endif
392 do {
393 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
394 relock = lfs_writefile(fs, sp, vp);
395 if (relock && vp != fs->lfs_ivnode) {
396 /*
397 * Might have to wait for the
398 * cleaner to run; but we're
399 * still not done with this vnode.
400 * XXX we can do better than this.
401 */
402 KDASSERT(ip->i_number != LFS_IFILE_INUM);
403 lfs_writeinode(fs, sp, ip);
404 mutex_enter(&lfs_lock);
405 LFS_SET_UINO(ip, IN_MODIFIED);
406 mutex_exit(&lfs_lock);
407 lfs_writeseg(fs, sp);
408 lfs_segunlock(fs);
409 lfs_segunlock_relock(fs);
410 goto top;
411 }
412 }
413 /*
414 * If we begin a new segment in the middle of writing
415 * the Ifile, it creates an inconsistent checkpoint,
416 * since the Ifile information for the new segment
417 * is not up-to-date. Take care of this here by
418 * sending the Ifile through again in case there
419 * are newly dirtied blocks. But wait, there's more!
420 * This second Ifile write could *also* cross a segment
421 * boundary, if the first one was large. The second
422 * one is guaranteed to be no more than 8 blocks,
423 * though (two segment blocks and supporting indirects)
424 * so the third write *will not* cross the boundary.
425 */
426 if (vp == fs->lfs_ivnode) {
427 lfs_writefile(fs, sp, vp);
428 lfs_writefile(fs, sp, vp);
429 }
430 #ifdef DEBUG
431 if (++loopcount > 2)
432 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
433 #endif
434 } while (lfs_writeinode(fs, sp, ip));
435 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
436
437 if (lfs_dostats) {
438 ++lfs_stats.nwrites;
439 if (sp->seg_flags & SEGM_SYNC)
440 ++lfs_stats.nsync_writes;
441 if (sp->seg_flags & SEGM_CKP)
442 ++lfs_stats.ncheckpoints;
443 }
444 /*
445 * If we were called from somewhere that has already held the seglock
446 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
447 * the write to complete because we are still locked.
448 * Since lfs_vflush() must return the vnode with no dirty buffers,
449 * we must explicitly wait, if that is the case.
450 *
451 * We compare the iocount against 1, not 0, because it is
452 * artificially incremented by lfs_seglock().
453 */
454 mutex_enter(&lfs_lock);
455 if (fs->lfs_seglock > 1) {
456 while (fs->lfs_iocount > 1)
457 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
458 "lfs_vflush", 0, &lfs_lock);
459 }
460 mutex_exit(&lfs_lock);
461
462 lfs_segunlock(fs);
463
464 /* Wait for these buffers to be recovered by aiodoned */
465 mutex_enter(vp->v_interlock);
466 while (vp->v_numoutput > 0) {
467 cv_wait(&vp->v_cv, vp->v_interlock);
468 }
469 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
470 KASSERT(vp->v_numoutput == 0);
471 mutex_exit(vp->v_interlock);
472
473 fs->lfs_flushvp = NULL;
474 KASSERT(fs->lfs_flushvp_fakevref == 0);
475
476 return (0);
477 }
478
479 struct lfs_writevnodes_ctx {
480 int op;
481 struct lfs *fs;
482 };
483 static bool
484 lfs_writevnodes_selector(void *cl, struct vnode *vp)
485 {
486 struct lfs_writevnodes_ctx *c = cl;
487 struct inode *ip;
488 int op = c->op;
489
490 KASSERT(mutex_owned(vp->v_interlock));
491
492 ip = VTOI(vp);
493 if (ip == NULL || vp->v_type == VNON)
494 return false;
495 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
496 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
497 vndebug(vp, "dirop");
498 return false;
499 }
500 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
501 vndebug(vp,"empty");
502 return false;;
503 }
504 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
505 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) {
506 vndebug(vp,"cleaning");
507 return false;
508 }
509 mutex_enter(&lfs_lock);
510 if (vp == c->fs->lfs_unlockvp) {
511 mutex_exit(&lfs_lock);
512 return false;
513 }
514 mutex_exit(&lfs_lock);
515
516 return true;
517 }
518
519 int
520 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
521 {
522 struct inode *ip;
523 struct vnode *vp;
524 struct vnode_iterator *marker;
525 struct lfs_writevnodes_ctx ctx;
526 int inodes_written = 0;
527 int error = 0;
528
529 /*
530 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
531 * XXX The rationale is unclear, the initial commit had no information.
532 * XXX If the order really matters we have to sort the vnodes first.
533 */
534
535 ASSERT_SEGLOCK(fs);
536 vfs_vnode_iterator_init(mp, &marker);
537 ctx.op = op;
538 ctx.fs = fs;
539 while ((vp = vfs_vnode_iterator_next(marker,
540 lfs_writevnodes_selector, &ctx)) != NULL) {
541 ip = VTOI(vp);
542
543 /*
544 * Write the inode/file if dirty and it's not the IFILE.
545 */
546 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) &&
547 ip->i_number != LFS_IFILE_INUM) {
548 error = lfs_writefile(fs, sp, vp);
549 if (error) {
550 vrele(vp);
551 if (error == EAGAIN) {
552 /*
553 * This error from lfs_putpages
554 * indicates we need to drop
555 * the segment lock and start
556 * over after the cleaner has
557 * had a chance to run.
558 */
559 lfs_writeinode(fs, sp, ip);
560 lfs_writeseg(fs, sp);
561 if (!VPISEMPTY(vp) &&
562 !WRITEINPROG(vp) &&
563 !(ip->i_state & IN_ALLMOD)) {
564 mutex_enter(&lfs_lock);
565 LFS_SET_UINO(ip, IN_MODIFIED);
566 mutex_exit(&lfs_lock);
567 }
568 break;
569 }
570 error = 0; /* XXX not quite right */
571 continue;
572 }
573
574 if (!VPISEMPTY(vp)) {
575 if (WRITEINPROG(vp)) {
576 ivndebug(vp,"writevnodes/write2");
577 } else if (!(ip->i_state & IN_ALLMOD)) {
578 mutex_enter(&lfs_lock);
579 LFS_SET_UINO(ip, IN_MODIFIED);
580 mutex_exit(&lfs_lock);
581 }
582 }
583 (void) lfs_writeinode(fs, sp, ip);
584 inodes_written++;
585 }
586 vrele(vp);
587 }
588 vfs_vnode_iterator_destroy(marker);
589 return error;
590 }
591
592 /*
593 * Do a checkpoint.
594 */
595 int
596 lfs_segwrite(struct mount *mp, int flags)
597 {
598 struct buf *bp;
599 struct inode *ip;
600 struct lfs *fs;
601 struct segment *sp;
602 struct vnode *vp;
603 SEGUSE *segusep;
604 int do_ckp, did_ckp, error;
605 unsigned n, segleft, maxseg, sn, i, curseg;
606 int writer_set = 0;
607 int dirty;
608 int redo;
609 SEGSUM *ssp;
610 int um_error;
611
612 fs = VFSTOULFS(mp)->um_lfs;
613 ASSERT_MAYBE_SEGLOCK(fs);
614
615 if (fs->lfs_ronly)
616 return EROFS;
617
618 lfs_imtime(fs);
619
620 /*
621 * Allocate a segment structure and enough space to hold pointers to
622 * the maximum possible number of buffers which can be described in a
623 * single summary block.
624 */
625 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
626
627 /* We can't do a partial write and checkpoint at the same time. */
628 if (do_ckp)
629 flags &= ~SEGM_SINGLE;
630
631 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
632 sp = fs->lfs_sp;
633 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
634 do_ckp = 1;
635
636 /*
637 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
638 * in which case we have to flush *all* buffers off of this vnode.
639 * We don't care about other nodes, but write any non-dirop nodes
640 * anyway in anticipation of another getnewvnode().
641 *
642 * If we're cleaning we only write cleaning and ifile blocks, and
643 * no dirops, since otherwise we'd risk corruption in a crash.
644 */
645 if (sp->seg_flags & SEGM_CLEAN)
646 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
647 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
648 do {
649 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
650 if ((sp->seg_flags & SEGM_SINGLE) &&
651 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
652 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
653 break;
654 }
655
656 if (do_ckp || fs->lfs_dirops == 0) {
657 if (!writer_set) {
658 lfs_writer_enter(fs, "lfs writer");
659 writer_set = 1;
660 }
661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
662 if (um_error == 0)
663 um_error = error;
664 /*
665 * In case writevnodes errored out
666 * XXX why are we always doing this and not
667 * just on error?
668 */
669 lfs_flush_dirops(fs);
670 ssp = (SEGSUM *)(sp->segsum);
671 lfs_ss_setflags(fs, ssp,
672 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
673 lfs_finalize_fs_seguse(fs);
674 }
675 if (do_ckp && um_error) {
676 lfs_segunlock_relock(fs);
677 sp = fs->lfs_sp;
678 }
679 } while (do_ckp && um_error != 0);
680 }
681
682 /*
683 * If we are doing a checkpoint, mark everything since the
684 * last checkpoint as no longer ACTIVE.
685 */
686 if (do_ckp || fs->lfs_doifile) {
687 segleft = lfs_sb_getnseg(fs);
688 curseg = 0;
689 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
690 int bread_error;
691
692 dirty = 0;
693 bread_error = bread(fs->lfs_ivnode,
694 lfs_sb_getcleansz(fs) + n,
695 lfs_sb_getbsize(fs), B_MODIFY, &bp);
696 if (bread_error)
697 panic("lfs_segwrite: ifile read: "
698 "seguse %u: error %d\n",
699 n, bread_error);
700 segusep = (SEGUSE *)bp->b_data;
701 maxseg = min(segleft, lfs_sb_getsepb(fs));
702 for (i = 0; i < maxseg; i++) {
703 sn = curseg + i;
704 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
705 segusep->su_flags & SEGUSE_ACTIVE) {
706 segusep->su_flags &= ~SEGUSE_ACTIVE;
707 --fs->lfs_nactive;
708 ++dirty;
709 }
710 fs->lfs_suflags[fs->lfs_activesb][sn] =
711 segusep->su_flags;
712 if (lfs_sb_getversion(fs) > 1)
713 ++segusep;
714 else
715 segusep = (SEGUSE *)
716 ((SEGUSE_V1 *)segusep + 1);
717 }
718
719 if (dirty)
720 error = LFS_BWRITE_LOG(bp); /* Ifile */
721 else
722 brelse(bp, 0);
723 segleft -= lfs_sb_getsepb(fs);
724 curseg += lfs_sb_getsepb(fs);
725 }
726 }
727
728 KASSERT(LFS_SEGLOCK_HELD(fs));
729
730 did_ckp = 0;
731 if (do_ckp || fs->lfs_doifile) {
732 vp = fs->lfs_ivnode;
733 #ifdef DEBUG
734 int loopcount = 0;
735 #endif
736 do {
737
738 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
739
740 mutex_enter(&lfs_lock);
741 fs->lfs_flags &= ~LFS_IFDIRTY;
742 mutex_exit(&lfs_lock);
743
744 ip = VTOI(vp);
745
746 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
747 /*
748 * Ifile has no pages, so we don't need
749 * to check error return here.
750 */
751 lfs_writefile(fs, sp, vp);
752 /*
753 * Ensure the Ifile takes the current segment
754 * into account. See comment in lfs_vflush.
755 */
756 lfs_writefile(fs, sp, vp);
757 lfs_writefile(fs, sp, vp);
758 }
759
760 if (ip->i_state & IN_ALLMOD)
761 ++did_ckp;
762 #if 0
763 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
764 #else
765 redo = lfs_writeinode(fs, sp, ip);
766 #endif
767 redo += lfs_writeseg(fs, sp);
768 mutex_enter(&lfs_lock);
769 redo += (fs->lfs_flags & LFS_IFDIRTY);
770 mutex_exit(&lfs_lock);
771 #ifdef DEBUG
772 if (++loopcount > 2)
773 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
774 loopcount);
775 #endif
776 } while (redo && do_ckp);
777
778 /*
779 * Unless we are unmounting, the Ifile may continue to have
780 * dirty blocks even after a checkpoint, due to changes to
781 * inodes' atime. If we're checkpointing, it's "impossible"
782 * for other parts of the Ifile to be dirty after the loop
783 * above, since we hold the segment lock.
784 */
785 mutex_enter(vp->v_interlock);
786 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
787 LFS_CLR_UINO(ip, IN_ALLMOD);
788 }
789 #ifdef DIAGNOSTIC
790 else if (do_ckp) {
791 int do_panic = 0;
792 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
793 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
794 lfs_sb_getsegtabsz(fs) &&
795 !(bp->b_flags & B_GATHERED)) {
796 printf("ifile lbn %ld still dirty (flags %lx)\n",
797 (long)bp->b_lblkno,
798 (long)bp->b_flags);
799 ++do_panic;
800 }
801 }
802 if (do_panic)
803 panic("dirty blocks");
804 }
805 #endif
806 mutex_exit(vp->v_interlock);
807 } else {
808 (void) lfs_writeseg(fs, sp);
809 }
810
811 /* Note Ifile no longer needs to be written */
812 fs->lfs_doifile = 0;
813 if (writer_set)
814 lfs_writer_leave(fs);
815
816 /*
817 * If we didn't write the Ifile, we didn't really do anything.
818 * That means that (1) there is a checkpoint on disk and (2)
819 * nothing has changed since it was written.
820 *
821 * Take the flags off of the segment so that lfs_segunlock
822 * doesn't have to write the superblock either.
823 */
824 if (do_ckp && !did_ckp) {
825 sp->seg_flags &= ~SEGM_CKP;
826 }
827
828 if (lfs_dostats) {
829 ++lfs_stats.nwrites;
830 if (sp->seg_flags & SEGM_SYNC)
831 ++lfs_stats.nsync_writes;
832 if (sp->seg_flags & SEGM_CKP)
833 ++lfs_stats.ncheckpoints;
834 }
835 lfs_segunlock(fs);
836 return (0);
837 }
838
839 /*
840 * Write the dirty blocks associated with a vnode.
841 */
842 int
843 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
844 {
845 struct inode *ip;
846 int i, frag;
847 SEGSUM *ssp;
848 int error;
849
850 ASSERT_SEGLOCK(fs);
851 error = 0;
852 ip = VTOI(vp);
853
854 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
855
856 if (vp->v_uflag & VU_DIROP) {
857 ssp = (SEGSUM *)sp->segsum;
858 lfs_ss_setflags(fs, ssp,
859 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
860 }
861
862 if (sp->seg_flags & SEGM_CLEAN) {
863 lfs_gather(fs, sp, vp, lfs_match_fake);
864 /*
865 * For a file being flushed, we need to write *all* blocks.
866 * This means writing the cleaning blocks first, and then
867 * immediately following with any non-cleaning blocks.
868 * The same is true of the Ifile since checkpoints assume
869 * that all valid Ifile blocks are written.
870 */
871 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
872 lfs_gather(fs, sp, vp, lfs_match_data);
873 /*
874 * Don't call VOP_PUTPAGES: if we're flushing,
875 * we've already done it, and the Ifile doesn't
876 * use the page cache.
877 */
878 }
879 } else {
880 lfs_gather(fs, sp, vp, lfs_match_data);
881 /*
882 * If we're flushing, we've already called VOP_PUTPAGES
883 * so don't do it again. Otherwise, we want to write
884 * everything we've got.
885 */
886 if (!IS_FLUSHING(fs, vp)) {
887 mutex_enter(vp->v_interlock);
888 error = VOP_PUTPAGES(vp, 0, 0,
889 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
890 }
891 }
892
893 /*
894 * It may not be necessary to write the meta-data blocks at this point,
895 * as the roll-forward recovery code should be able to reconstruct the
896 * list.
897 *
898 * We have to write them anyway, though, under two conditions: (1) the
899 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
900 * checkpointing.
901 *
902 * BUT if we are cleaning, we might have indirect blocks that refer to
903 * new blocks not being written yet, in addition to fragments being
904 * moved out of a cleaned segment. If that is the case, don't
905 * write the indirect blocks, or the finfo will have a small block
906 * in the middle of it!
907 * XXX in this case isn't the inode size wrong too?
908 */
909 frag = 0;
910 if (sp->seg_flags & SEGM_CLEAN) {
911 for (i = 0; i < ULFS_NDADDR; i++)
912 if (ip->i_lfs_fragsize[i] > 0 &&
913 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
914 ++frag;
915 }
916 KASSERTMSG((frag <= 1),
917 "lfs_writefile: more than one fragment! frag=%d", frag);
918 if (IS_FLUSHING(fs, vp) ||
919 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
920 lfs_gather(fs, sp, vp, lfs_match_indir);
921 lfs_gather(fs, sp, vp, lfs_match_dindir);
922 lfs_gather(fs, sp, vp, lfs_match_tindir);
923 }
924 lfs_release_finfo(fs);
925
926 return error;
927 }
928
929 /*
930 * Update segment accounting to reflect this inode's change of address.
931 */
932 static int
933 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
934 {
935 struct buf *bp;
936 daddr_t daddr;
937 IFILE *ifp;
938 SEGUSE *sup;
939 ino_t ino;
940 int redo_ifile;
941 u_int32_t sn;
942
943 redo_ifile = 0;
944
945 /*
946 * If updating the ifile, update the super-block. Update the disk
947 * address and access times for this inode in the ifile.
948 */
949 ino = ip->i_number;
950 if (ino == LFS_IFILE_INUM) {
951 daddr = lfs_sb_getidaddr(fs);
952 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
953 } else {
954 LFS_IENTRY(ifp, fs, ino, bp);
955 daddr = lfs_if_getdaddr(fs, ifp);
956 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
957 (void)LFS_BWRITE_LOG(bp); /* Ifile */
958 }
959
960 /*
961 * If this is the Ifile and lfs_offset is set to the first block
962 * in the segment, dirty the new segment's accounting block
963 * (XXX should already be dirty?) and tell the caller to do it again.
964 */
965 if (ip->i_number == LFS_IFILE_INUM) {
966 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
967 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
968 lfs_sb_getoffset(fs)) {
969 LFS_SEGENTRY(sup, fs, sn, bp);
970 KASSERT(bp->b_oflags & BO_DELWRI);
971 LFS_WRITESEGENTRY(sup, fs, sn, bp);
972 /* fs->lfs_flags |= LFS_IFDIRTY; */
973 redo_ifile |= 1;
974 }
975 }
976
977 /*
978 * The inode's last address should not be in the current partial
979 * segment, except under exceptional circumstances (lfs_writevnodes
980 * had to start over, and in the meantime more blocks were written
981 * to a vnode). Both inodes will be accounted to this segment
982 * in lfs_writeseg so we need to subtract the earlier version
983 * here anyway. The segment count can temporarily dip below
984 * zero here; keep track of how many duplicates we have in
985 * "dupino" so we don't panic below.
986 */
987 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
988 ++sp->ndupino;
989 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
990 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
991 (long long)daddr, sp->ndupino));
992 }
993 /*
994 * Account the inode: it no longer belongs to its former segment,
995 * though it will not belong to the new segment until that segment
996 * is actually written.
997 */
998 if (daddr != LFS_UNUSED_DADDR) {
999 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1000 int ndupino __diagused =
1001 (sp->seg_number == oldsn) ? sp->ndupino : 0;
1002 LFS_SEGENTRY(sup, fs, oldsn, bp);
1003 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino)
1004 >= DINOSIZE(fs)),
1005 "lfs_writeinode: negative bytes "
1006 "(segment %" PRIu32 " short by %d, "
1007 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1008 ", daddr=%" PRId64 ", su_nbytes=%u, "
1009 "ndupino=%d)\n",
1010 lfs_dtosn(fs, daddr),
1011 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes,
1012 oldsn, sp->seg_number, daddr,
1013 (unsigned int)sup->su_nbytes,
1014 sp->ndupino);
1015 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1016 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1017 sup->su_nbytes -= DINOSIZE(fs);
1018 redo_ifile |=
1019 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1020 if (redo_ifile) {
1021 mutex_enter(&lfs_lock);
1022 fs->lfs_flags |= LFS_IFDIRTY;
1023 mutex_exit(&lfs_lock);
1024 /* Don't double-account */
1025 lfs_sb_setidaddr(fs, 0x0);
1026 }
1027 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1028 }
1029
1030 return redo_ifile;
1031 }
1032
1033 int
1034 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1035 {
1036 struct buf *bp;
1037 union lfs_dinode *cdp;
1038 struct vnode *vp = ITOV(ip);
1039 daddr_t daddr;
1040 IINFO *iip;
1041 int i;
1042 int redo_ifile = 0;
1043 int gotblk = 0;
1044 int count;
1045 SEGSUM *ssp;
1046
1047 ASSERT_SEGLOCK(fs);
1048 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1049 return (0);
1050
1051 /* Can't write ifile when writer is not set */
1052 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1053 (sp->seg_flags & SEGM_CLEAN));
1054
1055 /*
1056 * If this is the Ifile, see if writing it here will generate a
1057 * temporary misaccounting. If it will, do the accounting and write
1058 * the blocks, postponing the inode write until the accounting is
1059 * solid.
1060 */
1061 count = 0;
1062 while (vp == fs->lfs_ivnode) {
1063 int redo = 0;
1064
1065 if (sp->idp == NULL && sp->ibp == NULL &&
1066 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1067 sp->sum_bytes_left < sizeof(int32_t))) {
1068 (void) lfs_writeseg(fs, sp);
1069 continue;
1070 }
1071
1072 /* Look for dirty Ifile blocks */
1073 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1074 if (!(bp->b_flags & B_GATHERED)) {
1075 redo = 1;
1076 break;
1077 }
1078 }
1079
1080 if (redo == 0)
1081 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1082 if (redo == 0)
1083 break;
1084
1085 if (sp->idp) {
1086 lfs_dino_setinumber(fs, sp->idp, 0);
1087 sp->idp = NULL;
1088 }
1089 ++count;
1090 if (count > 2)
1091 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1092 lfs_writefile(fs, sp, fs->lfs_ivnode);
1093 }
1094
1095 /* Allocate a new inode block if necessary. */
1096 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1097 sp->ibp == NULL) {
1098 /* Allocate a new segment if necessary. */
1099 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1100 sp->sum_bytes_left < sizeof(int32_t))
1101 (void) lfs_writeseg(fs, sp);
1102
1103 /* Get next inode block. */
1104 daddr = lfs_sb_getoffset(fs);
1105 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1106 sp->ibp = *sp->cbpp++ =
1107 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1108 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1109 gotblk++;
1110
1111 /* Zero out inode numbers */
1112 for (i = 0; i < LFS_INOPB(fs); ++i) {
1113 union lfs_dinode *tmpdi;
1114
1115 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1116 DINOSIZE(fs) * i);
1117 lfs_dino_setinumber(fs, tmpdi, 0);
1118 }
1119
1120 ++sp->start_bpp;
1121 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1122 /* Set remaining space counters. */
1123 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1124 sp->sum_bytes_left -= sizeof(int32_t);
1125
1126 /* Store the address in the segment summary. */
1127 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1128 lfs_ii_setblock(fs, iip, daddr);
1129 }
1130
1131 /* Check VU_DIROP in case there is a new file with no data blocks */
1132 if (vp->v_uflag & VU_DIROP) {
1133 ssp = (SEGSUM *)sp->segsum;
1134 lfs_ss_setflags(fs, ssp,
1135 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1136 }
1137
1138 /* Update the inode times and copy the inode onto the inode page. */
1139 /* XXX kludge --- don't redirty the ifile just to put times on it */
1140 if (ip->i_number != LFS_IFILE_INUM)
1141 LFS_ITIMES(ip, NULL, NULL, NULL);
1142
1143 /*
1144 * If this is the Ifile, and we've already written the Ifile in this
1145 * partial segment, just overwrite it (it's not on disk yet) and
1146 * continue.
1147 *
1148 * XXX we know that the bp that we get the second time around has
1149 * already been gathered.
1150 */
1151 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1152 lfs_copy_dinode(fs, sp->idp, ip->i_din);
1153 ip->i_lfs_osize = ip->i_size;
1154 return 0;
1155 }
1156
1157 bp = sp->ibp;
1158 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1159 lfs_copy_dinode(fs, cdp, ip->i_din);
1160
1161 /*
1162 * This inode is on its way to disk; clear its VU_DIROP status when
1163 * the write is complete.
1164 */
1165 if (vp->v_uflag & VU_DIROP) {
1166 if (!(sp->seg_flags & SEGM_CLEAN))
1167 ip->i_state |= IN_CDIROP;
1168 else {
1169 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1170 }
1171 }
1172
1173 /*
1174 * If cleaning, link counts and directory file sizes cannot change,
1175 * since those would be directory operations---even if the file
1176 * we are writing is marked VU_DIROP we should write the old values.
1177 * If we're not cleaning, of course, update the values so we get
1178 * current values the next time we clean.
1179 */
1180 if (sp->seg_flags & SEGM_CLEAN) {
1181 if (vp->v_uflag & VU_DIROP) {
1182 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1183 /* if (vp->v_type == VDIR) */
1184 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1185 }
1186 } else {
1187 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1188 ip->i_lfs_osize = ip->i_size;
1189 }
1190
1191
1192 /* We can finish the segment accounting for truncations now */
1193 lfs_finalize_ino_seguse(fs, ip);
1194
1195 /*
1196 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1197 * addresses to disk; possibly change the on-disk record of
1198 * the inode size, either by reverting to the previous size
1199 * (in the case of cleaning) or by verifying the inode's block
1200 * holdings (in the case of files being allocated as they are being
1201 * written).
1202 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1203 * XXX count on disk wrong by the same amount. We should be
1204 * XXX able to "borrow" from lfs_avail and return it after the
1205 * XXX Ifile is written. See also in lfs_writeseg.
1206 */
1207
1208 /* Check file size based on highest allocated block */
1209 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1210 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1211 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1212 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1213 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1214 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1215 }
1216 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1217 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1218 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1219 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1220 for (i=0; i<ULFS_NDADDR; i++) {
1221 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1222 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1223 lfs_dino_setdb(fs, cdp, i, 0);
1224 }
1225 }
1226 for (i=0; i<ULFS_NIADDR; i++) {
1227 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1228 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1229 lfs_dino_setib(fs, cdp, i, 0);
1230 }
1231 }
1232 }
1233
1234 #ifdef DIAGNOSTIC
1235 /*
1236 * Check dinode held blocks against dinode size.
1237 * This should be identical to the check in lfs_vget().
1238 */
1239 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1240 i < ULFS_NDADDR; i++) {
1241 KASSERT(i >= 0);
1242 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1243 continue;
1244 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1245 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1246 continue;
1247 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1248 # ifdef DEBUG
1249 lfs_dump_dinode(fs, cdp);
1250 # endif
1251 panic("writing inconsistent inode");
1252 }
1253 }
1254 #endif /* DIAGNOSTIC */
1255
1256 if (ip->i_state & IN_CLEANING)
1257 LFS_CLR_UINO(ip, IN_CLEANING);
1258 else {
1259 /* XXX IN_ALLMOD */
1260 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1261 IN_UPDATE | IN_MODIFY);
1262 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1263 LFS_CLR_UINO(ip, IN_MODIFIED);
1264 else {
1265 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1266 "blks=%d, eff=%jd\n", ip->i_number,
1267 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1268 }
1269 }
1270
1271 if (ip->i_number == LFS_IFILE_INUM) {
1272 /* We know sp->idp == NULL */
1273 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1274
1275 /* Not dirty any more */
1276 mutex_enter(&lfs_lock);
1277 fs->lfs_flags &= ~LFS_IFDIRTY;
1278 mutex_exit(&lfs_lock);
1279 }
1280
1281 if (gotblk) {
1282 mutex_enter(&bufcache_lock);
1283 LFS_LOCK_BUF(bp);
1284 brelsel(bp, 0);
1285 mutex_exit(&bufcache_lock);
1286 }
1287
1288 /* Increment inode count in segment summary block. */
1289
1290 ssp = (SEGSUM *)sp->segsum;
1291 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1292
1293 /* If this page is full, set flag to allocate a new page. */
1294 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1295 sp->ibp = NULL;
1296
1297 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1298
1299 KASSERT(redo_ifile == 0);
1300 return (redo_ifile);
1301 }
1302
1303 int
1304 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1305 {
1306 struct lfs *fs;
1307 int vers;
1308 int j, blksinblk;
1309
1310 ASSERT_SEGLOCK(sp->fs);
1311 KASSERTMSG((sp->vp != NULL),
1312 "lfs_gatherblock: Null vp in segment");
1313
1314 /* If full, finish this segment. */
1315 fs = sp->fs;
1316 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1317 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1318 sp->seg_bytes_left < bp->b_bcount) {
1319 if (mptr)
1320 mutex_exit(mptr);
1321 lfs_updatemeta(sp);
1322
1323 vers = lfs_fi_getversion(fs, sp->fip);
1324 (void) lfs_writeseg(fs, sp);
1325
1326 /* Add the current file to the segment summary. */
1327 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1328
1329 if (mptr)
1330 mutex_enter(mptr);
1331 return (1);
1332 }
1333
1334 if (bp->b_flags & B_GATHERED) {
1335 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1336 " lbn %" PRId64 "\n",
1337 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1338 return (0);
1339 }
1340
1341 /* Insert into the buffer list, update the FINFO block. */
1342 bp->b_flags |= B_GATHERED;
1343
1344 *sp->cbpp++ = bp;
1345 for (j = 0; j < blksinblk; j++) {
1346 unsigned bn;
1347
1348 bn = lfs_fi_getnblocks(fs, sp->fip);
1349 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1350 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1351 /* This block's accounting moves from lfs_favail to lfs_avail */
1352 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1353 }
1354
1355 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1356 sp->seg_bytes_left -= bp->b_bcount;
1357 return (0);
1358 }
1359
1360 int
1361 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1362 int (*match)(struct lfs *, struct buf *))
1363 {
1364 struct buf *bp, *nbp;
1365 int count = 0;
1366
1367 ASSERT_SEGLOCK(fs);
1368 if (vp->v_type == VBLK)
1369 return 0;
1370 KASSERT(sp->vp == NULL);
1371 sp->vp = vp;
1372 mutex_enter(&bufcache_lock);
1373
1374 #ifndef LFS_NO_BACKBUF_HACK
1375 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1376 # define BUF_OFFSET \
1377 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1378 # define BACK_BUF(BP) \
1379 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1380 # define BEG_OF_LIST \
1381 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1382
1383 loop:
1384 /* Find last buffer. */
1385 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1386 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1387 bp = LIST_NEXT(bp, b_vnbufs))
1388 continue;
1389
1390 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1391 nbp = BACK_BUF(bp);
1392 #else /* LFS_NO_BACKBUF_HACK */
1393 loop:
1394 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1395 nbp = LIST_NEXT(bp, b_vnbufs);
1396 #endif /* LFS_NO_BACKBUF_HACK */
1397 if ((bp->b_cflags & BC_BUSY) != 0 ||
1398 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1399 #ifdef DEBUG
1400 if (vp == fs->lfs_ivnode &&
1401 (bp->b_cflags & BC_BUSY) != 0 &&
1402 (bp->b_flags & B_GATHERED) == 0)
1403 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1404 PRId64 " busy (%x) at 0x%jx",
1405 bp->b_lblkno, bp->b_flags,
1406 (uintmax_t)lfs_sb_getoffset(fs));
1407 #endif
1408 continue;
1409 }
1410 #ifdef DIAGNOSTIC
1411 # ifdef LFS_USE_B_INVAL
1412 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1413 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1414 " is BC_INVAL\n", bp->b_lblkno));
1415 VOP_PRINT(bp->b_vp);
1416 }
1417 # endif /* LFS_USE_B_INVAL */
1418 if (!(bp->b_oflags & BO_DELWRI))
1419 panic("lfs_gather: bp not BO_DELWRI");
1420 if (!(bp->b_flags & B_LOCKED)) {
1421 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1422 " blk %" PRId64 " not B_LOCKED\n",
1423 bp->b_lblkno,
1424 LFS_DBTOFSB(fs, bp->b_blkno)));
1425 VOP_PRINT(bp->b_vp);
1426 panic("lfs_gather: bp not B_LOCKED");
1427 }
1428 #endif
1429 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1430 goto loop;
1431 }
1432 count++;
1433 }
1434 mutex_exit(&bufcache_lock);
1435 lfs_updatemeta(sp);
1436 KASSERT(sp->vp == vp);
1437 sp->vp = NULL;
1438 return count;
1439 }
1440
1441 #if DEBUG
1442 # define DEBUG_OOFF(n) do { \
1443 if (ooff == 0) { \
1444 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1445 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1446 ", was 0x0 (or %" PRId64 ")\n", \
1447 (n), ip->i_number, lbn, ndaddr, daddr)); \
1448 } \
1449 } while (0)
1450 #else
1451 # define DEBUG_OOFF(n)
1452 #endif
1453
1454 /*
1455 * Change the given block's address to ndaddr, finding its previous
1456 * location using ulfs_bmaparray().
1457 *
1458 * Account for this change in the segment table.
1459 *
1460 * called with sp == NULL by roll-forwarding code.
1461 */
1462 void
1463 lfs_update_single(struct lfs *fs, struct segment *sp,
1464 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1465 {
1466 SEGUSE *sup;
1467 struct buf *bp;
1468 struct indir a[ULFS_NIADDR + 2], *ap;
1469 struct inode *ip;
1470 daddr_t daddr, ooff;
1471 int num, error;
1472 int bb, osize, obb;
1473
1474 ASSERT_SEGLOCK(fs);
1475 KASSERT(sp == NULL || sp->vp == vp);
1476 ip = VTOI(vp);
1477
1478 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1479 if (error)
1480 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1481
1482 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1483 if (daddr > 0)
1484 daddr = LFS_DBTOFSB(fs, daddr);
1485
1486 bb = lfs_numfrags(fs, size);
1487 switch (num) {
1488 case 0:
1489 ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1490 DEBUG_OOFF(0);
1491 if (ooff == UNWRITTEN)
1492 lfs_dino_setblocks(fs, ip->i_din,
1493 lfs_dino_getblocks(fs, ip->i_din) + bb);
1494 else {
1495 /* possible fragment truncation or extension */
1496 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1497 lfs_dino_setblocks(fs, ip->i_din,
1498 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1499 }
1500 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1501 break;
1502 case 1:
1503 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1504 DEBUG_OOFF(1);
1505 if (ooff == UNWRITTEN)
1506 lfs_dino_setblocks(fs, ip->i_din,
1507 lfs_dino_getblocks(fs, ip->i_din) + bb);
1508 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1509 break;
1510 default:
1511 ap = &a[num - 1];
1512 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1513 B_MODIFY, &bp))
1514 panic("lfs_updatemeta: bread bno %" PRId64,
1515 ap->in_lbn);
1516
1517 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1518 DEBUG_OOFF(num);
1519 if (ooff == UNWRITTEN)
1520 lfs_dino_setblocks(fs, ip->i_din,
1521 lfs_dino_getblocks(fs, ip->i_din) + bb);
1522 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1523 (void) VOP_BWRITE(bp->b_vp, bp);
1524 }
1525
1526 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1527
1528 /* Update hiblk when extending the file */
1529 if (lbn > ip->i_lfs_hiblk)
1530 ip->i_lfs_hiblk = lbn;
1531
1532 /*
1533 * Though we'd rather it couldn't, this *can* happen right now
1534 * if cleaning blocks and regular blocks coexist.
1535 */
1536 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1537
1538 /*
1539 * Update segment usage information, based on old size
1540 * and location.
1541 */
1542 if (daddr > 0) {
1543 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1544 int ndupino __diagused = (sp && sp->seg_number == oldsn ?
1545 sp->ndupino : 0);
1546
1547 KASSERT(oldsn < lfs_sb_getnseg(fs));
1548 if (lbn >= 0 && lbn < ULFS_NDADDR)
1549 osize = ip->i_lfs_fragsize[lbn];
1550 else
1551 osize = lfs_sb_getbsize(fs);
1552 LFS_SEGENTRY(sup, fs, oldsn, bp);
1553 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize),
1554 "lfs_updatemeta: negative bytes "
1555 "(segment %" PRIu32 " short by %" PRId64
1556 ")\n"
1557 "lfs_updatemeta: ino %llu, lbn %" PRId64
1558 ", addr = 0x%" PRIx64 "\n"
1559 "lfs_updatemeta: ndupino=%d",
1560 lfs_dtosn(fs, daddr),
1561 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes),
1562 (unsigned long long)ip->i_number, lbn, daddr,
1563 ndupino);
1564 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1565 " db 0x%" PRIx64 "\n",
1566 lfs_dtosn(fs, daddr), osize,
1567 ip->i_number, lbn, daddr));
1568 sup->su_nbytes -= osize;
1569 if (!(bp->b_flags & B_GATHERED)) {
1570 mutex_enter(&lfs_lock);
1571 fs->lfs_flags |= LFS_IFDIRTY;
1572 mutex_exit(&lfs_lock);
1573 }
1574 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1575 }
1576 /*
1577 * Now that this block has a new address, and its old
1578 * segment no longer owns it, we can forget about its
1579 * old size.
1580 */
1581 if (lbn >= 0 && lbn < ULFS_NDADDR)
1582 ip->i_lfs_fragsize[lbn] = size;
1583 }
1584
1585 /*
1586 * Update the metadata that points to the blocks listed in the FINFO
1587 * array.
1588 */
1589 void
1590 lfs_updatemeta(struct segment *sp)
1591 {
1592 struct buf *sbp;
1593 struct lfs *fs;
1594 struct vnode *vp;
1595 daddr_t lbn;
1596 int i, nblocks, num;
1597 int __diagused nblocks_orig;
1598 int bb;
1599 int bytesleft, size;
1600 unsigned lastlength;
1601 union lfs_blocks tmpptr;
1602
1603 fs = sp->fs;
1604 vp = sp->vp;
1605 ASSERT_SEGLOCK(fs);
1606
1607 /*
1608 * This used to be:
1609 *
1610 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1611 *
1612 * that is, it allowed for the possibility that start_lbp did
1613 * not point to the beginning of the finfo block pointer area.
1614 * This particular formulation is six kinds of painful in the
1615 * lfs64 world where we have two sizes of block pointer, so
1616 * unless/until everything can be cleaned up to not move
1617 * start_lbp around but instead use an offset, we do the
1618 * following:
1619 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1620 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1621 * type. (Ugh.)
1622 * 2. Cast it to void *, then assign it to a temporary
1623 * union lfs_blocks.
1624 * 3. Subtract start_lbp from that.
1625 * 4. Save the value of nblocks in blocks_orig so we can
1626 * assert below that it hasn't changed without repeating this
1627 * rubbish.
1628 *
1629 * XXX.
1630 */
1631 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1632 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1633 nblocks_orig = nblocks;
1634
1635 KASSERT(nblocks >= 0);
1636 KASSERT(vp != NULL);
1637 if (nblocks == 0)
1638 return;
1639
1640 /*
1641 * This count may be high due to oversize blocks from lfs_gop_write.
1642 * Correct for this. (XXX we should be able to keep track of these.)
1643 */
1644 for (i = 0; i < nblocks; i++) {
1645 if (sp->start_bpp[i] == NULL) {
1646 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1647 nblocks = i;
1648 break;
1649 }
1650 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1651 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1652 nblocks -= num - 1;
1653 }
1654
1655 #if 0
1656 /* pre-lfs64 assertion */
1657 KASSERT(vp->v_type == VREG ||
1658 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1659 #else
1660 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1661 #endif
1662 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1663
1664 /*
1665 * Sort the blocks.
1666 *
1667 * We have to sort even if the blocks come from the
1668 * cleaner, because there might be other pending blocks on the
1669 * same inode...and if we don't sort, and there are fragments
1670 * present, blocks may be written in the wrong place.
1671 */
1672 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1673
1674 /*
1675 * Record the length of the last block in case it's a fragment.
1676 * If there are indirect blocks present, they sort last. An
1677 * indirect block will be lfs_bsize and its presence indicates
1678 * that you cannot have fragments.
1679 *
1680 * XXX This last is a lie. A cleaned fragment can coexist with
1681 * XXX a later indirect block. This will continue to be
1682 * XXX true until lfs_markv is fixed to do everything with
1683 * XXX fake blocks (including fake inodes and fake indirect blocks).
1684 */
1685 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1686 lfs_sb_getbmask(fs)) + 1;
1687 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1688
1689 /*
1690 * Assign disk addresses, and update references to the logical
1691 * block and the segment usage information.
1692 */
1693 for (i = nblocks; i--; ++sp->start_bpp) {
1694 sbp = *sp->start_bpp;
1695 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1696 KASSERT(sbp->b_lblkno == lbn);
1697
1698 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1699
1700 /*
1701 * If we write a frag in the wrong place, the cleaner won't
1702 * be able to correctly identify its size later, and the
1703 * segment will be uncleanable. (Even worse, it will assume
1704 * that the indirect block that actually ends the list
1705 * is of a smaller size!)
1706 */
1707 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1708 panic("lfs_updatemeta: fragment is not last block");
1709
1710 /*
1711 * For each subblock in this possibly oversized block,
1712 * update its address on disk.
1713 */
1714 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1715 KASSERT(vp == sbp->b_vp);
1716 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1717 bytesleft -= lfs_sb_getbsize(fs)) {
1718 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1719 bb = lfs_numfrags(fs, size);
1720 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1721 lfs_blocks_inc(fs, &sp->start_lbp);
1722 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1723 size);
1724 lfs_sb_addoffset(fs, bb);
1725 }
1726
1727 }
1728
1729 /* This inode has been modified */
1730 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1731 }
1732
1733 /*
1734 * Move lfs_offset to a segment earlier than newsn.
1735 */
1736 int
1737 lfs_rewind(struct lfs *fs, int newsn)
1738 {
1739 int sn, osn, isdirty;
1740 struct buf *bp;
1741 SEGUSE *sup;
1742
1743 ASSERT_SEGLOCK(fs);
1744
1745 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1746 if (osn < newsn)
1747 return 0;
1748
1749 /* lfs_avail eats the remaining space in this segment */
1750 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1751
1752 /* Find a low-numbered segment */
1753 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1754 LFS_SEGENTRY(sup, fs, sn, bp);
1755 isdirty = sup->su_flags & SEGUSE_DIRTY;
1756 brelse(bp, 0);
1757
1758 if (!isdirty)
1759 break;
1760 }
1761 if (sn == lfs_sb_getnseg(fs))
1762 panic("lfs_rewind: no clean segments");
1763 if (newsn >= 0 && sn >= newsn)
1764 return ENOENT;
1765 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1766 lfs_newseg(fs);
1767 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * Start a new partial segment.
1774 *
1775 * Return 1 when we entered to a new segment.
1776 * Otherwise, return 0.
1777 */
1778 int
1779 lfs_initseg(struct lfs *fs)
1780 {
1781 struct segment *sp = fs->lfs_sp;
1782 SEGSUM *ssp;
1783 struct buf *sbp; /* buffer for SEGSUM */
1784 int repeat = 0; /* return value */
1785
1786 ASSERT_SEGLOCK(fs);
1787 /* Advance to the next segment. */
1788 if (!LFS_PARTIAL_FITS(fs)) {
1789 SEGUSE *sup;
1790 struct buf *bp;
1791
1792 /* lfs_avail eats the remaining space */
1793 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1794 lfs_sb_getcurseg(fs)));
1795 /* Wake up any cleaning procs waiting on this file system. */
1796 lfs_wakeup_cleaner(fs);
1797 lfs_newseg(fs);
1798 repeat = 1;
1799 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1800
1801 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1802 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1803
1804 /*
1805 * If the segment contains a superblock, update the offset
1806 * and summary address to skip over it.
1807 */
1808 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1809 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1810 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1811 sp->seg_bytes_left -= LFS_SBPAD;
1812 }
1813 brelse(bp, 0);
1814 /* Segment zero could also contain the labelpad */
1815 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1816 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1817 lfs_sb_addoffset(fs,
1818 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1819 sp->seg_bytes_left -=
1820 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1821 }
1822 } else {
1823 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1824 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1825 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1826 }
1827 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1828
1829 /* Record first address of this partial segment */
1830 if (sp->seg_flags & SEGM_CLEAN) {
1831 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1832 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1833 /* "1" is the artificial inc in lfs_seglock */
1834 mutex_enter(&lfs_lock);
1835 while (fs->lfs_iocount > 1) {
1836 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1837 "lfs_initseg", 0, &lfs_lock);
1838 }
1839 mutex_exit(&lfs_lock);
1840 fs->lfs_cleanind = 0;
1841 }
1842 }
1843
1844 sp->fs = fs;
1845 sp->ibp = NULL;
1846 sp->idp = NULL;
1847 sp->ninodes = 0;
1848 sp->ndupino = 0;
1849
1850 sp->cbpp = sp->bpp;
1851
1852 /* Get a new buffer for SEGSUM */
1853 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1854 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1855
1856 /* ... and enter it into the buffer list. */
1857 *sp->cbpp = sbp;
1858 sp->cbpp++;
1859 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1860
1861 sp->start_bpp = sp->cbpp;
1862
1863 /* Set point to SEGSUM, initialize it. */
1864 ssp = sp->segsum = sbp->b_data;
1865 memset(ssp, 0, lfs_sb_getsumsize(fs));
1866 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1867 lfs_ss_setnfinfo(fs, ssp, 0);
1868 lfs_ss_setninos(fs, ssp, 0);
1869 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1870
1871 /* Set pointer to first FINFO, initialize it. */
1872 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1873 lfs_fi_setnblocks(fs, sp->fip, 0);
1874 lfs_fi_setlastlength(fs, sp->fip, 0);
1875 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1876
1877 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1878 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1879
1880 return (repeat);
1881 }
1882
1883 /*
1884 * Remove SEGUSE_INVAL from all segments.
1885 */
1886 void
1887 lfs_unset_inval_all(struct lfs *fs)
1888 {
1889 SEGUSE *sup;
1890 struct buf *bp;
1891 int i;
1892
1893 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1894 LFS_SEGENTRY(sup, fs, i, bp);
1895 if (sup->su_flags & SEGUSE_INVAL) {
1896 sup->su_flags &= ~SEGUSE_INVAL;
1897 LFS_WRITESEGENTRY(sup, fs, i, bp);
1898 } else
1899 brelse(bp, 0);
1900 }
1901 }
1902
1903 /*
1904 * Return the next segment to write.
1905 */
1906 void
1907 lfs_newseg(struct lfs *fs)
1908 {
1909 CLEANERINFO *cip;
1910 SEGUSE *sup;
1911 struct buf *bp;
1912 int curseg, isdirty, sn, skip_inval;
1913
1914 ASSERT_SEGLOCK(fs);
1915
1916 /* Honor LFCNWRAPSTOP */
1917 mutex_enter(&lfs_lock);
1918 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1919 if (fs->lfs_wrappass) {
1920 log(LOG_NOTICE, "%s: wrappass=%d\n",
1921 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1922 fs->lfs_wrappass = 0;
1923 break;
1924 }
1925 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1926 wakeup(&fs->lfs_nowrap);
1927 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1928 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1929 &lfs_lock);
1930 }
1931 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1932 mutex_exit(&lfs_lock);
1933
1934 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1935 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1936 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1937 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1938 sup->su_nbytes = 0;
1939 sup->su_nsums = 0;
1940 sup->su_ninos = 0;
1941 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1942
1943 LFS_CLEANERINFO(cip, fs, bp);
1944 lfs_ci_shiftcleantodirty(fs, cip, 1);
1945 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1946 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1947
1948 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1949 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1950 skip_inval = 1;
1951 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1952 sn = (sn + 1) % lfs_sb_getnseg(fs);
1953
1954 if (sn == curseg) {
1955 if (skip_inval)
1956 skip_inval = 0;
1957 else
1958 panic("lfs_nextseg: no clean segments");
1959 }
1960 LFS_SEGENTRY(sup, fs, sn, bp);
1961 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1962 /* Check SEGUSE_EMPTY as we go along */
1963 if (isdirty && sup->su_nbytes == 0 &&
1964 !(sup->su_flags & SEGUSE_EMPTY))
1965 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1966 else
1967 brelse(bp, 0);
1968
1969 if (!isdirty)
1970 break;
1971 }
1972 if (skip_inval == 0)
1973 lfs_unset_inval_all(fs);
1974
1975 ++fs->lfs_nactive;
1976 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1977 if (lfs_dostats) {
1978 ++lfs_stats.segsused;
1979 }
1980 }
1981
1982 static struct buf *
1983 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1984 int n)
1985 {
1986 struct lfs_cluster *cl;
1987 struct buf **bpp, *bp;
1988
1989 ASSERT_SEGLOCK(fs);
1990 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1991 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1992 memset(cl, 0, sizeof(*cl));
1993 cl->fs = fs;
1994 cl->bpp = bpp;
1995 cl->bufcount = 0;
1996 cl->bufsize = 0;
1997
1998 /* If this segment is being written synchronously, note that */
1999 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2000 cl->flags |= LFS_CL_SYNC;
2001 cl->seg = fs->lfs_sp;
2002 ++cl->seg->seg_iocount;
2003 }
2004
2005 /* Get an empty buffer header, or maybe one with something on it */
2006 bp = getiobuf(vp, true);
2007 bp->b_dev = NODEV;
2008 bp->b_blkno = bp->b_lblkno = addr;
2009 bp->b_iodone = lfs_cluster_callback;
2010 bp->b_private = cl;
2011
2012 return bp;
2013 }
2014
2015 int
2016 lfs_writeseg(struct lfs *fs, struct segment *sp)
2017 {
2018 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2019 SEGUSE *sup;
2020 SEGSUM *ssp;
2021 int i;
2022 int do_again, nblocks, byteoffset;
2023 size_t el_size;
2024 struct lfs_cluster *cl;
2025 u_short ninos;
2026 struct vnode *devvp;
2027 char *p = NULL;
2028 struct vnode *vp;
2029 unsigned ibindex, iblimit;
2030 int changed;
2031 u_int32_t sum;
2032 size_t sumstart;
2033 #ifdef DEBUG
2034 FINFO *fip;
2035 int findex;
2036 #endif
2037
2038 ASSERT_SEGLOCK(fs);
2039
2040 ssp = (SEGSUM *)sp->segsum;
2041
2042 /*
2043 * If there are no buffers other than the segment summary to write,
2044 * don't do anything. If we are the end of a dirop sequence, however,
2045 * write the empty segment summary anyway, to help out the
2046 * roll-forward agent.
2047 */
2048 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2049 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2050 return 0;
2051 }
2052
2053 /* Note if partial segment is being written by the cleaner */
2054 if (sp->seg_flags & SEGM_CLEAN)
2055 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2056
2057 /* Note if we are writing to reclaim */
2058 if (sp->seg_flags & SEGM_RECLAIM) {
2059 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2060 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2061 }
2062
2063 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2064
2065 /* Update the segment usage information. */
2066 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2067
2068 /* Loop through all blocks, except the segment summary. */
2069 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2070 if ((*bpp)->b_vp != devvp) {
2071 sup->su_nbytes += (*bpp)->b_bcount;
2072 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2073 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2074 sp->seg_number, (*bpp)->b_bcount,
2075 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2076 (*bpp)->b_blkno));
2077 }
2078 }
2079
2080 #ifdef DEBUG
2081 /* Check for zero-length and zero-version FINFO entries. */
2082 fip = SEGSUM_FINFOBASE(fs, ssp);
2083 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2084 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2085 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2086 fip = NEXT_FINFO(fs, fip);
2087 }
2088 #endif /* DEBUG */
2089
2090 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2091 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2092 sp->seg_number,
2093 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2094 lfs_ss_getninos(fs, ssp)));
2095 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2096 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2097 if (lfs_sb_getversion(fs) == 1)
2098 sup->su_olastmod = time_second;
2099 else
2100 sup->su_lastmod = time_second;
2101 sup->su_ninos += ninos;
2102 ++sup->su_nsums;
2103 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2104
2105 do_again = !(bp->b_flags & B_GATHERED);
2106 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2107
2108 /*
2109 * Mark blocks B_BUSY, to prevent then from being changed between
2110 * the checksum computation and the actual write.
2111 *
2112 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2113 * there are any, replace them with copies that have UNASSIGNED
2114 * instead.
2115 */
2116 mutex_enter(&bufcache_lock);
2117 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2118 ++bpp;
2119 bp = *bpp;
2120 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2121 bp->b_cflags |= BC_BUSY;
2122 continue;
2123 }
2124
2125 while (bp->b_cflags & BC_BUSY) {
2126 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2127 " data summary corruption for ino %d, lbn %"
2128 PRId64 "\n",
2129 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2130 bp->b_cflags |= BC_WANTED;
2131 cv_wait(&bp->b_busy, &bufcache_lock);
2132 }
2133 bp->b_cflags |= BC_BUSY;
2134 mutex_exit(&bufcache_lock);
2135 unbusybp = NULL;
2136
2137 /*
2138 * Check and replace indirect block UNWRITTEN bogosity.
2139 * XXX See comment in lfs_writefile.
2140 */
2141 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2142 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2143 VTOI(bp->b_vp)->i_lfs_effnblks) {
2144 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2145 VTOI(bp->b_vp)->i_number,
2146 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2147 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2148 /* Make a copy we'll make changes to */
2149 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2150 bp->b_bcount, LFS_NB_IBLOCK);
2151 newbp->b_blkno = bp->b_blkno;
2152 memcpy(newbp->b_data, bp->b_data,
2153 newbp->b_bcount);
2154
2155 changed = 0;
2156 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs);
2157 for (ibindex = 0; ibindex < iblimit; ibindex++) {
2158 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) {
2159 ++changed;
2160 lfs_iblock_set(fs, newbp->b_data,
2161 ibindex, 0);
2162 }
2163 }
2164 /*
2165 * Get rid of the old buffer. Don't mark it clean,
2166 * though, if it still has dirty data on it.
2167 */
2168 if (changed) {
2169 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2170 " bp = %p newbp = %p\n", changed, bp,
2171 newbp));
2172 *bpp = newbp;
2173 bp->b_flags &= ~B_GATHERED;
2174 bp->b_error = 0;
2175 if (bp->b_iodone != NULL) {
2176 DLOG((DLOG_SEG, "lfs_writeseg: "
2177 "indir bp should not be B_CALL\n"));
2178 biodone(bp);
2179 bp = NULL;
2180 } else {
2181 /* Still on free list, leave it there */
2182 unbusybp = bp;
2183 /*
2184 * We have to re-decrement lfs_avail
2185 * since this block is going to come
2186 * back around to us in the next
2187 * segment.
2188 */
2189 lfs_sb_subavail(fs,
2190 lfs_btofsb(fs, bp->b_bcount));
2191 }
2192 } else {
2193 lfs_freebuf(fs, newbp);
2194 }
2195 }
2196 mutex_enter(&bufcache_lock);
2197 if (unbusybp != NULL) {
2198 unbusybp->b_cflags &= ~BC_BUSY;
2199 if (unbusybp->b_cflags & BC_WANTED)
2200 cv_broadcast(&bp->b_busy);
2201 }
2202 }
2203 mutex_exit(&bufcache_lock);
2204
2205 /*
2206 * Compute checksum across data and then across summary; the first
2207 * block (the summary block) is skipped. Set the create time here
2208 * so that it's guaranteed to be later than the inode mod times.
2209 */
2210 sum = 0;
2211 if (lfs_sb_getversion(fs) == 1)
2212 el_size = sizeof(u_long);
2213 else
2214 el_size = sizeof(u_int32_t);
2215 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2216 ++bpp;
2217 /* Loop through gop_write cluster blocks */
2218 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2219 byteoffset += lfs_sb_getbsize(fs)) {
2220 #ifdef LFS_USE_B_INVAL
2221 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2222 (*bpp)->b_iodone != NULL) {
2223 if (copyin((void *)(*bpp)->b_saveaddr +
2224 byteoffset, dp, el_size)) {
2225 panic("lfs_writeseg: copyin failed [1]:"
2226 " ino %" PRIu64 " blk %" PRId64,
2227 VTOI((*bpp)->b_vp)->i_number,
2228 (*bpp)->b_lblkno);
2229 }
2230 } else
2231 #endif /* LFS_USE_B_INVAL */
2232 {
2233 sum = lfs_cksum_part((char *)
2234 (*bpp)->b_data + byteoffset, el_size, sum);
2235 }
2236 }
2237 }
2238 if (lfs_sb_getversion(fs) == 1)
2239 lfs_ss_setocreate(fs, ssp, time_second);
2240 else {
2241 lfs_ss_setcreate(fs, ssp, time_second);
2242 lfs_sb_addserial(fs, 1);
2243 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2244 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2245 }
2246 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2247 sumstart = lfs_ss_getsumstart(fs);
2248 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2249 lfs_sb_getsumsize(fs) - sumstart));
2250
2251 mutex_enter(&lfs_lock);
2252 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2253 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2254 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2255 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2256 mutex_exit(&lfs_lock);
2257
2258 /*
2259 * When we simply write the blocks we lose a rotation for every block
2260 * written. To avoid this problem, we cluster the buffers into a
2261 * chunk and write the chunk. MAXPHYS is the largest size I/O
2262 * devices can handle, use that for the size of the chunks.
2263 *
2264 * Blocks that are already clusters (from GOP_WRITE), however, we
2265 * don't bother to copy into other clusters.
2266 */
2267
2268 #define CHUNKSIZE MAXPHYS
2269
2270 if (devvp == NULL)
2271 panic("devvp is NULL");
2272 for (bpp = sp->bpp, i = nblocks; i;) {
2273 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2274 cl = cbp->b_private;
2275
2276 cbp->b_flags |= B_ASYNC;
2277 cbp->b_cflags |= BC_BUSY;
2278 cbp->b_bcount = 0;
2279
2280 KASSERTMSG((bpp - sp->bpp <=
2281 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2282 / sizeof(int32_t)),
2283 "lfs_writeseg: real bpp overwrite");
2284 KASSERTMSG((bpp - sp->bpp <=
2285 lfs_segsize(fs) / lfs_sb_getfsize(fs)),
2286 "lfs_writeseg: theoretical bpp overwrite");
2287
2288 /*
2289 * Construct the cluster.
2290 */
2291 mutex_enter(&lfs_lock);
2292 ++fs->lfs_iocount;
2293 mutex_exit(&lfs_lock);
2294 while (i && cbp->b_bcount < CHUNKSIZE) {
2295 bp = *bpp;
2296
2297 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2298 break;
2299 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2300 break;
2301
2302 /* Clusters from GOP_WRITE are expedited */
2303 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2304 if (cbp->b_bcount > 0)
2305 /* Put in its own buffer */
2306 break;
2307 else {
2308 cbp->b_data = bp->b_data;
2309 }
2310 } else if (cbp->b_bcount == 0) {
2311 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2312 LFS_NB_CLUSTER);
2313 cl->flags |= LFS_CL_MALLOC;
2314 }
2315 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2316 btodb(bp->b_bcount - 1))) ==
2317 sp->seg_number),
2318 "segment overwrite: blk size %d daddr %" PRIx64
2319 " not in seg %d\n",
2320 bp->b_bcount, bp->b_blkno,
2321 sp->seg_number);
2322
2323 #ifdef LFS_USE_B_INVAL
2324 /*
2325 * Fake buffers from the cleaner are marked as B_INVAL.
2326 * We need to copy the data from user space rather than
2327 * from the buffer indicated.
2328 * XXX == what do I do on an error?
2329 */
2330 if ((bp->b_cflags & BC_INVAL) != 0 &&
2331 bp->b_iodone != NULL) {
2332 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2333 panic("lfs_writeseg: "
2334 "copyin failed [2]");
2335 } else
2336 #endif /* LFS_USE_B_INVAL */
2337 if (cl->flags & LFS_CL_MALLOC) {
2338 /* copy data into our cluster. */
2339 memcpy(p, bp->b_data, bp->b_bcount);
2340 p += bp->b_bcount;
2341 }
2342
2343 cbp->b_bcount += bp->b_bcount;
2344 cl->bufsize += bp->b_bcount;
2345
2346 bp->b_flags &= ~B_READ;
2347 bp->b_error = 0;
2348 cl->bpp[cl->bufcount++] = bp;
2349
2350 vp = bp->b_vp;
2351 mutex_enter(&bufcache_lock);
2352 mutex_enter(vp->v_interlock);
2353 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2354 reassignbuf(bp, vp);
2355 vp->v_numoutput++;
2356 mutex_exit(vp->v_interlock);
2357 mutex_exit(&bufcache_lock);
2358
2359 bpp++;
2360 i--;
2361 }
2362 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2363 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2364 else
2365 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2366 mutex_enter(devvp->v_interlock);
2367 devvp->v_numoutput++;
2368 mutex_exit(devvp->v_interlock);
2369 VOP_STRATEGY(devvp, cbp);
2370 curlwp->l_ru.ru_oublock++;
2371 }
2372
2373 if (lfs_dostats) {
2374 ++lfs_stats.psegwrites;
2375 lfs_stats.blocktot += nblocks - 1;
2376 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2377 ++lfs_stats.psyncwrites;
2378 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2379 ++lfs_stats.pcleanwrites;
2380 lfs_stats.cleanblocks += nblocks - 1;
2381 }
2382 }
2383
2384 return (lfs_initseg(fs) || do_again);
2385 }
2386
2387 void
2388 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2389 {
2390 struct buf *bp;
2391 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2392
2393 ASSERT_MAYBE_SEGLOCK(fs);
2394 if (fs->lfs_is64) {
2395 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2396 } else {
2397 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2398 }
2399 /*
2400 * If we can write one superblock while another is in
2401 * progress, we risk not having a complete checkpoint if we crash.
2402 * So, block here if a superblock write is in progress.
2403 */
2404 mutex_enter(&lfs_lock);
2405 while (fs->lfs_sbactive) {
2406 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2407 &lfs_lock);
2408 }
2409 fs->lfs_sbactive = daddr;
2410 mutex_exit(&lfs_lock);
2411
2412 /* Set timestamp of this version of the superblock */
2413 if (lfs_sb_getversion(fs) == 1)
2414 lfs_sb_setotstamp(fs, time_second);
2415 lfs_sb_settstamp(fs, time_second);
2416
2417 /* The next chunk of code relies on this assumption */
2418 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2419
2420 /* Checksum the superblock and copy it into a buffer. */
2421 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2422 bp = lfs_newbuf(fs, devvp,
2423 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2424 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2425 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2426 LFS_SBPAD - sizeof(struct dlfs));
2427
2428 bp->b_cflags |= BC_BUSY;
2429 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2430 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2431 bp->b_error = 0;
2432 bp->b_iodone = lfs_supercallback;
2433
2434 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2435 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2436 else
2437 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2438 curlwp->l_ru.ru_oublock++;
2439
2440 mutex_enter(devvp->v_interlock);
2441 devvp->v_numoutput++;
2442 mutex_exit(devvp->v_interlock);
2443
2444 mutex_enter(&lfs_lock);
2445 ++fs->lfs_iocount;
2446 mutex_exit(&lfs_lock);
2447 VOP_STRATEGY(devvp, bp);
2448 }
2449
2450 /*
2451 * Logical block number match routines used when traversing the dirty block
2452 * chain.
2453 */
2454 int
2455 lfs_match_fake(struct lfs *fs, struct buf *bp)
2456 {
2457
2458 ASSERT_SEGLOCK(fs);
2459 return LFS_IS_MALLOC_BUF(bp);
2460 }
2461
2462 #if 0
2463 int
2464 lfs_match_real(struct lfs *fs, struct buf *bp)
2465 {
2466
2467 ASSERT_SEGLOCK(fs);
2468 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2469 }
2470 #endif
2471
2472 int
2473 lfs_match_data(struct lfs *fs, struct buf *bp)
2474 {
2475
2476 ASSERT_SEGLOCK(fs);
2477 return (bp->b_lblkno >= 0);
2478 }
2479
2480 int
2481 lfs_match_indir(struct lfs *fs, struct buf *bp)
2482 {
2483 daddr_t lbn;
2484
2485 ASSERT_SEGLOCK(fs);
2486 lbn = bp->b_lblkno;
2487 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2488 }
2489
2490 int
2491 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2492 {
2493 daddr_t lbn;
2494
2495 ASSERT_SEGLOCK(fs);
2496 lbn = bp->b_lblkno;
2497 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2498 }
2499
2500 int
2501 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2502 {
2503 daddr_t lbn;
2504
2505 ASSERT_SEGLOCK(fs);
2506 lbn = bp->b_lblkno;
2507 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2508 }
2509
2510 static void
2511 lfs_free_aiodone(struct buf *bp)
2512 {
2513 struct lfs *fs;
2514
2515 KERNEL_LOCK(1, curlwp);
2516 fs = bp->b_private;
2517 ASSERT_NO_SEGLOCK(fs);
2518 lfs_freebuf(fs, bp);
2519 KERNEL_UNLOCK_LAST(curlwp);
2520 }
2521
2522 static void
2523 lfs_super_aiodone(struct buf *bp)
2524 {
2525 struct lfs *fs;
2526
2527 KERNEL_LOCK(1, curlwp);
2528 fs = bp->b_private;
2529 ASSERT_NO_SEGLOCK(fs);
2530 mutex_enter(&lfs_lock);
2531 fs->lfs_sbactive = 0;
2532 if (--fs->lfs_iocount <= 1)
2533 wakeup(&fs->lfs_iocount);
2534 wakeup(&fs->lfs_sbactive);
2535 mutex_exit(&lfs_lock);
2536 lfs_freebuf(fs, bp);
2537 KERNEL_UNLOCK_LAST(curlwp);
2538 }
2539
2540 static void
2541 lfs_cluster_aiodone(struct buf *bp)
2542 {
2543 struct lfs_cluster *cl;
2544 struct lfs *fs;
2545 struct buf *tbp, *fbp;
2546 struct vnode *vp, *devvp, *ovp;
2547 struct inode *ip;
2548 int error;
2549
2550 KERNEL_LOCK(1, curlwp);
2551
2552 error = bp->b_error;
2553 cl = bp->b_private;
2554 fs = cl->fs;
2555 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2556 ASSERT_NO_SEGLOCK(fs);
2557
2558 /* Put the pages back, and release the buffer */
2559 while (cl->bufcount--) {
2560 tbp = cl->bpp[cl->bufcount];
2561 KASSERT(tbp->b_cflags & BC_BUSY);
2562 if (error) {
2563 tbp->b_error = error;
2564 }
2565
2566 /*
2567 * We're done with tbp. If it has not been re-dirtied since
2568 * the cluster was written, free it. Otherwise, keep it on
2569 * the locked list to be written again.
2570 */
2571 vp = tbp->b_vp;
2572
2573 tbp->b_flags &= ~B_GATHERED;
2574
2575 #ifdef DEBUG
2576 if ((tbp)->b_vp == (fs)->lfs_ivnode)
2577 LFS_ENTER_LOG("clear", __FILE__, __LINE__,
2578 tbp->b_lblkno, tbp->b_flags, curproc->p_pid);
2579 #endif
2580
2581 mutex_enter(&bufcache_lock);
2582 if (tbp->b_iodone == NULL) {
2583 KASSERT(tbp->b_flags & B_LOCKED);
2584 bremfree(tbp);
2585 if (vp) {
2586 mutex_enter(vp->v_interlock);
2587 reassignbuf(tbp, vp);
2588 mutex_exit(vp->v_interlock);
2589 }
2590 tbp->b_flags |= B_ASYNC; /* for biodone */
2591 }
2592
2593 if (((tbp->b_flags | tbp->b_oflags) &
2594 (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2595 LFS_UNLOCK_BUF(tbp);
2596
2597 if (tbp->b_oflags & BO_DONE) {
2598 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2599 cl->bufcount, (long)tbp->b_flags));
2600 }
2601
2602 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2603 /*
2604 * A buffer from the page daemon.
2605 * We use the same iodone as it does,
2606 * so we must manually disassociate its
2607 * buffers from the vp.
2608 */
2609 if ((ovp = tbp->b_vp) != NULL) {
2610 /* This is just silly */
2611 mutex_enter(ovp->v_interlock);
2612 brelvp(tbp);
2613 mutex_exit(ovp->v_interlock);
2614 tbp->b_vp = vp;
2615 tbp->b_objlock = vp->v_interlock;
2616 }
2617 /* Put it back the way it was */
2618 tbp->b_flags |= B_ASYNC;
2619 /* Master buffers have BC_AGE */
2620 if (tbp->b_private == tbp)
2621 tbp->b_cflags |= BC_AGE;
2622 }
2623 mutex_exit(&bufcache_lock);
2624
2625 biodone(tbp);
2626
2627 /*
2628 * If this is the last block for this vnode, but
2629 * there are other blocks on its dirty list,
2630 * set IN_MODIFIED/IN_CLEANING depending on what
2631 * sort of block. Only do this for our mount point,
2632 * not for, e.g., inode blocks that are attached to
2633 * the devvp.
2634 * XXX KS - Shouldn't we set *both* if both types
2635 * of blocks are present (traverse the dirty list?)
2636 */
2637 mutex_enter(vp->v_interlock);
2638 mutex_enter(&lfs_lock);
2639 if (vp != devvp && vp->v_numoutput == 0 &&
2640 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2641 ip = VTOI(vp);
2642 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2643 ip->i_number));
2644 if (LFS_IS_MALLOC_BUF(fbp))
2645 LFS_SET_UINO(ip, IN_CLEANING);
2646 else
2647 LFS_SET_UINO(ip, IN_MODIFIED);
2648 }
2649 cv_broadcast(&vp->v_cv);
2650 mutex_exit(&lfs_lock);
2651 mutex_exit(vp->v_interlock);
2652 }
2653
2654 /* Fix up the cluster buffer, and release it */
2655 if (cl->flags & LFS_CL_MALLOC)
2656 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2657 putiobuf(bp);
2658
2659 /* Note i/o done */
2660 if (cl->flags & LFS_CL_SYNC) {
2661 if (--cl->seg->seg_iocount == 0)
2662 wakeup(&cl->seg->seg_iocount);
2663 }
2664 mutex_enter(&lfs_lock);
2665 KASSERTMSG((fs->lfs_iocount != 0),
2666 "lfs_cluster_aiodone: zero iocount");
2667 if (--fs->lfs_iocount <= 1)
2668 wakeup(&fs->lfs_iocount);
2669 mutex_exit(&lfs_lock);
2670
2671 KERNEL_UNLOCK_LAST(curlwp);
2672
2673 pool_put(&fs->lfs_bpppool, cl->bpp);
2674 cl->bpp = NULL;
2675 pool_put(&fs->lfs_clpool, cl);
2676 }
2677
2678 static void
2679 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2680 {
2681 /* reset b_iodone for when this is a single-buf i/o. */
2682 bp->b_iodone = aiodone;
2683
2684 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2685 }
2686
2687 static void
2688 lfs_cluster_callback(struct buf *bp)
2689 {
2690
2691 lfs_generic_callback(bp, lfs_cluster_aiodone);
2692 }
2693
2694 void
2695 lfs_supercallback(struct buf *bp)
2696 {
2697
2698 lfs_generic_callback(bp, lfs_super_aiodone);
2699 }
2700
2701 /*
2702 * The only buffers that are going to hit these functions are the
2703 * segment write blocks, or the segment summaries, or the superblocks.
2704 *
2705 * All of the above are created by lfs_newbuf, and so do not need to be
2706 * released via brelse.
2707 */
2708 void
2709 lfs_callback(struct buf *bp)
2710 {
2711
2712 lfs_generic_callback(bp, lfs_free_aiodone);
2713 }
2714
2715 /*
2716 * Shellsort (diminishing increment sort) from Data Structures and
2717 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2718 * see also Knuth Vol. 3, page 84. The increments are selected from
2719 * formula (8), page 95. Roughly O(N^3/2).
2720 */
2721 /*
2722 * This is our own private copy of shellsort because we want to sort
2723 * two parallel arrays (the array of buffer pointers and the array of
2724 * logical block numbers) simultaneously. Note that we cast the array
2725 * of logical block numbers to a unsigned in this routine so that the
2726 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2727 */
2728
2729 static void
2730 lfs_shellsort(struct lfs *fs,
2731 struct buf **bp_array, union lfs_blocks *lb_array,
2732 int nmemb, int size)
2733 {
2734 static int __rsshell_increments[] = { 4, 1, 0 };
2735 int incr, *incrp, t1, t2;
2736 struct buf *bp_temp;
2737
2738 #ifdef DEBUG
2739 incr = 0;
2740 for (t1 = 0; t1 < nmemb; t1++) {
2741 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2742 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2743 /* dump before panic */
2744 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2745 nmemb, size);
2746 incr = 0;
2747 for (t1 = 0; t1 < nmemb; t1++) {
2748 const struct buf *bp = bp_array[t1];
2749
2750 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2751 PRIu64 "\n", t1,
2752 (uint64_t)bp->b_bcount,
2753 (uint64_t)bp->b_lblkno);
2754 printf("lbns:");
2755 for (t2 = 0; t2 * size < bp->b_bcount;
2756 t2++) {
2757 printf(" %jd",
2758 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2759 }
2760 printf("\n");
2761 }
2762 panic("lfs_shellsort: inconsistent input");
2763 }
2764 }
2765 }
2766 #endif
2767
2768 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2769 for (t1 = incr; t1 < nmemb; ++t1)
2770 for (t2 = t1 - incr; t2 >= 0;)
2771 if ((u_int64_t)bp_array[t2]->b_lblkno >
2772 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2773 bp_temp = bp_array[t2];
2774 bp_array[t2] = bp_array[t2 + incr];
2775 bp_array[t2 + incr] = bp_temp;
2776 t2 -= incr;
2777 } else
2778 break;
2779
2780 /* Reform the list of logical blocks */
2781 incr = 0;
2782 for (t1 = 0; t1 < nmemb; t1++) {
2783 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2784 lfs_blocks_set(fs, lb_array, incr++,
2785 bp_array[t1]->b_lblkno + t2);
2786 }
2787 }
2788 }
2789
2790 /*
2791 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2792 * point at uninitialized space.
2793 */
2794 void
2795 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2796 {
2797 struct segment *sp = fs->lfs_sp;
2798 SEGSUM *ssp;
2799
2800 KASSERT(vers > 0);
2801
2802 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2803 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2804 (void) lfs_writeseg(fs, fs->lfs_sp);
2805
2806 sp->sum_bytes_left -= FINFOSIZE(fs);
2807 ssp = (SEGSUM *)sp->segsum;
2808 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2809 lfs_fi_setnblocks(fs, sp->fip, 0);
2810 lfs_fi_setino(fs, sp->fip, ino);
2811 lfs_fi_setversion(fs, sp->fip, vers);
2812 }
2813
2814 /*
2815 * Release the FINFO entry, either clearing out an unused entry or
2816 * advancing us to the next available entry.
2817 */
2818 void
2819 lfs_release_finfo(struct lfs *fs)
2820 {
2821 struct segment *sp = fs->lfs_sp;
2822 SEGSUM *ssp;
2823
2824 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2825 sp->fip = NEXT_FINFO(fs, sp->fip);
2826 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2827 } else {
2828 /* XXX shouldn't this update sp->fip? */
2829 sp->sum_bytes_left += FINFOSIZE(fs);
2830 ssp = (SEGSUM *)sp->segsum;
2831 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2832 }
2833 }
2834