lfs_segment.c revision 1.281 1 /* $NetBSD: lfs_segment.c,v 1.281 2020/01/15 17:55:44 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.281 2020/01/15 17:55:44 ad Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_state & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_accessors.h>
104 #include <ufs/lfs/lfs_kernel.h>
105 #include <ufs/lfs/lfs_extern.h>
106
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_extern.h>
109
110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
111
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_free_aiodone(struct buf *);
114 static void lfs_super_aiodone(struct buf *);
115 static void lfs_cluster_aiodone(struct buf *);
116 static void lfs_cluster_callback(struct buf *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 (lfs_sb_getfsbpseg(fs) - \
124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
125 lfs_sb_getfrag(fs))
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 void lfs_supercallback(struct buf *);
140 void lfs_updatemeta(struct segment *);
141 void lfs_writesuper(struct lfs *, daddr_t);
142 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 struct segment *sp, int dirops);
144
145 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
146 int, int);
147
148 kcondvar_t lfs_allclean_wakeup; /* Cleaner wakeup address. */
149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount = 0; /* # active dirops */
152
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156
157 /* op values to lfs_writevnodes */
158 #define VN_REG 0
159 #define VN_DIROP 1
160 #define VN_EMPTY 2
161 #define VN_CLEAN 3
162
163 /*
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
168 */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 struct timespec ts;
173 struct inode *ip;
174
175 ASSERT_MAYBE_SEGLOCK(fs);
176 vfs_timestamp(&ts);
177 ip = VTOI(fs->lfs_ivnode);
178 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
179 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
180 }
181
182 /*
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
187 */
188
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
190
191 int
192 lfs_vflush(struct vnode *vp)
193 {
194 struct inode *ip;
195 struct lfs *fs;
196 struct segment *sp;
197 struct buf *bp, *nbp, *tbp, *tnbp;
198 int error;
199 int flushed;
200 int relock;
201
202 ip = VTOI(vp);
203 fs = VFSTOULFS(vp->v_mount)->um_lfs;
204 relock = 0;
205
206 top:
207 KASSERT(mutex_owned(vp->v_interlock) == false);
208 KASSERT(mutex_owned(&lfs_lock) == false);
209 KASSERT(mutex_owned(&bufcache_lock) == false);
210 ASSERT_NO_SEGLOCK(fs);
211 if (ip->i_state & IN_CLEANING) {
212 ivndebug(vp,"vflush/in_cleaning");
213 mutex_enter(&lfs_lock);
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216 mutex_exit(&lfs_lock);
217
218 /*
219 * Toss any cleaning buffers that have real counterparts
220 * to avoid losing new data.
221 */
222 mutex_enter(vp->v_interlock);
223 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
224 nbp = LIST_NEXT(bp, b_vnbufs);
225 if (!LFS_IS_MALLOC_BUF(bp))
226 continue;
227 /*
228 * Look for pages matching the range covered
229 * by cleaning blocks. It's okay if more dirty
230 * pages appear, so long as none disappear out
231 * from under us.
232 */
233 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
234 vp != fs->lfs_ivnode) {
235 struct vm_page *pg;
236 voff_t off;
237
238 for (off = lfs_lblktosize(fs, bp->b_lblkno);
239 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
240 off += PAGE_SIZE) {
241 pg = uvm_pagelookup(&vp->v_uobj, off);
242 if (pg == NULL)
243 continue;
244 if (uvm_pagegetdirty(pg)
245 == UVM_PAGE_STATUS_DIRTY ||
246 pmap_is_modified(pg)) {
247 lfs_sb_addavail(fs,
248 lfs_btofsb(fs,
249 bp->b_bcount));
250 wakeup(&fs->lfs_availsleep);
251 mutex_exit(vp->v_interlock);
252 lfs_freebuf(fs, bp);
253 mutex_enter(vp->v_interlock);
254 bp = NULL;
255 break;
256 }
257 }
258 }
259 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
260 tbp = tnbp)
261 {
262 tnbp = LIST_NEXT(tbp, b_vnbufs);
263 if (tbp->b_vp == bp->b_vp
264 && tbp->b_lblkno == bp->b_lblkno
265 && tbp != bp)
266 {
267 lfs_sb_addavail(fs, lfs_btofsb(fs,
268 bp->b_bcount));
269 wakeup(&fs->lfs_availsleep);
270 mutex_exit(vp->v_interlock);
271 lfs_freebuf(fs, bp);
272 mutex_enter(vp->v_interlock);
273 bp = NULL;
274 break;
275 }
276 }
277 }
278 } else {
279 mutex_enter(vp->v_interlock);
280 }
281
282 /* If the node is being written, wait until that is done */
283 while (WRITEINPROG(vp)) {
284 ivndebug(vp,"vflush/writeinprog");
285 cv_wait(&vp->v_cv, vp->v_interlock);
286 }
287 error = vdead_check(vp, VDEAD_NOWAIT);
288 mutex_exit(vp->v_interlock);
289
290 /* Protect against deadlock in vinvalbuf() */
291 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
292 if (error != 0) {
293 fs->lfs_reclino = ip->i_number;
294 }
295
296 /* If we're supposed to flush a freed inode, just toss it */
297 if (ip->i_lfs_iflags & LFSI_DELETED) {
298 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
299 ip->i_number));
300 /* Drain v_numoutput */
301 mutex_enter(vp->v_interlock);
302 while (vp->v_numoutput > 0) {
303 cv_wait(&vp->v_cv, vp->v_interlock);
304 }
305 KASSERT(vp->v_numoutput == 0);
306 mutex_exit(vp->v_interlock);
307
308 mutex_enter(&bufcache_lock);
309 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
310 nbp = LIST_NEXT(bp, b_vnbufs);
311
312 KASSERT((bp->b_flags & B_GATHERED) == 0);
313 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
314 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
315 wakeup(&fs->lfs_availsleep);
316 }
317 /* Copied from lfs_writeseg */
318 if (bp->b_iodone != NULL) {
319 mutex_exit(&bufcache_lock);
320 biodone(bp);
321 mutex_enter(&bufcache_lock);
322 } else {
323 bremfree(bp);
324 LFS_UNLOCK_BUF(bp);
325 mutex_enter(vp->v_interlock);
326 bp->b_flags &= ~(B_READ | B_GATHERED);
327 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
328 bp->b_error = 0;
329 reassignbuf(bp, vp);
330 mutex_exit(vp->v_interlock);
331 brelse(bp, 0);
332 }
333 }
334 mutex_exit(&bufcache_lock);
335 LFS_CLR_UINO(ip, IN_CLEANING);
336 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
337 ip->i_state &= ~IN_ALLMOD;
338 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
339 ip->i_number));
340 lfs_segunlock(fs);
341
342 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
343
344 return 0;
345 }
346
347 fs->lfs_flushvp = vp;
348 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
349 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
350 fs->lfs_flushvp = NULL;
351 KASSERT(fs->lfs_flushvp_fakevref == 0);
352 lfs_segunlock(fs);
353
354 /* Make sure that any pending buffers get written */
355 mutex_enter(vp->v_interlock);
356 while (vp->v_numoutput > 0) {
357 cv_wait(&vp->v_cv, vp->v_interlock);
358 }
359 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
360 KASSERT(vp->v_numoutput == 0);
361 mutex_exit(vp->v_interlock);
362
363 return error;
364 }
365 sp = fs->lfs_sp;
366
367 flushed = 0;
368 if (VPISEMPTY(vp)) {
369 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
370 ++flushed;
371 } else if ((ip->i_state & IN_CLEANING) &&
372 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
373 ivndebug(vp,"vflush/clean");
374 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
375 ++flushed;
376 } else if (lfs_dostats) {
377 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD))
378 ++lfs_stats.vflush_invoked;
379 ivndebug(vp,"vflush");
380 }
381
382 #ifdef DIAGNOSTIC
383 if (vp->v_uflag & VU_DIROP) {
384 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
385 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
386 }
387 #endif
388
389 do {
390 #ifdef DEBUG
391 int loopcount = 0;
392 #endif
393 do {
394 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
395 relock = lfs_writefile(fs, sp, vp);
396 if (relock && vp != fs->lfs_ivnode) {
397 /*
398 * Might have to wait for the
399 * cleaner to run; but we're
400 * still not done with this vnode.
401 * XXX we can do better than this.
402 */
403 KDASSERT(ip->i_number != LFS_IFILE_INUM);
404 lfs_writeinode(fs, sp, ip);
405 mutex_enter(&lfs_lock);
406 LFS_SET_UINO(ip, IN_MODIFIED);
407 mutex_exit(&lfs_lock);
408 lfs_writeseg(fs, sp);
409 lfs_segunlock(fs);
410 lfs_segunlock_relock(fs);
411 goto top;
412 }
413 }
414 /*
415 * If we begin a new segment in the middle of writing
416 * the Ifile, it creates an inconsistent checkpoint,
417 * since the Ifile information for the new segment
418 * is not up-to-date. Take care of this here by
419 * sending the Ifile through again in case there
420 * are newly dirtied blocks. But wait, there's more!
421 * This second Ifile write could *also* cross a segment
422 * boundary, if the first one was large. The second
423 * one is guaranteed to be no more than 8 blocks,
424 * though (two segment blocks and supporting indirects)
425 * so the third write *will not* cross the boundary.
426 */
427 if (vp == fs->lfs_ivnode) {
428 lfs_writefile(fs, sp, vp);
429 lfs_writefile(fs, sp, vp);
430 }
431 #ifdef DEBUG
432 if (++loopcount > 2)
433 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
434 #endif
435 } while (lfs_writeinode(fs, sp, ip));
436 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
437
438 if (lfs_dostats) {
439 ++lfs_stats.nwrites;
440 if (sp->seg_flags & SEGM_SYNC)
441 ++lfs_stats.nsync_writes;
442 if (sp->seg_flags & SEGM_CKP)
443 ++lfs_stats.ncheckpoints;
444 }
445 /*
446 * If we were called from somewhere that has already held the seglock
447 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
448 * the write to complete because we are still locked.
449 * Since lfs_vflush() must return the vnode with no dirty buffers,
450 * we must explicitly wait, if that is the case.
451 *
452 * We compare the iocount against 1, not 0, because it is
453 * artificially incremented by lfs_seglock().
454 */
455 mutex_enter(&lfs_lock);
456 if (fs->lfs_seglock > 1) {
457 while (fs->lfs_iocount > 1)
458 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
459 "lfs_vflush", 0, &lfs_lock);
460 }
461 mutex_exit(&lfs_lock);
462
463 lfs_segunlock(fs);
464
465 /* Wait for these buffers to be recovered by aiodoned */
466 mutex_enter(vp->v_interlock);
467 while (vp->v_numoutput > 0) {
468 cv_wait(&vp->v_cv, vp->v_interlock);
469 }
470 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
471 KASSERT(vp->v_numoutput == 0);
472 mutex_exit(vp->v_interlock);
473
474 fs->lfs_flushvp = NULL;
475 KASSERT(fs->lfs_flushvp_fakevref == 0);
476
477 return (0);
478 }
479
480 struct lfs_writevnodes_ctx {
481 int op;
482 struct lfs *fs;
483 };
484 static bool
485 lfs_writevnodes_selector(void *cl, struct vnode *vp)
486 {
487 struct lfs_writevnodes_ctx *c = cl;
488 struct inode *ip;
489 int op = c->op;
490
491 KASSERT(mutex_owned(vp->v_interlock));
492
493 ip = VTOI(vp);
494 if (ip == NULL || vp->v_type == VNON)
495 return false;
496 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
497 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
498 vndebug(vp, "dirop");
499 return false;
500 }
501 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
502 vndebug(vp,"empty");
503 return false;
504 }
505 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
506 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) {
507 vndebug(vp,"cleaning");
508 return false;
509 }
510 mutex_enter(&lfs_lock);
511 if (vp == c->fs->lfs_unlockvp) {
512 mutex_exit(&lfs_lock);
513 return false;
514 }
515 mutex_exit(&lfs_lock);
516
517 return true;
518 }
519
520 int
521 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
522 {
523 struct inode *ip;
524 struct vnode *vp;
525 struct vnode_iterator *marker;
526 struct lfs_writevnodes_ctx ctx;
527 int inodes_written = 0;
528 int error = 0;
529
530 /*
531 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
532 * XXX The rationale is unclear, the initial commit had no information.
533 * XXX If the order really matters we have to sort the vnodes first.
534 */
535
536 ASSERT_SEGLOCK(fs);
537 vfs_vnode_iterator_init(mp, &marker);
538 ctx.op = op;
539 ctx.fs = fs;
540 while ((vp = vfs_vnode_iterator_next(marker,
541 lfs_writevnodes_selector, &ctx)) != NULL) {
542 ip = VTOI(vp);
543
544 /*
545 * Write the inode/file if dirty and it's not the IFILE.
546 */
547 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) &&
548 ip->i_number != LFS_IFILE_INUM) {
549 error = lfs_writefile(fs, sp, vp);
550 if (error) {
551 vrele(vp);
552 if (error == EAGAIN) {
553 /*
554 * This error from lfs_putpages
555 * indicates we need to drop
556 * the segment lock and start
557 * over after the cleaner has
558 * had a chance to run.
559 */
560 lfs_writeinode(fs, sp, ip);
561 lfs_writeseg(fs, sp);
562 if (!VPISEMPTY(vp) &&
563 !WRITEINPROG(vp) &&
564 !(ip->i_state & IN_ALLMOD)) {
565 mutex_enter(&lfs_lock);
566 LFS_SET_UINO(ip, IN_MODIFIED);
567 mutex_exit(&lfs_lock);
568 }
569 break;
570 }
571 error = 0; /* XXX not quite right */
572 continue;
573 }
574
575 if (!VPISEMPTY(vp)) {
576 if (WRITEINPROG(vp)) {
577 ivndebug(vp,"writevnodes/write2");
578 } else if (!(ip->i_state & IN_ALLMOD)) {
579 mutex_enter(&lfs_lock);
580 LFS_SET_UINO(ip, IN_MODIFIED);
581 mutex_exit(&lfs_lock);
582 }
583 }
584 (void) lfs_writeinode(fs, sp, ip);
585 inodes_written++;
586 }
587 vrele(vp);
588 }
589 vfs_vnode_iterator_destroy(marker);
590 return error;
591 }
592
593 /*
594 * Do a checkpoint.
595 */
596 int
597 lfs_segwrite(struct mount *mp, int flags)
598 {
599 struct buf *bp;
600 struct inode *ip;
601 struct lfs *fs;
602 struct segment *sp;
603 struct vnode *vp;
604 SEGUSE *segusep;
605 int do_ckp, did_ckp, error;
606 unsigned n, segleft, maxseg, sn, i, curseg;
607 int writer_set = 0;
608 int dirty;
609 int redo;
610 SEGSUM *ssp;
611 int um_error;
612
613 fs = VFSTOULFS(mp)->um_lfs;
614 ASSERT_MAYBE_SEGLOCK(fs);
615
616 if (fs->lfs_ronly)
617 return EROFS;
618
619 lfs_imtime(fs);
620
621 /*
622 * Allocate a segment structure and enough space to hold pointers to
623 * the maximum possible number of buffers which can be described in a
624 * single summary block.
625 */
626 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
627
628 /* We can't do a partial write and checkpoint at the same time. */
629 if (do_ckp)
630 flags &= ~SEGM_SINGLE;
631
632 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
633 sp = fs->lfs_sp;
634 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
635 do_ckp = 1;
636
637 /*
638 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
639 * in which case we have to flush *all* buffers off of this vnode.
640 * We don't care about other nodes, but write any non-dirop nodes
641 * anyway in anticipation of another getnewvnode().
642 *
643 * If we're cleaning we only write cleaning and ifile blocks, and
644 * no dirops, since otherwise we'd risk corruption in a crash.
645 */
646 if (sp->seg_flags & SEGM_CLEAN)
647 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
648 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
649 do {
650 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
651 if ((sp->seg_flags & SEGM_SINGLE) &&
652 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
653 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
654 break;
655 }
656
657 if (do_ckp || fs->lfs_dirops == 0) {
658 if (!writer_set) {
659 lfs_writer_enter(fs, "lfs writer");
660 writer_set = 1;
661 }
662 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
663 if (um_error == 0)
664 um_error = error;
665 /*
666 * In case writevnodes errored out
667 * XXX why are we always doing this and not
668 * just on error?
669 */
670 lfs_flush_dirops(fs);
671 ssp = (SEGSUM *)(sp->segsum);
672 lfs_ss_setflags(fs, ssp,
673 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
674 lfs_finalize_fs_seguse(fs);
675 }
676 if (do_ckp && um_error) {
677 lfs_segunlock_relock(fs);
678 sp = fs->lfs_sp;
679 }
680 } while (do_ckp && um_error != 0);
681 }
682
683 /*
684 * If we are doing a checkpoint, mark everything since the
685 * last checkpoint as no longer ACTIVE.
686 */
687 if (do_ckp || fs->lfs_doifile) {
688 segleft = lfs_sb_getnseg(fs);
689 curseg = 0;
690 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
691 int bread_error;
692
693 dirty = 0;
694 bread_error = bread(fs->lfs_ivnode,
695 lfs_sb_getcleansz(fs) + n,
696 lfs_sb_getbsize(fs), B_MODIFY, &bp);
697 if (bread_error)
698 panic("lfs_segwrite: ifile read: "
699 "seguse %u: error %d\n",
700 n, bread_error);
701 segusep = (SEGUSE *)bp->b_data;
702 maxseg = uimin(segleft, lfs_sb_getsepb(fs));
703 for (i = 0; i < maxseg; i++) {
704 sn = curseg + i;
705 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
706 segusep->su_flags & SEGUSE_ACTIVE) {
707 segusep->su_flags &= ~SEGUSE_ACTIVE;
708 --fs->lfs_nactive;
709 ++dirty;
710 }
711 fs->lfs_suflags[fs->lfs_activesb][sn] =
712 segusep->su_flags;
713 if (lfs_sb_getversion(fs) > 1)
714 ++segusep;
715 else
716 segusep = (SEGUSE *)
717 ((SEGUSE_V1 *)segusep + 1);
718 }
719
720 if (dirty)
721 error = LFS_BWRITE_LOG(bp); /* Ifile */
722 else
723 brelse(bp, 0);
724 segleft -= lfs_sb_getsepb(fs);
725 curseg += lfs_sb_getsepb(fs);
726 }
727 }
728
729 KASSERT(LFS_SEGLOCK_HELD(fs));
730
731 did_ckp = 0;
732 if (do_ckp || fs->lfs_doifile) {
733 vp = fs->lfs_ivnode;
734 #ifdef DEBUG
735 int loopcount = 0;
736 #endif
737 do {
738
739 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
740
741 mutex_enter(&lfs_lock);
742 fs->lfs_flags &= ~LFS_IFDIRTY;
743 mutex_exit(&lfs_lock);
744
745 ip = VTOI(vp);
746
747 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
748 /*
749 * Ifile has no pages, so we don't need
750 * to check error return here.
751 */
752 lfs_writefile(fs, sp, vp);
753 /*
754 * Ensure the Ifile takes the current segment
755 * into account. See comment in lfs_vflush.
756 */
757 lfs_writefile(fs, sp, vp);
758 lfs_writefile(fs, sp, vp);
759 }
760
761 if (ip->i_state & IN_ALLMOD)
762 ++did_ckp;
763 #if 0
764 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
765 #else
766 redo = lfs_writeinode(fs, sp, ip);
767 #endif
768 redo += lfs_writeseg(fs, sp);
769 mutex_enter(&lfs_lock);
770 redo += (fs->lfs_flags & LFS_IFDIRTY);
771 mutex_exit(&lfs_lock);
772 #ifdef DEBUG
773 if (++loopcount > 2)
774 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
775 loopcount);
776 #endif
777 } while (redo && do_ckp);
778
779 /*
780 * Unless we are unmounting, the Ifile may continue to have
781 * dirty blocks even after a checkpoint, due to changes to
782 * inodes' atime. If we're checkpointing, it's "impossible"
783 * for other parts of the Ifile to be dirty after the loop
784 * above, since we hold the segment lock.
785 */
786 mutex_enter(vp->v_interlock);
787 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
788 LFS_CLR_UINO(ip, IN_ALLMOD);
789 }
790 #ifdef DIAGNOSTIC
791 else if (do_ckp) {
792 int do_panic = 0;
793 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
794 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
795 lfs_sb_getsegtabsz(fs) &&
796 !(bp->b_flags & B_GATHERED)) {
797 printf("ifile lbn %ld still dirty (flags %lx)\n",
798 (long)bp->b_lblkno,
799 (long)bp->b_flags);
800 ++do_panic;
801 }
802 }
803 if (do_panic)
804 panic("dirty blocks");
805 }
806 #endif
807 mutex_exit(vp->v_interlock);
808 } else {
809 (void) lfs_writeseg(fs, sp);
810 }
811
812 /* Note Ifile no longer needs to be written */
813 fs->lfs_doifile = 0;
814 if (writer_set)
815 lfs_writer_leave(fs);
816
817 /*
818 * If we didn't write the Ifile, we didn't really do anything.
819 * That means that (1) there is a checkpoint on disk and (2)
820 * nothing has changed since it was written.
821 *
822 * Take the flags off of the segment so that lfs_segunlock
823 * doesn't have to write the superblock either.
824 */
825 if (do_ckp && !did_ckp) {
826 sp->seg_flags &= ~SEGM_CKP;
827 }
828
829 if (lfs_dostats) {
830 ++lfs_stats.nwrites;
831 if (sp->seg_flags & SEGM_SYNC)
832 ++lfs_stats.nsync_writes;
833 if (sp->seg_flags & SEGM_CKP)
834 ++lfs_stats.ncheckpoints;
835 }
836 lfs_segunlock(fs);
837 return (0);
838 }
839
840 /*
841 * Write the dirty blocks associated with a vnode.
842 */
843 int
844 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
845 {
846 struct inode *ip;
847 int i, frag;
848 SEGSUM *ssp;
849 int error;
850
851 ASSERT_SEGLOCK(fs);
852 error = 0;
853 ip = VTOI(vp);
854
855 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
856
857 if (vp->v_uflag & VU_DIROP) {
858 ssp = (SEGSUM *)sp->segsum;
859 lfs_ss_setflags(fs, ssp,
860 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
861 }
862
863 if (sp->seg_flags & SEGM_CLEAN) {
864 lfs_gather(fs, sp, vp, lfs_match_fake);
865 /*
866 * For a file being flushed, we need to write *all* blocks.
867 * This means writing the cleaning blocks first, and then
868 * immediately following with any non-cleaning blocks.
869 * The same is true of the Ifile since checkpoints assume
870 * that all valid Ifile blocks are written.
871 */
872 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
873 lfs_gather(fs, sp, vp, lfs_match_data);
874 /*
875 * Don't call VOP_PUTPAGES: if we're flushing,
876 * we've already done it, and the Ifile doesn't
877 * use the page cache.
878 */
879 }
880 } else {
881 lfs_gather(fs, sp, vp, lfs_match_data);
882 /*
883 * If we're flushing, we've already called VOP_PUTPAGES
884 * so don't do it again. Otherwise, we want to write
885 * everything we've got.
886 */
887 if (!IS_FLUSHING(fs, vp)) {
888 mutex_enter(vp->v_interlock);
889 error = VOP_PUTPAGES(vp, 0, 0,
890 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
891 }
892 }
893
894 /*
895 * It may not be necessary to write the meta-data blocks at this point,
896 * as the roll-forward recovery code should be able to reconstruct the
897 * list.
898 *
899 * We have to write them anyway, though, under two conditions: (1) the
900 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
901 * checkpointing.
902 *
903 * BUT if we are cleaning, we might have indirect blocks that refer to
904 * new blocks not being written yet, in addition to fragments being
905 * moved out of a cleaned segment. If that is the case, don't
906 * write the indirect blocks, or the finfo will have a small block
907 * in the middle of it!
908 * XXX in this case isn't the inode size wrong too?
909 */
910 frag = 0;
911 if (sp->seg_flags & SEGM_CLEAN) {
912 for (i = 0; i < ULFS_NDADDR; i++)
913 if (ip->i_lfs_fragsize[i] > 0 &&
914 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
915 ++frag;
916 }
917 KASSERTMSG((frag <= 1),
918 "lfs_writefile: more than one fragment! frag=%d", frag);
919 if (IS_FLUSHING(fs, vp) ||
920 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
921 lfs_gather(fs, sp, vp, lfs_match_indir);
922 lfs_gather(fs, sp, vp, lfs_match_dindir);
923 lfs_gather(fs, sp, vp, lfs_match_tindir);
924 }
925 lfs_release_finfo(fs);
926
927 return error;
928 }
929
930 /*
931 * Update segment accounting to reflect this inode's change of address.
932 */
933 static int
934 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
935 {
936 struct buf *bp;
937 daddr_t daddr;
938 IFILE *ifp;
939 SEGUSE *sup;
940 ino_t ino;
941 int redo_ifile;
942 u_int32_t sn;
943
944 redo_ifile = 0;
945
946 /*
947 * If updating the ifile, update the super-block. Update the disk
948 * address and access times for this inode in the ifile.
949 */
950 ino = ip->i_number;
951 if (ino == LFS_IFILE_INUM) {
952 daddr = lfs_sb_getidaddr(fs);
953 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
954 } else {
955 LFS_IENTRY(ifp, fs, ino, bp);
956 daddr = lfs_if_getdaddr(fs, ifp);
957 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
958 (void)LFS_BWRITE_LOG(bp); /* Ifile */
959 }
960
961 /*
962 * If this is the Ifile and lfs_offset is set to the first block
963 * in the segment, dirty the new segment's accounting block
964 * (XXX should already be dirty?) and tell the caller to do it again.
965 */
966 if (ip->i_number == LFS_IFILE_INUM) {
967 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
968 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
969 lfs_sb_getoffset(fs)) {
970 LFS_SEGENTRY(sup, fs, sn, bp);
971 KASSERT(bp->b_oflags & BO_DELWRI);
972 LFS_WRITESEGENTRY(sup, fs, sn, bp);
973 /* fs->lfs_flags |= LFS_IFDIRTY; */
974 redo_ifile |= 1;
975 }
976 }
977
978 /*
979 * The inode's last address should not be in the current partial
980 * segment, except under exceptional circumstances (lfs_writevnodes
981 * had to start over, and in the meantime more blocks were written
982 * to a vnode). Both inodes will be accounted to this segment
983 * in lfs_writeseg so we need to subtract the earlier version
984 * here anyway. The segment count can temporarily dip below
985 * zero here; keep track of how many duplicates we have in
986 * "dupino" so we don't panic below.
987 */
988 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
989 ++sp->ndupino;
990 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
991 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
992 (long long)daddr, sp->ndupino));
993 }
994 /*
995 * Account the inode: it no longer belongs to its former segment,
996 * though it will not belong to the new segment until that segment
997 * is actually written.
998 */
999 if (daddr != LFS_UNUSED_DADDR) {
1000 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1001 int ndupino __diagused =
1002 (sp->seg_number == oldsn) ? sp->ndupino : 0;
1003 LFS_SEGENTRY(sup, fs, oldsn, bp);
1004 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino)
1005 >= DINOSIZE(fs)),
1006 "lfs_writeinode: negative bytes "
1007 "(segment %" PRIu32 " short by %d, "
1008 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1009 ", daddr=%" PRId64 ", su_nbytes=%u, "
1010 "ndupino=%d)\n",
1011 lfs_dtosn(fs, daddr),
1012 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes,
1013 oldsn, sp->seg_number, daddr,
1014 (unsigned int)sup->su_nbytes,
1015 sp->ndupino);
1016 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1017 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1018 sup->su_nbytes -= DINOSIZE(fs);
1019 redo_ifile |=
1020 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1021 if (redo_ifile) {
1022 mutex_enter(&lfs_lock);
1023 fs->lfs_flags |= LFS_IFDIRTY;
1024 mutex_exit(&lfs_lock);
1025 /* Don't double-account */
1026 lfs_sb_setidaddr(fs, 0x0);
1027 }
1028 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1029 }
1030
1031 return redo_ifile;
1032 }
1033
1034 int
1035 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1036 {
1037 struct buf *bp;
1038 union lfs_dinode *cdp;
1039 struct vnode *vp = ITOV(ip);
1040 daddr_t daddr;
1041 IINFO *iip;
1042 int i;
1043 int redo_ifile = 0;
1044 int gotblk = 0;
1045 int count;
1046 SEGSUM *ssp;
1047
1048 ASSERT_SEGLOCK(fs);
1049 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1050 return (0);
1051
1052 /* Can't write ifile when writer is not set */
1053 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1054 (sp->seg_flags & SEGM_CLEAN));
1055
1056 /*
1057 * If this is the Ifile, see if writing it here will generate a
1058 * temporary misaccounting. If it will, do the accounting and write
1059 * the blocks, postponing the inode write until the accounting is
1060 * solid.
1061 */
1062 count = 0;
1063 while (vp == fs->lfs_ivnode) {
1064 int redo = 0;
1065
1066 if (sp->idp == NULL && sp->ibp == NULL &&
1067 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1068 sp->sum_bytes_left < sizeof(int32_t))) {
1069 (void) lfs_writeseg(fs, sp);
1070 continue;
1071 }
1072
1073 /* Look for dirty Ifile blocks */
1074 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1075 if (!(bp->b_flags & B_GATHERED)) {
1076 redo = 1;
1077 break;
1078 }
1079 }
1080
1081 if (redo == 0)
1082 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1083 if (redo == 0)
1084 break;
1085
1086 if (sp->idp) {
1087 lfs_dino_setinumber(fs, sp->idp, 0);
1088 sp->idp = NULL;
1089 }
1090 ++count;
1091 if (count > 2)
1092 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1093 lfs_writefile(fs, sp, fs->lfs_ivnode);
1094 }
1095
1096 /* Allocate a new inode block if necessary. */
1097 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1098 sp->ibp == NULL) {
1099 /* Allocate a new segment if necessary. */
1100 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1101 sp->sum_bytes_left < sizeof(int32_t))
1102 (void) lfs_writeseg(fs, sp);
1103
1104 /* Get next inode block. */
1105 daddr = lfs_sb_getoffset(fs);
1106 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1107 sp->ibp = *sp->cbpp++ =
1108 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1109 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1110 gotblk++;
1111
1112 /* Zero out inode numbers */
1113 for (i = 0; i < LFS_INOPB(fs); ++i) {
1114 union lfs_dinode *tmpdi;
1115
1116 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1117 DINOSIZE(fs) * i);
1118 lfs_dino_setinumber(fs, tmpdi, 0);
1119 }
1120
1121 ++sp->start_bpp;
1122 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1123 /* Set remaining space counters. */
1124 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1125 sp->sum_bytes_left -= sizeof(int32_t);
1126
1127 /* Store the address in the segment summary. */
1128 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1129 lfs_ii_setblock(fs, iip, daddr);
1130 }
1131
1132 /* Check VU_DIROP in case there is a new file with no data blocks */
1133 if (vp->v_uflag & VU_DIROP) {
1134 ssp = (SEGSUM *)sp->segsum;
1135 lfs_ss_setflags(fs, ssp,
1136 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1137 }
1138
1139 /* Update the inode times and copy the inode onto the inode page. */
1140 /* XXX kludge --- don't redirty the ifile just to put times on it */
1141 if (ip->i_number != LFS_IFILE_INUM)
1142 LFS_ITIMES(ip, NULL, NULL, NULL);
1143
1144 /*
1145 * If this is the Ifile, and we've already written the Ifile in this
1146 * partial segment, just overwrite it (it's not on disk yet) and
1147 * continue.
1148 *
1149 * XXX we know that the bp that we get the second time around has
1150 * already been gathered.
1151 */
1152 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1153 lfs_copy_dinode(fs, sp->idp, ip->i_din);
1154 ip->i_lfs_osize = ip->i_size;
1155 return 0;
1156 }
1157
1158 bp = sp->ibp;
1159 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1160 lfs_copy_dinode(fs, cdp, ip->i_din);
1161
1162 /*
1163 * This inode is on its way to disk; clear its VU_DIROP status when
1164 * the write is complete.
1165 */
1166 if (vp->v_uflag & VU_DIROP) {
1167 if (!(sp->seg_flags & SEGM_CLEAN))
1168 ip->i_state |= IN_CDIROP;
1169 else {
1170 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1171 }
1172 }
1173
1174 /*
1175 * If cleaning, link counts and directory file sizes cannot change,
1176 * since those would be directory operations---even if the file
1177 * we are writing is marked VU_DIROP we should write the old values.
1178 * If we're not cleaning, of course, update the values so we get
1179 * current values the next time we clean.
1180 */
1181 if (sp->seg_flags & SEGM_CLEAN) {
1182 if (vp->v_uflag & VU_DIROP) {
1183 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1184 /* if (vp->v_type == VDIR) */
1185 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1186 }
1187 } else {
1188 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1189 ip->i_lfs_osize = ip->i_size;
1190 }
1191
1192
1193 /* We can finish the segment accounting for truncations now */
1194 lfs_finalize_ino_seguse(fs, ip);
1195
1196 /*
1197 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1198 * addresses to disk; possibly change the on-disk record of
1199 * the inode size, either by reverting to the previous size
1200 * (in the case of cleaning) or by verifying the inode's block
1201 * holdings (in the case of files being allocated as they are being
1202 * written).
1203 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1204 * XXX count on disk wrong by the same amount. We should be
1205 * XXX able to "borrow" from lfs_avail and return it after the
1206 * XXX Ifile is written. See also in lfs_writeseg.
1207 */
1208
1209 /* Check file size based on highest allocated block */
1210 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1211 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1212 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1213 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1214 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1215 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1216 }
1217 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1218 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1219 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1220 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1221 for (i=0; i<ULFS_NDADDR; i++) {
1222 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1223 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1224 lfs_dino_setdb(fs, cdp, i, 0);
1225 }
1226 }
1227 for (i=0; i<ULFS_NIADDR; i++) {
1228 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1229 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1230 lfs_dino_setib(fs, cdp, i, 0);
1231 }
1232 }
1233 }
1234
1235 #ifdef DIAGNOSTIC
1236 /*
1237 * Check dinode held blocks against dinode size.
1238 * This should be identical to the check in lfs_vget().
1239 */
1240 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1241 i < ULFS_NDADDR; i++) {
1242 KASSERT(i >= 0);
1243 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1244 continue;
1245 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1246 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1247 continue;
1248 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1249 # ifdef DEBUG
1250 lfs_dump_dinode(fs, cdp);
1251 # endif
1252 panic("writing inconsistent inode");
1253 }
1254 }
1255 #endif /* DIAGNOSTIC */
1256
1257 if (ip->i_state & IN_CLEANING)
1258 LFS_CLR_UINO(ip, IN_CLEANING);
1259 else {
1260 /* XXX IN_ALLMOD */
1261 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1262 IN_UPDATE | IN_MODIFY);
1263 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1264 LFS_CLR_UINO(ip, IN_MODIFIED);
1265 else {
1266 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1267 "blks=%d, eff=%jd\n", ip->i_number,
1268 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1269 }
1270 }
1271
1272 if (ip->i_number == LFS_IFILE_INUM) {
1273 /* We know sp->idp == NULL */
1274 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1275
1276 /* Not dirty any more */
1277 mutex_enter(&lfs_lock);
1278 fs->lfs_flags &= ~LFS_IFDIRTY;
1279 mutex_exit(&lfs_lock);
1280 }
1281
1282 if (gotblk) {
1283 mutex_enter(&bufcache_lock);
1284 LFS_LOCK_BUF(bp);
1285 brelsel(bp, 0);
1286 mutex_exit(&bufcache_lock);
1287 }
1288
1289 /* Increment inode count in segment summary block. */
1290
1291 ssp = (SEGSUM *)sp->segsum;
1292 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1293
1294 /* If this page is full, set flag to allocate a new page. */
1295 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1296 sp->ibp = NULL;
1297
1298 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1299
1300 KASSERT(redo_ifile == 0);
1301 return (redo_ifile);
1302 }
1303
1304 int
1305 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1306 {
1307 struct lfs *fs;
1308 int vers;
1309 int j, blksinblk;
1310
1311 ASSERT_SEGLOCK(sp->fs);
1312 KASSERTMSG((sp->vp != NULL),
1313 "lfs_gatherblock: Null vp in segment");
1314
1315 /* If full, finish this segment. */
1316 fs = sp->fs;
1317 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1318 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1319 sp->seg_bytes_left < bp->b_bcount) {
1320 if (mptr)
1321 mutex_exit(mptr);
1322 lfs_updatemeta(sp);
1323
1324 vers = lfs_fi_getversion(fs, sp->fip);
1325 (void) lfs_writeseg(fs, sp);
1326
1327 /* Add the current file to the segment summary. */
1328 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1329
1330 if (mptr)
1331 mutex_enter(mptr);
1332 return (1);
1333 }
1334
1335 if (bp->b_flags & B_GATHERED) {
1336 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1337 " lbn %" PRId64 "\n",
1338 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1339 return (0);
1340 }
1341
1342 /* Insert into the buffer list, update the FINFO block. */
1343 bp->b_flags |= B_GATHERED;
1344
1345 *sp->cbpp++ = bp;
1346 for (j = 0; j < blksinblk; j++) {
1347 unsigned bn;
1348
1349 bn = lfs_fi_getnblocks(fs, sp->fip);
1350 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1351 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1352 /* This block's accounting moves from lfs_favail to lfs_avail */
1353 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1354 }
1355
1356 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1357 sp->seg_bytes_left -= bp->b_bcount;
1358 return (0);
1359 }
1360
1361 int
1362 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1363 int (*match)(struct lfs *, struct buf *))
1364 {
1365 struct buf *bp, *nbp;
1366 int count = 0;
1367
1368 ASSERT_SEGLOCK(fs);
1369 if (vp->v_type == VBLK)
1370 return 0;
1371 KASSERT(sp->vp == NULL);
1372 sp->vp = vp;
1373 mutex_enter(&bufcache_lock);
1374
1375 #ifndef LFS_NO_BACKBUF_HACK
1376 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1377 # define BUF_OFFSET \
1378 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1379 # define BACK_BUF(BP) \
1380 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1381 # define BEG_OF_LIST \
1382 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1383
1384 loop:
1385 /* Find last buffer. */
1386 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1387 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1388 bp = LIST_NEXT(bp, b_vnbufs))
1389 continue;
1390
1391 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1392 nbp = BACK_BUF(bp);
1393 #else /* LFS_NO_BACKBUF_HACK */
1394 loop:
1395 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1396 nbp = LIST_NEXT(bp, b_vnbufs);
1397 #endif /* LFS_NO_BACKBUF_HACK */
1398 if ((bp->b_cflags & BC_BUSY) != 0 ||
1399 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1400 #ifdef DEBUG
1401 if (vp == fs->lfs_ivnode &&
1402 (bp->b_cflags & BC_BUSY) != 0 &&
1403 (bp->b_flags & B_GATHERED) == 0)
1404 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1405 PRId64 " busy (%x) at 0x%jx",
1406 bp->b_lblkno, bp->b_flags,
1407 (uintmax_t)lfs_sb_getoffset(fs));
1408 #endif
1409 continue;
1410 }
1411 #ifdef DIAGNOSTIC
1412 # ifdef LFS_USE_BC_INVAL
1413 if ((bp->b_cflags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1414 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1415 " is BC_INVAL\n", bp->b_lblkno));
1416 VOP_PRINT(bp->b_vp);
1417 }
1418 # endif /* LFS_USE_BC_INVAL */
1419 if (!(bp->b_oflags & BO_DELWRI))
1420 panic("lfs_gather: bp not BO_DELWRI");
1421 if (!(bp->b_flags & B_LOCKED)) {
1422 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1423 " blk %" PRId64 " not B_LOCKED\n",
1424 bp->b_lblkno,
1425 LFS_DBTOFSB(fs, bp->b_blkno)));
1426 VOP_PRINT(bp->b_vp);
1427 panic("lfs_gather: bp not B_LOCKED");
1428 }
1429 #endif
1430 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1431 goto loop;
1432 }
1433 count++;
1434 }
1435 mutex_exit(&bufcache_lock);
1436 lfs_updatemeta(sp);
1437 KASSERT(sp->vp == vp);
1438 sp->vp = NULL;
1439 return count;
1440 }
1441
1442 #if DEBUG
1443 # define DEBUG_OOFF(n) do { \
1444 if (ooff == 0) { \
1445 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1446 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1447 ", was 0x0 (or %" PRId64 ")\n", \
1448 (n), ip->i_number, lbn, ndaddr, daddr)); \
1449 } \
1450 } while (0)
1451 #else
1452 # define DEBUG_OOFF(n)
1453 #endif
1454
1455 /*
1456 * Change the given block's address to ndaddr, finding its previous
1457 * location using ulfs_bmaparray().
1458 *
1459 * Account for this change in the segment table.
1460 *
1461 * called with sp == NULL by roll-forwarding code.
1462 */
1463 void
1464 lfs_update_single(struct lfs *fs, struct segment *sp,
1465 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1466 {
1467 SEGUSE *sup;
1468 struct buf *bp;
1469 struct indir a[ULFS_NIADDR + 2], *ap;
1470 struct inode *ip;
1471 daddr_t daddr, ooff;
1472 int num, error;
1473 int bb, osize, obb;
1474
1475 ASSERT_SEGLOCK(fs);
1476 KASSERT(sp == NULL || sp->vp == vp);
1477 ip = VTOI(vp);
1478
1479 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1480 if (error)
1481 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1482
1483 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1484 if (daddr > 0)
1485 daddr = LFS_DBTOFSB(fs, daddr);
1486
1487 bb = lfs_numfrags(fs, size);
1488 switch (num) {
1489 case 0:
1490 ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1491 DEBUG_OOFF(0);
1492 if (ooff == UNWRITTEN)
1493 lfs_dino_setblocks(fs, ip->i_din,
1494 lfs_dino_getblocks(fs, ip->i_din) + bb);
1495 else {
1496 /* possible fragment truncation or extension */
1497 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1498 lfs_dino_setblocks(fs, ip->i_din,
1499 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1500 }
1501 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1502 break;
1503 case 1:
1504 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1505 DEBUG_OOFF(1);
1506 if (ooff == UNWRITTEN)
1507 lfs_dino_setblocks(fs, ip->i_din,
1508 lfs_dino_getblocks(fs, ip->i_din) + bb);
1509 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1510 break;
1511 default:
1512 ap = &a[num - 1];
1513 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1514 B_MODIFY, &bp))
1515 panic("lfs_updatemeta: bread bno %" PRId64,
1516 ap->in_lbn);
1517
1518 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1519 DEBUG_OOFF(num);
1520 if (ooff == UNWRITTEN)
1521 lfs_dino_setblocks(fs, ip->i_din,
1522 lfs_dino_getblocks(fs, ip->i_din) + bb);
1523 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1524 (void) VOP_BWRITE(bp->b_vp, bp);
1525 }
1526
1527 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1528
1529 /* Update hiblk when extending the file */
1530 if (lbn > ip->i_lfs_hiblk)
1531 ip->i_lfs_hiblk = lbn;
1532
1533 /*
1534 * Though we'd rather it couldn't, this *can* happen right now
1535 * if cleaning blocks and regular blocks coexist.
1536 */
1537 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1538
1539 /*
1540 * Update segment usage information, based on old size
1541 * and location.
1542 */
1543 if (daddr > 0) {
1544 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1545 int ndupino __diagused = (sp && sp->seg_number == oldsn ?
1546 sp->ndupino : 0);
1547
1548 KASSERT(oldsn < lfs_sb_getnseg(fs));
1549 if (lbn >= 0 && lbn < ULFS_NDADDR)
1550 osize = ip->i_lfs_fragsize[lbn];
1551 else
1552 osize = lfs_sb_getbsize(fs);
1553 LFS_SEGENTRY(sup, fs, oldsn, bp);
1554 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize),
1555 "lfs_updatemeta: negative bytes "
1556 "(segment %" PRIu32 " short by %" PRId64
1557 ")\n"
1558 "lfs_updatemeta: ino %llu, lbn %" PRId64
1559 ", addr = 0x%" PRIx64 "\n"
1560 "lfs_updatemeta: ndupino=%d",
1561 lfs_dtosn(fs, daddr),
1562 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes),
1563 (unsigned long long)ip->i_number, lbn, daddr,
1564 ndupino);
1565 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1566 " db 0x%" PRIx64 "\n",
1567 lfs_dtosn(fs, daddr), osize,
1568 ip->i_number, lbn, daddr));
1569 sup->su_nbytes -= osize;
1570 if (!(bp->b_flags & B_GATHERED)) {
1571 mutex_enter(&lfs_lock);
1572 fs->lfs_flags |= LFS_IFDIRTY;
1573 mutex_exit(&lfs_lock);
1574 }
1575 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1576 }
1577 /*
1578 * Now that this block has a new address, and its old
1579 * segment no longer owns it, we can forget about its
1580 * old size.
1581 */
1582 if (lbn >= 0 && lbn < ULFS_NDADDR)
1583 ip->i_lfs_fragsize[lbn] = size;
1584 }
1585
1586 /*
1587 * Update the metadata that points to the blocks listed in the FINFO
1588 * array.
1589 */
1590 void
1591 lfs_updatemeta(struct segment *sp)
1592 {
1593 struct buf *sbp;
1594 struct lfs *fs;
1595 struct vnode *vp;
1596 daddr_t lbn;
1597 int i, nblocks, num;
1598 int __diagused nblocks_orig;
1599 int bb;
1600 int bytesleft, size;
1601 unsigned lastlength;
1602 union lfs_blocks tmpptr;
1603
1604 fs = sp->fs;
1605 vp = sp->vp;
1606 ASSERT_SEGLOCK(fs);
1607
1608 /*
1609 * This used to be:
1610 *
1611 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1612 *
1613 * that is, it allowed for the possibility that start_lbp did
1614 * not point to the beginning of the finfo block pointer area.
1615 * This particular formulation is six kinds of painful in the
1616 * lfs64 world where we have two sizes of block pointer, so
1617 * unless/until everything can be cleaned up to not move
1618 * start_lbp around but instead use an offset, we do the
1619 * following:
1620 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1621 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1622 * type. (Ugh.)
1623 * 2. Cast it to void *, then assign it to a temporary
1624 * union lfs_blocks.
1625 * 3. Subtract start_lbp from that.
1626 * 4. Save the value of nblocks in blocks_orig so we can
1627 * assert below that it hasn't changed without repeating this
1628 * rubbish.
1629 *
1630 * XXX.
1631 */
1632 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1633 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1634 nblocks_orig = nblocks;
1635
1636 KASSERT(nblocks >= 0);
1637 KASSERT(vp != NULL);
1638 if (nblocks == 0)
1639 return;
1640
1641 /*
1642 * This count may be high due to oversize blocks from lfs_gop_write.
1643 * Correct for this. (XXX we should be able to keep track of these.)
1644 */
1645 for (i = 0; i < nblocks; i++) {
1646 if (sp->start_bpp[i] == NULL) {
1647 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1648 nblocks = i;
1649 break;
1650 }
1651 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1652 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1653 nblocks -= num - 1;
1654 }
1655
1656 #if 0
1657 /* pre-lfs64 assertion */
1658 KASSERT(vp->v_type == VREG ||
1659 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1660 #else
1661 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1662 #endif
1663 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1664
1665 /*
1666 * Sort the blocks.
1667 *
1668 * We have to sort even if the blocks come from the
1669 * cleaner, because there might be other pending blocks on the
1670 * same inode...and if we don't sort, and there are fragments
1671 * present, blocks may be written in the wrong place.
1672 */
1673 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1674
1675 /*
1676 * Record the length of the last block in case it's a fragment.
1677 * If there are indirect blocks present, they sort last. An
1678 * indirect block will be lfs_bsize and its presence indicates
1679 * that you cannot have fragments.
1680 *
1681 * XXX This last is a lie. A cleaned fragment can coexist with
1682 * XXX a later indirect block. This will continue to be
1683 * XXX true until lfs_markv is fixed to do everything with
1684 * XXX fake blocks (including fake inodes and fake indirect blocks).
1685 */
1686 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1687 lfs_sb_getbmask(fs)) + 1;
1688 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1689
1690 /*
1691 * Assign disk addresses, and update references to the logical
1692 * block and the segment usage information.
1693 */
1694 for (i = nblocks; i--; ++sp->start_bpp) {
1695 sbp = *sp->start_bpp;
1696 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1697 KASSERT(sbp->b_lblkno == lbn);
1698
1699 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1700
1701 /*
1702 * If we write a frag in the wrong place, the cleaner won't
1703 * be able to correctly identify its size later, and the
1704 * segment will be uncleanable. (Even worse, it will assume
1705 * that the indirect block that actually ends the list
1706 * is of a smaller size!)
1707 */
1708 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1709 panic("lfs_updatemeta: fragment is not last block");
1710
1711 /*
1712 * For each subblock in this possibly oversized block,
1713 * update its address on disk.
1714 */
1715 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1716 KASSERT(vp == sbp->b_vp);
1717 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1718 bytesleft -= lfs_sb_getbsize(fs)) {
1719 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1720 bb = lfs_numfrags(fs, size);
1721 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1722 lfs_blocks_inc(fs, &sp->start_lbp);
1723 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1724 size);
1725 lfs_sb_addoffset(fs, bb);
1726 }
1727
1728 }
1729
1730 /* This inode has been modified */
1731 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1732 }
1733
1734 /*
1735 * Move lfs_offset to a segment earlier than newsn.
1736 */
1737 int
1738 lfs_rewind(struct lfs *fs, int newsn)
1739 {
1740 int sn, osn, isdirty;
1741 struct buf *bp;
1742 SEGUSE *sup;
1743
1744 ASSERT_SEGLOCK(fs);
1745
1746 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1747 if (osn < newsn)
1748 return 0;
1749
1750 /* lfs_avail eats the remaining space in this segment */
1751 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1752
1753 /* Find a low-numbered segment */
1754 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1755 LFS_SEGENTRY(sup, fs, sn, bp);
1756 isdirty = sup->su_flags & SEGUSE_DIRTY;
1757 brelse(bp, 0);
1758
1759 if (!isdirty)
1760 break;
1761 }
1762 if (sn == lfs_sb_getnseg(fs))
1763 panic("lfs_rewind: no clean segments");
1764 if (newsn >= 0 && sn >= newsn)
1765 return ENOENT;
1766 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1767 lfs_newseg(fs);
1768 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1769
1770 return 0;
1771 }
1772
1773 /*
1774 * Start a new partial segment.
1775 *
1776 * Return 1 when we entered to a new segment.
1777 * Otherwise, return 0.
1778 */
1779 int
1780 lfs_initseg(struct lfs *fs)
1781 {
1782 struct segment *sp = fs->lfs_sp;
1783 SEGSUM *ssp;
1784 struct buf *sbp; /* buffer for SEGSUM */
1785 int repeat = 0; /* return value */
1786
1787 ASSERT_SEGLOCK(fs);
1788 /* Advance to the next segment. */
1789 if (!LFS_PARTIAL_FITS(fs)) {
1790 SEGUSE *sup;
1791 struct buf *bp;
1792
1793 /* lfs_avail eats the remaining space */
1794 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1795 lfs_sb_getcurseg(fs)));
1796 /* Wake up any cleaning procs waiting on this file system. */
1797 lfs_wakeup_cleaner(fs);
1798 lfs_newseg(fs);
1799 repeat = 1;
1800 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1801
1802 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1803 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1804
1805 /*
1806 * If the segment contains a superblock, update the offset
1807 * and summary address to skip over it.
1808 */
1809 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1810 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1811 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1812 sp->seg_bytes_left -= LFS_SBPAD;
1813 }
1814 brelse(bp, 0);
1815 /* Segment zero could also contain the labelpad */
1816 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1817 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1818 lfs_sb_addoffset(fs,
1819 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1820 sp->seg_bytes_left -=
1821 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1822 }
1823 } else {
1824 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1825 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1826 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1827 }
1828 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1829
1830 /* Record first address of this partial segment */
1831 if (sp->seg_flags & SEGM_CLEAN) {
1832 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1833 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1834 /* "1" is the artificial inc in lfs_seglock */
1835 mutex_enter(&lfs_lock);
1836 while (fs->lfs_iocount > 1) {
1837 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1838 "lfs_initseg", 0, &lfs_lock);
1839 }
1840 mutex_exit(&lfs_lock);
1841 fs->lfs_cleanind = 0;
1842 }
1843 }
1844
1845 sp->fs = fs;
1846 sp->ibp = NULL;
1847 sp->idp = NULL;
1848 sp->ninodes = 0;
1849 sp->ndupino = 0;
1850
1851 sp->cbpp = sp->bpp;
1852
1853 /* Get a new buffer for SEGSUM */
1854 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1855 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1856
1857 /* ... and enter it into the buffer list. */
1858 *sp->cbpp = sbp;
1859 sp->cbpp++;
1860 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1861
1862 sp->start_bpp = sp->cbpp;
1863
1864 /* Set point to SEGSUM, initialize it. */
1865 ssp = sp->segsum = sbp->b_data;
1866 memset(ssp, 0, lfs_sb_getsumsize(fs));
1867 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1868 lfs_ss_setnfinfo(fs, ssp, 0);
1869 lfs_ss_setninos(fs, ssp, 0);
1870 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1871
1872 /* Set pointer to first FINFO, initialize it. */
1873 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1874 lfs_fi_setnblocks(fs, sp->fip, 0);
1875 lfs_fi_setlastlength(fs, sp->fip, 0);
1876 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1877
1878 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1879 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1880
1881 return (repeat);
1882 }
1883
1884 /*
1885 * Remove SEGUSE_INVAL from all segments.
1886 */
1887 void
1888 lfs_unset_inval_all(struct lfs *fs)
1889 {
1890 SEGUSE *sup;
1891 struct buf *bp;
1892 int i;
1893
1894 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1895 LFS_SEGENTRY(sup, fs, i, bp);
1896 if (sup->su_flags & SEGUSE_INVAL) {
1897 sup->su_flags &= ~SEGUSE_INVAL;
1898 LFS_WRITESEGENTRY(sup, fs, i, bp);
1899 } else
1900 brelse(bp, 0);
1901 }
1902 }
1903
1904 /*
1905 * Return the next segment to write.
1906 */
1907 void
1908 lfs_newseg(struct lfs *fs)
1909 {
1910 CLEANERINFO *cip;
1911 SEGUSE *sup;
1912 struct buf *bp;
1913 int curseg, isdirty, sn, skip_inval;
1914
1915 ASSERT_SEGLOCK(fs);
1916
1917 /* Honor LFCNWRAPSTOP */
1918 mutex_enter(&lfs_lock);
1919 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1920 if (fs->lfs_wrappass) {
1921 log(LOG_NOTICE, "%s: wrappass=%d\n",
1922 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1923 fs->lfs_wrappass = 0;
1924 break;
1925 }
1926 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1927 wakeup(&fs->lfs_nowrap);
1928 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1929 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1930 &lfs_lock);
1931 }
1932 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1933 mutex_exit(&lfs_lock);
1934
1935 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1936 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1937 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1938 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1939 sup->su_nbytes = 0;
1940 sup->su_nsums = 0;
1941 sup->su_ninos = 0;
1942 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1943
1944 LFS_CLEANERINFO(cip, fs, bp);
1945 lfs_ci_shiftcleantodirty(fs, cip, 1);
1946 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1947 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1948
1949 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1950 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1951 skip_inval = 1;
1952 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1953 sn = (sn + 1) % lfs_sb_getnseg(fs);
1954
1955 if (sn == curseg) {
1956 if (skip_inval)
1957 skip_inval = 0;
1958 else
1959 panic("lfs_nextseg: no clean segments");
1960 }
1961 LFS_SEGENTRY(sup, fs, sn, bp);
1962 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1963 /* Check SEGUSE_EMPTY as we go along */
1964 if (isdirty && sup->su_nbytes == 0 &&
1965 !(sup->su_flags & SEGUSE_EMPTY))
1966 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1967 else
1968 brelse(bp, 0);
1969
1970 if (!isdirty)
1971 break;
1972 }
1973 if (skip_inval == 0)
1974 lfs_unset_inval_all(fs);
1975
1976 ++fs->lfs_nactive;
1977 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1978 if (lfs_dostats) {
1979 ++lfs_stats.segsused;
1980 }
1981 }
1982
1983 static struct buf *
1984 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1985 int n)
1986 {
1987 struct lfs_cluster *cl;
1988 struct buf **bpp, *bp;
1989
1990 ASSERT_SEGLOCK(fs);
1991 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1992 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1993 memset(cl, 0, sizeof(*cl));
1994 cl->fs = fs;
1995 cl->bpp = bpp;
1996 cl->bufcount = 0;
1997 cl->bufsize = 0;
1998
1999 /* If this segment is being written synchronously, note that */
2000 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2001 cl->flags |= LFS_CL_SYNC;
2002 cl->seg = fs->lfs_sp;
2003 ++cl->seg->seg_iocount;
2004 }
2005
2006 /* Get an empty buffer header, or maybe one with something on it */
2007 bp = getiobuf(vp, true);
2008 bp->b_dev = NODEV;
2009 bp->b_blkno = bp->b_lblkno = addr;
2010 bp->b_iodone = lfs_cluster_callback;
2011 bp->b_private = cl;
2012
2013 return bp;
2014 }
2015
2016 int
2017 lfs_writeseg(struct lfs *fs, struct segment *sp)
2018 {
2019 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2020 SEGUSE *sup;
2021 SEGSUM *ssp;
2022 int i;
2023 int do_again, nblocks, byteoffset;
2024 size_t el_size;
2025 struct lfs_cluster *cl;
2026 u_short ninos;
2027 struct vnode *devvp;
2028 char *p = NULL;
2029 struct vnode *vp;
2030 unsigned ibindex, iblimit;
2031 int changed;
2032 u_int32_t sum;
2033 size_t sumstart;
2034 #ifdef DEBUG
2035 FINFO *fip;
2036 int findex;
2037 #endif
2038
2039 ASSERT_SEGLOCK(fs);
2040
2041 ssp = (SEGSUM *)sp->segsum;
2042
2043 /*
2044 * If there are no buffers other than the segment summary to write,
2045 * don't do anything. If we are the end of a dirop sequence, however,
2046 * write the empty segment summary anyway, to help out the
2047 * roll-forward agent.
2048 */
2049 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2050 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2051 return 0;
2052 }
2053
2054 /* Note if partial segment is being written by the cleaner */
2055 if (sp->seg_flags & SEGM_CLEAN)
2056 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2057
2058 /* Note if we are writing to reclaim */
2059 if (sp->seg_flags & SEGM_RECLAIM) {
2060 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2061 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2062 }
2063
2064 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2065
2066 /* Update the segment usage information. */
2067 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2068
2069 /* Loop through all blocks, except the segment summary. */
2070 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2071 if ((*bpp)->b_vp != devvp) {
2072 sup->su_nbytes += (*bpp)->b_bcount;
2073 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2074 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2075 sp->seg_number, (*bpp)->b_bcount,
2076 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2077 (*bpp)->b_blkno));
2078 }
2079 }
2080
2081 #ifdef DEBUG
2082 /* Check for zero-length and zero-version FINFO entries. */
2083 fip = SEGSUM_FINFOBASE(fs, ssp);
2084 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2085 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2086 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2087 fip = NEXT_FINFO(fs, fip);
2088 }
2089 #endif /* DEBUG */
2090
2091 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2092 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2093 sp->seg_number,
2094 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2095 lfs_ss_getninos(fs, ssp)));
2096 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2097 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2098 if (lfs_sb_getversion(fs) == 1)
2099 sup->su_olastmod = time_second;
2100 else
2101 sup->su_lastmod = time_second;
2102 sup->su_ninos += ninos;
2103 ++sup->su_nsums;
2104 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2105
2106 do_again = !(bp->b_flags & B_GATHERED);
2107 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2108
2109 /*
2110 * Mark blocks BC_BUSY, to prevent then from being changed between
2111 * the checksum computation and the actual write.
2112 *
2113 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2114 * there are any, replace them with copies that have UNASSIGNED
2115 * instead.
2116 */
2117 mutex_enter(&bufcache_lock);
2118 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2119 ++bpp;
2120 bp = *bpp;
2121 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2122 bp->b_cflags |= BC_BUSY;
2123 continue;
2124 }
2125
2126 while (bp->b_cflags & BC_BUSY) {
2127 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2128 " data summary corruption for ino %d, lbn %"
2129 PRId64 "\n",
2130 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2131 bp->b_cflags |= BC_WANTED;
2132 cv_wait(&bp->b_busy, &bufcache_lock);
2133 }
2134 bp->b_cflags |= BC_BUSY;
2135 mutex_exit(&bufcache_lock);
2136 unbusybp = NULL;
2137
2138 /*
2139 * Check and replace indirect block UNWRITTEN bogosity.
2140 * XXX See comment in lfs_writefile.
2141 */
2142 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2143 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2144 VTOI(bp->b_vp)->i_lfs_effnblks) {
2145 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2146 VTOI(bp->b_vp)->i_number,
2147 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2148 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2149 /* Make a copy we'll make changes to */
2150 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2151 bp->b_bcount, LFS_NB_IBLOCK);
2152 newbp->b_blkno = bp->b_blkno;
2153 memcpy(newbp->b_data, bp->b_data,
2154 newbp->b_bcount);
2155
2156 changed = 0;
2157 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs);
2158 for (ibindex = 0; ibindex < iblimit; ibindex++) {
2159 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) {
2160 ++changed;
2161 lfs_iblock_set(fs, newbp->b_data,
2162 ibindex, 0);
2163 }
2164 }
2165 /*
2166 * Get rid of the old buffer. Don't mark it clean,
2167 * though, if it still has dirty data on it.
2168 */
2169 if (changed) {
2170 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2171 " bp = %p newbp = %p\n", changed, bp,
2172 newbp));
2173 *bpp = newbp;
2174 bp->b_flags &= ~B_GATHERED;
2175 bp->b_error = 0;
2176 if (bp->b_iodone != NULL) {
2177 DLOG((DLOG_SEG, "lfs_writeseg: "
2178 "indir bp should not be B_CALL\n"));
2179 biodone(bp);
2180 bp = NULL;
2181 } else {
2182 /* Still on free list, leave it there */
2183 unbusybp = bp;
2184 /*
2185 * We have to re-decrement lfs_avail
2186 * since this block is going to come
2187 * back around to us in the next
2188 * segment.
2189 */
2190 lfs_sb_subavail(fs,
2191 lfs_btofsb(fs, bp->b_bcount));
2192 }
2193 } else {
2194 lfs_freebuf(fs, newbp);
2195 }
2196 }
2197 mutex_enter(&bufcache_lock);
2198 if (unbusybp != NULL) {
2199 unbusybp->b_cflags &= ~BC_BUSY;
2200 if (unbusybp->b_cflags & BC_WANTED)
2201 cv_broadcast(&bp->b_busy);
2202 }
2203 }
2204 mutex_exit(&bufcache_lock);
2205
2206 /*
2207 * Compute checksum across data and then across summary; the first
2208 * block (the summary block) is skipped. Set the create time here
2209 * so that it's guaranteed to be later than the inode mod times.
2210 */
2211 sum = 0;
2212 if (lfs_sb_getversion(fs) == 1)
2213 el_size = sizeof(u_long);
2214 else
2215 el_size = sizeof(u_int32_t);
2216 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2217 ++bpp;
2218 /* Loop through gop_write cluster blocks */
2219 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2220 byteoffset += lfs_sb_getbsize(fs)) {
2221 #ifdef LFS_USE_BC_INVAL
2222 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2223 (*bpp)->b_iodone != NULL) {
2224 if (copyin((void *)(*bpp)->b_saveaddr +
2225 byteoffset, dp, el_size)) {
2226 panic("lfs_writeseg: copyin failed [1]:"
2227 " ino %" PRIu64 " blk %" PRId64,
2228 VTOI((*bpp)->b_vp)->i_number,
2229 (*bpp)->b_lblkno);
2230 }
2231 } else
2232 #endif /* LFS_USE_BC_INVAL */
2233 {
2234 sum = lfs_cksum_part((char *)
2235 (*bpp)->b_data + byteoffset, el_size, sum);
2236 }
2237 }
2238 }
2239 if (lfs_sb_getversion(fs) == 1)
2240 lfs_ss_setocreate(fs, ssp, time_second);
2241 else {
2242 lfs_ss_setcreate(fs, ssp, time_second);
2243 lfs_sb_addserial(fs, 1);
2244 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2245 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2246 }
2247 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2248 sumstart = lfs_ss_getsumstart(fs);
2249 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2250 lfs_sb_getsumsize(fs) - sumstart));
2251
2252 mutex_enter(&lfs_lock);
2253 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2254 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2255 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2256 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2257 mutex_exit(&lfs_lock);
2258
2259 /*
2260 * When we simply write the blocks we lose a rotation for every block
2261 * written. To avoid this problem, we cluster the buffers into a
2262 * chunk and write the chunk. MAXPHYS is the largest size I/O
2263 * devices can handle, use that for the size of the chunks.
2264 *
2265 * Blocks that are already clusters (from GOP_WRITE), however, we
2266 * don't bother to copy into other clusters.
2267 */
2268
2269 #define CHUNKSIZE MAXPHYS
2270
2271 if (devvp == NULL)
2272 panic("devvp is NULL");
2273 for (bpp = sp->bpp, i = nblocks; i;) {
2274 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2275 cl = cbp->b_private;
2276
2277 cbp->b_flags |= B_ASYNC;
2278 cbp->b_cflags |= BC_BUSY;
2279 cbp->b_bcount = 0;
2280
2281 KASSERTMSG((bpp - sp->bpp <=
2282 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2283 / sizeof(int32_t)),
2284 "lfs_writeseg: real bpp overwrite");
2285 KASSERTMSG((bpp - sp->bpp <=
2286 lfs_segsize(fs) / lfs_sb_getfsize(fs)),
2287 "lfs_writeseg: theoretical bpp overwrite");
2288
2289 /*
2290 * Construct the cluster.
2291 */
2292 mutex_enter(&lfs_lock);
2293 ++fs->lfs_iocount;
2294 mutex_exit(&lfs_lock);
2295 while (i && cbp->b_bcount < CHUNKSIZE) {
2296 bp = *bpp;
2297
2298 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2299 break;
2300 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2301 break;
2302
2303 /* Clusters from GOP_WRITE are expedited */
2304 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2305 if (cbp->b_bcount > 0)
2306 /* Put in its own buffer */
2307 break;
2308 else {
2309 cbp->b_data = bp->b_data;
2310 }
2311 } else if (cbp->b_bcount == 0) {
2312 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2313 LFS_NB_CLUSTER);
2314 cl->flags |= LFS_CL_MALLOC;
2315 }
2316 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2317 btodb(bp->b_bcount - 1))) ==
2318 sp->seg_number),
2319 "segment overwrite: blk size %d daddr %" PRIx64
2320 " not in seg %d\n",
2321 bp->b_bcount, bp->b_blkno,
2322 sp->seg_number);
2323
2324 #ifdef LFS_USE_BC_INVAL
2325 /*
2326 * Fake buffers from the cleaner are marked as BC_INVAL.
2327 * We need to copy the data from user space rather than
2328 * from the buffer indicated.
2329 * XXX == what do I do on an error?
2330 */
2331 if ((bp->b_cflags & BC_INVAL) != 0 &&
2332 bp->b_iodone != NULL) {
2333 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2334 panic("lfs_writeseg: "
2335 "copyin failed [2]");
2336 } else
2337 #endif /* LFS_USE_BC_INVAL */
2338 if (cl->flags & LFS_CL_MALLOC) {
2339 /* copy data into our cluster. */
2340 memcpy(p, bp->b_data, bp->b_bcount);
2341 p += bp->b_bcount;
2342 }
2343
2344 cbp->b_bcount += bp->b_bcount;
2345 cl->bufsize += bp->b_bcount;
2346
2347 bp->b_flags &= ~B_READ;
2348 bp->b_error = 0;
2349 cl->bpp[cl->bufcount++] = bp;
2350
2351 vp = bp->b_vp;
2352 mutex_enter(&bufcache_lock);
2353 mutex_enter(vp->v_interlock);
2354 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2355 reassignbuf(bp, vp);
2356 vp->v_numoutput++;
2357 mutex_exit(vp->v_interlock);
2358 mutex_exit(&bufcache_lock);
2359
2360 bpp++;
2361 i--;
2362 }
2363 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2364 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2365 else
2366 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2367 mutex_enter(devvp->v_interlock);
2368 devvp->v_numoutput++;
2369 mutex_exit(devvp->v_interlock);
2370 VOP_STRATEGY(devvp, cbp);
2371 curlwp->l_ru.ru_oublock++;
2372 }
2373
2374 if (lfs_dostats) {
2375 ++lfs_stats.psegwrites;
2376 lfs_stats.blocktot += nblocks - 1;
2377 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2378 ++lfs_stats.psyncwrites;
2379 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2380 ++lfs_stats.pcleanwrites;
2381 lfs_stats.cleanblocks += nblocks - 1;
2382 }
2383 }
2384
2385 return (lfs_initseg(fs) || do_again);
2386 }
2387
2388 void
2389 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2390 {
2391 struct buf *bp;
2392 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2393
2394 ASSERT_MAYBE_SEGLOCK(fs);
2395 if (fs->lfs_is64) {
2396 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2397 } else {
2398 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2399 }
2400 /*
2401 * If we can write one superblock while another is in
2402 * progress, we risk not having a complete checkpoint if we crash.
2403 * So, block here if a superblock write is in progress.
2404 */
2405 mutex_enter(&lfs_lock);
2406 while (fs->lfs_sbactive) {
2407 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2408 &lfs_lock);
2409 }
2410 fs->lfs_sbactive = daddr;
2411 mutex_exit(&lfs_lock);
2412
2413 /* Set timestamp of this version of the superblock */
2414 if (lfs_sb_getversion(fs) == 1)
2415 lfs_sb_setotstamp(fs, time_second);
2416 lfs_sb_settstamp(fs, time_second);
2417
2418 /* The next chunk of code relies on this assumption */
2419 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2420
2421 /* Checksum the superblock and copy it into a buffer. */
2422 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2423 bp = lfs_newbuf(fs, devvp,
2424 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2425 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2426 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2427 LFS_SBPAD - sizeof(struct dlfs));
2428
2429 bp->b_cflags |= BC_BUSY;
2430 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2431 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2432 bp->b_error = 0;
2433 bp->b_iodone = lfs_supercallback;
2434
2435 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2436 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2437 else
2438 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2439 curlwp->l_ru.ru_oublock++;
2440
2441 mutex_enter(devvp->v_interlock);
2442 devvp->v_numoutput++;
2443 mutex_exit(devvp->v_interlock);
2444
2445 mutex_enter(&lfs_lock);
2446 ++fs->lfs_iocount;
2447 mutex_exit(&lfs_lock);
2448 VOP_STRATEGY(devvp, bp);
2449 }
2450
2451 /*
2452 * Logical block number match routines used when traversing the dirty block
2453 * chain.
2454 */
2455 int
2456 lfs_match_fake(struct lfs *fs, struct buf *bp)
2457 {
2458
2459 ASSERT_SEGLOCK(fs);
2460 return LFS_IS_MALLOC_BUF(bp);
2461 }
2462
2463 #if 0
2464 int
2465 lfs_match_real(struct lfs *fs, struct buf *bp)
2466 {
2467
2468 ASSERT_SEGLOCK(fs);
2469 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2470 }
2471 #endif
2472
2473 int
2474 lfs_match_data(struct lfs *fs, struct buf *bp)
2475 {
2476
2477 ASSERT_SEGLOCK(fs);
2478 return (bp->b_lblkno >= 0);
2479 }
2480
2481 int
2482 lfs_match_indir(struct lfs *fs, struct buf *bp)
2483 {
2484 daddr_t lbn;
2485
2486 ASSERT_SEGLOCK(fs);
2487 lbn = bp->b_lblkno;
2488 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2489 }
2490
2491 int
2492 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2493 {
2494 daddr_t lbn;
2495
2496 ASSERT_SEGLOCK(fs);
2497 lbn = bp->b_lblkno;
2498 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2499 }
2500
2501 int
2502 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2503 {
2504 daddr_t lbn;
2505
2506 ASSERT_SEGLOCK(fs);
2507 lbn = bp->b_lblkno;
2508 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2509 }
2510
2511 static void
2512 lfs_free_aiodone(struct buf *bp)
2513 {
2514 struct lfs *fs;
2515
2516 KERNEL_LOCK(1, curlwp);
2517 fs = bp->b_private;
2518 ASSERT_NO_SEGLOCK(fs);
2519 lfs_freebuf(fs, bp);
2520 KERNEL_UNLOCK_LAST(curlwp);
2521 }
2522
2523 static void
2524 lfs_super_aiodone(struct buf *bp)
2525 {
2526 struct lfs *fs;
2527
2528 KERNEL_LOCK(1, curlwp);
2529 fs = bp->b_private;
2530 ASSERT_NO_SEGLOCK(fs);
2531 mutex_enter(&lfs_lock);
2532 fs->lfs_sbactive = 0;
2533 if (--fs->lfs_iocount <= 1)
2534 wakeup(&fs->lfs_iocount);
2535 wakeup(&fs->lfs_sbactive);
2536 mutex_exit(&lfs_lock);
2537 lfs_freebuf(fs, bp);
2538 KERNEL_UNLOCK_LAST(curlwp);
2539 }
2540
2541 static void
2542 lfs_cluster_aiodone(struct buf *bp)
2543 {
2544 struct lfs_cluster *cl;
2545 struct lfs *fs;
2546 struct buf *tbp, *fbp;
2547 struct vnode *vp, *devvp, *ovp;
2548 struct inode *ip;
2549 int error;
2550
2551 KERNEL_LOCK(1, curlwp);
2552
2553 error = bp->b_error;
2554 cl = bp->b_private;
2555 fs = cl->fs;
2556 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2557 ASSERT_NO_SEGLOCK(fs);
2558
2559 /* Put the pages back, and release the buffer */
2560 while (cl->bufcount--) {
2561 tbp = cl->bpp[cl->bufcount];
2562 KASSERT(tbp->b_cflags & BC_BUSY);
2563 if (error) {
2564 tbp->b_error = error;
2565 }
2566
2567 /*
2568 * We're done with tbp. If it has not been re-dirtied since
2569 * the cluster was written, free it. Otherwise, keep it on
2570 * the locked list to be written again.
2571 */
2572 vp = tbp->b_vp;
2573
2574 tbp->b_flags &= ~B_GATHERED;
2575
2576 #ifdef DEBUG
2577 if ((tbp)->b_vp == (fs)->lfs_ivnode)
2578 LFS_ENTER_LOG("clear", __FILE__, __LINE__,
2579 tbp->b_lblkno, tbp->b_flags, curproc->p_pid);
2580 #endif
2581
2582 mutex_enter(&bufcache_lock);
2583 if (tbp->b_iodone == NULL) {
2584 KASSERT(tbp->b_flags & B_LOCKED);
2585 bremfree(tbp);
2586 if (vp) {
2587 mutex_enter(vp->v_interlock);
2588 reassignbuf(tbp, vp);
2589 mutex_exit(vp->v_interlock);
2590 }
2591 tbp->b_flags |= B_ASYNC; /* for biodone */
2592 }
2593
2594 if ((tbp->b_flags & B_LOCKED) && !(tbp->b_oflags & BO_DELWRI))
2595 LFS_UNLOCK_BUF(tbp);
2596
2597 if (tbp->b_oflags & BO_DONE) {
2598 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2599 cl->bufcount, (long)tbp->b_flags));
2600 }
2601
2602 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2603 /*
2604 * A buffer from the page daemon.
2605 * We use the same iodone as it does,
2606 * so we must manually disassociate its
2607 * buffers from the vp.
2608 */
2609 if ((ovp = tbp->b_vp) != NULL) {
2610 /* This is just silly */
2611 mutex_enter(ovp->v_interlock);
2612 brelvp(tbp);
2613 mutex_exit(ovp->v_interlock);
2614 tbp->b_vp = vp;
2615 tbp->b_objlock = vp->v_interlock;
2616 }
2617 /* Put it back the way it was */
2618 tbp->b_flags |= B_ASYNC;
2619 /* Master buffers have BC_AGE */
2620 if (tbp->b_private == tbp)
2621 tbp->b_cflags |= BC_AGE;
2622 }
2623 mutex_exit(&bufcache_lock);
2624
2625 biodone(tbp);
2626
2627 /*
2628 * If this is the last block for this vnode, but
2629 * there are other blocks on its dirty list,
2630 * set IN_MODIFIED/IN_CLEANING depending on what
2631 * sort of block. Only do this for our mount point,
2632 * not for, e.g., inode blocks that are attached to
2633 * the devvp.
2634 * XXX KS - Shouldn't we set *both* if both types
2635 * of blocks are present (traverse the dirty list?)
2636 */
2637 mutex_enter(vp->v_interlock);
2638 mutex_enter(&lfs_lock);
2639 if (vp != devvp && vp->v_numoutput == 0 &&
2640 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2641 ip = VTOI(vp);
2642 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2643 ip->i_number));
2644 if (LFS_IS_MALLOC_BUF(fbp))
2645 LFS_SET_UINO(ip, IN_CLEANING);
2646 else
2647 LFS_SET_UINO(ip, IN_MODIFIED);
2648 }
2649 cv_broadcast(&vp->v_cv);
2650 mutex_exit(&lfs_lock);
2651 mutex_exit(vp->v_interlock);
2652 }
2653
2654 /* Fix up the cluster buffer, and release it */
2655 if (cl->flags & LFS_CL_MALLOC)
2656 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2657 putiobuf(bp);
2658
2659 /* Note i/o done */
2660 if (cl->flags & LFS_CL_SYNC) {
2661 if (--cl->seg->seg_iocount == 0)
2662 wakeup(&cl->seg->seg_iocount);
2663 }
2664 mutex_enter(&lfs_lock);
2665 KASSERTMSG((fs->lfs_iocount != 0),
2666 "lfs_cluster_aiodone: zero iocount");
2667 if (--fs->lfs_iocount <= 1)
2668 wakeup(&fs->lfs_iocount);
2669 mutex_exit(&lfs_lock);
2670
2671 KERNEL_UNLOCK_LAST(curlwp);
2672
2673 pool_put(&fs->lfs_bpppool, cl->bpp);
2674 cl->bpp = NULL;
2675 pool_put(&fs->lfs_clpool, cl);
2676 }
2677
2678 static void
2679 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2680 {
2681 /* reset b_iodone for when this is a single-buf i/o. */
2682 bp->b_iodone = aiodone;
2683
2684 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2685 }
2686
2687 static void
2688 lfs_cluster_callback(struct buf *bp)
2689 {
2690
2691 lfs_generic_callback(bp, lfs_cluster_aiodone);
2692 }
2693
2694 void
2695 lfs_supercallback(struct buf *bp)
2696 {
2697
2698 lfs_generic_callback(bp, lfs_super_aiodone);
2699 }
2700
2701 /*
2702 * The only buffers that are going to hit these functions are the
2703 * segment write blocks, or the segment summaries, or the superblocks.
2704 *
2705 * All of the above are created by lfs_newbuf, and so do not need to be
2706 * released via brelse.
2707 */
2708 void
2709 lfs_callback(struct buf *bp)
2710 {
2711
2712 lfs_generic_callback(bp, lfs_free_aiodone);
2713 }
2714
2715 /*
2716 * Shellsort (diminishing increment sort) from Data Structures and
2717 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2718 * see also Knuth Vol. 3, page 84. The increments are selected from
2719 * formula (8), page 95. Roughly O(N^3/2).
2720 */
2721 /*
2722 * This is our own private copy of shellsort because we want to sort
2723 * two parallel arrays (the array of buffer pointers and the array of
2724 * logical block numbers) simultaneously. Note that we cast the array
2725 * of logical block numbers to a unsigned in this routine so that the
2726 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2727 */
2728
2729 static void
2730 lfs_shellsort(struct lfs *fs,
2731 struct buf **bp_array, union lfs_blocks *lb_array,
2732 int nmemb, int size)
2733 {
2734 static int __rsshell_increments[] = { 4, 1, 0 };
2735 int incr, *incrp, t1, t2;
2736 struct buf *bp_temp;
2737
2738 #ifdef DEBUG
2739 incr = 0;
2740 for (t1 = 0; t1 < nmemb; t1++) {
2741 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2742 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2743 /* dump before panic */
2744 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2745 nmemb, size);
2746 incr = 0;
2747 for (t1 = 0; t1 < nmemb; t1++) {
2748 const struct buf *bp = bp_array[t1];
2749
2750 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2751 PRIu64 "\n", t1,
2752 (uint64_t)bp->b_bcount,
2753 (uint64_t)bp->b_lblkno);
2754 printf("lbns:");
2755 for (t2 = 0; t2 * size < bp->b_bcount;
2756 t2++) {
2757 printf(" %jd",
2758 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2759 }
2760 printf("\n");
2761 }
2762 panic("lfs_shellsort: inconsistent input");
2763 }
2764 }
2765 }
2766 #endif
2767
2768 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2769 for (t1 = incr; t1 < nmemb; ++t1)
2770 for (t2 = t1 - incr; t2 >= 0;)
2771 if ((u_int64_t)bp_array[t2]->b_lblkno >
2772 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2773 bp_temp = bp_array[t2];
2774 bp_array[t2] = bp_array[t2 + incr];
2775 bp_array[t2 + incr] = bp_temp;
2776 t2 -= incr;
2777 } else
2778 break;
2779
2780 /* Reform the list of logical blocks */
2781 incr = 0;
2782 for (t1 = 0; t1 < nmemb; t1++) {
2783 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2784 lfs_blocks_set(fs, lb_array, incr++,
2785 bp_array[t1]->b_lblkno + t2);
2786 }
2787 }
2788 }
2789
2790 /*
2791 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2792 * point at uninitialized space.
2793 */
2794 void
2795 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2796 {
2797 struct segment *sp = fs->lfs_sp;
2798 SEGSUM *ssp;
2799
2800 KASSERT(vers > 0);
2801
2802 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2803 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2804 (void) lfs_writeseg(fs, fs->lfs_sp);
2805
2806 sp->sum_bytes_left -= FINFOSIZE(fs);
2807 ssp = (SEGSUM *)sp->segsum;
2808 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2809 lfs_fi_setnblocks(fs, sp->fip, 0);
2810 lfs_fi_setino(fs, sp->fip, ino);
2811 lfs_fi_setversion(fs, sp->fip, vers);
2812 }
2813
2814 /*
2815 * Release the FINFO entry, either clearing out an unused entry or
2816 * advancing us to the next available entry.
2817 */
2818 void
2819 lfs_release_finfo(struct lfs *fs)
2820 {
2821 struct segment *sp = fs->lfs_sp;
2822 SEGSUM *ssp;
2823
2824 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2825 sp->fip = NEXT_FINFO(fs, sp->fip);
2826 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2827 } else {
2828 /* XXX shouldn't this update sp->fip? */
2829 sp->sum_bytes_left += FINFOSIZE(fs);
2830 ssp = (SEGSUM *)sp->segsum;
2831 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2832 }
2833 }
2834