lfs_segment.c revision 1.291 1 /* $NetBSD: lfs_segment.c,v 1.291 2025/09/17 03:50:38 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.291 2025/09/17 03:50:38 perseant Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_state & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 #include <sys/workqueue.h>
95
96 #include <miscfs/specfs/specdev.h>
97 #include <miscfs/fifofs/fifo.h>
98
99 #include <ufs/lfs/ulfs_inode.h>
100 #include <ufs/lfs/ulfsmount.h>
101 #include <ufs/lfs/ulfs_extern.h>
102
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_accessors.h>
105 #include <ufs/lfs/lfs_kernel.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_page.h>
110
111 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
112
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115
116 /*
117 * Determine if it's OK to start a partial in this segment, or if we need
118 * to go on to a new segment.
119 */
120 #define LFS_PARTIAL_FITS(fs) \
121 (lfs_sb_getfsbpseg(fs) - \
122 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
123 lfs_sb_getfrag(fs))
124
125 /*
126 * Figure out whether we should do a checkpoint write or go ahead with
127 * an ordinary write.
128 */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130 ((flags & SEGM_CLEAN) == 0 && \
131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
132 (flags & SEGM_CKP) || \
133 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
134
135 int lfs_match_fake(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 void lfs_updatemeta(struct segment *);
138 void lfs_writesuper(struct lfs *, daddr_t);
139 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
140 struct segment *sp, int dirops);
141
142 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
143 int, int);
144
145 kcondvar_t lfs_allclean_wakeup; /* Cleaner wakeup address. */
146 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
147 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
148 int lfs_dirvcount = 0; /* # active dirops */
149
150 extern struct workqueue *lfs_wq;
151
152 /* Statistics Counters */
153 int lfs_dostats = 1;
154 struct lfs_stats lfs_stats;
155
156 /* op values to lfs_writevnodes */
157 #define VN_REG 0
158 #define VN_DIROP 1
159 #define VN_EMPTY 2
160 #define VN_CLEAN 3
161
162 /*
163 * XXX KS - Set modification time on the Ifile, so the cleaner can
164 * read the fs mod time off of it. We don't set IN_UPDATE here,
165 * since we don't really need this to be flushed to disk (and in any
166 * case that wouldn't happen to the Ifile until we checkpoint).
167 */
168 void
169 lfs_imtime(struct lfs *fs)
170 {
171 struct timespec ts;
172 struct inode *ip;
173
174 ASSERT_MAYBE_SEGLOCK(fs);
175 vfs_timestamp(&ts);
176 ip = VTOI(fs->lfs_ivnode);
177 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
178 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
179 }
180
181 /*
182 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
183 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
184 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
185 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
186 */
187
188 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
189
190 int
191 lfs_vflush(struct vnode *vp)
192 {
193 struct inode *ip;
194 struct lfs *fs;
195 struct segment *sp;
196 struct buf *bp, *nbp, *tbp, *tnbp;
197 int error;
198 int flushed;
199 int relock;
200
201 ip = VTOI(vp);
202 fs = VFSTOULFS(vp->v_mount)->um_lfs;
203 relock = 0;
204
205 top:
206 KASSERT(mutex_owned(vp->v_interlock) == false);
207 KASSERT(mutex_owned(&lfs_lock) == false);
208 KASSERT(mutex_owned(&bufcache_lock) == false);
209 ASSERT_NO_SEGLOCK(fs);
210 if (ip->i_state & IN_CLEANING) {
211 ivndebug(vp,"vflush/in_cleaning");
212 mutex_enter(&lfs_lock);
213 LFS_CLR_UINO(ip, IN_CLEANING);
214 LFS_SET_UINO(ip, IN_MODIFIED);
215 mutex_exit(&lfs_lock);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data.
220 */
221 mutex_enter(vp->v_interlock);
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (!LFS_IS_MALLOC_BUF(bp))
225 continue;
226 /*
227 * Look for pages matching the range covered
228 * by cleaning blocks. It's okay if more dirty
229 * pages appear, so long as none disappear out
230 * from under us.
231 */
232 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
233 vp != fs->lfs_ivnode) {
234 struct vm_page *pg;
235 voff_t off;
236
237 for (off = lfs_lblktosize(fs, bp->b_lblkno);
238 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
239 off += PAGE_SIZE) {
240 pg = uvm_pagelookup(&vp->v_uobj, off);
241 if (pg == NULL)
242 continue;
243 if (uvm_pagegetdirty(pg)
244 == UVM_PAGE_STATUS_DIRTY ||
245 pmap_is_modified(pg)) {
246 lfs_sb_addavail(fs,
247 lfs_btofsb(fs,
248 bp->b_bcount));
249 wakeup(&fs->lfs_availsleep);
250 mutex_exit(vp->v_interlock);
251 lfs_freebuf(fs, bp);
252 mutex_enter(vp->v_interlock);
253 bp = NULL;
254 break;
255 }
256 }
257 }
258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
259 tbp = tnbp)
260 {
261 tnbp = LIST_NEXT(tbp, b_vnbufs);
262 if (tbp->b_vp == bp->b_vp
263 && tbp->b_lblkno == bp->b_lblkno
264 && tbp != bp)
265 {
266 lfs_sb_addavail(fs, lfs_btofsb(fs,
267 bp->b_bcount));
268 wakeup(&fs->lfs_availsleep);
269 mutex_exit(vp->v_interlock);
270 lfs_freebuf(fs, bp);
271 mutex_enter(vp->v_interlock);
272 bp = NULL;
273 break;
274 }
275 }
276 }
277 } else {
278 mutex_enter(vp->v_interlock);
279 }
280
281 /* If the node is being written, wait until that is done */
282 while (WRITEINPROG(vp)) {
283 ivndebug(vp,"vflush/writeinprog");
284 cv_wait(&vp->v_cv, vp->v_interlock);
285 }
286 error = vdead_check(vp, VDEAD_NOWAIT);
287 mutex_exit(vp->v_interlock);
288
289 /* Protect against deadlock in vinvalbuf() */
290 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
291 if (error != 0) {
292 fs->lfs_reclino = ip->i_number;
293 }
294
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip->i_lfs_iflags & LFSI_DELETED) {
297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 ip->i_number));
299 /* Drain v_numoutput */
300 mutex_enter(vp->v_interlock);
301 while (vp->v_numoutput > 0) {
302 cv_wait(&vp->v_cv, vp->v_interlock);
303 }
304 KASSERT(vp->v_numoutput == 0);
305 mutex_exit(vp->v_interlock);
306
307 mutex_enter(&bufcache_lock);
308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 nbp = LIST_NEXT(bp, b_vnbufs);
310
311 KASSERT((bp->b_flags & B_GATHERED) == 0);
312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
314 wakeup(&fs->lfs_availsleep);
315 }
316 /* Copied from lfs_writeseg */
317 if (bp->b_iodone != NULL) {
318 mutex_exit(&bufcache_lock);
319 biodone(bp);
320 mutex_enter(&bufcache_lock);
321 } else {
322 bremfree(bp);
323 LFS_UNLOCK_BUF(bp);
324 mutex_enter(vp->v_interlock);
325 bp->b_flags &= ~(B_READ | B_GATHERED);
326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 bp->b_error = 0;
328 reassignbuf(bp, vp);
329 mutex_exit(vp->v_interlock);
330 brelse(bp, 0);
331 }
332 }
333 mutex_exit(&bufcache_lock);
334 LFS_CLR_UINO(ip, IN_CLEANING);
335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 ip->i_state &= ~IN_ALLMOD;
337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 ip->i_number));
339 lfs_segunlock(fs);
340
341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342
343 return 0;
344 }
345
346 fs->lfs_flushvp = vp;
347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 fs->lfs_flushvp = NULL;
350 KASSERT(fs->lfs_flushvp_fakevref == 0);
351 lfs_segunlock(fs);
352
353 /* Make sure that any pending buffers get written */
354 mutex_enter(vp->v_interlock);
355 while (vp->v_numoutput > 0) {
356 cv_wait(&vp->v_cv, vp->v_interlock);
357 }
358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 KASSERT(vp->v_numoutput == 0);
360 mutex_exit(vp->v_interlock);
361
362 return error;
363 }
364 sp = fs->lfs_sp;
365
366 flushed = 0;
367 if (VPISEMPTY(vp)) {
368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 ++flushed;
370 } else if ((ip->i_state & IN_CLEANING) &&
371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 ivndebug(vp,"vflush/clean");
373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 ++flushed;
375 } else if (lfs_dostats) {
376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD))
377 ++lfs_stats.vflush_invoked;
378 ivndebug(vp,"vflush");
379 }
380
381 #ifdef DIAGNOSTIC
382 if (vp->v_uflag & VU_DIROP) {
383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 }
386 #endif
387
388 do {
389 #ifdef DEBUG
390 int loopcount = 0;
391 #endif
392 do {
393 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
394 relock = lfs_writefile(fs, sp, vp);
395 if (relock && vp != fs->lfs_ivnode) {
396 /*
397 * Might have to wait for the
398 * cleaner to run; but we're
399 * still not done with this vnode.
400 * XXX we can do better than this.
401 */
402 KASSERT(ip->i_number != LFS_IFILE_INUM);
403 lfs_writeinode(fs, sp, ip);
404 mutex_enter(&lfs_lock);
405 LFS_SET_UINO(ip, IN_MODIFIED);
406 mutex_exit(&lfs_lock);
407 lfs_writeseg(fs, sp);
408 lfs_segunlock(fs);
409 lfs_segunlock_relock(fs);
410 goto top;
411 }
412 }
413 /*
414 * If we begin a new segment in the middle of writing
415 * the Ifile, it creates an inconsistent checkpoint,
416 * since the Ifile information for the new segment
417 * is not up-to-date. Take care of this here by
418 * sending the Ifile through again in case there
419 * are newly dirtied blocks. But wait, there's more!
420 * This second Ifile write could *also* cross a segment
421 * boundary, if the first one was large. The second
422 * one is guaranteed to be no more than 8 blocks,
423 * though (two segment blocks and supporting indirects)
424 * so the third write *will not* cross the boundary.
425 */
426 if (vp == fs->lfs_ivnode) {
427 lfs_writefile(fs, sp, vp);
428 lfs_writefile(fs, sp, vp);
429 }
430 #ifdef DEBUG
431 if (++loopcount > 2)
432 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
433 #endif
434 } while (lfs_writeinode(fs, sp, ip));
435 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
436
437 if (lfs_dostats) {
438 ++lfs_stats.nwrites;
439 if (sp->seg_flags & SEGM_SYNC)
440 ++lfs_stats.nsync_writes;
441 if (sp->seg_flags & SEGM_CKP)
442 ++lfs_stats.ncheckpoints;
443 }
444 /*
445 * If we were called from somewhere that has already held the seglock
446 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
447 * the write to complete because we are still locked.
448 * Since lfs_vflush() must return the vnode with no dirty buffers,
449 * we must explicitly wait, if that is the case.
450 *
451 * We compare the iocount against 1, not 0, because it is
452 * artificially incremented by lfs_seglock().
453 */
454 mutex_enter(&lfs_lock);
455 if (fs->lfs_seglock > 1) {
456 while (fs->lfs_iocount > 1)
457 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
458 "lfs_vflush", 0, &lfs_lock);
459 }
460 mutex_exit(&lfs_lock);
461
462 lfs_segunlock(fs);
463
464 /* Wait for these buffers to be recovered by aiodoned */
465 mutex_enter(vp->v_interlock);
466 while (vp->v_numoutput > 0) {
467 cv_wait(&vp->v_cv, vp->v_interlock);
468 }
469 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
470 KASSERT(vp->v_numoutput == 0);
471 mutex_exit(vp->v_interlock);
472
473 fs->lfs_flushvp = NULL;
474 KASSERT(fs->lfs_flushvp_fakevref == 0);
475
476 return (0);
477 }
478
479 struct lfs_writevnodes_ctx {
480 int op;
481 struct lfs *fs;
482 };
483 static bool
484 lfs_writevnodes_selector(void *cl, struct vnode *vp)
485 {
486 struct lfs_writevnodes_ctx *c = cl;
487 struct inode *ip;
488 int op = c->op;
489
490 KASSERT(mutex_owned(vp->v_interlock));
491
492 ip = VTOI(vp);
493 if (ip == NULL || vp->v_type == VNON || ip->i_nlink <= 0)
494 return false;
495 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
496 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
497 vndebug(vp, "dirop");
498 return false;
499 }
500 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
501 vndebug(vp,"empty");
502 return false;
503 }
504 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
505 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) {
506 vndebug(vp,"cleaning");
507 return false;
508 }
509 mutex_enter(&lfs_lock);
510 if (vp == c->fs->lfs_unlockvp) {
511 mutex_exit(&lfs_lock);
512 return false;
513 }
514 mutex_exit(&lfs_lock);
515
516 return true;
517 }
518
519 int
520 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
521 {
522 struct inode *ip;
523 struct vnode *vp;
524 struct vnode_iterator *marker;
525 struct lfs_writevnodes_ctx ctx;
526 int inodes_written = 0;
527 int error = 0;
528
529 /*
530 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
531 * XXX The rationale is unclear, the initial commit had no information.
532 * XXX If the order really matters we have to sort the vnodes first.
533 */
534
535 ASSERT_SEGLOCK(fs);
536 vfs_vnode_iterator_init(mp, &marker);
537 ctx.op = op;
538 ctx.fs = fs;
539 while ((vp = vfs_vnode_iterator_next(marker,
540 lfs_writevnodes_selector, &ctx)) != NULL) {
541 ip = VTOI(vp);
542
543 /*
544 * Write the inode/file if dirty and it's not the IFILE.
545 */
546 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) &&
547 ip->i_number != LFS_IFILE_INUM) {
548 error = lfs_writefile(fs, sp, vp);
549 if (error) {
550 vrele(vp);
551 if (error == EAGAIN) {
552 /*
553 * This error from lfs_putpages
554 * indicates we need to drop
555 * the segment lock and start
556 * over after the cleaner has
557 * had a chance to run.
558 */
559 lfs_writeinode(fs, sp, ip);
560 lfs_writeseg(fs, sp);
561 if (!VPISEMPTY(vp) &&
562 !WRITEINPROG(vp) &&
563 !(ip->i_state & IN_ALLMOD)) {
564 mutex_enter(&lfs_lock);
565 LFS_SET_UINO(ip, IN_MODIFIED);
566 mutex_exit(&lfs_lock);
567 }
568 break;
569 }
570 error = 0; /* XXX not quite right */
571 continue;
572 }
573
574 if (!VPISEMPTY(vp)) {
575 if (WRITEINPROG(vp)) {
576 ivndebug(vp,"writevnodes/write2");
577 } else if (!(ip->i_state & IN_ALLMOD)) {
578 mutex_enter(&lfs_lock);
579 LFS_SET_UINO(ip, IN_MODIFIED);
580 mutex_exit(&lfs_lock);
581 }
582 }
583 (void) lfs_writeinode(fs, sp, ip);
584 inodes_written++;
585 }
586 vrele(vp);
587 }
588 vfs_vnode_iterator_destroy(marker);
589 return error;
590 }
591
592 /*
593 * Do a checkpoint.
594 */
595 int
596 lfs_segwrite(struct mount *mp, int flags)
597 {
598 struct buf *bp;
599 struct inode *ip;
600 struct lfs *fs;
601 struct segment *sp;
602 struct vnode *vp;
603 SEGUSE *segusep;
604 int do_ckp, did_ckp, error;
605 unsigned n, segleft, maxseg, sn, i, curseg;
606 int writer_set = 0;
607 int dirty;
608 int redo;
609 SEGSUM *ssp;
610 int um_error;
611
612 fs = VFSTOULFS(mp)->um_lfs;
613 ASSERT_MAYBE_SEGLOCK(fs);
614
615 if (fs->lfs_ronly)
616 return EROFS;
617
618 lfs_imtime(fs);
619
620 /*
621 * Allocate a segment structure and enough space to hold pointers to
622 * the maximum possible number of buffers which can be described in a
623 * single summary block.
624 */
625 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
626
627 /*
628 * If we know we're gonna need the writer lock, take it now to
629 * preserve the lock order lfs_writer -> lfs_seglock.
630 */
631 if (do_ckp) {
632 lfs_writer_enter(fs, "ckpwriter");
633 writer_set = 1;
634 }
635
636 /* We can't do a partial write and checkpoint at the same time. */
637 if (do_ckp)
638 flags &= ~SEGM_SINGLE;
639
640 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
641 sp = fs->lfs_sp;
642 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
643 do_ckp = 1;
644
645 /*
646 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
647 * in which case we have to flush *all* buffers off of this vnode.
648 * We don't care about other nodes, but write any non-dirop nodes
649 * anyway in anticipation of another getnewvnode().
650 *
651 * If we're cleaning we only write cleaning and ifile blocks, and
652 * no dirops, since otherwise we'd risk corruption in a crash.
653 */
654 if (sp->seg_flags & SEGM_CLEAN)
655 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
656 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
657 do {
658 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
659 if ((sp->seg_flags & SEGM_SINGLE) &&
660 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
661 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
662 break;
663 }
664
665 if (do_ckp ||
666 (writer_set = lfs_writer_tryenter(fs)) != 0) {
667 KASSERT(writer_set);
668 KASSERT(fs->lfs_writer);
669 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
670 if (um_error == 0)
671 um_error = error;
672 /*
673 * In case writevnodes errored out
674 * XXX why are we always doing this and not
675 * just on error?
676 */
677 lfs_flush_dirops(fs);
678 ssp = (SEGSUM *)(sp->segsum);
679 lfs_ss_setflags(fs, ssp,
680 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
681 lfs_finalize_fs_seguse(fs);
682 }
683 if (do_ckp && um_error) {
684 lfs_segunlock_relock(fs);
685 sp = fs->lfs_sp;
686 }
687 } while (do_ckp && um_error != 0);
688 }
689
690 /*
691 * If we are doing a checkpoint, mark everything since the
692 * last checkpoint as no longer ACTIVE.
693 */
694 if (do_ckp || fs->lfs_doifile) {
695 segleft = lfs_sb_getnseg(fs);
696 curseg = 0;
697 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
698 int bread_error;
699
700 dirty = 0;
701 bread_error = bread(fs->lfs_ivnode,
702 lfs_sb_getcleansz(fs) + n,
703 lfs_sb_getbsize(fs), B_MODIFY, &bp);
704 if (bread_error)
705 panic("lfs_segwrite: ifile read: "
706 "seguse %u: error %d\n",
707 n, bread_error);
708 segusep = (SEGUSE *)bp->b_data;
709 maxseg = uimin(segleft, lfs_sb_getsepb(fs));
710 for (i = 0; i < maxseg; i++) {
711 sn = curseg + i;
712 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
713 segusep->su_flags & SEGUSE_ACTIVE) {
714 segusep->su_flags &= ~SEGUSE_ACTIVE;
715 --fs->lfs_nactive;
716 ++dirty;
717 }
718 fs->lfs_suflags[fs->lfs_activesb][sn] =
719 segusep->su_flags;
720 if (lfs_sb_getversion(fs) > 1)
721 ++segusep;
722 else
723 segusep = (SEGUSE *)
724 ((SEGUSE_V1 *)segusep + 1);
725 }
726
727 if (dirty)
728 error = LFS_BWRITE_LOG(bp); /* Ifile */
729 else
730 brelse(bp, 0);
731 segleft -= lfs_sb_getsepb(fs);
732 curseg += lfs_sb_getsepb(fs);
733 }
734 }
735
736 KASSERT(LFS_SEGLOCK_HELD(fs));
737
738 did_ckp = 0;
739 if (do_ckp || fs->lfs_doifile) {
740 vp = fs->lfs_ivnode;
741 #ifdef DEBUG
742 int loopcount = 0;
743 #endif
744 do {
745
746 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
747
748 mutex_enter(&lfs_lock);
749 fs->lfs_flags &= ~LFS_IFDIRTY;
750 mutex_exit(&lfs_lock);
751
752 ip = VTOI(vp);
753
754 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
755 /*
756 * Ifile has no pages, so we don't need
757 * to check error return here.
758 */
759 lfs_writefile(fs, sp, vp);
760 /*
761 * Ensure the Ifile takes the current segment
762 * into account. See comment in lfs_vflush.
763 */
764 lfs_writefile(fs, sp, vp);
765 lfs_writefile(fs, sp, vp);
766 }
767
768 if (ip->i_state & IN_ALLMOD)
769 ++did_ckp;
770 #if 0
771 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
772 #else
773 redo = lfs_writeinode(fs, sp, ip);
774 #endif
775 redo += lfs_writeseg(fs, sp);
776 mutex_enter(&lfs_lock);
777 redo += (fs->lfs_flags & LFS_IFDIRTY);
778 mutex_exit(&lfs_lock);
779 #ifdef DEBUG
780 if (++loopcount > 2)
781 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
782 loopcount);
783 #endif
784 } while (redo && do_ckp);
785
786 /*
787 * Unless we are unmounting, the Ifile may continue to have
788 * dirty blocks even after a checkpoint, due to changes to
789 * inodes' atime. If we're checkpointing, it's "impossible"
790 * for other parts of the Ifile to be dirty after the loop
791 * above, since we hold the segment lock.
792 */
793 mutex_enter(vp->v_interlock);
794 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
795 LFS_CLR_UINO(ip, IN_ALLMOD);
796 }
797 #ifdef DIAGNOSTIC
798 else if (do_ckp) {
799 int do_panic = 0;
800 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
801 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
802 lfs_sb_getsegtabsz(fs) &&
803 !(bp->b_flags & B_GATHERED)) {
804 printf("ifile lbn %ld still dirty (flags %lx)\n",
805 (long)bp->b_lblkno,
806 (long)bp->b_flags);
807 ++do_panic;
808 }
809 }
810 if (do_panic)
811 panic("dirty blocks");
812 }
813 #endif
814 mutex_exit(vp->v_interlock);
815 } else {
816 (void) lfs_writeseg(fs, sp);
817 }
818
819 /* Note Ifile no longer needs to be written */
820 fs->lfs_doifile = 0;
821 if (writer_set)
822 lfs_writer_leave(fs);
823
824 /*
825 * If we didn't write the Ifile, we didn't really do anything.
826 * That means that (1) there is a checkpoint on disk and (2)
827 * nothing has changed since it was written.
828 *
829 * Take the flags off of the segment so that lfs_segunlock
830 * doesn't have to write the superblock either.
831 */
832 if (do_ckp && !did_ckp) {
833 sp->seg_flags &= ~SEGM_CKP;
834 }
835
836 if (lfs_dostats) {
837 ++lfs_stats.nwrites;
838 if (sp->seg_flags & SEGM_SYNC)
839 ++lfs_stats.nsync_writes;
840 if (sp->seg_flags & SEGM_CKP)
841 ++lfs_stats.ncheckpoints;
842 }
843 lfs_segunlock(fs);
844 return (0);
845 }
846
847 /*
848 * Write the dirty blocks associated with a vnode.
849 */
850 int
851 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
852 {
853 struct inode *ip;
854 int i, frag;
855 SEGSUM *ssp;
856 int error;
857
858 ASSERT_SEGLOCK(fs);
859 error = 0;
860 ip = VTOI(vp);
861
862 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
863
864 if (vp->v_uflag & VU_DIROP) {
865 ssp = (SEGSUM *)sp->segsum;
866 lfs_ss_setflags(fs, ssp,
867 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
868 }
869
870 if (sp->seg_flags & SEGM_CLEAN) {
871 lfs_gather(fs, sp, vp, lfs_match_fake);
872 /*
873 * For a file being flushed, we need to write *all* blocks.
874 * This means writing the cleaning blocks first, and then
875 * immediately following with any non-cleaning blocks.
876 * The same is true of the Ifile since checkpoints assume
877 * that all valid Ifile blocks are written.
878 */
879 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
880 lfs_gather(fs, sp, vp, lfs_match_data);
881 /*
882 * Don't call VOP_PUTPAGES: if we're flushing,
883 * we've already done it, and the Ifile doesn't
884 * use the page cache.
885 */
886 }
887 } else {
888 lfs_gather(fs, sp, vp, lfs_match_data);
889 /*
890 * If we're flushing, we've already called VOP_PUTPAGES
891 * so don't do it again. Otherwise, we want to write
892 * everything we've got.
893 */
894 if (!IS_FLUSHING(fs, vp)) {
895 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
896 error = VOP_PUTPAGES(vp, 0, 0,
897 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
898 }
899 }
900
901 /*
902 * It may not be necessary to write the meta-data blocks at this point,
903 * as the roll-forward recovery code should be able to reconstruct the
904 * list.
905 *
906 * We have to write them anyway, though, under two conditions: (1) the
907 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
908 * checkpointing.
909 *
910 * BUT if we are cleaning, we might have indirect blocks that refer to
911 * new blocks not being written yet, in addition to fragments being
912 * moved out of a cleaned segment. If that is the case, don't
913 * write the indirect blocks, or the finfo will have a small block
914 * in the middle of it!
915 * XXX in this case isn't the inode size wrong too?
916 */
917 frag = 0;
918 if (sp->seg_flags & SEGM_CLEAN) {
919 for (i = 0; i < ULFS_NDADDR; i++)
920 if (ip->i_lfs_fragsize[i] > 0 &&
921 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
922 ++frag;
923 }
924 KASSERTMSG((frag <= 1),
925 "lfs_writefile: more than one fragment! frag=%d", frag);
926 if (IS_FLUSHING(fs, vp) ||
927 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
928 lfs_gather(fs, sp, vp, lfs_match_indir);
929 lfs_gather(fs, sp, vp, lfs_match_dindir);
930 lfs_gather(fs, sp, vp, lfs_match_tindir);
931 }
932 lfs_release_finfo(fs);
933
934 return error;
935 }
936
937 /*
938 * Update segment accounting to reflect this inode's change of address.
939 */
940 static int
941 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
942 {
943 struct buf *bp;
944 daddr_t daddr;
945 IFILE *ifp;
946 SEGUSE *sup;
947 ino_t ino;
948 int redo_ifile;
949 u_int32_t sn;
950
951 redo_ifile = 0;
952
953 /*
954 * If updating the ifile, update the super-block. Update the disk
955 * address and access times for this inode in the ifile.
956 */
957 ino = ip->i_number;
958 if (ino == LFS_IFILE_INUM) {
959 daddr = lfs_sb_getidaddr(fs);
960 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
961 } else {
962 LFS_IENTRY(ifp, fs, ino, bp);
963 daddr = lfs_if_getdaddr(fs, ifp);
964 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
965 (void)LFS_BWRITE_LOG(bp); /* Ifile */
966 }
967
968 /*
969 * If this is the Ifile and lfs_offset is set to the first block
970 * in the segment, dirty the new segment's accounting block
971 * (XXX should already be dirty?) and tell the caller to do it again.
972 */
973 if (ip->i_number == LFS_IFILE_INUM) {
974 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
975 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
976 lfs_sb_getoffset(fs)) {
977 LFS_SEGENTRY(sup, fs, sn, bp);
978 KASSERT(bp->b_oflags & BO_DELWRI);
979 LFS_WRITESEGENTRY(sup, fs, sn, bp);
980 /* fs->lfs_flags |= LFS_IFDIRTY; */
981 redo_ifile |= 1;
982 }
983 }
984
985 /*
986 * The inode's last address should not be in the current partial
987 * segment, except under exceptional circumstances (lfs_writevnodes
988 * had to start over, and in the meantime more blocks were written
989 * to a vnode). Both inodes will be accounted to this segment
990 * in lfs_writeseg so we need to subtract the earlier version
991 * here anyway. The segment count can temporarily dip below
992 * zero here; keep track of how many duplicates we have in
993 * "dupino" so we don't panic below.
994 */
995 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
996 ++sp->ndupino;
997 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
998 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
999 (long long)daddr, sp->ndupino));
1000 }
1001 /*
1002 * Account the inode: it no longer belongs to its former segment,
1003 * though it will not belong to the new segment until that segment
1004 * is actually written.
1005 */
1006 if (!DADDR_IS_BAD(daddr)) {
1007 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1008 int ndupino __diagused =
1009 (sp->seg_number == oldsn) ? sp->ndupino : 0;
1010 LFS_SEGENTRY(sup, fs, oldsn, bp);
1011 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino)
1012 >= DINOSIZE(fs)),
1013 "lfs_writeinode: negative bytes "
1014 "(segment %" PRIu32 " short by %d, "
1015 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1016 ", daddr=%" PRId64 ", su_nbytes=%u, "
1017 "ndupino=%d)\n",
1018 lfs_dtosn(fs, daddr),
1019 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes,
1020 oldsn, sp->seg_number, daddr,
1021 (unsigned int)sup->su_nbytes,
1022 sp->ndupino);
1023 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1024 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1025 sup->su_nbytes -= DINOSIZE(fs);
1026 redo_ifile |=
1027 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1028 if (redo_ifile) {
1029 mutex_enter(&lfs_lock);
1030 fs->lfs_flags |= LFS_IFDIRTY;
1031 mutex_exit(&lfs_lock);
1032 /* Don't double-account */
1033 lfs_sb_setidaddr(fs, 0x0);
1034 }
1035 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1036 }
1037
1038 return redo_ifile;
1039 }
1040
1041 int
1042 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1043 {
1044 struct buf *bp;
1045 union lfs_dinode *cdp;
1046 struct vnode *vp = ITOV(ip);
1047 daddr_t daddr;
1048 IINFO *iip;
1049 int i;
1050 int redo_ifile = 0;
1051 int gotblk = 0;
1052 int count;
1053 SEGSUM *ssp;
1054
1055 ASSERT_SEGLOCK(fs);
1056 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1057 return (0);
1058
1059 /* Can't write ifile when writer is not set */
1060 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1061 (sp->seg_flags & SEGM_CLEAN));
1062
1063 /*
1064 * If this is the Ifile, see if writing it here will generate a
1065 * temporary misaccounting. If it will, do the accounting and write
1066 * the blocks, postponing the inode write until the accounting is
1067 * solid.
1068 */
1069 count = 0;
1070 while (vp == fs->lfs_ivnode) {
1071 int redo = 0;
1072
1073 if (sp->idp == NULL && sp->ibp == NULL &&
1074 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1075 sp->sum_bytes_left < sizeof(int32_t))) {
1076 (void) lfs_writeseg(fs, sp);
1077 continue;
1078 }
1079
1080 /* Look for dirty Ifile blocks */
1081 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1082 if (!(bp->b_flags & B_GATHERED)) {
1083 redo = 1;
1084 break;
1085 }
1086 }
1087
1088 if (redo == 0)
1089 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1090 if (redo == 0)
1091 break;
1092
1093 if (sp->idp) {
1094 lfs_dino_setinumber(fs, sp->idp, 0);
1095 sp->idp = NULL;
1096 }
1097 ++count;
1098 if (count > 2)
1099 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1100 lfs_writefile(fs, sp, fs->lfs_ivnode);
1101 }
1102
1103 /* Allocate a new inode block if necessary. */
1104 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1105 sp->ibp == NULL) {
1106 /* Allocate a new segment if necessary. */
1107 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1108 sp->sum_bytes_left < sizeof(int32_t))
1109 (void) lfs_writeseg(fs, sp);
1110
1111 /* Get next inode block. */
1112 daddr = lfs_sb_getoffset(fs);
1113 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1114 sp->ibp = *sp->cbpp++ =
1115 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1116 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1117 gotblk++;
1118
1119 /* Zero out inode numbers */
1120 for (i = 0; i < LFS_INOPB(fs); ++i) {
1121 union lfs_dinode *tmpdi;
1122
1123 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1124 DINOSIZE(fs) * i);
1125 lfs_dino_setinumber(fs, tmpdi, 0);
1126 }
1127
1128 ++sp->start_bpp;
1129 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1130 /* Set remaining space counters. */
1131 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1132 sp->sum_bytes_left -= sizeof(int32_t);
1133
1134 /* Store the address in the segment summary. */
1135 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1136 lfs_ii_setblock(fs, iip, daddr);
1137 }
1138
1139 /* Check VU_DIROP in case there is a new file with no data blocks */
1140 if (vp->v_uflag & VU_DIROP) {
1141 ssp = (SEGSUM *)sp->segsum;
1142 lfs_ss_setflags(fs, ssp,
1143 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1144 }
1145
1146 /* Update the inode times and copy the inode onto the inode page. */
1147 /* XXX kludge --- don't redirty the ifile just to put times on it */
1148 if (ip->i_number != LFS_IFILE_INUM)
1149 LFS_ITIMES(ip, NULL, NULL, NULL);
1150
1151 /*
1152 * If this is the Ifile, and we've already written the Ifile in this
1153 * partial segment, just overwrite it (it's not on disk yet) and
1154 * continue.
1155 *
1156 * XXX we know that the bp that we get the second time around has
1157 * already been gathered.
1158 */
1159 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1160 lfs_copy_dinode(fs, sp->idp, ip->i_din);
1161 ip->i_lfs_osize = ip->i_size;
1162 return 0;
1163 }
1164
1165 bp = sp->ibp;
1166 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1167 lfs_copy_dinode(fs, cdp, ip->i_din);
1168
1169 /*
1170 * This inode is on its way to disk; clear its VU_DIROP status when
1171 * the write is complete.
1172 */
1173 if (vp->v_uflag & VU_DIROP) {
1174 if (!(sp->seg_flags & SEGM_CLEAN))
1175 ip->i_state |= IN_CDIROP;
1176 else {
1177 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1178 }
1179 }
1180
1181 /*
1182 * If cleaning, link counts and directory file sizes cannot change,
1183 * since those would be directory operations---even if the file
1184 * we are writing is marked VU_DIROP we should write the old values.
1185 * If we're not cleaning, of course, update the values so we get
1186 * current values the next time we clean.
1187 */
1188 if (sp->seg_flags & SEGM_CLEAN) {
1189 if (vp->v_uflag & VU_DIROP) {
1190 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1191 /* if (vp->v_type == VDIR) */
1192 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1193 }
1194 } else {
1195 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1196 ip->i_lfs_osize = ip->i_size;
1197 }
1198
1199
1200 /* We can finish the segment accounting for truncations now */
1201 lfs_finalize_ino_seguse(fs, ip);
1202
1203 /*
1204 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1205 * addresses to disk; possibly change the on-disk record of
1206 * the inode size, either by reverting to the previous size
1207 * (in the case of cleaning) or by verifying the inode's block
1208 * holdings (in the case of files being allocated as they are being
1209 * written).
1210 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1211 * XXX count on disk wrong by the same amount. We should be
1212 * XXX able to "borrow" from lfs_avail and return it after the
1213 * XXX Ifile is written. See also in lfs_writeseg.
1214 */
1215
1216 /* Check file size based on highest allocated block */
1217 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1218 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1219 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1220 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1221 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1222 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1223 }
1224 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1225 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1226 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1227 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1228 for (i=0; i<ULFS_NDADDR; i++) {
1229 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1230 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1231 lfs_dino_setdb(fs, cdp, i, 0);
1232 }
1233 }
1234 for (i=0; i<ULFS_NIADDR; i++) {
1235 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1236 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1237 lfs_dino_setib(fs, cdp, i, 0);
1238 }
1239 }
1240 }
1241
1242 #ifdef DIAGNOSTIC
1243 /*
1244 * Check dinode held blocks against dinode size.
1245 * This should be identical to the check in lfs_vget().
1246 */
1247 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1248 i < ULFS_NDADDR; i++) {
1249 KASSERT(i >= 0);
1250 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1251 continue;
1252 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1253 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1254 continue;
1255 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1256 # ifdef DEBUG
1257 lfs_dump_dinode(fs, cdp);
1258 # endif
1259 panic("writing inconsistent inode");
1260 }
1261 }
1262 #endif /* DIAGNOSTIC */
1263
1264 if (ip->i_state & IN_CLEANING)
1265 LFS_CLR_UINO(ip, IN_CLEANING);
1266 else {
1267 /* XXX IN_ALLMOD */
1268 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1269 IN_UPDATE | IN_MODIFY);
1270 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1271 LFS_CLR_UINO(ip, IN_MODIFIED);
1272 else {
1273 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1274 "blks=%d, eff=%jd\n", ip->i_number,
1275 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1276 }
1277 }
1278
1279 if (ip->i_number == LFS_IFILE_INUM) {
1280 /* We know sp->idp == NULL */
1281 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1282
1283 /* Not dirty any more */
1284 mutex_enter(&lfs_lock);
1285 fs->lfs_flags &= ~LFS_IFDIRTY;
1286 mutex_exit(&lfs_lock);
1287 }
1288
1289 if (gotblk) {
1290 mutex_enter(&bufcache_lock);
1291 LFS_LOCK_BUF(bp);
1292 brelsel(bp, 0);
1293 mutex_exit(&bufcache_lock);
1294 }
1295
1296 /* Increment inode count in segment summary block. */
1297
1298 ssp = (SEGSUM *)sp->segsum;
1299 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1300
1301 /* If this page is full, set flag to allocate a new page. */
1302 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1303 sp->ibp = NULL;
1304
1305 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1306
1307 KASSERT(redo_ifile == 0);
1308 return (redo_ifile);
1309 }
1310
1311 int
1312 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1313 {
1314 struct lfs *fs;
1315 int vers;
1316 int j, blksinblk;
1317
1318 ASSERT_SEGLOCK(sp->fs);
1319 KASSERTMSG((sp->vp != NULL),
1320 "lfs_gatherblock: Null vp in segment");
1321
1322 /* If full, finish this segment. */
1323 fs = sp->fs;
1324 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1325 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1326 sp->seg_bytes_left < bp->b_bcount) {
1327 if (mptr)
1328 mutex_exit(mptr);
1329 lfs_updatemeta(sp);
1330
1331 vers = lfs_fi_getversion(fs, sp->fip);
1332 (void) lfs_writeseg(fs, sp);
1333
1334 /* Add the current file to the segment summary. */
1335 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1336
1337 if (mptr)
1338 mutex_enter(mptr);
1339 return (1);
1340 }
1341
1342 if (bp->b_flags & B_GATHERED) {
1343 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1344 " lbn %" PRId64 "\n",
1345 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1346 return (0);
1347 }
1348
1349 /* Insert into the buffer list, update the FINFO block. */
1350 bp->b_flags |= B_GATHERED;
1351
1352 *sp->cbpp++ = bp;
1353 for (j = 0; j < blksinblk; j++) {
1354 unsigned bn;
1355
1356 bn = lfs_fi_getnblocks(fs, sp->fip);
1357 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1358 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1359 /* This block's accounting moves from lfs_favail to lfs_avail */
1360 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1361 }
1362
1363 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1364 sp->seg_bytes_left -= bp->b_bcount;
1365 return (0);
1366 }
1367
1368 int
1369 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1370 int (*match)(struct lfs *, struct buf *))
1371 {
1372 struct buf *bp, *nbp;
1373 int count = 0;
1374
1375 ASSERT_SEGLOCK(fs);
1376 if (vp->v_type == VBLK)
1377 return 0;
1378 KASSERT(sp->vp == NULL);
1379 sp->vp = vp;
1380 mutex_enter(&bufcache_lock);
1381
1382 #ifndef LFS_NO_BACKBUF_HACK
1383 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1384 # define BUF_OFFSET \
1385 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1386 # define BACK_BUF(BP) \
1387 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1388 # define BEG_OF_LIST \
1389 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1390
1391 loop:
1392 /* Find last buffer. */
1393 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1394 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1395 bp = LIST_NEXT(bp, b_vnbufs))
1396 continue;
1397
1398 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1399 nbp = BACK_BUF(bp);
1400 #else /* LFS_NO_BACKBUF_HACK */
1401 loop:
1402 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1403 nbp = LIST_NEXT(bp, b_vnbufs);
1404 #endif /* LFS_NO_BACKBUF_HACK */
1405 if ((bp->b_cflags & BC_BUSY) != 0 ||
1406 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1407 #ifdef DEBUG
1408 if (vp == fs->lfs_ivnode &&
1409 (bp->b_cflags & BC_BUSY) != 0 &&
1410 (bp->b_flags & B_GATHERED) == 0)
1411 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1412 PRId64 " busy (%x) at 0x%jx",
1413 bp->b_lblkno, bp->b_flags,
1414 (uintmax_t)lfs_sb_getoffset(fs));
1415 #endif
1416 continue;
1417 }
1418 #ifdef DIAGNOSTIC
1419 # ifdef LFS_USE_BC_INVAL
1420 if ((bp->b_cflags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1421 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1422 " is BC_INVAL\n", bp->b_lblkno));
1423 VOP_PRINT(bp->b_vp);
1424 }
1425 # endif /* LFS_USE_BC_INVAL */
1426 if (!(bp->b_oflags & BO_DELWRI))
1427 panic("lfs_gather: bp not BO_DELWRI");
1428 if (!(bp->b_flags & B_LOCKED)) {
1429 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1430 " blk %" PRId64 " not B_LOCKED\n",
1431 bp->b_lblkno,
1432 LFS_DBTOFSB(fs, bp->b_blkno)));
1433 VOP_PRINT(bp->b_vp);
1434 panic("lfs_gather: bp not B_LOCKED");
1435 }
1436 #endif
1437 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1438 goto loop;
1439 }
1440 count++;
1441 }
1442 mutex_exit(&bufcache_lock);
1443 lfs_updatemeta(sp);
1444 KASSERT(sp->vp == vp);
1445 sp->vp = NULL;
1446 return count;
1447 }
1448
1449 #if DEBUG
1450 # define DEBUG_OOFF(n) do { \
1451 if (ooff == 0) { \
1452 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1453 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1454 ", was 0x0 (or %" PRId64 ")\n", \
1455 (n), ip->i_number, lbn, ndaddr, daddr)); \
1456 } \
1457 } while (0)
1458 #else
1459 # define DEBUG_OOFF(n)
1460 #endif
1461
1462 /*
1463 * Change the given block's address to ndaddr, finding its previous
1464 * location using ulfs_bmaparray().
1465 *
1466 * Account for this change in the segment table.
1467 *
1468 * called with sp == NULL by roll-forwarding code.
1469 */
1470 #define NOT_ON_DISK(daddr) ((daddr) == 0 || (daddr) == UNASSIGNED || (daddr) == UNWRITTEN)
1471
1472 void
1473 lfs_update_single(struct lfs *fs, struct segment *sp,
1474 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1475 {
1476 SEGUSE *sup;
1477 struct buf *bp;
1478 struct indir a[ULFS_NIADDR + 2], *ap;
1479 struct inode *ip;
1480 daddr_t daddr, ooff;
1481 int num, error;
1482 int bb, osize, obb;
1483
1484 ASSERT_SEGLOCK(fs);
1485 KASSERT(sp == NULL || sp->vp == vp);
1486 ip = VTOI(vp);
1487
1488 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1489 if (error)
1490 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1491
1492 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1493 if (daddr > 0)
1494 daddr = LFS_DBTOFSB(fs, daddr);
1495
1496 bb = lfs_numfrags(fs, size);
1497 switch (num) {
1498 case 0:
1499 ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1500 DEBUG_OOFF(0);
1501 if (NOT_ON_DISK(ooff))
1502 lfs_dino_setblocks(fs, ip->i_din,
1503 lfs_dino_getblocks(fs, ip->i_din) + bb);
1504 else {
1505 /* possible fragment truncation or extension */
1506 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1507 lfs_dino_setblocks(fs, ip->i_din,
1508 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1509 }
1510 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1511 break;
1512 case 1:
1513 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1514 DEBUG_OOFF(1);
1515 if (NOT_ON_DISK(ooff))
1516 lfs_dino_setblocks(fs, ip->i_din,
1517 lfs_dino_getblocks(fs, ip->i_din) + bb);
1518 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1519 break;
1520 default:
1521 ap = &a[num - 1];
1522 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1523 B_MODIFY, &bp))
1524 panic("lfs_updatemeta: bread bno %" PRId64,
1525 ap->in_lbn);
1526
1527 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1528 DEBUG_OOFF(num);
1529 if (NOT_ON_DISK(ooff))
1530 lfs_dino_setblocks(fs, ip->i_din,
1531 lfs_dino_getblocks(fs, ip->i_din) + bb);
1532 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1533 (void) VOP_BWRITE(bp->b_vp, bp);
1534 }
1535
1536 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1537
1538 /* Update hiblk when extending the file */
1539 if (lbn > ip->i_lfs_hiblk)
1540 ip->i_lfs_hiblk = lbn;
1541
1542 /*
1543 * Though we'd rather it couldn't, this *can* happen right now
1544 * if cleaning blocks and regular blocks coexist.
1545 */
1546 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1547
1548 /*
1549 * Update segment usage information, based on old size
1550 * and location.
1551 */
1552 if (daddr > 0) {
1553 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1554 int ndupino __diagused = (sp && sp->seg_number == oldsn ?
1555 sp->ndupino : 0);
1556
1557 KASSERT(oldsn < lfs_sb_getnseg(fs));
1558 if (lbn >= 0 && lbn < ULFS_NDADDR)
1559 osize = ip->i_lfs_fragsize[lbn];
1560 else
1561 osize = lfs_sb_getbsize(fs);
1562 LFS_SEGENTRY(sup, fs, oldsn, bp);
1563 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize),
1564 "lfs_updatemeta: negative bytes "
1565 "(segment %" PRIu32 " short by %" PRId64
1566 ")\n"
1567 "lfs_updatemeta: ino %llu, lbn %" PRId64
1568 ", addr = 0x%" PRIx64 "\n"
1569 "lfs_updatemeta: ndupino=%d",
1570 lfs_dtosn(fs, daddr),
1571 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes),
1572 (unsigned long long)ip->i_number, lbn, daddr,
1573 ndupino);
1574 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1575 " db 0x%" PRIx64 "\n",
1576 lfs_dtosn(fs, daddr), osize,
1577 ip->i_number, lbn, daddr));
1578 sup->su_nbytes -= osize;
1579 if (!(bp->b_flags & B_GATHERED)) {
1580 mutex_enter(&lfs_lock);
1581 fs->lfs_flags |= LFS_IFDIRTY;
1582 mutex_exit(&lfs_lock);
1583 }
1584 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1585 }
1586 /*
1587 * Now that this block has a new address, and its old
1588 * segment no longer owns it, we can forget about its
1589 * old size.
1590 */
1591 if (lbn >= 0 && lbn < ULFS_NDADDR)
1592 ip->i_lfs_fragsize[lbn] = size;
1593 }
1594
1595 /*
1596 * Update the metadata that points to the blocks listed in the FINFO
1597 * array.
1598 */
1599 void
1600 lfs_updatemeta(struct segment *sp)
1601 {
1602 struct buf *sbp;
1603 struct lfs *fs;
1604 struct vnode *vp;
1605 daddr_t lbn;
1606 int i, nblocks, num;
1607 int __diagused nblocks_orig;
1608 int bb;
1609 int bytesleft, size;
1610 unsigned lastlength;
1611 union lfs_blocks tmpptr;
1612
1613 fs = sp->fs;
1614 vp = sp->vp;
1615 ASSERT_SEGLOCK(fs);
1616
1617 /*
1618 * This used to be:
1619 *
1620 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1621 *
1622 * that is, it allowed for the possibility that start_lbp did
1623 * not point to the beginning of the finfo block pointer area.
1624 * This particular formulation is six kinds of painful in the
1625 * lfs64 world where we have two sizes of block pointer, so
1626 * unless/until everything can be cleaned up to not move
1627 * start_lbp around but instead use an offset, we do the
1628 * following:
1629 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1630 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1631 * type. (Ugh.)
1632 * 2. Cast it to void *, then assign it to a temporary
1633 * union lfs_blocks.
1634 * 3. Subtract start_lbp from that.
1635 * 4. Save the value of nblocks in blocks_orig so we can
1636 * assert below that it hasn't changed without repeating this
1637 * rubbish.
1638 *
1639 * XXX.
1640 */
1641 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1642 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1643 nblocks_orig = nblocks;
1644
1645 KASSERT(nblocks >= 0);
1646 KASSERT(vp != NULL);
1647 if (nblocks == 0)
1648 return;
1649
1650 /*
1651 * This count may be high due to oversize blocks from lfs_gop_write.
1652 * Correct for this. (XXX we should be able to keep track of these.)
1653 */
1654 for (i = 0; i < nblocks; i++) {
1655 if (sp->start_bpp[i] == NULL) {
1656 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1657 nblocks = i;
1658 break;
1659 }
1660 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1661 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1662 nblocks -= num - 1;
1663 }
1664
1665 #if 0
1666 /* pre-lfs64 assertion */
1667 KASSERT(vp->v_type == VREG ||
1668 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1669 #else
1670 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1671 #endif
1672 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1673
1674 /*
1675 * Sort the blocks.
1676 *
1677 * We have to sort even if the blocks come from the
1678 * cleaner, because there might be other pending blocks on the
1679 * same inode...and if we don't sort, and there are fragments
1680 * present, blocks may be written in the wrong place.
1681 */
1682 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1683
1684 /*
1685 * Record the length of the last block in case it's a fragment.
1686 * If there are indirect blocks present, they sort last. An
1687 * indirect block will be lfs_bsize and its presence indicates
1688 * that you cannot have fragments.
1689 *
1690 * XXX This last is a lie. A cleaned fragment can coexist with
1691 * XXX a later indirect block. This will continue to be
1692 * XXX true until lfs_markv is fixed to do everything with
1693 * XXX fake blocks (including fake inodes and fake indirect blocks).
1694 */
1695 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1696 lfs_sb_getbmask(fs)) + 1;
1697 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1698
1699 /*
1700 * Assign disk addresses, and update references to the logical
1701 * block and the segment usage information.
1702 */
1703 for (i = nblocks; i--; ++sp->start_bpp) {
1704 sbp = *sp->start_bpp;
1705 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1706 KASSERT(sbp->b_lblkno == lbn);
1707
1708 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1709
1710 /*
1711 * If we write a frag in the wrong place, the cleaner won't
1712 * be able to correctly identify its size later, and the
1713 * segment will be uncleanable. (Even worse, it will assume
1714 * that the indirect block that actually ends the list
1715 * is of a smaller size!)
1716 */
1717 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1718 panic("lfs_updatemeta: fragment is not last block");
1719
1720 /*
1721 * For each subblock in this possibly oversized block,
1722 * update its address on disk.
1723 */
1724 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1725 KASSERT(vp == sbp->b_vp);
1726 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1727 bytesleft -= lfs_sb_getbsize(fs)) {
1728 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1729 bb = lfs_numfrags(fs, size);
1730 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1731 lfs_blocks_inc(fs, &sp->start_lbp);
1732 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1733 size);
1734 lfs_sb_addoffset(fs, bb);
1735 }
1736
1737 }
1738
1739 /* This inode has been modified */
1740 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1741 }
1742
1743 /*
1744 * Move lfs_offset to a segment earlier than newsn.
1745 */
1746 int
1747 lfs_rewind(struct lfs *fs, int newsn)
1748 {
1749 int sn, osn, isdirty;
1750 struct buf *bp;
1751 SEGUSE *sup;
1752
1753 ASSERT_SEGLOCK(fs);
1754
1755 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1756 if (osn < newsn)
1757 return 0;
1758
1759 /* lfs_avail eats the remaining space in this segment */
1760 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1761
1762 /* Find a low-numbered segment */
1763 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1764 LFS_SEGENTRY(sup, fs, sn, bp);
1765 isdirty = sup->su_flags & SEGUSE_DIRTY;
1766 brelse(bp, 0);
1767
1768 if (!isdirty)
1769 break;
1770 }
1771 if (sn == lfs_sb_getnseg(fs))
1772 panic("lfs_rewind: no clean segments");
1773 if (newsn >= 0 && sn >= newsn)
1774 return ENOENT;
1775 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1776 lfs_newseg(fs);
1777 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1778
1779 return 0;
1780 }
1781
1782 /*
1783 * Start a new partial segment.
1784 *
1785 * Return 1 when we entered to a new segment.
1786 * Otherwise, return 0.
1787 */
1788 int
1789 lfs_initseg(struct lfs *fs, uint16_t flags)
1790 {
1791 struct segment *sp = fs->lfs_sp;
1792 SEGSUM *ssp;
1793 struct buf *sbp; /* buffer for SEGSUM */
1794 int repeat = 0; /* return value */
1795
1796 ASSERT_SEGLOCK(fs);
1797 /* Advance to the next segment. */
1798 if (!LFS_PARTIAL_FITS(fs)) {
1799 SEGUSE *sup;
1800 struct buf *bp;
1801
1802 /* lfs_avail eats the remaining space */
1803 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1804 lfs_sb_getcurseg(fs)));
1805 /* Wake up any cleaning procs waiting on this file system. */
1806 lfs_wakeup_cleaner(fs);
1807 lfs_newseg(fs);
1808 repeat = 1;
1809 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1810
1811 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1812 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1813
1814 /*
1815 * If the segment contains a superblock, update the offset
1816 * and summary address to skip over it.
1817 */
1818 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1819 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1820 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1821 sp->seg_bytes_left -= LFS_SBPAD;
1822 }
1823 brelse(bp, 0);
1824 /* Segment zero could also contain the labelpad */
1825 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1826 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1827 lfs_sb_addoffset(fs,
1828 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1829 sp->seg_bytes_left -=
1830 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1831 }
1832 } else {
1833 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1834 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1835 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1836 }
1837 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1838
1839 /* Record first address of this partial segment */
1840 if (sp->seg_flags & SEGM_CLEAN) {
1841 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1842 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1843 /* "1" is the artificial inc in lfs_seglock */
1844 mutex_enter(&lfs_lock);
1845 while (fs->lfs_iocount > 1) {
1846 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1847 "lfs_initseg", 0, &lfs_lock);
1848 }
1849 mutex_exit(&lfs_lock);
1850 fs->lfs_cleanind = 0;
1851 }
1852 }
1853
1854 sp->fs = fs;
1855 sp->ibp = NULL;
1856 sp->idp = NULL;
1857 sp->ninodes = 0;
1858 sp->ndupino = 0;
1859
1860 sp->cbpp = sp->bpp;
1861
1862 /* Get a new buffer for SEGSUM */
1863 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1864 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1865
1866 /* ... and enter it into the buffer list. */
1867 *sp->cbpp = sbp;
1868 sp->cbpp++;
1869 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1870
1871 sp->start_bpp = sp->cbpp;
1872
1873 /* Set point to SEGSUM, initialize it. */
1874 ssp = sp->segsum = sbp->b_data;
1875 memset(ssp, 0, lfs_sb_getsumsize(fs));
1876 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1877 lfs_ss_setnfinfo(fs, ssp, 0);
1878 lfs_ss_setninos(fs, ssp, 0);
1879 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1880 lfs_ss_setflags(fs, ssp, flags);
1881
1882 /* Set pointer to first FINFO, initialize it. */
1883 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1884 lfs_fi_setnblocks(fs, sp->fip, 0);
1885 lfs_fi_setlastlength(fs, sp->fip, 0);
1886 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1887
1888 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1889 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1890
1891 return (repeat);
1892 }
1893
1894 /*
1895 * Remove SEGUSE_INVAL from all segments.
1896 */
1897 void
1898 lfs_unset_inval_all(struct lfs *fs)
1899 {
1900 SEGUSE *sup;
1901 struct buf *bp;
1902 int i;
1903
1904 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1905 LFS_SEGENTRY(sup, fs, i, bp);
1906 if (sup->su_flags & SEGUSE_INVAL) {
1907 sup->su_flags &= ~SEGUSE_INVAL;
1908 LFS_WRITESEGENTRY(sup, fs, i, bp);
1909 } else
1910 brelse(bp, 0);
1911 }
1912 }
1913
1914 /*
1915 * Return the next segment to write.
1916 */
1917 void
1918 lfs_newseg(struct lfs *fs)
1919 {
1920 CLEANERINFO *cip;
1921 SEGUSE *sup;
1922 struct buf *bp;
1923 int curseg, isdirty, sn, skip_inval;
1924
1925 ASSERT_SEGLOCK(fs);
1926
1927 /* Honor LFCNWRAPSTOP */
1928 mutex_enter(&lfs_lock);
1929 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1930 if (fs->lfs_wrappass) {
1931 log(LOG_NOTICE, "%s: wrappass=%d\n",
1932 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1933 fs->lfs_wrappass = 0;
1934 break;
1935 }
1936 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1937 wakeup(&fs->lfs_nowrap);
1938 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1939 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1940 &lfs_lock);
1941 }
1942 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1943 mutex_exit(&lfs_lock);
1944
1945 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1946 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1947 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
1948 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1949 sup->su_nbytes = 0;
1950 sup->su_nsums = 0;
1951 sup->su_ninos = 0;
1952 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
1953
1954 LFS_CLEANERINFO(cip, fs, bp);
1955 lfs_ci_shiftcleantodirty(fs, cip, 1);
1956 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
1957 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1958
1959 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
1960 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
1961 skip_inval = 1;
1962 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
1963 sn = (sn + 1) % lfs_sb_getnseg(fs);
1964
1965 if (sn == curseg) {
1966 if (skip_inval)
1967 skip_inval = 0;
1968 else
1969 panic("lfs_nextseg: no clean segments");
1970 }
1971 LFS_SEGENTRY(sup, fs, sn, bp);
1972 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1973 /* Check SEGUSE_EMPTY as we go along */
1974 if (isdirty && sup->su_nbytes == 0 &&
1975 !(sup->su_flags & SEGUSE_EMPTY))
1976 LFS_WRITESEGENTRY(sup, fs, sn, bp);
1977 else
1978 brelse(bp, 0);
1979
1980 if (!isdirty)
1981 break;
1982 }
1983 if (skip_inval == 0)
1984 lfs_unset_inval_all(fs);
1985
1986 ++fs->lfs_nactive;
1987 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1988 if (lfs_dostats) {
1989 ++lfs_stats.segsused;
1990 }
1991 }
1992
1993 static struct buf *
1994 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1995 int n)
1996 {
1997 struct lfs_cluster *cl;
1998 struct buf **bpp, *bp;
1999
2000 ASSERT_SEGLOCK(fs);
2001 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
2002 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
2003 memset(cl, 0, sizeof(*cl));
2004 cl->fs = fs;
2005 cl->bpp = bpp;
2006 cl->bufcount = 0;
2007 cl->bufsize = 0;
2008
2009 /* If this segment is being written synchronously, note that */
2010 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2011 cl->flags |= LFS_CL_SYNC;
2012 cl->seg = fs->lfs_sp;
2013 ++cl->seg->seg_iocount;
2014 }
2015
2016 /* Get an empty buffer header, or maybe one with something on it */
2017 bp = getiobuf(vp, true);
2018 bp->b_dev = NODEV;
2019 bp->b_blkno = bp->b_lblkno = addr;
2020 bp->b_iodone = lfs_cluster_aiodone;
2021 bp->b_private = cl;
2022
2023 return bp;
2024 }
2025
2026 int
2027 lfs_writeseg(struct lfs *fs, struct segment *sp)
2028 {
2029 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2030 SEGUSE *sup;
2031 SEGSUM *ssp;
2032 int i;
2033 int do_again, nblocks, byteoffset;
2034 size_t el_size;
2035 struct lfs_cluster *cl;
2036 u_short ninos;
2037 struct vnode *devvp;
2038 char *p = NULL;
2039 struct vnode *vp;
2040 unsigned ibindex, iblimit;
2041 int changed;
2042 u_int32_t sum;
2043 size_t sumstart;
2044 uint16_t oflags;
2045 #ifdef DEBUG
2046 FINFO *fip;
2047 int findex;
2048 #endif
2049
2050 ASSERT_SEGLOCK(fs);
2051
2052 ssp = (SEGSUM *)sp->segsum;
2053
2054 /*
2055 * If there are no buffers other than the segment summary to write,
2056 * don't do anything. If we are the end of a dirop sequence, however,
2057 * write the empty segment summary anyway, to help out the
2058 * roll-forward agent.
2059 */
2060 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2061 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2062 return 0;
2063 }
2064
2065 /* Note if partial segment is being written by the cleaner */
2066 if (sp->seg_flags & SEGM_CLEAN)
2067 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2068
2069 /* Note if we are writing to reclaim */
2070 if (sp->seg_flags & SEGM_RECLAIM) {
2071 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2072 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2073 }
2074 /* Save flags to attach to a new partial segment, if we need one */
2075 oflags = lfs_ss_getflags(fs, ssp);
2076
2077 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2078
2079 /* Update the segment usage information. */
2080 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2081
2082 /* Loop through all blocks, except the segment summary. */
2083 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2084 if ((*bpp)->b_vp != devvp) {
2085 sup->su_nbytes += (*bpp)->b_bcount;
2086 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2087 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2088 sp->seg_number, (*bpp)->b_bcount,
2089 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2090 (*bpp)->b_blkno));
2091 }
2092 }
2093
2094 #ifdef DEBUG
2095 /* Check for zero-length and zero-version FINFO entries. */
2096 fip = SEGSUM_FINFOBASE(fs, ssp);
2097 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2098 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2099 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2100 fip = NEXT_FINFO(fs, fip);
2101 }
2102 #endif /* DEBUG */
2103
2104 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2105 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2106 sp->seg_number,
2107 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2108 lfs_ss_getninos(fs, ssp)));
2109 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2110 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2111 if (lfs_sb_getversion(fs) == 1)
2112 sup->su_olastmod = time_second;
2113 else
2114 sup->su_lastmod = time_second;
2115 sup->su_ninos += ninos;
2116 ++sup->su_nsums;
2117 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2118
2119 do_again = !(bp->b_flags & B_GATHERED);
2120 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2121
2122 /*
2123 * Mark blocks BC_BUSY, to prevent then from being changed between
2124 * the checksum computation and the actual write.
2125 *
2126 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2127 * there are any, replace them with copies that have UNASSIGNED
2128 * instead.
2129 */
2130 mutex_enter(&bufcache_lock);
2131 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2132 ++bpp;
2133 bp = *bpp;
2134 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2135 bp->b_cflags |= BC_BUSY;
2136 continue;
2137 }
2138
2139 while (bp->b_cflags & BC_BUSY) {
2140 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2141 " data summary corruption for ino %d, lbn %"
2142 PRId64 "\n",
2143 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2144 bp->b_cflags |= BC_WANTED;
2145 cv_wait(&bp->b_busy, &bufcache_lock);
2146 }
2147 bp->b_cflags |= BC_BUSY;
2148 mutex_exit(&bufcache_lock);
2149 unbusybp = NULL;
2150
2151 /*
2152 * Check and replace indirect block UNWRITTEN bogosity.
2153 * XXX See comment in lfs_writefile.
2154 */
2155 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2156 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2157 VTOI(bp->b_vp)->i_lfs_effnblks) {
2158 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2159 VTOI(bp->b_vp)->i_number,
2160 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2161 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2162 /* Make a copy we'll make changes to */
2163 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2164 bp->b_bcount, LFS_NB_IBLOCK);
2165 newbp->b_blkno = bp->b_blkno;
2166 memcpy(newbp->b_data, bp->b_data,
2167 newbp->b_bcount);
2168
2169 changed = 0;
2170 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs);
2171 for (ibindex = 0; ibindex < iblimit; ibindex++) {
2172 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) {
2173 ++changed;
2174 lfs_iblock_set(fs, newbp->b_data,
2175 ibindex, 0);
2176 }
2177 }
2178 /*
2179 * Get rid of the old buffer. Don't mark it clean,
2180 * though, if it still has dirty data on it.
2181 */
2182 if (changed) {
2183 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2184 " bp = %p newbp = %p\n", changed, bp,
2185 newbp));
2186 *bpp = newbp;
2187 bp->b_flags &= ~B_GATHERED;
2188 bp->b_error = 0;
2189 if (bp->b_iodone != NULL) {
2190 DLOG((DLOG_SEG, "lfs_writeseg: "
2191 "indir bp should not be B_CALL\n"));
2192 biodone(bp);
2193 bp = NULL;
2194 } else {
2195 /* Still on free list, leave it there */
2196 unbusybp = bp;
2197 /*
2198 * We have to re-decrement lfs_avail
2199 * since this block is going to come
2200 * back around to us in the next
2201 * segment.
2202 */
2203 lfs_sb_subavail(fs,
2204 lfs_btofsb(fs, bp->b_bcount));
2205 }
2206 } else {
2207 lfs_freebuf(fs, newbp);
2208 }
2209 }
2210 mutex_enter(&bufcache_lock);
2211 if (unbusybp != NULL) {
2212 unbusybp->b_cflags &= ~BC_BUSY;
2213 if (unbusybp->b_cflags & BC_WANTED)
2214 cv_broadcast(&bp->b_busy);
2215 }
2216 }
2217 mutex_exit(&bufcache_lock);
2218
2219 /*
2220 * Compute checksum across data and then across summary; the first
2221 * block (the summary block) is skipped. Set the create time here
2222 * so that it's guaranteed to be later than the inode mod times.
2223 */
2224 sum = 0;
2225 if (lfs_sb_getversion(fs) == 1)
2226 el_size = sizeof(u_long);
2227 else
2228 el_size = sizeof(u_int32_t);
2229 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2230 ++bpp;
2231 /* Loop through gop_write cluster blocks */
2232 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2233 byteoffset += lfs_sb_getbsize(fs)) {
2234 #ifdef LFS_USE_BC_INVAL
2235 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2236 (*bpp)->b_iodone != NULL) {
2237 if (copyin((void *)(*bpp)->b_saveaddr +
2238 byteoffset, dp, el_size)) {
2239 panic("lfs_writeseg: copyin failed [1]:"
2240 " ino %" PRIu64 " blk %" PRId64,
2241 VTOI((*bpp)->b_vp)->i_number,
2242 (*bpp)->b_lblkno);
2243 }
2244 } else
2245 #endif /* LFS_USE_BC_INVAL */
2246 {
2247 sum = lfs_cksum_part((char *)
2248 (*bpp)->b_data + byteoffset, el_size, sum);
2249 }
2250 }
2251 }
2252 if (lfs_sb_getversion(fs) == 1)
2253 lfs_ss_setocreate(fs, ssp, time_second);
2254 else {
2255 lfs_ss_setcreate(fs, ssp, time_second);
2256 lfs_sb_addserial(fs, 1);
2257 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2258 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2259 }
2260 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2261 sumstart = lfs_ss_getsumstart(fs);
2262 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2263 lfs_sb_getsumsize(fs) - sumstart));
2264
2265 mutex_enter(&lfs_lock);
2266 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2267 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2268 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2269 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2270 mutex_exit(&lfs_lock);
2271
2272 /*
2273 * When we simply write the blocks we lose a rotation for every block
2274 * written. To avoid this problem, we cluster the buffers into a
2275 * chunk and write the chunk. MAXPHYS is the largest size I/O
2276 * devices can handle, use that for the size of the chunks.
2277 *
2278 * Blocks that are already clusters (from GOP_WRITE), however, we
2279 * don't bother to copy into other clusters.
2280 */
2281
2282 #define CHUNKSIZE MAXPHYS
2283
2284 if (devvp == NULL)
2285 panic("devvp is NULL");
2286 for (bpp = sp->bpp, i = nblocks; i;) {
2287 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2288 cl = cbp->b_private;
2289
2290 cbp->b_flags |= B_ASYNC;
2291 cbp->b_cflags |= BC_BUSY;
2292 cbp->b_bcount = 0;
2293
2294 KASSERTMSG((bpp - sp->bpp <=
2295 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2296 / sizeof(int32_t)),
2297 "lfs_writeseg: real bpp overwrite");
2298 KASSERTMSG((bpp - sp->bpp <=
2299 lfs_segsize(fs) / lfs_sb_getfsize(fs)),
2300 "lfs_writeseg: theoretical bpp overwrite");
2301
2302 /*
2303 * Construct the cluster.
2304 */
2305 mutex_enter(&lfs_lock);
2306 ++fs->lfs_iocount;
2307 mutex_exit(&lfs_lock);
2308 while (i && cbp->b_bcount < CHUNKSIZE) {
2309 bp = *bpp;
2310
2311 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2312 break;
2313 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2314 break;
2315
2316 /* Clusters from GOP_WRITE are expedited */
2317 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2318 if (cbp->b_bcount > 0)
2319 /* Put in its own buffer */
2320 break;
2321 else {
2322 cbp->b_data = bp->b_data;
2323 }
2324 } else if (cbp->b_bcount == 0) {
2325 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2326 LFS_NB_CLUSTER);
2327 cl->flags |= LFS_CL_MALLOC;
2328 }
2329 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2330 btodb(bp->b_bcount - 1))) ==
2331 sp->seg_number),
2332 "segment overwrite: blk size %d daddr %" PRIx64
2333 " not in seg %d\n",
2334 bp->b_bcount, bp->b_blkno,
2335 sp->seg_number);
2336
2337 #ifdef LFS_USE_BC_INVAL
2338 /*
2339 * Fake buffers from the cleaner are marked as BC_INVAL.
2340 * We need to copy the data from user space rather than
2341 * from the buffer indicated.
2342 * XXX == what do I do on an error?
2343 */
2344 if ((bp->b_cflags & BC_INVAL) != 0 &&
2345 bp->b_iodone != NULL) {
2346 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2347 panic("lfs_writeseg: "
2348 "copyin failed [2]");
2349 } else
2350 #endif /* LFS_USE_BC_INVAL */
2351 if (cl->flags & LFS_CL_MALLOC) {
2352 /* copy data into our cluster. */
2353 memcpy(p, bp->b_data, bp->b_bcount);
2354 p += bp->b_bcount;
2355 }
2356
2357 cbp->b_bcount += bp->b_bcount;
2358 cl->bufsize += bp->b_bcount;
2359
2360 bp->b_flags &= ~B_READ;
2361 bp->b_error = 0;
2362 cl->bpp[cl->bufcount++] = bp;
2363
2364 vp = bp->b_vp;
2365 mutex_enter(&bufcache_lock);
2366 mutex_enter(vp->v_interlock);
2367 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2368 reassignbuf(bp, vp);
2369 vp->v_numoutput++;
2370 mutex_exit(vp->v_interlock);
2371 mutex_exit(&bufcache_lock);
2372
2373 bpp++;
2374 i--;
2375 }
2376 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2377 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2378 else
2379 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2380 mutex_enter(devvp->v_interlock);
2381 devvp->v_numoutput++;
2382 mutex_exit(devvp->v_interlock);
2383 VOP_STRATEGY(devvp, cbp);
2384 curlwp->l_ru.ru_oublock++;
2385 }
2386
2387 if (lfs_dostats) {
2388 ++lfs_stats.psegwrites;
2389 lfs_stats.blocktot += nblocks - 1;
2390 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2391 ++lfs_stats.psyncwrites;
2392 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2393 ++lfs_stats.pcleanwrites;
2394 lfs_stats.cleanblocks += nblocks - 1;
2395 }
2396 }
2397
2398 return (lfs_initseg(fs, oflags) || do_again);
2399 }
2400
2401 void
2402 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2403 {
2404 struct buf *bp;
2405 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2406
2407 ASSERT_MAYBE_SEGLOCK(fs);
2408 if (fs->lfs_is64) {
2409 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2410 } else {
2411 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2412 }
2413 /*
2414 * If we can write one superblock while another is in
2415 * progress, we risk not having a complete checkpoint if we crash.
2416 * So, block here if a superblock write is in progress.
2417 */
2418 mutex_enter(&lfs_lock);
2419 while (fs->lfs_sbactive) {
2420 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2421 &lfs_lock);
2422 }
2423 fs->lfs_sbactive = daddr;
2424 mutex_exit(&lfs_lock);
2425
2426 /* Set timestamp of this version of the superblock */
2427 if (lfs_sb_getversion(fs) == 1)
2428 lfs_sb_setotstamp(fs, time_second);
2429 lfs_sb_settstamp(fs, time_second);
2430
2431 /* The next chunk of code relies on this assumption */
2432 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2433
2434 /* Checksum the superblock and copy it into a buffer. */
2435 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2436 bp = lfs_newbuf(fs, devvp,
2437 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2438 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2439 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2440 LFS_SBPAD - sizeof(struct dlfs));
2441
2442 bp->b_cflags |= BC_BUSY;
2443 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2444 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2445 bp->b_error = 0;
2446 bp->b_iodone = lfs_super_aiodone;
2447
2448 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2449 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2450 else
2451 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2452 curlwp->l_ru.ru_oublock++;
2453
2454 mutex_enter(devvp->v_interlock);
2455 devvp->v_numoutput++;
2456 mutex_exit(devvp->v_interlock);
2457
2458 mutex_enter(&lfs_lock);
2459 ++fs->lfs_iocount;
2460 mutex_exit(&lfs_lock);
2461 VOP_STRATEGY(devvp, bp);
2462 }
2463
2464 /*
2465 * Logical block number match routines used when traversing the dirty block
2466 * chain.
2467 */
2468 int
2469 lfs_match_fake(struct lfs *fs, struct buf *bp)
2470 {
2471
2472 ASSERT_SEGLOCK(fs);
2473 return LFS_IS_MALLOC_BUF(bp);
2474 }
2475
2476 #if 0
2477 int
2478 lfs_match_real(struct lfs *fs, struct buf *bp)
2479 {
2480
2481 ASSERT_SEGLOCK(fs);
2482 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2483 }
2484 #endif
2485
2486 int
2487 lfs_match_data(struct lfs *fs, struct buf *bp)
2488 {
2489
2490 ASSERT_SEGLOCK(fs);
2491 return (bp->b_lblkno >= 0);
2492 }
2493
2494 int
2495 lfs_match_indir(struct lfs *fs, struct buf *bp)
2496 {
2497 daddr_t lbn;
2498
2499 ASSERT_SEGLOCK(fs);
2500 lbn = bp->b_lblkno;
2501 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2502 }
2503
2504 int
2505 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2506 {
2507 daddr_t lbn;
2508
2509 ASSERT_SEGLOCK(fs);
2510 lbn = bp->b_lblkno;
2511 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2512 }
2513
2514 int
2515 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2516 {
2517 daddr_t lbn;
2518
2519 ASSERT_SEGLOCK(fs);
2520 lbn = bp->b_lblkno;
2521 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2522 }
2523
2524 void
2525 lfs_free_aiodone(struct buf *bp)
2526 {
2527 struct lfs *fs;
2528
2529 KERNEL_LOCK(1, curlwp);
2530 fs = bp->b_private;
2531 ASSERT_NO_SEGLOCK(fs);
2532 lfs_freebuf(fs, bp);
2533 KERNEL_UNLOCK_ONE(curlwp);
2534 }
2535
2536 static void
2537 lfs_super_aiodone(struct buf *bp)
2538 {
2539 struct lfs *fs;
2540
2541 KERNEL_LOCK(1, curlwp);
2542 fs = bp->b_private;
2543 ASSERT_NO_SEGLOCK(fs);
2544 mutex_enter(&lfs_lock);
2545 fs->lfs_sbactive = 0;
2546 if (--fs->lfs_iocount <= 1)
2547 wakeup(&fs->lfs_iocount);
2548 wakeup(&fs->lfs_sbactive);
2549 mutex_exit(&lfs_lock);
2550 lfs_freebuf(fs, bp);
2551 KERNEL_UNLOCK_ONE(curlwp);
2552 }
2553
2554 static void
2555 lfs_cluster_aiodone(struct buf *bp)
2556 {
2557 workqueue_enqueue(lfs_wq, (struct work *)bp, NULL);
2558 }
2559
2560 void
2561 lfs_cluster_wq(struct work *wk, void *arg)
2562 {
2563 struct buf *bp = (struct buf *)wk;
2564 struct lfs_cluster *cl;
2565 struct lfs *fs;
2566 struct buf *tbp, *fbp;
2567 struct vnode *vp, *devvp, *ovp;
2568 struct inode *ip;
2569 int error;
2570
2571 error = bp->b_error;
2572 cl = bp->b_private;
2573 fs = cl->fs;
2574 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2575 ASSERT_NO_SEGLOCK(fs);
2576
2577 /* Put the pages back, and release the buffer */
2578 while (cl->bufcount--) {
2579 tbp = cl->bpp[cl->bufcount];
2580 KASSERT(tbp->b_cflags & BC_BUSY);
2581 if (error) {
2582 tbp->b_error = error;
2583 }
2584
2585 /*
2586 * We're done with tbp. If it has not been re-dirtied since
2587 * the cluster was written, free it. Otherwise, keep it on
2588 * the locked list to be written again.
2589 */
2590 vp = tbp->b_vp;
2591
2592 tbp->b_flags &= ~B_GATHERED;
2593
2594 #ifdef DEBUG
2595 if ((tbp)->b_vp == (fs)->lfs_ivnode)
2596 LFS_ENTER_LOG("clear", __FILE__, __LINE__,
2597 tbp->b_lblkno, tbp->b_flags, curproc->p_pid);
2598 #endif
2599
2600 mutex_enter(&bufcache_lock);
2601 if (tbp->b_iodone == NULL) {
2602 KASSERT(tbp->b_flags & B_LOCKED);
2603 bremfree(tbp);
2604 if (vp) {
2605 mutex_enter(vp->v_interlock);
2606 reassignbuf(tbp, vp);
2607 mutex_exit(vp->v_interlock);
2608 }
2609 tbp->b_flags |= B_ASYNC; /* for biodone */
2610 }
2611
2612 if ((tbp->b_flags & B_LOCKED) && !(tbp->b_oflags & BO_DELWRI))
2613 LFS_UNLOCK_BUF(tbp);
2614
2615 if (tbp->b_oflags & BO_DONE) {
2616 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2617 cl->bufcount, (long)tbp->b_flags));
2618 }
2619
2620 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2621 /*
2622 * A buffer from the page daemon.
2623 * We use the same iodone as it does,
2624 * so we must manually disassociate its
2625 * buffers from the vp.
2626 */
2627 if ((ovp = tbp->b_vp) != NULL) {
2628 /* This is just silly */
2629 mutex_enter(ovp->v_interlock);
2630 brelvp(tbp);
2631 mutex_exit(ovp->v_interlock);
2632 tbp->b_vp = vp;
2633 tbp->b_objlock = vp->v_interlock;
2634 }
2635 /* Put it back the way it was */
2636 tbp->b_flags |= B_ASYNC;
2637 /* Master buffers have BC_AGE */
2638 if (tbp->b_private == tbp)
2639 tbp->b_cflags |= BC_AGE;
2640 }
2641 mutex_exit(&bufcache_lock);
2642
2643 biodone(tbp);
2644
2645 /*
2646 * If this is the last block for this vnode, but
2647 * there are other blocks on its dirty list,
2648 * set IN_MODIFIED/IN_CLEANING depending on what
2649 * sort of block. Only do this for our mount point,
2650 * not for, e.g., inode blocks that are attached to
2651 * the devvp.
2652 * XXX KS - Shouldn't we set *both* if both types
2653 * of blocks are present (traverse the dirty list?)
2654 */
2655 mutex_enter(vp->v_interlock);
2656 mutex_enter(&lfs_lock);
2657 if (vp != devvp && vp->v_numoutput == 0 &&
2658 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2659 ip = VTOI(vp);
2660 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2661 ip->i_number));
2662 if (LFS_IS_MALLOC_BUF(fbp))
2663 LFS_SET_UINO(ip, IN_CLEANING);
2664 else
2665 LFS_SET_UINO(ip, IN_MODIFIED);
2666 }
2667 cv_broadcast(&vp->v_cv);
2668 mutex_exit(&lfs_lock);
2669 mutex_exit(vp->v_interlock);
2670 }
2671
2672 /* Fix up the cluster buffer, and release it */
2673 if (cl->flags & LFS_CL_MALLOC)
2674 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2675 putiobuf(bp);
2676
2677 /* Note i/o done */
2678 if (cl->flags & LFS_CL_SYNC) {
2679 if (--cl->seg->seg_iocount == 0)
2680 wakeup(&cl->seg->seg_iocount);
2681 }
2682 mutex_enter(&lfs_lock);
2683 KASSERTMSG((fs->lfs_iocount != 0),
2684 "lfs_cluster_aiodone: zero iocount");
2685 if (--fs->lfs_iocount <= 1)
2686 wakeup(&fs->lfs_iocount);
2687 mutex_exit(&lfs_lock);
2688
2689 pool_put(&fs->lfs_bpppool, cl->bpp);
2690 cl->bpp = NULL;
2691 pool_put(&fs->lfs_clpool, cl);
2692 }
2693
2694 /*
2695 * Shellsort (diminishing increment sort) from Data Structures and
2696 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2697 * see also Knuth Vol. 3, page 84. The increments are selected from
2698 * formula (8), page 95. Roughly O(N^3/2).
2699 */
2700 /*
2701 * This is our own private copy of shellsort because we want to sort
2702 * two parallel arrays (the array of buffer pointers and the array of
2703 * logical block numbers) simultaneously. Note that we cast the array
2704 * of logical block numbers to a unsigned in this routine so that the
2705 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2706 */
2707
2708 static void
2709 lfs_shellsort(struct lfs *fs,
2710 struct buf **bp_array, union lfs_blocks *lb_array,
2711 int nmemb, int size)
2712 {
2713 static int __rsshell_increments[] = { 4, 1, 0 };
2714 int incr, *incrp, t1, t2;
2715 struct buf *bp_temp;
2716
2717 #ifdef DEBUG
2718 incr = 0;
2719 for (t1 = 0; t1 < nmemb; t1++) {
2720 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2721 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2722 /* dump before panic */
2723 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2724 nmemb, size);
2725 incr = 0;
2726 for (t1 = 0; t1 < nmemb; t1++) {
2727 const struct buf *bp = bp_array[t1];
2728
2729 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2730 PRIu64 "\n", t1,
2731 (uint64_t)bp->b_bcount,
2732 (uint64_t)bp->b_lblkno);
2733 printf("lbns:");
2734 for (t2 = 0; t2 * size < bp->b_bcount;
2735 t2++) {
2736 printf(" %jd",
2737 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2738 }
2739 printf("\n");
2740 }
2741 panic("lfs_shellsort: inconsistent input");
2742 }
2743 }
2744 }
2745 #endif
2746
2747 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2748 for (t1 = incr; t1 < nmemb; ++t1)
2749 for (t2 = t1 - incr; t2 >= 0;)
2750 if ((u_int64_t)bp_array[t2]->b_lblkno >
2751 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2752 bp_temp = bp_array[t2];
2753 bp_array[t2] = bp_array[t2 + incr];
2754 bp_array[t2 + incr] = bp_temp;
2755 t2 -= incr;
2756 } else
2757 break;
2758
2759 /* Reform the list of logical blocks */
2760 incr = 0;
2761 for (t1 = 0; t1 < nmemb; t1++) {
2762 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2763 lfs_blocks_set(fs, lb_array, incr++,
2764 bp_array[t1]->b_lblkno + t2);
2765 }
2766 }
2767 }
2768
2769 /*
2770 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2771 * point at uninitialized space.
2772 */
2773 void
2774 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2775 {
2776 struct segment *sp = fs->lfs_sp;
2777 SEGSUM *ssp;
2778
2779 KASSERT(vers > 0);
2780
2781 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2782 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2783 (void) lfs_writeseg(fs, fs->lfs_sp);
2784
2785 sp->sum_bytes_left -= FINFOSIZE(fs);
2786 ssp = (SEGSUM *)sp->segsum;
2787 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2788 lfs_fi_setnblocks(fs, sp->fip, 0);
2789 lfs_fi_setino(fs, sp->fip, ino);
2790 lfs_fi_setversion(fs, sp->fip, vers);
2791 }
2792
2793 /*
2794 * Release the FINFO entry, either clearing out an unused entry or
2795 * advancing us to the next available entry.
2796 */
2797 void
2798 lfs_release_finfo(struct lfs *fs)
2799 {
2800 struct segment *sp = fs->lfs_sp;
2801 SEGSUM *ssp;
2802
2803 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2804 sp->fip = NEXT_FINFO(fs, sp->fip);
2805 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2806 } else {
2807 /* XXX shouldn't this update sp->fip? */
2808 sp->sum_bytes_left += FINFOSIZE(fs);
2809 ssp = (SEGSUM *)sp->segsum;
2810 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2811 }
2812 }
2813