lfs_segment.c revision 1.293 1 /* $NetBSD: lfs_segment.c,v 1.293 2025/09/17 04:37:47 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.293 2025/09/17 04:37:47 perseant Exp $");
64
65 #ifdef DEBUG
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_state & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 #include <sys/workqueue.h>
95
96 #include <miscfs/specfs/specdev.h>
97 #include <miscfs/fifofs/fifo.h>
98
99 #include <ufs/lfs/ulfs_inode.h>
100 #include <ufs/lfs/ulfsmount.h>
101 #include <ufs/lfs/ulfs_extern.h>
102
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_accessors.h>
105 #include <ufs/lfs/lfs_kernel.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_page.h>
110
111 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
112
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static int lfs_ungather(struct lfs *, struct segment *, struct vnode *,
116 int (*match)(struct lfs *, struct buf *));
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 (lfs_sb_getfsbpseg(fs) - \
124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
125 lfs_sb_getfrag(fs))
126
127 /*
128 * Figure out whether we should do a checkpoint write or go ahead with
129 * an ordinary write.
130 */
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
136
137 int lfs_match_fake(struct lfs *, struct buf *);
138 void lfs_newseg(struct lfs *);
139 void lfs_updatemeta(struct segment *);
140 void lfs_writesuper(struct lfs *, daddr_t);
141 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
142 struct segment *sp, int dirops);
143
144 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *,
145 int, int);
146
147 kcondvar_t lfs_allclean_wakeup; /* Cleaner wakeup address. */
148 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
149 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
150 int lfs_dirvcount = 0; /* # active dirops */
151
152 extern struct workqueue *lfs_cluster_wq;
153 extern struct workqueue *lfs_super_wq;
154
155 /* Statistics Counters */
156 int lfs_dostats = 1;
157 struct lfs_stats lfs_stats;
158
159 /* op values to lfs_writevnodes */
160 #define VN_REG 0
161 #define VN_DIROP 1
162 #define VN_EMPTY 2
163 #define VN_CLEAN 3
164
165 /*
166 * XXX KS - Set modification time on the Ifile, so the cleaner can
167 * read the fs mod time off of it. We don't set IN_UPDATE here,
168 * since we don't really need this to be flushed to disk (and in any
169 * case that wouldn't happen to the Ifile until we checkpoint).
170 */
171 void
172 lfs_imtime(struct lfs *fs)
173 {
174 struct timespec ts;
175 struct inode *ip;
176
177 ASSERT_MAYBE_SEGLOCK(fs);
178 vfs_timestamp(&ts);
179 ip = VTOI(fs->lfs_ivnode);
180 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec);
181 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec);
182 }
183
184 /*
185 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
186 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
187 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
188 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
189 */
190
191 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
192
193 int
194 lfs_vflush(struct vnode *vp)
195 {
196 struct inode *ip;
197 struct lfs *fs;
198 struct segment *sp;
199 struct buf *bp, *nbp, *tbp, *tnbp;
200 int error;
201 int flushed;
202 int relock;
203
204 ip = VTOI(vp);
205 fs = VFSTOULFS(vp->v_mount)->um_lfs;
206 relock = 0;
207
208 top:
209 KASSERT(mutex_owned(vp->v_interlock) == false);
210 KASSERT(mutex_owned(&lfs_lock) == false);
211 KASSERT(mutex_owned(&bufcache_lock) == false);
212 ASSERT_NO_SEGLOCK(fs);
213 if (ip->i_state & IN_CLEANING) {
214 ivndebug(vp,"vflush/in_cleaning");
215 mutex_enter(&lfs_lock);
216 LFS_CLR_UINO(ip, IN_CLEANING);
217 LFS_SET_UINO(ip, IN_MODIFIED);
218 mutex_exit(&lfs_lock);
219
220 /*
221 * Toss any cleaning buffers that have real counterparts
222 * to avoid losing new data.
223 */
224 mutex_enter(vp->v_interlock);
225 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
226 nbp = LIST_NEXT(bp, b_vnbufs);
227 if (!LFS_IS_MALLOC_BUF(bp))
228 continue;
229 /*
230 * Look for pages matching the range covered
231 * by cleaning blocks. It's okay if more dirty
232 * pages appear, so long as none disappear out
233 * from under us.
234 */
235 if (bp->b_lblkno > 0 && vp->v_type == VREG &&
236 vp != fs->lfs_ivnode) {
237 struct vm_page *pg;
238 voff_t off;
239
240 for (off = lfs_lblktosize(fs, bp->b_lblkno);
241 off < lfs_lblktosize(fs, bp->b_lblkno + 1);
242 off += PAGE_SIZE) {
243 pg = uvm_pagelookup(&vp->v_uobj, off);
244 if (pg == NULL)
245 continue;
246 if (uvm_pagegetdirty(pg)
247 == UVM_PAGE_STATUS_DIRTY ||
248 pmap_is_modified(pg)) {
249 lfs_sb_addavail(fs,
250 lfs_btofsb(fs,
251 bp->b_bcount));
252 wakeup(&fs->lfs_availsleep);
253 mutex_exit(vp->v_interlock);
254 lfs_freebuf(fs, bp);
255 mutex_enter(vp->v_interlock);
256 bp = NULL;
257 break;
258 }
259 }
260 }
261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
262 tbp = tnbp)
263 {
264 tnbp = LIST_NEXT(tbp, b_vnbufs);
265 if (tbp->b_vp == bp->b_vp
266 && tbp->b_lblkno == bp->b_lblkno
267 && tbp != bp)
268 {
269 lfs_sb_addavail(fs, lfs_btofsb(fs,
270 bp->b_bcount));
271 wakeup(&fs->lfs_availsleep);
272 mutex_exit(vp->v_interlock);
273 lfs_freebuf(fs, bp);
274 mutex_enter(vp->v_interlock);
275 bp = NULL;
276 break;
277 }
278 }
279 }
280 } else {
281 mutex_enter(vp->v_interlock);
282 }
283
284 /* If the node is being written, wait until that is done */
285 while (WRITEINPROG(vp)) {
286 ivndebug(vp,"vflush/writeinprog");
287 cv_wait(&vp->v_cv, vp->v_interlock);
288 }
289 error = vdead_check(vp, VDEAD_NOWAIT);
290 mutex_exit(vp->v_interlock);
291
292 /* Protect against deadlock in vinvalbuf() */
293 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0));
294 if (error != 0) {
295 fs->lfs_reclino = ip->i_number;
296 }
297
298 /* If we're supposed to flush a freed inode, just toss it */
299 if (ip->i_lfs_iflags & LFSI_DELETED) {
300 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
301 ip->i_number));
302 /* Drain v_numoutput */
303 mutex_enter(vp->v_interlock);
304 while (vp->v_numoutput > 0) {
305 cv_wait(&vp->v_cv, vp->v_interlock);
306 }
307 KASSERT(vp->v_numoutput == 0);
308 mutex_exit(vp->v_interlock);
309
310 mutex_enter(&bufcache_lock);
311 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
312 nbp = LIST_NEXT(bp, b_vnbufs);
313
314 KASSERT((bp->b_flags & B_GATHERED) == 0);
315 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
316 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
317 wakeup(&fs->lfs_availsleep);
318 }
319 /* Copied from lfs_writeseg */
320 if (bp->b_iodone != NULL) {
321 mutex_exit(&bufcache_lock);
322 biodone(bp);
323 mutex_enter(&bufcache_lock);
324 } else {
325 bremfree(bp);
326 LFS_UNLOCK_BUF(bp);
327 mutex_enter(vp->v_interlock);
328 bp->b_flags &= ~(B_READ | B_GATHERED);
329 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
330 bp->b_error = 0;
331 reassignbuf(bp, vp);
332 mutex_exit(vp->v_interlock);
333 brelse(bp, 0);
334 }
335 }
336 mutex_exit(&bufcache_lock);
337 LFS_CLR_UINO(ip, IN_CLEANING);
338 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
339 ip->i_state &= ~IN_ALLMOD;
340 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
341 ip->i_number));
342 lfs_segunlock(fs);
343
344 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
345
346 return 0;
347 }
348
349 fs->lfs_flushvp = vp;
350 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
351 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
352 fs->lfs_flushvp = NULL;
353 KASSERT(fs->lfs_flushvp_fakevref == 0);
354 lfs_segunlock(fs);
355
356 /* Make sure that any pending buffers get written */
357 mutex_enter(vp->v_interlock);
358 while (vp->v_numoutput > 0) {
359 cv_wait(&vp->v_cv, vp->v_interlock);
360 }
361 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
362 KASSERT(vp->v_numoutput == 0);
363 mutex_exit(vp->v_interlock);
364
365 return error;
366 }
367 sp = fs->lfs_sp;
368
369 flushed = 0;
370 if (VPISEMPTY(vp)) {
371 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
372 ++flushed;
373 } else if ((ip->i_state & IN_CLEANING) &&
374 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
375 ivndebug(vp,"vflush/clean");
376 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
377 ++flushed;
378 } else if (lfs_dostats) {
379 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD))
380 ++lfs_stats.vflush_invoked;
381 ivndebug(vp,"vflush");
382 }
383
384 #ifdef DIAGNOSTIC
385 if (vp->v_uflag & VU_DIROP) {
386 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
387 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
388 }
389 #endif
390
391 do {
392 #ifdef DEBUG
393 int loopcount = 0;
394 #endif
395 do {
396 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
397 relock = lfs_writefile(fs, sp, vp);
398 if (relock && vp != fs->lfs_ivnode) {
399 /*
400 * Might have to wait for the
401 * cleaner to run; but we're
402 * still not done with this vnode.
403 * XXX we can do better than this.
404 */
405 KASSERT(ip->i_number != LFS_IFILE_INUM);
406 lfs_writeinode(fs, sp, ip);
407 mutex_enter(&lfs_lock);
408 LFS_SET_UINO(ip, IN_MODIFIED);
409 mutex_exit(&lfs_lock);
410 lfs_writeseg(fs, sp);
411 lfs_segunlock(fs);
412 lfs_segunlock_relock(fs);
413 goto top;
414 }
415 }
416 /*
417 * If we begin a new segment in the middle of writing
418 * the Ifile, it creates an inconsistent checkpoint,
419 * since the Ifile information for the new segment
420 * is not up-to-date. Take care of this here by
421 * sending the Ifile through again in case there
422 * are newly dirtied blocks. But wait, there's more!
423 * This second Ifile write could *also* cross a segment
424 * boundary, if the first one was large. The second
425 * one is guaranteed to be no more than 8 blocks,
426 * though (two segment blocks and supporting indirects)
427 * so the third write *will not* cross the boundary.
428 */
429 if (vp == fs->lfs_ivnode) {
430 lfs_writefile(fs, sp, vp);
431 lfs_writefile(fs, sp, vp);
432 }
433 #ifdef DEBUG
434 if (++loopcount > 2)
435 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
436 #endif
437 } while (lfs_writeinode(fs, sp, ip));
438 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
439
440 if (lfs_dostats) {
441 ++lfs_stats.nwrites;
442 if (sp->seg_flags & SEGM_SYNC)
443 ++lfs_stats.nsync_writes;
444 if (sp->seg_flags & SEGM_CKP)
445 ++lfs_stats.ncheckpoints;
446 }
447 /*
448 * If we were called from somewhere that has already held the seglock
449 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
450 * the write to complete because we are still locked.
451 * Since lfs_vflush() must return the vnode with no dirty buffers,
452 * we must explicitly wait, if that is the case.
453 *
454 * We compare the iocount against 1, not 0, because it is
455 * artificially incremented by lfs_seglock().
456 */
457 mutex_enter(&lfs_lock);
458 if (fs->lfs_seglock > 1) {
459 while (fs->lfs_iocount > 1)
460 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
461 "lfs_vflush", 0, &lfs_lock);
462 }
463 mutex_exit(&lfs_lock);
464
465 lfs_segunlock(fs);
466
467 /* Wait for these buffers to be recovered by aiodoned */
468 mutex_enter(vp->v_interlock);
469 while (vp->v_numoutput > 0) {
470 cv_wait(&vp->v_cv, vp->v_interlock);
471 }
472 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
473 KASSERT(vp->v_numoutput == 0);
474 mutex_exit(vp->v_interlock);
475
476 fs->lfs_flushvp = NULL;
477 KASSERT(fs->lfs_flushvp_fakevref == 0);
478
479 return (0);
480 }
481
482 struct lfs_writevnodes_ctx {
483 int op;
484 struct lfs *fs;
485 };
486 static bool
487 lfs_writevnodes_selector(void *cl, struct vnode *vp)
488 {
489 struct lfs_writevnodes_ctx *c = cl;
490 struct inode *ip;
491 int op = c->op;
492
493 KASSERT(mutex_owned(vp->v_interlock));
494
495 ip = VTOI(vp);
496 if (ip == NULL || vp->v_type == VNON || ip->i_nlink <= 0)
497 return false;
498 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
499 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) {
500 vndebug(vp, "dirop");
501 return false;
502 }
503 if (op == VN_EMPTY && !VPISEMPTY(vp)) {
504 vndebug(vp,"empty");
505 return false;
506 }
507 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM &&
508 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) {
509 vndebug(vp,"cleaning");
510 return false;
511 }
512 mutex_enter(&lfs_lock);
513 if (vp == c->fs->lfs_unlockvp) {
514 mutex_exit(&lfs_lock);
515 return false;
516 }
517 mutex_exit(&lfs_lock);
518
519 return true;
520 }
521
522 int
523 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
524 {
525 struct inode *ip;
526 struct vnode *vp;
527 struct vnode_iterator *marker;
528 struct lfs_writevnodes_ctx ctx;
529 int inodes_written = 0;
530 int error = 0;
531
532 /*
533 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
534 * XXX The rationale is unclear, the initial commit had no information.
535 * XXX If the order really matters we have to sort the vnodes first.
536 */
537
538 ASSERT_SEGLOCK(fs);
539 vfs_vnode_iterator_init(mp, &marker);
540 ctx.op = op;
541 ctx.fs = fs;
542 while ((vp = vfs_vnode_iterator_next(marker,
543 lfs_writevnodes_selector, &ctx)) != NULL) {
544 ip = VTOI(vp);
545
546 /*
547 * Write the inode/file if dirty and it's not the IFILE.
548 */
549 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) &&
550 ip->i_number != LFS_IFILE_INUM) {
551 error = lfs_writefile(fs, sp, vp);
552 if (error) {
553 vrele(vp);
554 if (error == EAGAIN) {
555 /*
556 * This error from lfs_putpages
557 * indicates we need to drop
558 * the segment lock and start
559 * over after the cleaner has
560 * had a chance to run.
561 */
562 lfs_writeinode(fs, sp, ip);
563 lfs_writeseg(fs, sp);
564 if (!VPISEMPTY(vp) &&
565 !WRITEINPROG(vp) &&
566 !(ip->i_state & IN_ALLMOD)) {
567 mutex_enter(&lfs_lock);
568 LFS_SET_UINO(ip, IN_MODIFIED);
569 mutex_exit(&lfs_lock);
570 }
571 break;
572 }
573 error = 0; /* XXX not quite right */
574 continue;
575 }
576
577 if (!VPISEMPTY(vp)) {
578 if (WRITEINPROG(vp)) {
579 ivndebug(vp,"writevnodes/write2");
580 } else if (!(ip->i_state & IN_ALLMOD)) {
581 mutex_enter(&lfs_lock);
582 LFS_SET_UINO(ip, IN_MODIFIED);
583 mutex_exit(&lfs_lock);
584 }
585 }
586 (void) lfs_writeinode(fs, sp, ip);
587 inodes_written++;
588 }
589 vrele(vp);
590 }
591 vfs_vnode_iterator_destroy(marker);
592 return error;
593 }
594
595 /*
596 * Do a checkpoint.
597 */
598 int
599 lfs_segwrite(struct mount *mp, int flags)
600 {
601 struct buf *bp;
602 struct inode *ip;
603 struct lfs *fs;
604 struct segment *sp;
605 struct vnode *vp;
606 SEGUSE *segusep;
607 int do_ckp, did_ckp, error;
608 unsigned n, segleft, maxseg, sn, i, curseg;
609 int writer_set = 0;
610 int dirty;
611 int redo;
612 SEGSUM *ssp;
613 int um_error;
614
615 fs = VFSTOULFS(mp)->um_lfs;
616 DLOG((DLOG_SEG, "lfs_segwrite(fs=%p, flags=%x)\n", fs, flags));
617 ASSERT_MAYBE_SEGLOCK(fs);
618
619 if (fs->lfs_ronly)
620 return EROFS;
621
622 lfs_imtime(fs);
623
624 /*
625 * Allocate a segment structure and enough space to hold pointers to
626 * the maximum possible number of buffers which can be described in a
627 * single summary block.
628 */
629 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
630
631 /*
632 * If we know we're gonna need the writer lock, take it now to
633 * preserve the lock order lfs_writer -> lfs_seglock.
634 */
635 if (do_ckp) {
636 lfs_writer_enter(fs, "ckpwriter");
637 writer_set = 1;
638 }
639
640 /* We can't do a partial write and checkpoint at the same time. */
641 if (do_ckp)
642 flags &= ~SEGM_SINGLE;
643
644 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
645 sp = fs->lfs_sp;
646 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
647 do_ckp = 1;
648
649 /*
650 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
651 * in which case we have to flush *all* buffers off of this vnode.
652 * We don't care about other nodes, but write any non-dirop nodes
653 * anyway in anticipation of another getnewvnode().
654 *
655 * If we're cleaning we only write cleaning and ifile blocks, and
656 * no dirops, since otherwise we'd risk corruption in a crash.
657 */
658 DLOG((DLOG_SEG, " do_ckp=%d sp->seg_flags=0x%x\n", do_ckp, sp->seg_flags));
659 if (sp->seg_flags & SEGM_CLEAN)
660 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
661 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
662 do {
663 um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
664 if ((sp->seg_flags & SEGM_SINGLE) &&
665 lfs_sb_getcurseg(fs) != fs->lfs_startseg) {
666 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs)));
667 break;
668 }
669
670 if (do_ckp ||
671 (writer_set = lfs_writer_tryenter(fs)) != 0) {
672 KASSERT(writer_set);
673 KASSERT(fs->lfs_writer);
674 error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
675 if (um_error == 0)
676 um_error = error;
677 /*
678 * In case writevnodes errored out
679 * XXX why are we always doing this and not
680 * just on error?
681 */
682 lfs_flush_dirops(fs);
683 ssp = (SEGSUM *)(sp->segsum);
684 lfs_ss_setflags(fs, ssp,
685 lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
686 lfs_finalize_fs_seguse(fs);
687 }
688 if (do_ckp && um_error) {
689 lfs_segunlock_relock(fs);
690 sp = fs->lfs_sp;
691 }
692 } while (do_ckp && um_error != 0);
693 }
694
695 /*
696 * If we are doing a checkpoint, mark everything since the
697 * last checkpoint as no longer ACTIVE.
698 */
699 if (do_ckp || fs->lfs_doifile) {
700 segleft = lfs_sb_getnseg(fs);
701 curseg = 0;
702 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) {
703 int bread_error;
704
705 dirty = 0;
706 bread_error = bread(fs->lfs_ivnode,
707 lfs_sb_getcleansz(fs) + n,
708 lfs_sb_getbsize(fs), B_MODIFY, &bp);
709 if (bread_error)
710 panic("lfs_segwrite: ifile read: "
711 "seguse %u: error %d\n",
712 n, bread_error);
713 segusep = (SEGUSE *)bp->b_data;
714 maxseg = uimin(segleft, lfs_sb_getsepb(fs));
715 for (i = 0; i < maxseg; i++) {
716 sn = curseg + i;
717 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) &&
718 segusep->su_flags & SEGUSE_ACTIVE) {
719 segusep->su_flags &= ~SEGUSE_ACTIVE;
720 --fs->lfs_nactive;
721 ++dirty;
722 }
723 fs->lfs_suflags[fs->lfs_activesb][sn] =
724 segusep->su_flags;
725 if (lfs_sb_getversion(fs) > 1)
726 ++segusep;
727 else
728 segusep = (SEGUSE *)
729 ((SEGUSE_V1 *)segusep + 1);
730 }
731
732 if (dirty)
733 error = LFS_BWRITE_LOG(bp); /* Ifile */
734 else
735 brelse(bp, 0);
736 segleft -= lfs_sb_getsepb(fs);
737 curseg += lfs_sb_getsepb(fs);
738 }
739 }
740
741 KASSERT(LFS_SEGLOCK_HELD(fs));
742
743 did_ckp = 0;
744 if (do_ckp || fs->lfs_doifile) {
745 vp = fs->lfs_ivnode;
746 #ifdef DEBUG
747 int loopcount = 0;
748 #endif
749 do {
750
751 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
752
753 mutex_enter(&lfs_lock);
754 fs->lfs_flags &= ~LFS_IFDIRTY;
755 mutex_exit(&lfs_lock);
756
757 ip = VTOI(vp);
758
759 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
760 /*
761 * Ifile has no pages, so we don't need
762 * to check error return here.
763 */
764 lfs_writefile(fs, sp, vp);
765 /*
766 * Ensure the Ifile takes the current segment
767 * into account. See comment in lfs_vflush.
768 */
769 lfs_writefile(fs, sp, vp);
770 lfs_writefile(fs, sp, vp);
771 }
772
773 if (ip->i_state & IN_ALLMOD)
774 ++did_ckp;
775 #if 0
776 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
777 #else
778 redo = lfs_writeinode(fs, sp, ip);
779 #endif
780 redo += lfs_writeseg(fs, sp);
781 mutex_enter(&lfs_lock);
782 redo += (fs->lfs_flags & LFS_IFDIRTY);
783 mutex_exit(&lfs_lock);
784 #ifdef DEBUG
785 if (++loopcount > 2)
786 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
787 loopcount);
788 #endif
789 } while (redo && do_ckp);
790
791 /*
792 * Unless we are unmounting, the Ifile may continue to have
793 * dirty blocks even after a checkpoint, due to changes to
794 * inodes' atime. If we're checkpointing, it's "impossible"
795 * for other parts of the Ifile to be dirty after the loop
796 * above, since we hold the segment lock.
797 */
798 mutex_enter(vp->v_interlock);
799 if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
800 LFS_CLR_UINO(ip, IN_ALLMOD);
801 }
802 #ifdef DIAGNOSTIC
803 else if (do_ckp) {
804 int do_panic = 0;
805 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
806 if (bp->b_lblkno < lfs_sb_getcleansz(fs) +
807 lfs_sb_getsegtabsz(fs) &&
808 !(bp->b_flags & B_GATHERED)) {
809 printf("ifile lbn %ld still dirty (flags %lx)\n",
810 (long)bp->b_lblkno,
811 (long)bp->b_flags);
812 ++do_panic;
813 }
814 }
815 if (do_panic)
816 panic("dirty blocks");
817 }
818 #endif
819 mutex_exit(vp->v_interlock);
820 } else {
821 (void) lfs_writeseg(fs, sp);
822 }
823
824 /* Note Ifile no longer needs to be written */
825 fs->lfs_doifile = 0;
826 if (writer_set)
827 lfs_writer_leave(fs);
828
829 /*
830 * If we didn't write the Ifile, we didn't really do anything.
831 * That means that (1) there is a checkpoint on disk and (2)
832 * nothing has changed since it was written.
833 *
834 * Take the flags off of the segment so that lfs_segunlock
835 * doesn't have to write the superblock either.
836 */
837 if (do_ckp && !did_ckp) {
838 sp->seg_flags &= ~SEGM_CKP;
839 }
840
841 if (lfs_dostats) {
842 ++lfs_stats.nwrites;
843 if (sp->seg_flags & SEGM_SYNC)
844 ++lfs_stats.nsync_writes;
845 if (sp->seg_flags & SEGM_CKP)
846 ++lfs_stats.ncheckpoints;
847 }
848 lfs_segunlock(fs);
849 DLOG((DLOG_SEG, " returning 0\n"));
850 return (0);
851 }
852
853 /*
854 * Write the dirty blocks associated with a vnode.
855 */
856 int
857 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
858 {
859 struct inode *ip;
860 int i, frag;
861 SEGSUM *ssp;
862 int error;
863
864 ASSERT_SEGLOCK(fs);
865 error = 0;
866 ip = VTOI(vp);
867
868 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
869
870 if (vp->v_uflag & VU_DIROP) {
871 ssp = (SEGSUM *)sp->segsum;
872 lfs_ss_setflags(fs, ssp,
873 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
874 }
875
876 if ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid == fs->lfs_rfpid) {
877 /*
878 * When rolling forward, we never want to write data blocks,
879 * except for the Ifile.
880 */
881 if (vp == fs->lfs_ivnode)
882 lfs_gather(fs, sp, vp, lfs_match_data);
883 else
884 lfs_ungather(fs, sp, vp, lfs_match_data);
885 } else if (sp->seg_flags & SEGM_CLEAN) {
886 lfs_gather(fs, sp, vp, lfs_match_fake);
887 /*
888 * For a file being flushed, we need to write *all* blocks.
889 * This means writing the cleaning blocks first, and then
890 * immediately following with any non-cleaning blocks.
891 * The same is true of the Ifile since checkpoints assume
892 * that all valid Ifile blocks are written.
893 */
894 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
895 lfs_gather(fs, sp, vp, lfs_match_data);
896 /*
897 * Don't call VOP_PUTPAGES: if we're flushing,
898 * we've already done it, and the Ifile doesn't
899 * use the page cache.
900 */
901 }
902 } else {
903 lfs_gather(fs, sp, vp, lfs_match_data);
904 /*
905 * If we're flushing, we've already called VOP_PUTPAGES
906 * so don't do it again. Otherwise, we want to write
907 * everything we've got.
908 */
909 if (!IS_FLUSHING(fs, vp)) {
910 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
911 error = VOP_PUTPAGES(vp, 0, 0,
912 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
913 }
914 }
915
916 /*
917 * It may not be necessary to write the meta-data blocks at this point,
918 * as the roll-forward recovery code should be able to reconstruct the
919 * list.
920 *
921 * We have to write them anyway, though, under two conditions: (1) the
922 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
923 * checkpointing.
924 *
925 * BUT if we are cleaning, we might have indirect blocks that refer to
926 * new blocks not being written yet, in addition to fragments being
927 * moved out of a cleaned segment. If that is the case, don't
928 * write the indirect blocks, or the finfo will have a small block
929 * in the middle of it!
930 * XXX in this case isn't the inode size wrong too?
931 */
932 frag = 0;
933 if (sp->seg_flags & SEGM_CLEAN) {
934 for (i = 0; i < ULFS_NDADDR; i++)
935 if (ip->i_lfs_fragsize[i] > 0 &&
936 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs))
937 ++frag;
938 }
939 KASSERTMSG((frag <= 1),
940 "lfs_writefile: more than one fragment! frag=%d", frag);
941 if (IS_FLUSHING(fs, vp) ||
942 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
943 lfs_gather(fs, sp, vp, lfs_match_indir);
944 lfs_gather(fs, sp, vp, lfs_match_dindir);
945 lfs_gather(fs, sp, vp, lfs_match_tindir);
946 }
947 lfs_release_finfo(fs);
948
949 return error;
950 }
951
952 /*
953 * Update segment accounting to reflect this inode's change of address.
954 */
955 static int
956 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
957 {
958 struct buf *bp;
959 daddr_t daddr;
960 IFILE *ifp;
961 SEGUSE *sup;
962 ino_t ino;
963 int redo_ifile;
964 u_int32_t sn;
965
966 redo_ifile = 0;
967
968 /*
969 * If updating the ifile, update the super-block. Update the disk
970 * address and access times for this inode in the ifile.
971 */
972 ino = ip->i_number;
973 if (ino == LFS_IFILE_INUM) {
974 daddr = lfs_sb_getidaddr(fs);
975 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr));
976 } else {
977 LFS_IENTRY(ifp, fs, ino, bp);
978 daddr = lfs_if_getdaddr(fs, ifp);
979 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr));
980 (void)LFS_BWRITE_LOG(bp); /* Ifile */
981 }
982
983 /*
984 * If this is the Ifile and lfs_offset is set to the first block
985 * in the segment, dirty the new segment's accounting block
986 * (XXX should already be dirty?) and tell the caller to do it again.
987 */
988 if (ip->i_number == LFS_IFILE_INUM) {
989 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
990 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) ==
991 lfs_sb_getoffset(fs)) {
992 LFS_SEGENTRY(sup, fs, sn, bp);
993 KASSERT(bp->b_oflags & BO_DELWRI);
994 LFS_WRITESEGENTRY(sup, fs, sn, bp);
995 /* fs->lfs_flags |= LFS_IFDIRTY; */
996 redo_ifile |= 1;
997 }
998 }
999
1000 /*
1001 * The inode's last address should not be in the current partial
1002 * segment, except under exceptional circumstances (lfs_writevnodes
1003 * had to start over, and in the meantime more blocks were written
1004 * to a vnode). Both inodes will be accounted to this segment
1005 * in lfs_writeseg so we need to subtract the earlier version
1006 * here anyway. The segment count can temporarily dip below
1007 * zero here; keep track of how many duplicates we have in
1008 * "dupino" so we don't panic below.
1009 */
1010 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) {
1011 ++sp->ndupino;
1012 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
1013 "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
1014 (long long)daddr, sp->ndupino));
1015 }
1016 /*
1017 * Account the inode: it no longer belongs to its former segment,
1018 * though it will not belong to the new segment until that segment
1019 * is actually written.
1020 */
1021 if (!DADDR_IS_BAD(daddr)) {
1022 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1023 int ndupino __diagused =
1024 (sp->seg_number == oldsn) ? sp->ndupino : 0;
1025 LFS_SEGENTRY(sup, fs, oldsn, bp);
1026 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino)
1027 >= DINOSIZE(fs)),
1028 "lfs_writeinode: negative bytes "
1029 "(segment %" PRIu32 " short by %d, "
1030 "oldsn=%" PRIu32 ", cursn=%" PRIu32
1031 ", daddr=%" PRId64 ", su_nbytes=%u, "
1032 "ndupino=%d)\n",
1033 lfs_dtosn(fs, daddr),
1034 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes,
1035 oldsn, sp->seg_number, daddr,
1036 (unsigned int)sup->su_nbytes,
1037 sp->ndupino);
1038 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1039 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino));
1040 sup->su_nbytes -= DINOSIZE(fs);
1041 redo_ifile |=
1042 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1043 if (redo_ifile) {
1044 mutex_enter(&lfs_lock);
1045 fs->lfs_flags |= LFS_IFDIRTY;
1046 mutex_exit(&lfs_lock);
1047 /* Don't double-account */
1048 lfs_sb_setidaddr(fs, 0x0);
1049 }
1050 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1051 }
1052
1053 return redo_ifile;
1054 }
1055
1056 int
1057 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1058 {
1059 struct buf *bp;
1060 union lfs_dinode *cdp;
1061 struct vnode *vp = ITOV(ip);
1062 daddr_t daddr;
1063 IINFO *iip;
1064 int i;
1065 int redo_ifile = 0;
1066 int gotblk = 0;
1067 int count;
1068 SEGSUM *ssp;
1069
1070 ASSERT_SEGLOCK(fs);
1071 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1072 return (0);
1073
1074 /* Can't write ifile when writer is not set */
1075 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1076 (sp->seg_flags & SEGM_CLEAN));
1077
1078 /*
1079 * If this is the Ifile, see if writing it here will generate a
1080 * temporary misaccounting. If it will, do the accounting and write
1081 * the blocks, postponing the inode write until the accounting is
1082 * solid.
1083 */
1084 count = 0;
1085 while (vp == fs->lfs_ivnode) {
1086 int redo = 0;
1087
1088 if (sp->idp == NULL && sp->ibp == NULL &&
1089 (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1090 sp->sum_bytes_left < sizeof(int32_t))) {
1091 (void) lfs_writeseg(fs, sp);
1092 continue;
1093 }
1094
1095 /* Look for dirty Ifile blocks */
1096 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1097 if (!(bp->b_flags & B_GATHERED)) {
1098 redo = 1;
1099 break;
1100 }
1101 }
1102
1103 if (redo == 0)
1104 redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1105 if (redo == 0)
1106 break;
1107
1108 if (sp->idp) {
1109 lfs_dino_setinumber(fs, sp->idp, 0);
1110 sp->idp = NULL;
1111 }
1112 ++count;
1113 if (count > 2)
1114 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1115 lfs_writefile(fs, sp, fs->lfs_ivnode);
1116 }
1117
1118 /* Allocate a new inode block if necessary. */
1119 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1120 sp->ibp == NULL) {
1121 /* Allocate a new segment if necessary. */
1122 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
1123 sp->sum_bytes_left < sizeof(int32_t))
1124 (void) lfs_writeseg(fs, sp);
1125
1126 /* Get next inode block. */
1127 daddr = lfs_sb_getoffset(fs);
1128 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1129 sp->ibp = *sp->cbpp++ =
1130 getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1131 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0);
1132 gotblk++;
1133
1134 /* Zero out inode numbers */
1135 for (i = 0; i < LFS_INOPB(fs); ++i) {
1136 union lfs_dinode *tmpdi;
1137
1138 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data +
1139 DINOSIZE(fs) * i);
1140 lfs_dino_setinumber(fs, tmpdi, 0);
1141 }
1142
1143 ++sp->start_bpp;
1144 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
1145 /* Set remaining space counters. */
1146 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
1147 sp->sum_bytes_left -= sizeof(int32_t);
1148
1149 /* Store the address in the segment summary. */
1150 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
1151 lfs_ii_setblock(fs, iip, daddr);
1152 }
1153
1154 /* Check VU_DIROP in case there is a new file with no data blocks */
1155 if (vp->v_uflag & VU_DIROP) {
1156 ssp = (SEGSUM *)sp->segsum;
1157 lfs_ss_setflags(fs, ssp,
1158 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
1159 }
1160
1161 /* Update the inode times and copy the inode onto the inode page. */
1162 /* XXX kludge --- don't redirty the ifile just to put times on it */
1163 if (ip->i_number != LFS_IFILE_INUM)
1164 LFS_ITIMES(ip, NULL, NULL, NULL);
1165
1166 /*
1167 * If this is the Ifile, and we've already written the Ifile in this
1168 * partial segment, just overwrite it (it's not on disk yet) and
1169 * continue.
1170 *
1171 * XXX we know that the bp that we get the second time around has
1172 * already been gathered.
1173 */
1174 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1175 lfs_copy_dinode(fs, sp->idp, ip->i_din);
1176 ip->i_lfs_osize = ip->i_size;
1177 return 0;
1178 }
1179
1180 bp = sp->ibp;
1181 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
1182 lfs_copy_dinode(fs, cdp, ip->i_din);
1183
1184 /*
1185 * This inode is on its way to disk; clear its VU_DIROP status when
1186 * the write is complete.
1187 */
1188 if (vp->v_uflag & VU_DIROP) {
1189 if (!(sp->seg_flags & SEGM_CLEAN))
1190 ip->i_state |= IN_CDIROP;
1191 else {
1192 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1193 }
1194 }
1195
1196 /*
1197 * If cleaning, link counts and directory file sizes cannot change,
1198 * since those would be directory operations---even if the file
1199 * we are writing is marked VU_DIROP we should write the old values.
1200 * If we're not cleaning, of course, update the values so we get
1201 * current values the next time we clean.
1202 */
1203 if (sp->seg_flags & SEGM_CLEAN) {
1204 if (vp->v_uflag & VU_DIROP) {
1205 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink);
1206 /* if (vp->v_type == VDIR) */
1207 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize);
1208 }
1209 } else {
1210 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp);
1211 ip->i_lfs_osize = ip->i_size;
1212 }
1213
1214
1215 /* We can finish the segment accounting for truncations now */
1216 lfs_finalize_ino_seguse(fs, ip);
1217
1218 /*
1219 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1220 * addresses to disk; possibly change the on-disk record of
1221 * the inode size, either by reverting to the previous size
1222 * (in the case of cleaning) or by verifying the inode's block
1223 * holdings (in the case of files being allocated as they are being
1224 * written).
1225 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1226 * XXX count on disk wrong by the same amount. We should be
1227 * XXX able to "borrow" from lfs_avail and return it after the
1228 * XXX Ifile is written. See also in lfs_writeseg.
1229 */
1230
1231 /* Check file size based on highest allocated block */
1232 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG ||
1233 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) &&
1234 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) {
1235 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs));
1236 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1237 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp)));
1238 }
1239 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) {
1240 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1241 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks,
1242 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs)));
1243 for (i=0; i<ULFS_NDADDR; i++) {
1244 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) {
1245 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1246 lfs_dino_setdb(fs, cdp, i, 0);
1247 }
1248 }
1249 for (i=0; i<ULFS_NIADDR; i++) {
1250 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) {
1251 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1252 lfs_dino_setib(fs, cdp, i, 0);
1253 }
1254 }
1255 }
1256
1257 #ifdef DIAGNOSTIC
1258 /*
1259 * Check dinode held blocks against dinode size.
1260 * This should be identical to the check in lfs_vget().
1261 */
1262 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
1263 i < ULFS_NDADDR; i++) {
1264 KASSERT(i >= 0);
1265 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK)
1266 continue;
1267 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK ||
1268 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0)
1269 continue;
1270 if (lfs_dino_getdb(fs, cdp, i) != 0) {
1271 # ifdef DEBUG
1272 lfs_dump_dinode(fs, cdp);
1273 # endif
1274 panic("writing inconsistent inode");
1275 }
1276 }
1277 #endif /* DIAGNOSTIC */
1278
1279 if (ip->i_state & IN_CLEANING)
1280 LFS_CLR_UINO(ip, IN_CLEANING);
1281 else {
1282 /* XXX IN_ALLMOD */
1283 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1284 IN_UPDATE | IN_MODIFY);
1285 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din))
1286 LFS_CLR_UINO(ip, IN_MODIFIED);
1287 else {
1288 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1289 "blks=%d, eff=%jd\n", ip->i_number,
1290 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks));
1291 }
1292 }
1293
1294 if (ip->i_number == LFS_IFILE_INUM) {
1295 /* We know sp->idp == NULL */
1296 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs));
1297
1298 /* Not dirty any more */
1299 mutex_enter(&lfs_lock);
1300 fs->lfs_flags &= ~LFS_IFDIRTY;
1301 mutex_exit(&lfs_lock);
1302 }
1303
1304 if (gotblk) {
1305 mutex_enter(&bufcache_lock);
1306 LFS_LOCK_BUF(bp);
1307 brelsel(bp, 0);
1308 mutex_exit(&bufcache_lock);
1309 }
1310
1311 /* Increment inode count in segment summary block. */
1312
1313 ssp = (SEGSUM *)sp->segsum;
1314 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
1315
1316 /* If this page is full, set flag to allocate a new page. */
1317 if (++sp->ninodes % LFS_INOPB(fs) == 0)
1318 sp->ibp = NULL;
1319
1320 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1321
1322 KASSERT(redo_ifile == 0);
1323 return (redo_ifile);
1324 }
1325
1326 int
1327 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1328 {
1329 struct lfs *fs;
1330 int vers;
1331 int j, blksinblk;
1332
1333 ASSERT_SEGLOCK(sp->fs);
1334 KASSERTMSG((sp->vp != NULL),
1335 "lfs_gatherblock: Null vp in segment");
1336
1337 /* If full, finish this segment. */
1338 fs = sp->fs;
1339 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
1340 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1341 sp->seg_bytes_left < bp->b_bcount) {
1342 if (mptr)
1343 mutex_exit(mptr);
1344 lfs_updatemeta(sp);
1345
1346 vers = lfs_fi_getversion(fs, sp->fip);
1347 (void) lfs_writeseg(fs, sp);
1348
1349 /* Add the current file to the segment summary. */
1350 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1351
1352 if (mptr)
1353 mutex_enter(mptr);
1354 return (1);
1355 }
1356
1357 if (bp->b_flags & B_GATHERED) {
1358 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju,"
1359 " lbn %" PRId64 "\n",
1360 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno));
1361 return (0);
1362 }
1363
1364 /* Insert into the buffer list, update the FINFO block. */
1365 bp->b_flags |= B_GATHERED;
1366
1367 *sp->cbpp++ = bp;
1368 for (j = 0; j < blksinblk; j++) {
1369 unsigned bn;
1370
1371 bn = lfs_fi_getnblocks(fs, sp->fip);
1372 lfs_fi_setnblocks(fs, sp->fip, bn+1);
1373 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
1374 /* This block's accounting moves from lfs_favail to lfs_avail */
1375 lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1376 }
1377
1378 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1379 sp->seg_bytes_left -= bp->b_bcount;
1380 return (0);
1381 }
1382
1383 /* Similar to lfs_gather, but simply throws the buffers away. */
1384 static int
1385 lfs_ungather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1386 int (*match)(struct lfs *, struct buf *))
1387 {
1388 struct buf *bp, *nbp;
1389 int error = 0;
1390
1391 ASSERT_SEGLOCK(fs);
1392 if (vp->v_type == VBLK)
1393 return 0;
1394 KASSERT(sp->vp == NULL);
1395 sp->vp = vp;
1396 mutex_enter(&bufcache_lock);
1397
1398 restart:
1399 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1400 KASSERT(bp->b_vp == vp);
1401 nbp = LIST_NEXT(bp, b_vnbufs);
1402 if (!match(fs, bp))
1403 continue;
1404 error = bbusy(bp, false, hz / 10 + 1, NULL);
1405 if (error != 0) {
1406 if (error == EPASSTHROUGH)
1407 goto restart;
1408 mutex_exit(&bufcache_lock);
1409 return (error);
1410 }
1411 brelsel(bp, BC_INVAL | BC_VFLUSH);
1412 }
1413
1414 mutex_exit(&bufcache_lock);
1415 sp->vp = NULL;
1416
1417 return 0;
1418 }
1419
1420 int
1421 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1422 int (*match)(struct lfs *, struct buf *))
1423 {
1424 struct buf *bp, *nbp;
1425 int count = 0;
1426
1427 ASSERT_SEGLOCK(fs);
1428 if (vp->v_type == VBLK)
1429 return 0;
1430 KASSERT(sp->vp == NULL);
1431 sp->vp = vp;
1432 mutex_enter(&bufcache_lock);
1433
1434 #ifndef LFS_NO_BACKBUF_HACK
1435 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1436 # define BUF_OFFSET \
1437 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1438 # define BACK_BUF(BP) \
1439 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1440 # define BEG_OF_LIST \
1441 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1442
1443 loop:
1444 /* Find last buffer. */
1445 for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1446 bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1447 bp = LIST_NEXT(bp, b_vnbufs))
1448 continue;
1449
1450 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1451 nbp = BACK_BUF(bp);
1452 #else /* LFS_NO_BACKBUF_HACK */
1453 loop:
1454 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1455 nbp = LIST_NEXT(bp, b_vnbufs);
1456 #endif /* LFS_NO_BACKBUF_HACK */
1457 if ((bp->b_cflags & BC_BUSY) != 0 ||
1458 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1459 #ifdef DEBUG
1460 if (vp == fs->lfs_ivnode &&
1461 (bp->b_cflags & BC_BUSY) != 0 &&
1462 (bp->b_flags & B_GATHERED) == 0)
1463 log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1464 PRId64 " busy (%x) at 0x%jx",
1465 bp->b_lblkno, bp->b_flags,
1466 (uintmax_t)lfs_sb_getoffset(fs));
1467 #endif
1468 continue;
1469 }
1470 #ifdef DIAGNOSTIC
1471 # ifdef LFS_USE_BC_INVAL
1472 if ((bp->b_cflags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1473 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1474 " is BC_INVAL\n", bp->b_lblkno));
1475 VOP_PRINT(bp->b_vp);
1476 }
1477 # endif /* LFS_USE_BC_INVAL */
1478 if (!(bp->b_oflags & BO_DELWRI))
1479 panic("lfs_gather: bp not BO_DELWRI");
1480 if (!(bp->b_flags & B_LOCKED)) {
1481 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1482 " blk %" PRId64 " not B_LOCKED\n",
1483 bp->b_lblkno,
1484 LFS_DBTOFSB(fs, bp->b_blkno)));
1485 VOP_PRINT(bp->b_vp);
1486 panic("lfs_gather: bp not B_LOCKED");
1487 }
1488 #endif
1489 if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1490 goto loop;
1491 }
1492 count++;
1493 }
1494 mutex_exit(&bufcache_lock);
1495 lfs_updatemeta(sp);
1496 KASSERT(sp->vp == vp);
1497 sp->vp = NULL;
1498 return count;
1499 }
1500
1501 #if DEBUG
1502 # define DEBUG_OOFF(n) do { \
1503 if (ooff == 0) { \
1504 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1505 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1506 ", was 0x0 (or %" PRId64 ")\n", \
1507 (n), ip->i_number, lbn, ndaddr, daddr)); \
1508 } \
1509 } while (0)
1510 #else
1511 # define DEBUG_OOFF(n)
1512 #endif
1513
1514 /*
1515 * Change the given block's address to ndaddr, finding its previous
1516 * location using ulfs_bmaparray().
1517 *
1518 * Account for this change in the segment table.
1519 *
1520 * called with sp == NULL by roll-forwarding code.
1521 */
1522 #define NOT_ON_DISK(daddr) ((daddr) == 0 || (daddr) == UNASSIGNED || (daddr) == UNWRITTEN)
1523
1524 void
1525 lfs_update_single(struct lfs *fs, struct segment *sp,
1526 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size)
1527 {
1528 SEGUSE *sup;
1529 struct buf *bp;
1530 struct indir a[ULFS_NIADDR + 2], *ap;
1531 struct inode *ip;
1532 daddr_t daddr, ooff;
1533 int num, error;
1534 int bb, osize, obb;
1535
1536 ASSERT_SEGLOCK(fs);
1537 KASSERT(sp == NULL || sp->vp == vp);
1538 ip = VTOI(vp);
1539
1540 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1541 if (error)
1542 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error);
1543
1544 KASSERT(daddr <= LFS_MAX_DADDR(fs));
1545 if (daddr > 0)
1546 daddr = LFS_DBTOFSB(fs, daddr);
1547
1548 bb = lfs_numfrags(fs, size);
1549 switch (num) {
1550 case 0:
1551 ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
1552 DEBUG_OOFF(0);
1553 if (NOT_ON_DISK(ooff))
1554 lfs_dino_setblocks(fs, ip->i_din,
1555 lfs_dino_getblocks(fs, ip->i_din) + bb);
1556 else {
1557 /* possible fragment truncation or extension */
1558 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
1559 lfs_dino_setblocks(fs, ip->i_din,
1560 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb));
1561 }
1562 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
1563 break;
1564 case 1:
1565 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
1566 DEBUG_OOFF(1);
1567 if (NOT_ON_DISK(ooff))
1568 lfs_dino_setblocks(fs, ip->i_din,
1569 lfs_dino_getblocks(fs, ip->i_din) + bb);
1570 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
1571 break;
1572 default:
1573 ap = &a[num - 1];
1574 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs),
1575 B_MODIFY, &bp))
1576 panic("lfs_updatemeta: bread bno %" PRId64,
1577 ap->in_lbn);
1578
1579 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
1580 DEBUG_OOFF(num);
1581 if (NOT_ON_DISK(ooff))
1582 lfs_dino_setblocks(fs, ip->i_din,
1583 lfs_dino_getblocks(fs, ip->i_din) + bb);
1584 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
1585 (void) VOP_BWRITE(bp->b_vp, bp);
1586 }
1587
1588 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1589
1590 /* Update hiblk when extending the file */
1591 if (lbn > ip->i_lfs_hiblk)
1592 ip->i_lfs_hiblk = lbn;
1593
1594 /*
1595 * Though we'd rather it couldn't, this *can* happen right now
1596 * if cleaning blocks and regular blocks coexist.
1597 */
1598 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1599
1600 /*
1601 * Update segment usage information, based on old size
1602 * and location.
1603 */
1604 if (daddr > 0) {
1605 u_int32_t oldsn = lfs_dtosn(fs, daddr);
1606 int ndupino __diagused = (sp && sp->seg_number == oldsn ?
1607 sp->ndupino : 0);
1608
1609 KASSERT(oldsn < lfs_sb_getnseg(fs));
1610 if (lbn >= 0 && lbn < ULFS_NDADDR)
1611 osize = ip->i_lfs_fragsize[lbn];
1612 else
1613 osize = lfs_sb_getbsize(fs);
1614 LFS_SEGENTRY(sup, fs, oldsn, bp);
1615 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize),
1616 "lfs_updatemeta: negative bytes "
1617 "(segment %" PRIu32 " short by %" PRId64
1618 ")\n"
1619 "lfs_updatemeta: ino %llu, lbn %" PRId64
1620 ", addr = 0x%" PRIx64 "\n"
1621 "lfs_updatemeta: ndupino=%d",
1622 lfs_dtosn(fs, daddr),
1623 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes),
1624 (unsigned long long)ip->i_number, lbn, daddr,
1625 ndupino);
1626 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1627 " db 0x%" PRIx64 "\n",
1628 lfs_dtosn(fs, daddr), osize,
1629 ip->i_number, lbn, daddr));
1630 sup->su_nbytes -= osize;
1631 if (!(bp->b_flags & B_GATHERED)) {
1632 mutex_enter(&lfs_lock);
1633 fs->lfs_flags |= LFS_IFDIRTY;
1634 mutex_exit(&lfs_lock);
1635 }
1636 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1637 }
1638 /*
1639 * Now that this block has a new address, and its old
1640 * segment no longer owns it, we can forget about its
1641 * old size.
1642 */
1643 if (lbn >= 0 && lbn < ULFS_NDADDR)
1644 ip->i_lfs_fragsize[lbn] = size;
1645 }
1646
1647 /*
1648 * Update the metadata that points to the blocks listed in the FINFO
1649 * array.
1650 */
1651 void
1652 lfs_updatemeta(struct segment *sp)
1653 {
1654 struct buf *sbp;
1655 struct lfs *fs;
1656 struct vnode *vp;
1657 daddr_t lbn;
1658 int i, nblocks, num;
1659 int __diagused nblocks_orig;
1660 int bb;
1661 int bytesleft, size;
1662 unsigned lastlength;
1663 union lfs_blocks tmpptr;
1664
1665 fs = sp->fs;
1666 vp = sp->vp;
1667 ASSERT_SEGLOCK(fs);
1668
1669 /*
1670 * This used to be:
1671 *
1672 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1673 *
1674 * that is, it allowed for the possibility that start_lbp did
1675 * not point to the beginning of the finfo block pointer area.
1676 * This particular formulation is six kinds of painful in the
1677 * lfs64 world where we have two sizes of block pointer, so
1678 * unless/until everything can be cleaned up to not move
1679 * start_lbp around but instead use an offset, we do the
1680 * following:
1681 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1682 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1683 * type. (Ugh.)
1684 * 2. Cast it to void *, then assign it to a temporary
1685 * union lfs_blocks.
1686 * 3. Subtract start_lbp from that.
1687 * 4. Save the value of nblocks in blocks_orig so we can
1688 * assert below that it hasn't changed without repeating this
1689 * rubbish.
1690 *
1691 * XXX.
1692 */
1693 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
1694 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
1695 nblocks_orig = nblocks;
1696
1697 KASSERT(nblocks >= 0);
1698 KASSERT(vp != NULL);
1699 if (nblocks == 0)
1700 return;
1701
1702 /*
1703 * This count may be high due to oversize blocks from lfs_gop_write.
1704 * Correct for this. (XXX we should be able to keep track of these.)
1705 */
1706 for (i = 0; i < nblocks; i++) {
1707 if (sp->start_bpp[i] == NULL) {
1708 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1709 nblocks = i;
1710 break;
1711 }
1712 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
1713 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1714 nblocks -= num - 1;
1715 }
1716
1717 #if 0
1718 /* pre-lfs64 assertion */
1719 KASSERT(vp->v_type == VREG ||
1720 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1721 #else
1722 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig);
1723 #endif
1724 KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1725
1726 /*
1727 * Sort the blocks.
1728 *
1729 * We have to sort even if the blocks come from the
1730 * cleaner, because there might be other pending blocks on the
1731 * same inode...and if we don't sort, and there are fragments
1732 * present, blocks may be written in the wrong place.
1733 */
1734 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
1735
1736 /*
1737 * Record the length of the last block in case it's a fragment.
1738 * If there are indirect blocks present, they sort last. An
1739 * indirect block will be lfs_bsize and its presence indicates
1740 * that you cannot have fragments.
1741 *
1742 * XXX This last is a lie. A cleaned fragment can coexist with
1743 * XXX a later indirect block. This will continue to be
1744 * XXX true until lfs_markv is fixed to do everything with
1745 * XXX fake blocks (including fake inodes and fake indirect blocks).
1746 */
1747 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1748 lfs_sb_getbmask(fs)) + 1;
1749 lfs_fi_setlastlength(fs, sp->fip, lastlength);
1750
1751 /*
1752 * Assign disk addresses, and update references to the logical
1753 * block and the segment usage information.
1754 */
1755 for (i = nblocks; i--; ++sp->start_bpp) {
1756 sbp = *sp->start_bpp;
1757 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1758 KASSERT(sbp->b_lblkno == lbn);
1759
1760 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
1761
1762 /*
1763 * If we write a frag in the wrong place, the cleaner won't
1764 * be able to correctly identify its size later, and the
1765 * segment will be uncleanable. (Even worse, it will assume
1766 * that the indirect block that actually ends the list
1767 * is of a smaller size!)
1768 */
1769 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
1770 panic("lfs_updatemeta: fragment is not last block");
1771
1772 /*
1773 * For each subblock in this possibly oversized block,
1774 * update its address on disk.
1775 */
1776 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs));
1777 KASSERT(vp == sbp->b_vp);
1778 for (bytesleft = sbp->b_bcount; bytesleft > 0;
1779 bytesleft -= lfs_sb_getbsize(fs)) {
1780 size = MIN(bytesleft, lfs_sb_getbsize(fs));
1781 bb = lfs_numfrags(fs, size);
1782 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
1783 lfs_blocks_inc(fs, &sp->start_lbp);
1784 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs),
1785 size);
1786 lfs_sb_addoffset(fs, bb);
1787 }
1788
1789 }
1790
1791 /* This inode has been modified */
1792 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1793 }
1794
1795 /*
1796 * Move lfs_offset to a segment earlier than newsn.
1797 */
1798 int
1799 lfs_rewind(struct lfs *fs, int newsn)
1800 {
1801 int sn, osn, isdirty;
1802 struct buf *bp;
1803 SEGUSE *sup;
1804
1805 ASSERT_SEGLOCK(fs);
1806
1807 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs));
1808 if (osn < newsn)
1809 return 0;
1810
1811 /* lfs_avail eats the remaining space in this segment */
1812 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1813
1814 /* Find a low-numbered segment */
1815 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) {
1816 LFS_SEGENTRY(sup, fs, sn, bp);
1817 isdirty = sup->su_flags & SEGUSE_DIRTY;
1818 brelse(bp, 0);
1819
1820 if (!isdirty)
1821 break;
1822 }
1823 if (sn == lfs_sb_getnseg(fs))
1824 panic("lfs_rewind: no clean segments");
1825 if (newsn >= 0 && sn >= newsn)
1826 return ENOENT;
1827 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
1828 lfs_newseg(fs);
1829 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1830
1831 return 0;
1832 }
1833
1834 /*
1835 * Start a new partial segment.
1836 *
1837 * Return 1 when we entered to a new segment.
1838 * Otherwise, return 0.
1839 */
1840 int
1841 lfs_initseg(struct lfs *fs, uint16_t flags)
1842 {
1843 struct segment *sp = fs->lfs_sp;
1844 SEGSUM *ssp;
1845 struct buf *sbp; /* buffer for SEGSUM */
1846 int repeat = 0; /* return value */
1847
1848 ASSERT_SEGLOCK(fs);
1849 /* Advance to the next segment. */
1850 if (!LFS_PARTIAL_FITS(fs)) {
1851 SEGUSE *sup;
1852 struct buf *bp;
1853
1854 /* lfs_avail eats the remaining space */
1855 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
1856 lfs_sb_getcurseg(fs)));
1857 /* Wake up any cleaning procs waiting on this file system. */
1858 lfs_wakeup_cleaner(fs);
1859 lfs_newseg(fs);
1860 repeat = 1;
1861 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
1862
1863 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1864 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
1865
1866 /*
1867 * If the segment contains a superblock, update the offset
1868 * and summary address to skip over it.
1869 */
1870 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1871 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1872 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
1873 sp->seg_bytes_left -= LFS_SBPAD;
1874 }
1875 brelse(bp, 0);
1876 /* Segment zero could also contain the labelpad */
1877 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
1878 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
1879 lfs_sb_addoffset(fs,
1880 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
1881 sp->seg_bytes_left -=
1882 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
1883 }
1884 } else {
1885 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
1886 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
1887 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
1888 }
1889 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
1890
1891 /* Record first address of this partial segment */
1892 if (sp->seg_flags & SEGM_CLEAN) {
1893 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs);
1894 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1895 /* "1" is the artificial inc in lfs_seglock */
1896 mutex_enter(&lfs_lock);
1897 while (fs->lfs_iocount > 1) {
1898 mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1899 "lfs_initseg", 0, &lfs_lock);
1900 }
1901 mutex_exit(&lfs_lock);
1902 fs->lfs_cleanind = 0;
1903 }
1904 }
1905
1906 sp->fs = fs;
1907 sp->ibp = NULL;
1908 sp->idp = NULL;
1909 sp->ninodes = 0;
1910 sp->ndupino = 0;
1911
1912 sp->cbpp = sp->bpp;
1913
1914 /* Get a new buffer for SEGSUM */
1915 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1916 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY);
1917
1918 /* ... and enter it into the buffer list. */
1919 *sp->cbpp = sbp;
1920 sp->cbpp++;
1921 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
1922
1923 sp->start_bpp = sp->cbpp;
1924
1925 if ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid == fs->lfs_rfpid)
1926 flags |= SS_RFW;
1927
1928 /* Set point to SEGSUM, initialize it. */
1929 ssp = sp->segsum = sbp->b_data;
1930 memset(ssp, 0, lfs_sb_getsumsize(fs));
1931 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
1932 lfs_ss_setnfinfo(fs, ssp, 0);
1933 lfs_ss_setninos(fs, ssp, 0);
1934 lfs_ss_setmagic(fs, ssp, SS_MAGIC);
1935 lfs_ss_setflags(fs, ssp, flags);
1936
1937 /* Set pointer to first FINFO, initialize it. */
1938 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum);
1939 lfs_fi_setnblocks(fs, sp->fip, 0);
1940 lfs_fi_setlastlength(fs, sp->fip, 0);
1941 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
1942
1943 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
1944 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
1945
1946 return (repeat);
1947 }
1948
1949 /*
1950 * Remove SEGUSE_INVAL from all segments.
1951 */
1952 void
1953 lfs_unset_inval_all(struct lfs *fs)
1954 {
1955 SEGUSE *sup;
1956 struct buf *bp;
1957 int i;
1958
1959 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1960 LFS_SEGENTRY(sup, fs, i, bp);
1961 if (sup->su_flags & SEGUSE_INVAL) {
1962 sup->su_flags &= ~SEGUSE_INVAL;
1963 LFS_WRITESEGENTRY(sup, fs, i, bp);
1964 } else
1965 brelse(bp, 0);
1966 }
1967 }
1968
1969 /*
1970 * Return the next segment to write.
1971 */
1972 void
1973 lfs_newseg(struct lfs *fs)
1974 {
1975 CLEANERINFO *cip;
1976 SEGUSE *sup;
1977 struct buf *bp;
1978 int curseg, isdirty, sn, skip_inval;
1979
1980 ASSERT_SEGLOCK(fs);
1981
1982 /* Honor LFCNWRAPSTOP */
1983 mutex_enter(&lfs_lock);
1984 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
1985 if (fs->lfs_wrappass) {
1986 log(LOG_NOTICE, "%s: wrappass=%d\n",
1987 lfs_sb_getfsmnt(fs), fs->lfs_wrappass);
1988 fs->lfs_wrappass = 0;
1989 break;
1990 }
1991 fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1992 wakeup(&fs->lfs_nowrap);
1993 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs));
1994 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1995 &lfs_lock);
1996 }
1997 fs->lfs_wrapstatus = LFS_WRAP_GOING;
1998 mutex_exit(&lfs_lock);
1999
2000 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
2001 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
2002 lfs_dtosn(fs, lfs_sb_getnextseg(fs))));
2003 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
2004 sup->su_nbytes = 0;
2005 sup->su_nsums = 0;
2006 sup->su_ninos = 0;
2007 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
2008
2009 LFS_CLEANERINFO(cip, fs, bp);
2010 lfs_ci_shiftcleantodirty(fs, cip, 1);
2011 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
2012 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
2013
2014 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
2015 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
2016 skip_inval = 1;
2017 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
2018 sn = (sn + 1) % lfs_sb_getnseg(fs);
2019
2020 if (sn == curseg) {
2021 if (skip_inval)
2022 skip_inval = 0;
2023 else
2024 panic("lfs_nextseg: no clean segments");
2025 }
2026 LFS_SEGENTRY(sup, fs, sn, bp);
2027 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
2028 /* Check SEGUSE_EMPTY as we go along */
2029 if (isdirty && sup->su_nbytes == 0 &&
2030 !(sup->su_flags & SEGUSE_EMPTY))
2031 LFS_WRITESEGENTRY(sup, fs, sn, bp);
2032 else
2033 brelse(bp, 0);
2034
2035 if (!isdirty)
2036 break;
2037 }
2038 if (skip_inval == 0)
2039 lfs_unset_inval_all(fs);
2040
2041 ++fs->lfs_nactive;
2042 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
2043 if (lfs_dostats) {
2044 ++lfs_stats.segsused;
2045 }
2046 }
2047
2048 static struct buf *
2049 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
2050 int n)
2051 {
2052 struct lfs_cluster *cl;
2053 struct buf **bpp, *bp;
2054
2055 ASSERT_SEGLOCK(fs);
2056 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
2057 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
2058 memset(cl, 0, sizeof(*cl));
2059 cl->fs = fs;
2060 cl->bpp = bpp;
2061 cl->bufcount = 0;
2062 cl->bufsize = 0;
2063
2064 /* If this segment is being written synchronously, note that */
2065 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
2066 cl->flags |= LFS_CL_SYNC;
2067 cl->seg = fs->lfs_sp;
2068 ++cl->seg->seg_iocount;
2069 }
2070
2071 /* Get an empty buffer header, or maybe one with something on it */
2072 bp = getiobuf(vp, true);
2073 bp->b_dev = NODEV;
2074 bp->b_blkno = bp->b_lblkno = addr;
2075 bp->b_iodone = lfs_cluster_aiodone;
2076 bp->b_private = cl;
2077
2078 return bp;
2079 }
2080
2081 int
2082 lfs_writeseg(struct lfs *fs, struct segment *sp)
2083 {
2084 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
2085 SEGUSE *sup;
2086 SEGSUM *ssp;
2087 int i;
2088 int do_again, nblocks, byteoffset;
2089 size_t el_size;
2090 struct lfs_cluster *cl;
2091 u_short ninos;
2092 struct vnode *devvp;
2093 char *p = NULL;
2094 struct vnode *vp;
2095 unsigned ibindex, iblimit;
2096 int changed;
2097 u_int32_t sum;
2098 size_t sumstart;
2099 uint16_t oflags;
2100 #ifdef DEBUG
2101 FINFO *fip;
2102 int findex;
2103 #endif
2104
2105 ASSERT_SEGLOCK(fs);
2106
2107 ssp = (SEGSUM *)sp->segsum;
2108
2109 /*
2110 * If there are no buffers other than the segment summary to write,
2111 * don't do anything. If we are the end of a dirop sequence, however,
2112 * write the empty segment summary anyway, to help out the
2113 * roll-forward agent.
2114 */
2115 if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2116 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP)
2117 return 0;
2118 }
2119
2120 /* Note if partial segment is being written by the cleaner */
2121 if (sp->seg_flags & SEGM_CLEAN)
2122 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN);
2123
2124 /* Note if we are writing to reclaim */
2125 if (sp->seg_flags & SEGM_RECLAIM) {
2126 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM);
2127 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino);
2128 }
2129 /* Save flags to attach to a new partial segment, if we need one */
2130 oflags = lfs_ss_getflags(fs, ssp);
2131
2132 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2133
2134 /* Update the segment usage information. */
2135 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2136
2137 /* Loop through all blocks, except the segment summary. */
2138 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2139 if ((*bpp)->b_vp != devvp) {
2140 sup->su_nbytes += (*bpp)->b_bcount;
2141 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2142 " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2143 sp->seg_number, (*bpp)->b_bcount,
2144 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2145 (*bpp)->b_blkno));
2146 }
2147 }
2148
2149 #ifdef DEBUG
2150 /* Check for zero-length and zero-version FINFO entries. */
2151 fip = SEGSUM_FINFOBASE(fs, ssp);
2152 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) {
2153 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0);
2154 KDASSERT(lfs_fi_getversion(fs, fip) > 0);
2155 fip = NEXT_FINFO(fs, fip);
2156 }
2157 #endif /* DEBUG */
2158
2159 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
2160 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2161 sp->seg_number,
2162 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs),
2163 lfs_ss_getninos(fs, ssp)));
2164 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
2165 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2166 if (lfs_sb_getversion(fs) == 1)
2167 sup->su_olastmod = time_second;
2168 else
2169 sup->su_lastmod = time_second;
2170 sup->su_ninos += ninos;
2171 ++sup->su_nsums;
2172 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
2173
2174 do_again = !(bp->b_flags & B_GATHERED);
2175 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2176
2177 /*
2178 * Mark blocks BC_BUSY, to prevent then from being changed between
2179 * the checksum computation and the actual write.
2180 *
2181 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2182 * there are any, replace them with copies that have UNASSIGNED
2183 * instead.
2184 */
2185 mutex_enter(&bufcache_lock);
2186 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2187 ++bpp;
2188 bp = *bpp;
2189 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
2190 bp->b_cflags |= BC_BUSY;
2191 continue;
2192 }
2193
2194 while (bp->b_cflags & BC_BUSY) {
2195 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2196 " data summary corruption for ino %d, lbn %"
2197 PRId64 "\n",
2198 VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2199 bp->b_cflags |= BC_WANTED;
2200 cv_wait(&bp->b_busy, &bufcache_lock);
2201 }
2202 bp->b_cflags |= BC_BUSY;
2203 mutex_exit(&bufcache_lock);
2204 unbusybp = NULL;
2205
2206 /*
2207 * Check and replace indirect block UNWRITTEN bogosity.
2208 * XXX See comment in lfs_writefile.
2209 */
2210 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2211 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) !=
2212 VTOI(bp->b_vp)->i_lfs_effnblks) {
2213 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2214 VTOI(bp->b_vp)->i_number,
2215 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks,
2216 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din)));
2217 /* Make a copy we'll make changes to */
2218 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2219 bp->b_bcount, LFS_NB_IBLOCK);
2220 newbp->b_blkno = bp->b_blkno;
2221 memcpy(newbp->b_data, bp->b_data,
2222 newbp->b_bcount);
2223
2224 changed = 0;
2225 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs);
2226 for (ibindex = 0; ibindex < iblimit; ibindex++) {
2227 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) {
2228 ++changed;
2229 lfs_iblock_set(fs, newbp->b_data,
2230 ibindex, 0);
2231 }
2232 }
2233 /*
2234 * Get rid of the old buffer. Don't mark it clean,
2235 * though, if it still has dirty data on it.
2236 */
2237 if (changed) {
2238 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2239 " bp = %p newbp = %p\n", changed, bp,
2240 newbp));
2241 *bpp = newbp;
2242 bp->b_flags &= ~B_GATHERED;
2243 bp->b_error = 0;
2244 if (bp->b_iodone != NULL) {
2245 DLOG((DLOG_SEG, "lfs_writeseg: "
2246 "indir bp should not be B_CALL\n"));
2247 biodone(bp);
2248 bp = NULL;
2249 } else {
2250 /* Still on free list, leave it there */
2251 unbusybp = bp;
2252 /*
2253 * We have to re-decrement lfs_avail
2254 * since this block is going to come
2255 * back around to us in the next
2256 * segment.
2257 */
2258 lfs_sb_subavail(fs,
2259 lfs_btofsb(fs, bp->b_bcount));
2260 }
2261 } else {
2262 lfs_freebuf(fs, newbp);
2263 }
2264 }
2265 mutex_enter(&bufcache_lock);
2266 if (unbusybp != NULL) {
2267 unbusybp->b_cflags &= ~BC_BUSY;
2268 if (unbusybp->b_cflags & BC_WANTED)
2269 cv_broadcast(&bp->b_busy);
2270 }
2271 }
2272 mutex_exit(&bufcache_lock);
2273
2274 /*
2275 * Compute checksum across data and then across summary; the first
2276 * block (the summary block) is skipped. Set the create time here
2277 * so that it's guaranteed to be later than the inode mod times.
2278 */
2279 sum = 0;
2280 if (lfs_sb_getversion(fs) == 1)
2281 el_size = sizeof(u_long);
2282 else
2283 el_size = sizeof(u_int32_t);
2284 for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2285 ++bpp;
2286 /* Loop through gop_write cluster blocks */
2287 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2288 byteoffset += lfs_sb_getbsize(fs)) {
2289 #ifdef LFS_USE_BC_INVAL
2290 if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2291 (*bpp)->b_iodone != NULL) {
2292 if (copyin((void *)(*bpp)->b_saveaddr +
2293 byteoffset, dp, el_size)) {
2294 panic("lfs_writeseg: copyin failed [1]:"
2295 " ino %" PRIu64 " blk %" PRId64,
2296 VTOI((*bpp)->b_vp)->i_number,
2297 (*bpp)->b_lblkno);
2298 }
2299 } else
2300 #endif /* LFS_USE_BC_INVAL */
2301 {
2302 sum = lfs_cksum_part((char *)
2303 (*bpp)->b_data + byteoffset, el_size, sum);
2304 }
2305 }
2306 }
2307 if (lfs_sb_getversion(fs) == 1)
2308 lfs_ss_setocreate(fs, ssp, time_second);
2309 else {
2310 lfs_ss_setcreate(fs, ssp, time_second);
2311 lfs_sb_addserial(fs, 1);
2312 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
2313 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
2314 }
2315 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum));
2316 sumstart = lfs_ss_getsumstart(fs);
2317 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart,
2318 lfs_sb_getsumsize(fs) - sumstart));
2319
2320 mutex_enter(&lfs_lock);
2321 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2322 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2323 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
2324 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
2325 mutex_exit(&lfs_lock);
2326
2327 /*
2328 * When we simply write the blocks we lose a rotation for every block
2329 * written. To avoid this problem, we cluster the buffers into a
2330 * chunk and write the chunk. MAXPHYS is the largest size I/O
2331 * devices can handle, use that for the size of the chunks.
2332 *
2333 * Blocks that are already clusters (from GOP_WRITE), however, we
2334 * don't bother to copy into other clusters.
2335 */
2336
2337 #define CHUNKSIZE MAXPHYS
2338
2339 if (devvp == NULL)
2340 panic("devvp is NULL");
2341 for (bpp = sp->bpp, i = nblocks; i;) {
2342 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2343 cl = cbp->b_private;
2344
2345 cbp->b_flags |= B_ASYNC;
2346 cbp->b_cflags |= BC_BUSY;
2347 cbp->b_bcount = 0;
2348
2349 KASSERTMSG((bpp - sp->bpp <=
2350 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs))
2351 / sizeof(int32_t)),
2352 "lfs_writeseg: real bpp overwrite");
2353 KASSERTMSG((bpp - sp->bpp <=
2354 lfs_segsize(fs) / lfs_sb_getfsize(fs)),
2355 "lfs_writeseg: theoretical bpp overwrite");
2356
2357 /*
2358 * Construct the cluster.
2359 */
2360 mutex_enter(&lfs_lock);
2361 ++fs->lfs_iocount;
2362 mutex_exit(&lfs_lock);
2363 while (i && cbp->b_bcount < CHUNKSIZE) {
2364 bp = *bpp;
2365
2366 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2367 break;
2368 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2369 break;
2370
2371 /* Clusters from GOP_WRITE are expedited */
2372 if (bp->b_bcount > lfs_sb_getbsize(fs)) {
2373 if (cbp->b_bcount > 0)
2374 /* Put in its own buffer */
2375 break;
2376 else {
2377 cbp->b_data = bp->b_data;
2378 }
2379 } else if (cbp->b_bcount == 0) {
2380 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2381 LFS_NB_CLUSTER);
2382 cl->flags |= LFS_CL_MALLOC;
2383 }
2384 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno +
2385 btodb(bp->b_bcount - 1))) ==
2386 sp->seg_number),
2387 "segment overwrite: blk size %d daddr %" PRIx64
2388 " not in seg %d\n",
2389 bp->b_bcount, bp->b_blkno,
2390 sp->seg_number);
2391
2392 #ifdef LFS_USE_BC_INVAL
2393 /*
2394 * Fake buffers from the cleaner are marked as BC_INVAL.
2395 * We need to copy the data from user space rather than
2396 * from the buffer indicated.
2397 * XXX == what do I do on an error?
2398 */
2399 if ((bp->b_cflags & BC_INVAL) != 0 &&
2400 bp->b_iodone != NULL) {
2401 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2402 panic("lfs_writeseg: "
2403 "copyin failed [2]");
2404 } else
2405 #endif /* LFS_USE_BC_INVAL */
2406 if (cl->flags & LFS_CL_MALLOC) {
2407 /* copy data into our cluster. */
2408 memcpy(p, bp->b_data, bp->b_bcount);
2409 p += bp->b_bcount;
2410 }
2411
2412 cbp->b_bcount += bp->b_bcount;
2413 cl->bufsize += bp->b_bcount;
2414
2415 bp->b_flags &= ~B_READ;
2416 bp->b_error = 0;
2417 cl->bpp[cl->bufcount++] = bp;
2418
2419 vp = bp->b_vp;
2420 mutex_enter(&bufcache_lock);
2421 mutex_enter(vp->v_interlock);
2422 bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2423 reassignbuf(bp, vp);
2424 vp->v_numoutput++;
2425 mutex_exit(vp->v_interlock);
2426 mutex_exit(&bufcache_lock);
2427
2428 bpp++;
2429 i--;
2430 }
2431 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2432 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2433 else
2434 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2435 mutex_enter(devvp->v_interlock);
2436 devvp->v_numoutput++;
2437 mutex_exit(devvp->v_interlock);
2438 VOP_STRATEGY(devvp, cbp);
2439 curlwp->l_ru.ru_oublock++;
2440 }
2441
2442 if (lfs_dostats) {
2443 ++lfs_stats.psegwrites;
2444 lfs_stats.blocktot += nblocks - 1;
2445 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2446 ++lfs_stats.psyncwrites;
2447 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2448 ++lfs_stats.pcleanwrites;
2449 lfs_stats.cleanblocks += nblocks - 1;
2450 }
2451 }
2452
2453 return (lfs_initseg(fs, oflags) || do_again);
2454 }
2455
2456 void
2457 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2458 {
2459 struct buf *bp;
2460 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2461
2462 ASSERT_MAYBE_SEGLOCK(fs);
2463 if (fs->lfs_is64) {
2464 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC);
2465 } else {
2466 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC);
2467 }
2468 /*
2469 * If we can write one superblock while another is in
2470 * progress, we risk not having a complete checkpoint if we crash.
2471 * So, block here if a superblock write is in progress.
2472 */
2473 mutex_enter(&lfs_lock);
2474 while (fs->lfs_sbactive) {
2475 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2476 &lfs_lock);
2477 }
2478 fs->lfs_sbactive = daddr;
2479 mutex_exit(&lfs_lock);
2480
2481 /* Set timestamp of this version of the superblock */
2482 if (lfs_sb_getversion(fs) == 1)
2483 lfs_sb_setotstamp(fs, time_second);
2484 lfs_sb_settstamp(fs, time_second);
2485
2486 /* The next chunk of code relies on this assumption */
2487 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
2488
2489 /* Checksum the superblock and copy it into a buffer. */
2490 lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
2491 bp = lfs_newbuf(fs, devvp,
2492 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2493 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
2494 memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2495 LFS_SBPAD - sizeof(struct dlfs));
2496
2497 bp->b_cflags |= BC_BUSY;
2498 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2499 bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2500 bp->b_error = 0;
2501 bp->b_iodone = lfs_super_aiodone;
2502
2503 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2504 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2505 else
2506 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2507 curlwp->l_ru.ru_oublock++;
2508
2509 mutex_enter(devvp->v_interlock);
2510 devvp->v_numoutput++;
2511 mutex_exit(devvp->v_interlock);
2512
2513 mutex_enter(&lfs_lock);
2514 ++fs->lfs_iocount;
2515 mutex_exit(&lfs_lock);
2516 VOP_STRATEGY(devvp, bp);
2517 }
2518
2519 /*
2520 * Logical block number match routines used when traversing the dirty block
2521 * chain.
2522 */
2523 int
2524 lfs_match_fake(struct lfs *fs, struct buf *bp)
2525 {
2526
2527 ASSERT_SEGLOCK(fs);
2528 return LFS_IS_MALLOC_BUF(bp);
2529 }
2530
2531 #if 0
2532 int
2533 lfs_match_real(struct lfs *fs, struct buf *bp)
2534 {
2535
2536 ASSERT_SEGLOCK(fs);
2537 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2538 }
2539 #endif
2540
2541 int
2542 lfs_match_data(struct lfs *fs, struct buf *bp)
2543 {
2544
2545 ASSERT_SEGLOCK(fs);
2546 return (bp->b_lblkno >= 0);
2547 }
2548
2549 int
2550 lfs_match_indir(struct lfs *fs, struct buf *bp)
2551 {
2552 daddr_t lbn;
2553
2554 ASSERT_SEGLOCK(fs);
2555 lbn = bp->b_lblkno;
2556 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
2557 }
2558
2559 int
2560 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2561 {
2562 daddr_t lbn;
2563
2564 ASSERT_SEGLOCK(fs);
2565 lbn = bp->b_lblkno;
2566 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
2567 }
2568
2569 int
2570 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2571 {
2572 daddr_t lbn;
2573
2574 ASSERT_SEGLOCK(fs);
2575 lbn = bp->b_lblkno;
2576 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
2577 }
2578
2579 void
2580 lfs_free_aiodone(struct buf *bp)
2581 {
2582 struct lfs *fs;
2583
2584 fs = bp->b_private;
2585 ASSERT_NO_SEGLOCK(fs);
2586 lfs_freebuf(fs, bp);
2587 }
2588
2589 static void
2590 lfs_super_aiodone(struct buf *bp)
2591 {
2592 workqueue_enqueue(lfs_super_wq, (struct work *)bp, NULL);
2593 }
2594
2595 void
2596 lfs_super_work(struct work *wk, void *arg)
2597 {
2598 struct buf *bp = (struct buf *)wk;
2599 struct lfs *fs;
2600
2601 fs = bp->b_private;
2602 ASSERT_NO_SEGLOCK(fs);
2603 mutex_enter(&lfs_lock);
2604 fs->lfs_sbactive = 0;
2605 if (--fs->lfs_iocount <= 1)
2606 wakeup(&fs->lfs_iocount);
2607 wakeup(&fs->lfs_sbactive);
2608 mutex_exit(&lfs_lock);
2609 lfs_freebuf(fs, bp);
2610 }
2611
2612 static void
2613 lfs_cluster_aiodone(struct buf *bp)
2614 {
2615 workqueue_enqueue(lfs_cluster_wq, (struct work *)bp, NULL);
2616 }
2617
2618 void
2619 lfs_cluster_work(struct work *wk, void *arg)
2620 {
2621 struct buf *bp = (struct buf *)wk;
2622 struct lfs_cluster *cl;
2623 struct lfs *fs;
2624 struct buf *tbp, *fbp;
2625 struct vnode *vp, *devvp, *ovp;
2626 struct inode *ip;
2627 int error;
2628
2629 error = bp->b_error;
2630 cl = bp->b_private;
2631 fs = cl->fs;
2632 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2633 ASSERT_NO_SEGLOCK(fs);
2634
2635 /* Put the pages back, and release the buffer */
2636 while (cl->bufcount--) {
2637 tbp = cl->bpp[cl->bufcount];
2638 KASSERT(tbp->b_cflags & BC_BUSY);
2639 if (error) {
2640 tbp->b_error = error;
2641 }
2642
2643 /*
2644 * We're done with tbp. If it has not been re-dirtied since
2645 * the cluster was written, free it. Otherwise, keep it on
2646 * the locked list to be written again.
2647 */
2648 vp = tbp->b_vp;
2649
2650 tbp->b_flags &= ~B_GATHERED;
2651
2652 #ifdef DEBUG
2653 if ((tbp)->b_vp == (fs)->lfs_ivnode)
2654 LFS_ENTER_LOG("clear", __FILE__, __LINE__,
2655 tbp->b_lblkno, tbp->b_flags, curproc->p_pid);
2656 #endif
2657
2658 mutex_enter(&bufcache_lock);
2659 if (tbp->b_iodone == NULL) {
2660 KASSERT(tbp->b_flags & B_LOCKED);
2661 bremfree(tbp);
2662 if (vp) {
2663 mutex_enter(vp->v_interlock);
2664 reassignbuf(tbp, vp);
2665 mutex_exit(vp->v_interlock);
2666 }
2667 tbp->b_flags |= B_ASYNC; /* for biodone */
2668 }
2669
2670 if ((tbp->b_flags & B_LOCKED) && !(tbp->b_oflags & BO_DELWRI))
2671 LFS_UNLOCK_BUF(tbp);
2672
2673 if (tbp->b_oflags & BO_DONE) {
2674 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2675 cl->bufcount, (long)tbp->b_flags));
2676 }
2677
2678 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2679 /*
2680 * A buffer from the page daemon.
2681 * We use the same iodone as it does,
2682 * so we must manually disassociate its
2683 * buffers from the vp.
2684 */
2685 if ((ovp = tbp->b_vp) != NULL) {
2686 /* This is just silly */
2687 mutex_enter(ovp->v_interlock);
2688 brelvp(tbp);
2689 mutex_exit(ovp->v_interlock);
2690 tbp->b_vp = vp;
2691 tbp->b_objlock = vp->v_interlock;
2692 }
2693 /* Put it back the way it was */
2694 tbp->b_flags |= B_ASYNC;
2695 /* Master buffers have BC_AGE */
2696 if (tbp->b_private == tbp)
2697 tbp->b_cflags |= BC_AGE;
2698 }
2699 mutex_exit(&bufcache_lock);
2700
2701 biodone(tbp);
2702
2703 /*
2704 * If this is the last block for this vnode, but
2705 * there are other blocks on its dirty list,
2706 * set IN_MODIFIED/IN_CLEANING depending on what
2707 * sort of block. Only do this for our mount point,
2708 * not for, e.g., inode blocks that are attached to
2709 * the devvp.
2710 * XXX KS - Shouldn't we set *both* if both types
2711 * of blocks are present (traverse the dirty list?)
2712 */
2713 mutex_enter(vp->v_interlock);
2714 mutex_enter(&lfs_lock);
2715 if (vp != devvp && vp->v_numoutput == 0 &&
2716 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2717 ip = VTOI(vp);
2718 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2719 ip->i_number));
2720 if (LFS_IS_MALLOC_BUF(fbp))
2721 LFS_SET_UINO(ip, IN_CLEANING);
2722 else
2723 LFS_SET_UINO(ip, IN_MODIFIED);
2724 }
2725 cv_broadcast(&vp->v_cv);
2726 mutex_exit(&lfs_lock);
2727 mutex_exit(vp->v_interlock);
2728 }
2729
2730 /* Fix up the cluster buffer, and release it */
2731 if (cl->flags & LFS_CL_MALLOC)
2732 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2733 putiobuf(bp);
2734
2735 /* Note i/o done */
2736 if (cl->flags & LFS_CL_SYNC) {
2737 if (--cl->seg->seg_iocount == 0)
2738 wakeup(&cl->seg->seg_iocount);
2739 }
2740 mutex_enter(&lfs_lock);
2741 KASSERTMSG((fs->lfs_iocount != 0),
2742 "lfs_cluster_aiodone: zero iocount");
2743 if (--fs->lfs_iocount <= 1)
2744 wakeup(&fs->lfs_iocount);
2745 mutex_exit(&lfs_lock);
2746
2747 pool_put(&fs->lfs_bpppool, cl->bpp);
2748 cl->bpp = NULL;
2749 pool_put(&fs->lfs_clpool, cl);
2750 }
2751
2752 /*
2753 * Shellsort (diminishing increment sort) from Data Structures and
2754 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2755 * see also Knuth Vol. 3, page 84. The increments are selected from
2756 * formula (8), page 95. Roughly O(N^3/2).
2757 */
2758 /*
2759 * This is our own private copy of shellsort because we want to sort
2760 * two parallel arrays (the array of buffer pointers and the array of
2761 * logical block numbers) simultaneously. Note that we cast the array
2762 * of logical block numbers to a unsigned in this routine so that the
2763 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2764 */
2765
2766 static void
2767 lfs_shellsort(struct lfs *fs,
2768 struct buf **bp_array, union lfs_blocks *lb_array,
2769 int nmemb, int size)
2770 {
2771 static int __rsshell_increments[] = { 4, 1, 0 };
2772 int incr, *incrp, t1, t2;
2773 struct buf *bp_temp;
2774
2775 #ifdef DEBUG
2776 incr = 0;
2777 for (t1 = 0; t1 < nmemb; t1++) {
2778 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2779 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) {
2780 /* dump before panic */
2781 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2782 nmemb, size);
2783 incr = 0;
2784 for (t1 = 0; t1 < nmemb; t1++) {
2785 const struct buf *bp = bp_array[t1];
2786
2787 printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2788 PRIu64 "\n", t1,
2789 (uint64_t)bp->b_bcount,
2790 (uint64_t)bp->b_lblkno);
2791 printf("lbns:");
2792 for (t2 = 0; t2 * size < bp->b_bcount;
2793 t2++) {
2794 printf(" %jd",
2795 (intmax_t)lfs_blocks_get(fs, lb_array, incr++));
2796 }
2797 printf("\n");
2798 }
2799 panic("lfs_shellsort: inconsistent input");
2800 }
2801 }
2802 }
2803 #endif
2804
2805 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2806 for (t1 = incr; t1 < nmemb; ++t1)
2807 for (t2 = t1 - incr; t2 >= 0;)
2808 if ((u_int64_t)bp_array[t2]->b_lblkno >
2809 (u_int64_t)bp_array[t2 + incr]->b_lblkno) {
2810 bp_temp = bp_array[t2];
2811 bp_array[t2] = bp_array[t2 + incr];
2812 bp_array[t2 + incr] = bp_temp;
2813 t2 -= incr;
2814 } else
2815 break;
2816
2817 /* Reform the list of logical blocks */
2818 incr = 0;
2819 for (t1 = 0; t1 < nmemb; t1++) {
2820 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2821 lfs_blocks_set(fs, lb_array, incr++,
2822 bp_array[t1]->b_lblkno + t2);
2823 }
2824 }
2825 }
2826
2827 /*
2828 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2829 * point at uninitialized space.
2830 */
2831 void
2832 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2833 {
2834 struct segment *sp = fs->lfs_sp;
2835 SEGSUM *ssp;
2836
2837 KASSERT(vers > 0);
2838
2839 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
2840 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
2841 (void) lfs_writeseg(fs, fs->lfs_sp);
2842
2843 sp->sum_bytes_left -= FINFOSIZE(fs);
2844 ssp = (SEGSUM *)sp->segsum;
2845 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
2846 lfs_fi_setnblocks(fs, sp->fip, 0);
2847 lfs_fi_setino(fs, sp->fip, ino);
2848 lfs_fi_setversion(fs, sp->fip, vers);
2849 }
2850
2851 /*
2852 * Release the FINFO entry, either clearing out an unused entry or
2853 * advancing us to the next available entry.
2854 */
2855 void
2856 lfs_release_finfo(struct lfs *fs)
2857 {
2858 struct segment *sp = fs->lfs_sp;
2859 SEGSUM *ssp;
2860
2861 if (lfs_fi_getnblocks(fs, sp->fip) != 0) {
2862 sp->fip = NEXT_FINFO(fs, sp->fip);
2863 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
2864 } else {
2865 /* XXX shouldn't this update sp->fip? */
2866 sp->sum_bytes_left += FINFOSIZE(fs);
2867 ssp = (SEGSUM *)sp->segsum;
2868 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
2869 }
2870 }
2871