lfs_segment.c revision 1.31.4.1 1 /* $NetBSD: lfs_segment.c,v 1.31.4.1 1999/10/19 12:50:43 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139
140 /* Statistics Counters */
141 int lfs_dostats = 1;
142 struct lfs_stats lfs_stats;
143
144 /* op values to lfs_writevnodes */
145 #define VN_REG 0
146 #define VN_DIROP 1
147 #define VN_EMPTY 2
148 #define VN_CLEAN 3
149
150 #define LFS_MAX_ACTIVE 10
151
152 /*
153 * XXX KS - Set modification time on the Ifile, so the cleaner can
154 * read the fs mod time off of it. We don't set IN_UPDATE here,
155 * since we don't really need this to be flushed to disk (and in any
156 * case that wouldn't happen to the Ifile until we checkpoint).
157 */
158 void
159 lfs_imtime(fs)
160 struct lfs *fs;
161 {
162 struct timespec ts;
163 struct inode *ip;
164
165 TIMEVAL_TO_TIMESPEC(&time, &ts);
166 ip = VTOI(fs->lfs_ivnode);
167 ip->i_ffs_mtime = ts.tv_sec;
168 ip->i_ffs_mtimensec = ts.tv_nsec;
169 }
170
171 /*
172 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
173 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
174 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
175 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
176 */
177
178 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
179 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
180 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
181
182 int
183 lfs_vflush(vp)
184 struct vnode *vp;
185 {
186 struct inode *ip;
187 struct lfs *fs;
188 struct segment *sp;
189 struct buf *bp, *nbp;
190 int error, s;
191
192 ip = VTOI(vp);
193 fs = VFSTOUFS(vp->v_mount)->um_lfs;
194
195 if(ip->i_flag & IN_CLEANING) {
196 #ifdef DEBUG_LFS
197 ivndebug(vp,"vflush/in_cleaning");
198 #endif
199 ip->i_flag &= ~IN_CLEANING;
200 if(ip->i_flag & IN_MODIFIED) {
201 fs->lfs_uinodes--;
202 } else
203 ip->i_flag |= IN_MODIFIED;
204 }
205
206 /* If the node is being written, wait until that is done */
207 if(WRITEINPROG(vp)) {
208 #ifdef DEBUG_LFS
209 ivndebug(vp,"vflush/writeinprog");
210 #endif
211 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
212 }
213
214 /* Protect against VXLOCK deadlock in vinvalbuf() */
215 lfs_seglock(fs, SEGM_SYNC);
216
217 /* If we're supposed to flush a freed inode, just toss it */
218 /* XXX - seglock, so these buffers can't be gathered, right? */
219 if(ip->i_ffs_mode == 0) {
220 printf("lfs_vflush: ino %d is freed, not flushing\n",
221 ip->i_number);
222 s = splbio();
223 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
224 nbp = bp->b_vnbufs.le_next;
225 /* Copied from lfs_writeseg */
226 if (bp->b_flags & B_CALL) {
227 /* if B_CALL, it was created with newbuf */
228 lfs_freebuf(bp);
229 } else {
230 bremfree(bp);
231 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
232 B_LOCKED | B_GATHERED);
233 bp->b_flags |= B_DONE;
234 reassignbuf(bp, vp);
235 brelse(bp);
236 }
237 }
238 splx(s);
239 if(ip->i_flag & IN_CLEANING)
240 fs->lfs_uinodes--;
241 if(ip->i_flag & IN_MODIFIED)
242 fs->lfs_uinodes--;
243 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
244 printf("lfs_vflush: done not flushing ino %d\n",
245 ip->i_number);
246 lfs_segunlock(fs);
247 return 0;
248 }
249
250 SET_FLUSHING(fs,vp);
251 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
252 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
253 CLR_FLUSHING(fs,vp);
254 lfs_segunlock(fs);
255 return error;
256 }
257 sp = fs->lfs_sp;
258
259 if (vp->v_dirtyblkhd.lh_first == NULL) {
260 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
261 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
262 #ifdef DEBUG_LFS
263 ivndebug(vp,"vflush/clean");
264 #endif
265 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
266 }
267 else if(lfs_dostats) {
268 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
269 ++lfs_stats.vflush_invoked;
270 #ifdef DEBUG_LFS
271 ivndebug(vp,"vflush");
272 #endif
273 }
274
275 #ifdef DIAGNOSTIC
276 /* XXX KS This actually can happen right now, though it shouldn't(?) */
277 if(vp->v_flag & VDIROP) {
278 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
279 /* panic("VDIROP being flushed...this can\'t happen"); */
280 }
281 if(vp->v_usecount<0) {
282 printf("usecount=%ld\n",vp->v_usecount);
283 panic("lfs_vflush: usecount<0");
284 }
285 #endif
286
287 do {
288 do {
289 if (vp->v_dirtyblkhd.lh_first != NULL)
290 lfs_writefile(fs, sp, vp);
291 } while (lfs_writeinode(fs, sp, ip));
292 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
293
294 if(lfs_dostats) {
295 ++lfs_stats.nwrites;
296 if (sp->seg_flags & SEGM_SYNC)
297 ++lfs_stats.nsync_writes;
298 if (sp->seg_flags & SEGM_CKP)
299 ++lfs_stats.ncheckpoints;
300 }
301 lfs_segunlock(fs);
302
303 CLR_FLUSHING(fs,vp);
304 return (0);
305 }
306
307 #ifdef DEBUG_LFS_VERBOSE
308 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
309 #else
310 # define vndebug(vp,str)
311 #endif
312
313 int
314 lfs_writevnodes(fs, mp, sp, op)
315 struct lfs *fs;
316 struct mount *mp;
317 struct segment *sp;
318 int op;
319 {
320 struct inode *ip;
321 struct vnode *vp;
322 int inodes_written=0, only_cleaning;
323
324 #ifndef LFS_NO_BACKVP_HACK
325 /* BEGIN HACK */
326 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
327 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
328 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
329
330 /* Find last vnode. */
331 loop: for (vp = mp->mnt_vnodelist.lh_first;
332 vp && vp->v_mntvnodes.le_next != NULL;
333 vp = vp->v_mntvnodes.le_next);
334 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
335 #else
336 loop:
337 for (vp = mp->mnt_vnodelist.lh_first;
338 vp != NULL;
339 vp = vp->v_mntvnodes.le_next) {
340 #endif
341 /*
342 * If the vnode that we are about to sync is no longer
343 * associated with this mount point, start over.
344 */
345 if (vp->v_mount != mp)
346 goto loop;
347
348 ip = VTOI(vp);
349 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
350 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
351 vndebug(vp,"dirop");
352 continue;
353 }
354
355 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
356 vndebug(vp,"empty");
357 continue;
358 }
359
360 if (vp->v_type == VNON) {
361 continue;
362 }
363
364 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
365 && !(ip->i_flag & IN_CLEANING)) {
366 vndebug(vp,"cleaning");
367 continue;
368 }
369
370 if (lfs_vref(vp)) {
371 vndebug(vp,"vref");
372 continue;
373 }
374
375 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
376 if(WRITEINPROG(vp)) {
377 lfs_vunref(vp);
378 #ifdef DEBUG_LFS
379 ivndebug(vp,"writevnodes/writeinprog");
380 #endif
381 continue;
382 }
383 #endif
384 only_cleaning = 0;
385 /*
386 * Write the inode/file if dirty and it's not the
387 * the IFILE.
388 */
389 if ((ip->i_flag &
390 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
391 vp->v_dirtyblkhd.lh_first != NULL))
392 {
393 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
394
395 if(ip->i_number != LFS_IFILE_INUM
396 && vp->v_dirtyblkhd.lh_first != NULL)
397 {
398 lfs_writefile(fs, sp, vp);
399 }
400 if(vp->v_dirtyblkhd.lh_first != NULL) {
401 if(WRITEINPROG(vp)) {
402 #ifdef DEBUG_LFS
403 ivndebug(vp,"writevnodes/write2");
404 #endif
405 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
406 #ifdef DEBUG_LFS
407 printf("<%d>",ip->i_number);
408 #endif
409 ip->i_flag |= IN_MODIFIED;
410 ++fs->lfs_uinodes;
411 }
412 }
413 (void) lfs_writeinode(fs, sp, ip);
414 inodes_written++;
415 }
416
417 if(vp->v_flag & VDIROP) {
418 --fs->lfs_dirvcount;
419 vp->v_flag &= ~VDIROP;
420 wakeup(&fs->lfs_dirvcount);
421 lfs_vunref(vp);
422 }
423
424 if(lfs_clean_vnhead && only_cleaning)
425 lfs_vunref_head(vp);
426 else
427 lfs_vunref(vp);
428 }
429 return inodes_written;
430 }
431
432 int
433 lfs_segwrite(mp, flags)
434 struct mount *mp;
435 int flags; /* Do a checkpoint. */
436 {
437 struct buf *bp;
438 struct inode *ip;
439 struct lfs *fs;
440 struct segment *sp;
441 struct vnode *vp;
442 SEGUSE *segusep;
443 ufs_daddr_t ibno;
444 int do_ckp, error, i;
445 int writer_set = 0;
446 int need_unlock = 0;
447
448 fs = VFSTOUFS(mp)->um_lfs;
449
450 lfs_imtime(fs);
451
452 /*
453 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
454 * clean segments, wait until cleaner writes.
455 */
456 if(!(flags & SEGM_CLEAN)
457 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
458 {
459 do {
460 if (fs->lfs_nclean <= MIN_FREE_SEGS
461 || fs->lfs_avail <= 0)
462 {
463 wakeup(&lfs_allclean_wakeup);
464 wakeup(&fs->lfs_nextseg);
465 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
466 "lfs_avail", 0);
467 if (error) {
468 return (error);
469 }
470 }
471 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
472 }
473
474 /*
475 * Allocate a segment structure and enough space to hold pointers to
476 * the maximum possible number of buffers which can be described in a
477 * single summary block.
478 */
479 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
480 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
481 sp = fs->lfs_sp;
482
483 /*
484 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
485 * in which case we have to flush *all* buffers off of this vnode.
486 */
487 if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
488 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
489 else {
490 lfs_writevnodes(fs, mp, sp, VN_REG);
491 /*
492 * XXX KS - If we're cleaning, we can't wait for dirops,
493 * because they might be waiting on us. The downside of this
494 * is that, if we write anything besides cleaning blocks
495 * while cleaning, the checkpoint is not completely
496 * consistent.
497 */
498 if(!(sp->seg_flags & SEGM_CLEAN)) {
499 while(fs->lfs_dirops)
500 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
501 "lfs writer", 0)))
502 {
503 free(sp->bpp, M_SEGMENT);
504 free(sp, M_SEGMENT);
505 return (error);
506 }
507 fs->lfs_writer++;
508 writer_set=1;
509 lfs_writevnodes(fs, mp, sp, VN_DIROP);
510 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
511 }
512 }
513
514 /*
515 * If we are doing a checkpoint, mark everything since the
516 * last checkpoint as no longer ACTIVE.
517 */
518 if (do_ckp) {
519 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
520 --ibno >= fs->lfs_cleansz; ) {
521 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
522
523 panic("lfs_segwrite: ifile read");
524 segusep = (SEGUSE *)bp->b_data;
525 for (i = fs->lfs_sepb; i--; segusep++)
526 segusep->su_flags &= ~SEGUSE_ACTIVE;
527
528 /* But the current segment is still ACTIVE */
529 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
530 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
531 error = VOP_BWRITE(bp);
532 }
533 }
534
535 if (do_ckp || fs->lfs_doifile) {
536 redo:
537 vp = fs->lfs_ivnode;
538 /*
539 * Depending on the circumstances of our calling, the ifile
540 * inode might be locked. If it is, and if it is locked by
541 * us, we should VREF instead of vget here.
542 */
543 need_unlock = 0;
544 if(VOP_ISLOCKED(vp)
545 && vp->v_lock.lk_lockholder == curproc->p_pid) {
546 VREF(vp);
547 } else {
548 while (vget(vp, LK_EXCLUSIVE))
549 continue;
550 need_unlock = 1;
551 }
552 ip = VTOI(vp);
553 if (vp->v_dirtyblkhd.lh_first != NULL)
554 lfs_writefile(fs, sp, vp);
555 (void)lfs_writeinode(fs, sp, ip);
556
557 /* Only vput if we used vget() above. */
558 if(need_unlock)
559 vput(vp);
560 else
561 vrele(vp);
562
563 if (lfs_writeseg(fs, sp) && do_ckp)
564 goto redo;
565 } else {
566 (void) lfs_writeseg(fs, sp);
567 }
568
569 /*
570 * If the I/O count is non-zero, sleep until it reaches zero.
571 * At the moment, the user's process hangs around so we can
572 * sleep.
573 */
574 fs->lfs_doifile = 0;
575 if(writer_set && --fs->lfs_writer==0)
576 wakeup(&fs->lfs_dirops);
577
578 if(lfs_dostats) {
579 ++lfs_stats.nwrites;
580 if (sp->seg_flags & SEGM_SYNC)
581 ++lfs_stats.nsync_writes;
582 if (sp->seg_flags & SEGM_CKP)
583 ++lfs_stats.ncheckpoints;
584 }
585 lfs_segunlock(fs);
586 return (0);
587 }
588
589 /*
590 * Write the dirty blocks associated with a vnode.
591 */
592 void
593 lfs_writefile(fs, sp, vp)
594 struct lfs *fs;
595 struct segment *sp;
596 struct vnode *vp;
597 {
598 struct buf *bp;
599 struct finfo *fip;
600 IFILE *ifp;
601
602
603 if (sp->seg_bytes_left < fs->lfs_bsize ||
604 sp->sum_bytes_left < sizeof(struct finfo))
605 (void) lfs_writeseg(fs, sp);
606
607 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
608 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
609
610 if(vp->v_flag & VDIROP)
611 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
612
613 fip = sp->fip;
614 fip->fi_nblocks = 0;
615 fip->fi_ino = VTOI(vp)->i_number;
616 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
617 fip->fi_version = ifp->if_version;
618 brelse(bp);
619
620 /*
621 * It may not be necessary to write the meta-data blocks at this point,
622 * as the roll-forward recovery code should be able to reconstruct the
623 * list.
624 *
625 * We have to write them anyway, though, under two conditions: (1) the
626 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
627 * checkpointing.
628 */
629 if((sp->seg_flags & SEGM_CLEAN)
630 && VTOI(vp)->i_number != LFS_IFILE_INUM
631 && !IS_FLUSHING(fs,vp))
632 {
633 lfs_gather(fs, sp, vp, lfs_match_fake);
634 } else
635 lfs_gather(fs, sp, vp, lfs_match_data);
636
637 if(lfs_writeindir
638 || IS_FLUSHING(fs,vp)
639 || (sp->seg_flags & SEGM_CKP))
640 {
641 lfs_gather(fs, sp, vp, lfs_match_indir);
642 lfs_gather(fs, sp, vp, lfs_match_dindir);
643 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
644 lfs_gather(fs, sp, vp, lfs_match_tindir);
645 /* #endif */
646 }
647 fip = sp->fip;
648 if (fip->fi_nblocks != 0) {
649 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
650 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
651 sp->start_lbp = &sp->fip->fi_blocks[0];
652 } else {
653 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
654 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
655 }
656 }
657
658 int
659 lfs_writeinode(fs, sp, ip)
660 struct lfs *fs;
661 struct segment *sp;
662 struct inode *ip;
663 {
664 struct buf *bp, *ibp;
665 IFILE *ifp;
666 SEGUSE *sup;
667 ufs_daddr_t daddr;
668 ino_t ino;
669 int error, i, ndx;
670 int redo_ifile = 0;
671 struct timespec ts;
672 int gotblk=0;
673
674 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
675 return(0);
676
677 /* Allocate a new inode block if necessary. */
678 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
679 /* Allocate a new segment if necessary. */
680 if (sp->seg_bytes_left < fs->lfs_bsize ||
681 sp->sum_bytes_left < sizeof(ufs_daddr_t))
682 (void) lfs_writeseg(fs, sp);
683
684 /* Get next inode block. */
685 daddr = fs->lfs_offset;
686 fs->lfs_offset += fsbtodb(fs, 1);
687 sp->ibp = *sp->cbpp++ =
688 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
689 gotblk++;
690
691 /* Zero out inode numbers */
692 for (i = 0; i < INOPB(fs); ++i)
693 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
694
695 ++sp->start_bpp;
696 fs->lfs_avail -= fsbtodb(fs, 1);
697 /* Set remaining space counters. */
698 sp->seg_bytes_left -= fs->lfs_bsize;
699 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
700 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
701 sp->ninodes / INOPB(fs) - 1;
702 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
703 }
704
705 /* Update the inode times and copy the inode onto the inode page. */
706 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
707 --fs->lfs_uinodes;
708 TIMEVAL_TO_TIMESPEC(&time, &ts);
709 LFS_ITIMES(ip, &ts, &ts, &ts);
710
711 if(ip->i_flag & IN_CLEANING)
712 ip->i_flag &= ~IN_CLEANING;
713 else
714 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
715
716 /*
717 * If this is the Ifile, and we've already written the Ifile in this
718 * partial segment, just overwrite it (it's not on disk yet) and
719 * continue.
720 *
721 * XXX we know that the bp that we get the second time around has
722 * already been gathered.
723 */
724 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
725 *(sp->idp) = ip->i_din.ffs_din;
726 return 0;
727 }
728
729 bp = sp->ibp;
730 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
731 ip->i_din.ffs_din;
732
733 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
734 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
735 if(gotblk) {
736 bp->b_flags |= B_LOCKED;
737 brelse(bp);
738 }
739
740 /* Increment inode count in segment summary block. */
741 ++((SEGSUM *)(sp->segsum))->ss_ninos;
742
743 /* If this page is full, set flag to allocate a new page. */
744 if (++sp->ninodes % INOPB(fs) == 0)
745 sp->ibp = NULL;
746
747 /*
748 * If updating the ifile, update the super-block. Update the disk
749 * address and access times for this inode in the ifile.
750 */
751 ino = ip->i_number;
752 if (ino == LFS_IFILE_INUM) {
753 daddr = fs->lfs_idaddr;
754 fs->lfs_idaddr = bp->b_blkno;
755 } else {
756 LFS_IENTRY(ifp, fs, ino, ibp);
757 daddr = ifp->if_daddr;
758 ifp->if_daddr = bp->b_blkno;
759 #ifdef LFS_DEBUG_NEXTFREE
760 if(ino > 3 && ifp->if_nextfree) {
761 vprint("lfs_writeinode",ITOV(ip));
762 printf("lfs_writeinode: updating free ino %d\n",
763 ip->i_number);
764 }
765 #endif
766 error = VOP_BWRITE(ibp);
767 }
768
769 /*
770 * No need to update segment usage if there was no former inode address
771 * or if the last inode address is in the current partial segment.
772 */
773 if (daddr != LFS_UNUSED_DADDR &&
774 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
775 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
776 #ifdef DIAGNOSTIC
777 if (sup->su_nbytes < DINODE_SIZE) {
778 /* XXX -- Change to a panic. */
779 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
780 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
781 panic("lfs_writeinode: negative bytes");
782 sup->su_nbytes = DINODE_SIZE;
783 }
784 #endif
785 sup->su_nbytes -= DINODE_SIZE;
786 redo_ifile =
787 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
788 error = VOP_BWRITE(bp);
789 }
790 return (redo_ifile);
791 }
792
793 int
794 lfs_gatherblock(sp, bp, sptr)
795 struct segment *sp;
796 struct buf *bp;
797 int *sptr;
798 {
799 struct lfs *fs;
800 int version;
801
802 /*
803 * If full, finish this segment. We may be doing I/O, so
804 * release and reacquire the splbio().
805 */
806 #ifdef DIAGNOSTIC
807 if (sp->vp == NULL)
808 panic ("lfs_gatherblock: Null vp in segment");
809 #endif
810 fs = sp->fs;
811 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
812 sp->seg_bytes_left < bp->b_bcount) {
813 if (sptr)
814 splx(*sptr);
815 lfs_updatemeta(sp);
816
817 version = sp->fip->fi_version;
818 (void) lfs_writeseg(fs, sp);
819
820 sp->fip->fi_version = version;
821 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
822 /* Add the current file to the segment summary. */
823 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
824 sp->sum_bytes_left -=
825 sizeof(struct finfo) - sizeof(ufs_daddr_t);
826
827 if (sptr)
828 *sptr = splbio();
829 return(1);
830 }
831
832 #ifdef DEBUG
833 if(bp->b_flags & B_GATHERED) {
834 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
835 sp->fip->fi_ino, bp->b_lblkno);
836 return(0);
837 }
838 #endif
839 /* Insert into the buffer list, update the FINFO block. */
840 bp->b_flags |= B_GATHERED;
841 *sp->cbpp++ = bp;
842 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
843
844 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
845 sp->seg_bytes_left -= bp->b_bcount;
846 return(0);
847 }
848
849 int
850 lfs_gather(fs, sp, vp, match)
851 struct lfs *fs;
852 struct segment *sp;
853 struct vnode *vp;
854 int (*match) __P((struct lfs *, struct buf *));
855 {
856 struct buf *bp;
857 int s, count=0;
858
859 sp->vp = vp;
860 s = splbio();
861
862 #ifndef LFS_NO_BACKBUF_HACK
863 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
864 #else /* LFS_NO_BACKBUF_HACK */
865 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
866 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
867 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
868 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
869 /* Find last buffer. */
870 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
871 bp = bp->b_vnbufs.le_next);
872 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
873 #endif /* LFS_NO_BACKBUF_HACK */
874 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
875 continue;
876 if(vp->v_type == VBLK) {
877 /* For block devices, just write the blocks. */
878 /* XXX Do we really need to even do this? */
879 #ifdef DEBUG_LFS
880 if(count==0)
881 printf("BLK(");
882 printf(".");
883 #endif
884 /* Get the block before bwrite, so we don't corrupt the free list */
885 bp->b_flags |= B_BUSY;
886 bremfree(bp);
887 bwrite(bp);
888 } else {
889 #ifdef DIAGNOSTIC
890 if (!(bp->b_flags & B_DELWRI))
891 panic("lfs_gather: bp not B_DELWRI");
892 if (!(bp->b_flags & B_LOCKED)) {
893 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
894 VOP_PRINT(bp->b_vp);
895 panic("lfs_gather: bp not B_LOCKED");
896 }
897 #endif
898 if (lfs_gatherblock(sp, bp, &s)) {
899 goto loop;
900 }
901 }
902 count++;
903 }
904 splx(s);
905 #ifdef DEBUG_LFS
906 if(vp->v_type == VBLK && count)
907 printf(")\n");
908 #endif
909 lfs_updatemeta(sp);
910 sp->vp = NULL;
911 return count;
912 }
913
914 /*
915 * Update the metadata that points to the blocks listed in the FINFO
916 * array.
917 */
918 void
919 lfs_updatemeta(sp)
920 struct segment *sp;
921 {
922 SEGUSE *sup;
923 struct buf *bp;
924 struct lfs *fs;
925 struct vnode *vp;
926 struct indir a[NIADDR + 2], *ap;
927 struct inode *ip;
928 ufs_daddr_t daddr, lbn, off;
929 int error, i, nblocks, num;
930
931 vp = sp->vp;
932 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
933 if (nblocks < 0)
934 panic("This is a bad thing\n");
935 if (vp == NULL || nblocks == 0)
936 return;
937
938 /* Sort the blocks. */
939 /*
940 * XXX KS - We have to sort even if the blocks come from the
941 * cleaner, because there might be other pending blocks on the
942 * same inode...and if we don't sort, and there are fragments
943 * present, blocks may be written in the wrong place.
944 */
945 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
946 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
947
948 /*
949 * Record the length of the last block in case it's a fragment.
950 * If there are indirect blocks present, they sort last. An
951 * indirect block will be lfs_bsize and its presence indicates
952 * that you cannot have fragments.
953 */
954 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
955
956 /*
957 * Assign disk addresses, and update references to the logical
958 * block and the segment usage information.
959 */
960 fs = sp->fs;
961 for (i = nblocks; i--; ++sp->start_bpp) {
962 lbn = *sp->start_lbp++;
963
964 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
965 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
966 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
967 }
968 fs->lfs_offset +=
969 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
970 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
971 if (error)
972 panic("lfs_updatemeta: ufs_bmaparray %d", error);
973 ip = VTOI(vp);
974 switch (num) {
975 case 0:
976 ip->i_ffs_db[lbn] = off;
977 break;
978 case 1:
979 ip->i_ffs_ib[a[0].in_off] = off;
980 break;
981 default:
982 ap = &a[num - 1];
983 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
984 panic("lfs_updatemeta: bread bno %d",
985 ap->in_lbn);
986 /*
987 * Bread may create a new (indirect) block which needs
988 * to get counted for the inode.
989 */
990 if (/* bp->b_blkno == -1 && */
991 !(bp->b_flags & (B_DELWRI|B_DONE))) {
992 ip->i_ffs_blocks += fsbtodb(fs, 1);
993 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
994 }
995 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
996 VOP_BWRITE(bp);
997 }
998 /* Update segment usage information. */
999 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1000 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1001 #ifdef DIAGNOSTIC
1002 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1003 /* XXX -- Change to a panic. */
1004 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1005 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1006 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1007 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1008 panic("lfs_updatemeta: negative bytes");
1009 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1010 }
1011 #endif
1012 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1013 error = VOP_BWRITE(bp);
1014 }
1015 }
1016 }
1017
1018 /*
1019 * Start a new segment.
1020 */
1021 int
1022 lfs_initseg(fs)
1023 struct lfs *fs;
1024 {
1025 struct segment *sp;
1026 SEGUSE *sup;
1027 SEGSUM *ssp;
1028 struct buf *bp;
1029 int repeat;
1030
1031 sp = fs->lfs_sp;
1032
1033 repeat = 0;
1034 /* Advance to the next segment. */
1035 if (!LFS_PARTIAL_FITS(fs)) {
1036 /* Wake up any cleaning procs waiting on this file system. */
1037 wakeup(&lfs_allclean_wakeup);
1038 wakeup(&fs->lfs_nextseg);
1039 lfs_newseg(fs);
1040 repeat = 1;
1041 fs->lfs_offset = fs->lfs_curseg;
1042 sp->seg_number = datosn(fs, fs->lfs_curseg);
1043 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1044 /*
1045 * If the segment contains a superblock, update the offset
1046 * and summary address to skip over it.
1047 */
1048 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1049 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1050 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1051 sp->seg_bytes_left -= LFS_SBPAD;
1052 }
1053 brelse(bp);
1054 } else {
1055 sp->seg_number = datosn(fs, fs->lfs_curseg);
1056 sp->seg_bytes_left = (fs->lfs_dbpseg -
1057 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1058 }
1059 fs->lfs_lastpseg = fs->lfs_offset;
1060
1061 sp->fs = fs;
1062 sp->ibp = NULL;
1063 sp->idp = NULL;
1064 sp->ninodes = 0;
1065
1066 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1067 sp->cbpp = sp->bpp;
1068 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1069 fs->lfs_offset, LFS_SUMMARY_SIZE);
1070 sp->segsum = (*sp->cbpp)->b_data;
1071 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1072 sp->start_bpp = ++sp->cbpp;
1073 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1074
1075 /* Set point to SEGSUM, initialize it. */
1076 ssp = sp->segsum;
1077 ssp->ss_next = fs->lfs_nextseg;
1078 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1079 ssp->ss_magic = SS_MAGIC;
1080
1081 /* Set pointer to first FINFO, initialize it. */
1082 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1083 sp->fip->fi_nblocks = 0;
1084 sp->start_lbp = &sp->fip->fi_blocks[0];
1085 sp->fip->fi_lastlength = 0;
1086
1087 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1088 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1089
1090 return(repeat);
1091 }
1092
1093 /*
1094 * Return the next segment to write.
1095 */
1096 void
1097 lfs_newseg(fs)
1098 struct lfs *fs;
1099 {
1100 CLEANERINFO *cip;
1101 SEGUSE *sup;
1102 struct buf *bp;
1103 int curseg, isdirty, sn;
1104
1105 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1106 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1107 sup->su_nbytes = 0;
1108 sup->su_nsums = 0;
1109 sup->su_ninos = 0;
1110 (void) VOP_BWRITE(bp);
1111
1112 LFS_CLEANERINFO(cip, fs, bp);
1113 --cip->clean;
1114 ++cip->dirty;
1115 fs->lfs_nclean = cip->clean;
1116 (void) VOP_BWRITE(bp);
1117
1118 fs->lfs_lastseg = fs->lfs_curseg;
1119 fs->lfs_curseg = fs->lfs_nextseg;
1120 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1121 sn = (sn + 1) % fs->lfs_nseg;
1122 if (sn == curseg)
1123 panic("lfs_nextseg: no clean segments");
1124 LFS_SEGENTRY(sup, fs, sn, bp);
1125 isdirty = sup->su_flags & SEGUSE_DIRTY;
1126 brelse(bp);
1127 if (!isdirty)
1128 break;
1129 }
1130
1131 ++fs->lfs_nactive;
1132 fs->lfs_nextseg = sntoda(fs, sn);
1133 if(lfs_dostats) {
1134 ++lfs_stats.segsused;
1135 }
1136 }
1137
1138 int
1139 lfs_writeseg(fs, sp)
1140 struct lfs *fs;
1141 struct segment *sp;
1142 {
1143 extern int locked_queue_count;
1144 extern long locked_queue_bytes;
1145 struct buf **bpp, *bp, *cbp;
1146 SEGUSE *sup;
1147 SEGSUM *ssp;
1148 dev_t i_dev;
1149 u_long *datap, *dp;
1150 int do_again, i, nblocks, s;
1151 #ifdef LFS_TRACK_IOS
1152 int j;
1153 #endif
1154 int (*strategy)__P((void *));
1155 struct vop_strategy_args vop_strategy_a;
1156 u_short ninos;
1157 struct vnode *devvp;
1158 char *p;
1159 struct vnode *vn;
1160 struct inode *ip;
1161 #if defined(DEBUG) && defined(LFS_PROPELLER)
1162 static int propeller;
1163 char propstring[4] = "-\\|/";
1164
1165 printf("%c\b",propstring[propeller++]);
1166 if(propeller==4)
1167 propeller = 0;
1168 #endif
1169
1170 /*
1171 * If there are no buffers other than the segment summary to write
1172 * and it is not a checkpoint, don't do anything. On a checkpoint,
1173 * even if there aren't any buffers, you need to write the superblock.
1174 */
1175 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1176 return (0);
1177
1178 #ifdef DEBUG_LFS
1179 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1180 #endif
1181 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1182 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1183
1184 /* Update the segment usage information. */
1185 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1186
1187 /* Loop through all blocks, except the segment summary. */
1188 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1189 if((*bpp)->b_vp != devvp)
1190 sup->su_nbytes += (*bpp)->b_bcount;
1191 }
1192
1193 ssp = (SEGSUM *)sp->segsum;
1194
1195 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1196 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1197 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1198 sup->su_lastmod = time.tv_sec;
1199 sup->su_ninos += ninos;
1200 ++sup->su_nsums;
1201
1202 do_again = !(bp->b_flags & B_GATHERED);
1203 (void)VOP_BWRITE(bp);
1204 /*
1205 * Compute checksum across data and then across summary; the first
1206 * block (the summary block) is skipped. Set the create time here
1207 * so that it's guaranteed to be later than the inode mod times.
1208 *
1209 * XXX
1210 * Fix this to do it inline, instead of malloc/copy.
1211 */
1212 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1213 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1214 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1215 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1216 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1217 } else {
1218 if( !((*bpp)->b_flags & B_CALL) ) {
1219 /*
1220 * Before we record data for a checksm,
1221 * make sure the data won't change in between
1222 * the checksum calculation and the write,
1223 * by marking the buffer B_BUSY. It will
1224 * be freed later by brelse().
1225 */
1226 again:
1227 s = splbio();
1228 if((*bpp)->b_flags & B_BUSY) {
1229 #ifdef DEBUG
1230 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1231 VTOI((*bpp)->b_vp)->i_number,
1232 bp->b_lblkno);
1233 #endif
1234 (*bpp)->b_flags |= B_WANTED;
1235 tsleep((*bpp), (PRIBIO + 1),
1236 "lfs_writeseg", 0);
1237 splx(s);
1238 goto again;
1239 }
1240 (*bpp)->b_flags |= B_BUSY;
1241 splx(s);
1242 }
1243 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1244 }
1245 }
1246 ssp->ss_create = time.tv_sec;
1247 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1248 ssp->ss_sumsum =
1249 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1250 free(datap, M_SEGMENT);
1251 #ifdef DIAGNOSTIC
1252 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1253 panic("lfs_writeseg: No diskspace for summary");
1254 #endif
1255 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1256
1257 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1258
1259 /*
1260 * When we simply write the blocks we lose a rotation for every block
1261 * written. To avoid this problem, we allocate memory in chunks, copy
1262 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1263 * largest size I/O devices can handle.
1264 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1265 * and brelse the buffer (which will move them to the LRU list). Add
1266 * the B_CALL flag to the buffer header so we can count I/O's for the
1267 * checkpoints and so we can release the allocated memory.
1268 *
1269 * XXX
1270 * This should be removed if the new virtual memory system allows us to
1271 * easily make the buffers contiguous in kernel memory and if that's
1272 * fast enough.
1273 */
1274
1275 #define CHUNKSIZE MAXPHYS
1276
1277 if(devvp==NULL)
1278 panic("devvp is NULL");
1279 for (bpp = sp->bpp,i = nblocks; i;) {
1280 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1281 cbp->b_dev = i_dev;
1282 cbp->b_flags |= B_ASYNC | B_BUSY;
1283 cbp->b_bcount = 0;
1284
1285 #ifdef DIAGNOSTIC
1286 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1287 panic("lfs_writeseg: Segment overwrite");
1288 }
1289 #endif
1290
1291 if(fs->lfs_iocount >= LFS_THROTTLE) {
1292 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1293 }
1294 s = splbio();
1295 ++fs->lfs_iocount;
1296 #ifdef LFS_TRACK_IOS
1297 for(j=0;j<LFS_THROTTLE;j++) {
1298 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1299 fs->lfs_pending[j] = cbp->b_blkno;
1300 break;
1301 }
1302 }
1303 #endif /* LFS_TRACK_IOS */
1304 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1305 bp = *bpp;
1306
1307 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1308 break;
1309
1310 /*
1311 * Fake buffers from the cleaner are marked as B_INVAL.
1312 * We need to copy the data from user space rather than
1313 * from the buffer indicated.
1314 * XXX == what do I do on an error?
1315 */
1316 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1317 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1318 panic("lfs_writeseg: copyin failed [2]");
1319 } else
1320 bcopy(bp->b_data, p, bp->b_bcount);
1321 p += bp->b_bcount;
1322 cbp->b_bcount += bp->b_bcount;
1323 if (bp->b_flags & B_LOCKED) {
1324 --locked_queue_count;
1325 locked_queue_bytes -= bp->b_bufsize;
1326 }
1327 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1328 B_LOCKED | B_GATHERED);
1329 vn = bp->b_vp;
1330 if (bp->b_flags & B_CALL) {
1331 /* if B_CALL, it was created with newbuf */
1332 lfs_freebuf(bp);
1333 } else {
1334 bremfree(bp);
1335 bp->b_flags |= B_DONE;
1336 if(vn)
1337 reassignbuf(bp, vn);
1338 brelse(bp);
1339 }
1340 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1341 bp->b_flags &= ~B_NEEDCOMMIT;
1342 wakeup(bp);
1343 }
1344
1345 bpp++;
1346
1347 /*
1348 * If this is the last block for this vnode, but
1349 * there are other blocks on its dirty list,
1350 * set IN_MODIFIED/IN_CLEANING depending on what
1351 * sort of block. Only do this for our mount point,
1352 * not for, e.g., inode blocks that are attached to
1353 * the devvp.
1354 */
1355 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1356 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1357 vn->v_mount == fs->lfs_ivnode->v_mount)
1358 {
1359 ip = VTOI(vn);
1360 #ifdef DEBUG_LFS
1361 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1362 #endif
1363 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1364 fs->lfs_uinodes++;
1365 if(bp->b_flags & B_CALL)
1366 ip->i_flag |= IN_CLEANING;
1367 else
1368 ip->i_flag |= IN_MODIFIED;
1369 }
1370 }
1371 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1372 wakeup(vn);
1373 }
1374 ++cbp->b_vp->v_numoutput;
1375 splx(s);
1376 /*
1377 * XXXX This is a gross and disgusting hack. Since these
1378 * buffers are physically addressed, they hang off the
1379 * device vnode (devvp). As a result, they have no way
1380 * of getting to the LFS superblock or lfs structure to
1381 * keep track of the number of I/O's pending. So, I am
1382 * going to stuff the fs into the saveaddr field of
1383 * the buffer (yuk).
1384 */
1385 cbp->b_saveaddr = (caddr_t)fs;
1386 vop_strategy_a.a_desc = VDESC(vop_strategy);
1387 vop_strategy_a.a_bp = cbp;
1388 (strategy)(&vop_strategy_a);
1389 }
1390 /*
1391 * XXX
1392 * Vinvalbuf can move locked buffers off the locked queue
1393 * and we have no way of knowing about this. So, after
1394 * doing a big write, we recalculate how many buffers are
1395 * really still left on the locked queue.
1396 */
1397 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1398 wakeup(&locked_queue_count);
1399 if(lfs_dostats) {
1400 ++lfs_stats.psegwrites;
1401 lfs_stats.blocktot += nblocks - 1;
1402 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1403 ++lfs_stats.psyncwrites;
1404 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1405 ++lfs_stats.pcleanwrites;
1406 lfs_stats.cleanblocks += nblocks - 1;
1407 }
1408 }
1409 return (lfs_initseg(fs) || do_again);
1410 }
1411
1412 void
1413 lfs_writesuper(fs, daddr)
1414 struct lfs *fs;
1415 daddr_t daddr;
1416 {
1417 struct buf *bp;
1418 dev_t i_dev;
1419 int (*strategy) __P((void *));
1420 int s;
1421 struct vop_strategy_args vop_strategy_a;
1422
1423 #ifdef LFS_CANNOT_ROLLFW
1424 /*
1425 * If we can write one superblock while another is in
1426 * progress, we risk not having a complete checkpoint if we crash.
1427 * So, block here if a superblock write is in progress.
1428 *
1429 * XXX - should be a proper lock, not this hack
1430 */
1431 while(fs->lfs_sbactive) {
1432 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1433 }
1434 fs->lfs_sbactive = daddr;
1435 #endif
1436 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1437 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1438
1439 /* Set timestamp of this version of the superblock */
1440 fs->lfs_tstamp = time.tv_sec;
1441
1442 /* Checksum the superblock and copy it into a buffer. */
1443 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1444 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1445 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1446
1447 bp->b_dev = i_dev;
1448 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1449 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1450 bp->b_iodone = lfs_supercallback;
1451 /* XXX KS - same nasty hack as above */
1452 bp->b_saveaddr = (caddr_t)fs;
1453
1454 vop_strategy_a.a_desc = VDESC(vop_strategy);
1455 vop_strategy_a.a_bp = bp;
1456 s = splbio();
1457 ++bp->b_vp->v_numoutput;
1458 splx(s);
1459 (strategy)(&vop_strategy_a);
1460 }
1461
1462 /*
1463 * Logical block number match routines used when traversing the dirty block
1464 * chain.
1465 */
1466 int
1467 lfs_match_fake(fs, bp)
1468 struct lfs *fs;
1469 struct buf *bp;
1470 {
1471 return (bp->b_flags & B_CALL);
1472 }
1473
1474 int
1475 lfs_match_data(fs, bp)
1476 struct lfs *fs;
1477 struct buf *bp;
1478 {
1479 return (bp->b_lblkno >= 0);
1480 }
1481
1482 int
1483 lfs_match_indir(fs, bp)
1484 struct lfs *fs;
1485 struct buf *bp;
1486 {
1487 int lbn;
1488
1489 lbn = bp->b_lblkno;
1490 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1491 }
1492
1493 int
1494 lfs_match_dindir(fs, bp)
1495 struct lfs *fs;
1496 struct buf *bp;
1497 {
1498 int lbn;
1499
1500 lbn = bp->b_lblkno;
1501 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1502 }
1503
1504 int
1505 lfs_match_tindir(fs, bp)
1506 struct lfs *fs;
1507 struct buf *bp;
1508 {
1509 int lbn;
1510
1511 lbn = bp->b_lblkno;
1512 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1513 }
1514
1515 /*
1516 * XXX - The only buffers that are going to hit these functions are the
1517 * segment write blocks, or the segment summaries, or the superblocks.
1518 *
1519 * All of the above are created by lfs_newbuf, and so do not need to be
1520 * released via brelse.
1521 */
1522 void
1523 lfs_callback(bp)
1524 struct buf *bp;
1525 {
1526 struct lfs *fs;
1527 #ifdef LFS_TRACK_IOS
1528 int j;
1529 #endif
1530
1531 fs = (struct lfs *)bp->b_saveaddr;
1532 #ifdef DIAGNOSTIC
1533 if (fs->lfs_iocount == 0)
1534 panic("lfs_callback: zero iocount\n");
1535 #endif
1536 if (--fs->lfs_iocount < LFS_THROTTLE)
1537 wakeup(&fs->lfs_iocount);
1538 #ifdef LFS_TRACK_IOS
1539 for(j=0;j<LFS_THROTTLE;j++) {
1540 if(fs->lfs_pending[j]==bp->b_blkno) {
1541 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1542 wakeup(&(fs->lfs_pending[j]));
1543 break;
1544 }
1545 }
1546 #endif /* LFS_TRACK_IOS */
1547
1548 lfs_freebuf(bp);
1549 }
1550
1551 void
1552 lfs_supercallback(bp)
1553 struct buf *bp;
1554 {
1555 #ifdef LFS_CANNOT_ROLLFW
1556 struct lfs *fs;
1557
1558 fs = (struct lfs *)bp->b_saveaddr;
1559 fs->lfs_sbactive=NULL;
1560 wakeup(&fs->lfs_sbactive);
1561 #endif
1562 lfs_freebuf(bp);
1563 }
1564
1565 /*
1566 * Shellsort (diminishing increment sort) from Data Structures and
1567 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1568 * see also Knuth Vol. 3, page 84. The increments are selected from
1569 * formula (8), page 95. Roughly O(N^3/2).
1570 */
1571 /*
1572 * This is our own private copy of shellsort because we want to sort
1573 * two parallel arrays (the array of buffer pointers and the array of
1574 * logical block numbers) simultaneously. Note that we cast the array
1575 * of logical block numbers to a unsigned in this routine so that the
1576 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1577 */
1578
1579 void
1580 lfs_shellsort(bp_array, lb_array, nmemb)
1581 struct buf **bp_array;
1582 ufs_daddr_t *lb_array;
1583 register int nmemb;
1584 {
1585 static int __rsshell_increments[] = { 4, 1, 0 };
1586 register int incr, *incrp, t1, t2;
1587 struct buf *bp_temp;
1588 u_long lb_temp;
1589
1590 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1591 for (t1 = incr; t1 < nmemb; ++t1)
1592 for (t2 = t1 - incr; t2 >= 0;)
1593 if (lb_array[t2] > lb_array[t2 + incr]) {
1594 lb_temp = lb_array[t2];
1595 lb_array[t2] = lb_array[t2 + incr];
1596 lb_array[t2 + incr] = lb_temp;
1597 bp_temp = bp_array[t2];
1598 bp_array[t2] = bp_array[t2 + incr];
1599 bp_array[t2 + incr] = bp_temp;
1600 t2 -= incr;
1601 } else
1602 break;
1603 }
1604
1605 /*
1606 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1607 */
1608 int
1609 lfs_vref(vp)
1610 register struct vnode *vp;
1611 {
1612 /*
1613 * If we return 1 here during a flush, we risk vinvalbuf() not
1614 * being able to flush all of the pages from this vnode, which
1615 * will cause it to panic. So, return 0 if a flush is in progress.
1616 */
1617 if (vp->v_flag & VXLOCK) {
1618 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1619 return 0;
1620 }
1621 return(1);
1622 }
1623 return (vget(vp, 0));
1624 }
1625
1626 /*
1627 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1628 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1629 */
1630 void
1631 lfs_vunref(vp)
1632 register struct vnode *vp;
1633 {
1634 /*
1635 * Analogous to lfs_vref, if the node is flushing, fake it.
1636 */
1637 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1638 return;
1639 }
1640
1641 simple_lock(&vp->v_interlock);
1642 #ifdef DIAGNOSTIC
1643 if(vp->v_usecount<=0) {
1644 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1645 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1646 panic("lfs_vunref: v_usecount<0");
1647 }
1648 #endif
1649 vp->v_usecount--;
1650 if (vp->v_usecount > 0) {
1651 simple_unlock(&vp->v_interlock);
1652 return;
1653 }
1654 #ifdef DIAGNOSTIC
1655 if(VOP_ISLOCKED(vp))
1656 panic("lfs_vunref: vnode locked");
1657 #endif
1658 /*
1659 * insert at tail of LRU list
1660 */
1661 simple_lock(&vnode_free_list_slock);
1662 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1663 simple_unlock(&vnode_free_list_slock);
1664 simple_unlock(&vp->v_interlock);
1665 }
1666
1667 /*
1668 * We use this when we have vnodes that were loaded in solely for cleaning.
1669 * There is no reason to believe that these vnodes will be referenced again
1670 * soon, since the cleaning process is unrelated to normal filesystem
1671 * activity. Putting cleaned vnodes at the tail of the list has the effect
1672 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1673 * cleaning at the head of the list, instead.
1674 */
1675 void
1676 lfs_vunref_head(vp)
1677 register struct vnode *vp;
1678 {
1679 simple_lock(&vp->v_interlock);
1680 #ifdef DIAGNOSTIC
1681 if(vp->v_usecount==0) {
1682 panic("lfs_vunref: v_usecount<0");
1683 }
1684 #endif
1685 vp->v_usecount--;
1686 if (vp->v_usecount > 0) {
1687 simple_unlock(&vp->v_interlock);
1688 return;
1689 }
1690 #ifdef DIAGNOSTIC
1691 if(VOP_ISLOCKED(vp))
1692 panic("lfs_vunref_head: vnode locked");
1693 #endif
1694 /*
1695 * insert at head of LRU list
1696 */
1697 simple_lock(&vnode_free_list_slock);
1698 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1699 simple_unlock(&vnode_free_list_slock);
1700 simple_unlock(&vp->v_interlock);
1701 }
1702
1703