Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.31.6.2
      1 /*	$NetBSD: lfs_segment.c,v 1.31.6.2 1999/12/27 18:36:40 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by the NetBSD
     21  *      Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     74 
     75 #include "opt_ddb.h"
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/namei.h>
     79 #include <sys/kernel.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/file.h>
     82 #include <sys/stat.h>
     83 #include <sys/buf.h>
     84 #include <sys/proc.h>
     85 #include <sys/conf.h>
     86 #include <sys/vnode.h>
     87 #include <sys/malloc.h>
     88 #include <sys/mount.h>
     89 
     90 #include <miscfs/specfs/specdev.h>
     91 #include <miscfs/fifofs/fifo.h>
     92 
     93 #include <ufs/ufs/quota.h>
     94 #include <ufs/ufs/inode.h>
     95 #include <ufs/ufs/dir.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/ufs_extern.h>
     98 
     99 #include <ufs/lfs/lfs.h>
    100 #include <ufs/lfs/lfs_extern.h>
    101 
    102 extern int count_lock_queue __P((void));
    103 extern struct simplelock vnode_free_list_slock;		/* XXX */
    104 
    105 /*
    106  * Determine if it's OK to start a partial in this segment, or if we need
    107  * to go on to a new segment.
    108  */
    109 #define	LFS_PARTIAL_FITS(fs) \
    110 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    111 	1 << (fs)->lfs_fsbtodb)
    112 
    113 void	 lfs_callback __P((struct buf *));
    114 int	 lfs_gather __P((struct lfs *, struct segment *,
    115 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
    116 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
    117 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
    118 int	 lfs_match_fake __P((struct lfs *, struct buf *));
    119 int	 lfs_match_data __P((struct lfs *, struct buf *));
    120 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
    121 int	 lfs_match_indir __P((struct lfs *, struct buf *));
    122 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
    123 void	 lfs_newseg __P((struct lfs *));
    124 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
    125 void	 lfs_supercallback __P((struct buf *));
    126 void	 lfs_updatemeta __P((struct segment *));
    127 int	 lfs_vref __P((struct vnode *));
    128 void	 lfs_vunref __P((struct vnode *));
    129 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
    130 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
    131 int	 lfs_writeseg __P((struct lfs *, struct segment *));
    132 void	 lfs_writesuper __P((struct lfs *, daddr_t));
    133 int	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
    134 	    struct segment *sp, int dirops));
    135 
    136 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    137 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
    138 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    139 int	lfs_dirvcount = 0;		/* # active dirops */
    140 
    141 /* Statistics Counters */
    142 int lfs_dostats = 1;
    143 struct lfs_stats lfs_stats;
    144 
    145 /* op values to lfs_writevnodes */
    146 #define	VN_REG	        0
    147 #define	VN_DIROP	1
    148 #define	VN_EMPTY	2
    149 #define VN_CLEAN        3
    150 
    151 #define LFS_MAX_ACTIVE          10
    152 
    153 /*
    154  * XXX KS - Set modification time on the Ifile, so the cleaner can
    155  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    156  * since we don't really need this to be flushed to disk (and in any
    157  * case that wouldn't happen to the Ifile until we checkpoint).
    158  */
    159 void
    160 lfs_imtime(fs)
    161 	struct lfs *fs;
    162 {
    163 	struct timespec ts;
    164 	struct inode *ip;
    165 
    166 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    167 	ip = VTOI(fs->lfs_ivnode);
    168 	ip->i_ffs_mtime = ts.tv_sec;
    169 	ip->i_ffs_mtimensec = ts.tv_nsec;
    170 }
    171 
    172 /*
    173  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    174  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    175  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    176  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    177  */
    178 
    179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    180 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    182 
    183 int
    184 lfs_vflush(vp)
    185 	struct vnode *vp;
    186 {
    187 	struct inode *ip;
    188 	struct lfs *fs;
    189 	struct segment *sp;
    190 	struct buf *bp, *nbp;
    191 	int error, s;
    192 
    193 	ip = VTOI(vp);
    194 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    195 
    196 	if(ip->i_flag & IN_CLEANING) {
    197 #ifdef DEBUG_LFS
    198 		ivndebug(vp,"vflush/in_cleaning");
    199 #endif
    200 		ip->i_flag &= ~IN_CLEANING;
    201 		if(ip->i_flag & IN_MODIFIED) {
    202 			fs->lfs_uinodes--;
    203 		} else
    204 			ip->i_flag |= IN_MODIFIED;
    205 	}
    206 
    207 	/* If the node is being written, wait until that is done */
    208 	if(WRITEINPROG(vp)) {
    209 #ifdef DEBUG_LFS
    210 		ivndebug(vp,"vflush/writeinprog");
    211 #endif
    212 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    213 	}
    214 
    215 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    216 	lfs_seglock(fs, SEGM_SYNC);
    217 
    218 	/* If we're supposed to flush a freed inode, just toss it */
    219 	/* XXX - seglock, so these buffers can't be gathered, right? */
    220 	if(ip->i_ffs_mode == 0) {
    221 		printf("lfs_vflush: ino %d is freed, not flushing\n",
    222 			ip->i_number);
    223 		s = splbio();
    224 		for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
    225 			nbp = bp->b_vnbufs.le_next;
    226 			/* Copied from lfs_writeseg */
    227 			if (bp->b_flags & B_CALL) {
    228 				/* if B_CALL, it was created with newbuf */
    229 				lfs_freebuf(bp);
    230 			} else {
    231 				bremfree(bp);
    232 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    233                                          B_LOCKED | B_GATHERED);
    234 				bp->b_flags |= B_DONE;
    235 				reassignbuf(bp, vp);
    236 				brelse(bp);
    237 			}
    238 		}
    239 		splx(s);
    240 		if(ip->i_flag & IN_CLEANING)
    241 			fs->lfs_uinodes--;
    242 		if(ip->i_flag & IN_MODIFIED)
    243 			fs->lfs_uinodes--;
    244 		ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
    245 		printf("lfs_vflush: done not flushing ino %d\n",
    246 			ip->i_number);
    247 		lfs_segunlock(fs);
    248 		return 0;
    249 	}
    250 
    251 	SET_FLUSHING(fs,vp);
    252 	if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
    253 		error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
    254 		CLR_FLUSHING(fs,vp);
    255 		lfs_segunlock(fs);
    256 		return error;
    257 	}
    258 	sp = fs->lfs_sp;
    259 
    260 	if (vp->v_dirtyblkhd.lh_first == NULL) {
    261 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    262 	} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    263 #ifdef DEBUG_LFS
    264 		ivndebug(vp,"vflush/clean");
    265 #endif
    266 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    267 	}
    268 	else if(lfs_dostats) {
    269 		if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
    270 			++lfs_stats.vflush_invoked;
    271 #ifdef DEBUG_LFS
    272 		ivndebug(vp,"vflush");
    273 #endif
    274 	}
    275 
    276 #ifdef DIAGNOSTIC
    277 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    278 	if(vp->v_flag & VDIROP) {
    279 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    280 		/* panic("VDIROP being flushed...this can\'t happen"); */
    281 	}
    282 	if(vp->v_usecount<0) {
    283 		printf("usecount=%ld\n",vp->v_usecount);
    284 		panic("lfs_vflush: usecount<0");
    285 	}
    286 #endif
    287 
    288 	do {
    289 		do {
    290 			if (vp->v_dirtyblkhd.lh_first != NULL)
    291 				lfs_writefile(fs, sp, vp);
    292 		} while (lfs_writeinode(fs, sp, ip));
    293 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    294 
    295 	if(lfs_dostats) {
    296 		++lfs_stats.nwrites;
    297 		if (sp->seg_flags & SEGM_SYNC)
    298 			++lfs_stats.nsync_writes;
    299 		if (sp->seg_flags & SEGM_CKP)
    300 			++lfs_stats.ncheckpoints;
    301 	}
    302 	lfs_segunlock(fs);
    303 
    304 	CLR_FLUSHING(fs,vp);
    305 	return (0);
    306 }
    307 
    308 #ifdef DEBUG_LFS_VERBOSE
    309 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    310 #else
    311 # define vndebug(vp,str)
    312 #endif
    313 
    314 int
    315 lfs_writevnodes(fs, mp, sp, op)
    316 	struct lfs *fs;
    317 	struct mount *mp;
    318 	struct segment *sp;
    319 	int op;
    320 {
    321 	struct inode *ip;
    322 	struct vnode *vp;
    323 	int inodes_written=0, only_cleaning;
    324 
    325 #ifndef LFS_NO_BACKVP_HACK
    326 	/* BEGIN HACK */
    327 #define	VN_OFFSET	(((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
    328 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    329 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    330 
    331 	/* Find last vnode. */
    332  loop:	for (vp = mp->mnt_vnodelist.lh_first;
    333 	     vp && vp->v_mntvnodes.le_next != NULL;
    334 	     vp = vp->v_mntvnodes.le_next);
    335 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    336 #else
    337 	loop:
    338 	for (vp = mp->mnt_vnodelist.lh_first;
    339 	     vp != NULL;
    340 	     vp = vp->v_mntvnodes.le_next) {
    341 #endif
    342 		/*
    343 		 * If the vnode that we are about to sync is no longer
    344 		 * associated with this mount point, start over.
    345 		 */
    346 		if (vp->v_mount != mp)
    347 			goto loop;
    348 
    349 		ip = VTOI(vp);
    350 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    351 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    352 			vndebug(vp,"dirop");
    353 			continue;
    354 		}
    355 
    356 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
    357 			vndebug(vp,"empty");
    358 			continue;
    359 		}
    360 
    361 		if (vp->v_type == VNON) {
    362 			continue;
    363 		}
    364 
    365 		if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    366 		   && !(ip->i_flag & IN_CLEANING)) {
    367 			vndebug(vp,"cleaning");
    368 			continue;
    369 		}
    370 
    371 		if (lfs_vref(vp)) {
    372 			vndebug(vp,"vref");
    373 			continue;
    374 		}
    375 
    376 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
    377 		if(WRITEINPROG(vp)) {
    378 			lfs_vunref(vp);
    379 #ifdef DEBUG_LFS
    380 			ivndebug(vp,"writevnodes/writeinprog");
    381 #endif
    382 			continue;
    383 		}
    384 #endif
    385 		only_cleaning = 0;
    386 		/*
    387 		 * Write the inode/file if dirty and it's not the
    388 		 * the IFILE.
    389 		 */
    390 		if ((ip->i_flag &
    391 		     (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
    392 		     vp->v_dirtyblkhd.lh_first != NULL))
    393 		{
    394 			only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
    395 
    396 			if(ip->i_number != LFS_IFILE_INUM
    397 			   && vp->v_dirtyblkhd.lh_first != NULL)
    398 			{
    399 				lfs_writefile(fs, sp, vp);
    400 			}
    401 			if(vp->v_dirtyblkhd.lh_first != NULL) {
    402 				if(WRITEINPROG(vp)) {
    403 #ifdef DEBUG_LFS
    404 					ivndebug(vp,"writevnodes/write2");
    405 #endif
    406 				} else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
    407 #ifdef DEBUG_LFS
    408 					printf("<%d>",ip->i_number);
    409 #endif
    410 					ip->i_flag |= IN_MODIFIED;
    411 					++fs->lfs_uinodes;
    412 				}
    413 			}
    414 			(void) lfs_writeinode(fs, sp, ip);
    415 			inodes_written++;
    416 		}
    417 
    418 		if(vp->v_flag & VDIROP) {
    419 			--lfs_dirvcount;
    420 			vp->v_flag &= ~VDIROP;
    421 			wakeup(&lfs_dirvcount);
    422 			lfs_vunref(vp);
    423 		}
    424 
    425 		if(lfs_clean_vnhead && only_cleaning)
    426 			lfs_vunref_head(vp);
    427 		else
    428 			lfs_vunref(vp);
    429 	}
    430 	return inodes_written;
    431 }
    432 
    433 int
    434 lfs_segwrite(mp, flags)
    435 	struct mount *mp;
    436 	int flags;			/* Do a checkpoint. */
    437 {
    438 	struct buf *bp;
    439 	struct inode *ip;
    440 	struct lfs *fs;
    441 	struct segment *sp;
    442 	struct vnode *vp;
    443 	SEGUSE *segusep;
    444 	ufs_daddr_t ibno;
    445 	int do_ckp, error, i;
    446 	int writer_set = 0;
    447 	int need_unlock = 0;
    448 
    449 	fs = VFSTOUFS(mp)->um_lfs;
    450 
    451 	lfs_imtime(fs);
    452 
    453 	/*
    454 	 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
    455 	 * clean segments, wait until cleaner writes.
    456 	 */
    457 	if(!(flags & SEGM_CLEAN)
    458 	   && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    459 	{
    460 		do {
    461 			if (fs->lfs_nclean <= MIN_FREE_SEGS
    462 			    || fs->lfs_avail <= 0)
    463 			{
    464 				wakeup(&lfs_allclean_wakeup);
    465 				wakeup(&fs->lfs_nextseg);
    466 				error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    467 					       "lfs_avail", 0);
    468 				if (error) {
    469 					return (error);
    470 				}
    471 			}
    472 		} while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
    473 	}
    474 
    475 	/*
    476 	 * Allocate a segment structure and enough space to hold pointers to
    477 	 * the maximum possible number of buffers which can be described in a
    478 	 * single summary block.
    479 	 */
    480 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    481 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    482 	sp = fs->lfs_sp;
    483 
    484 	/*
    485 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    486 	 * in which case we have to flush *all* buffers off of this vnode.
    487 	 * We don't care about other nodes, but write any non-dirop nodes
    488 	 * anyway in anticipation of another getnewvnode().
    489 	 *
    490 	 * If we're cleaning we only write cleaning and ifile blocks, and
    491 	 * no dirops, since otherwise we'd risk corruption in a crash.
    492 	 */
    493 	if(fs->lfs_flushvp)
    494 		lfs_writevnodes(fs, mp, sp, VN_REG);
    495 	else if(sp->seg_flags & SEGM_CLEAN)
    496 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    497 	else {
    498 		lfs_writevnodes(fs, mp, sp, VN_REG);
    499 		while(fs->lfs_dirops)
    500 			if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    501 					"lfs writer", 0)))
    502 			{
    503 				free(sp->bpp, M_SEGMENT);
    504 				free(sp, M_SEGMENT);
    505 				return (error);
    506 			}
    507 		fs->lfs_writer++;
    508 		writer_set=1;
    509 		lfs_writevnodes(fs, mp, sp, VN_DIROP);
    510 		((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    511 	}
    512 
    513 	/*
    514 	 * If we are doing a checkpoint, mark everything since the
    515 	 * last checkpoint as no longer ACTIVE.
    516 	 */
    517 	if (do_ckp) {
    518 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    519 		     --ibno >= fs->lfs_cleansz; ) {
    520 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    521 
    522 				panic("lfs_segwrite: ifile read");
    523 			segusep = (SEGUSE *)bp->b_data;
    524 			for (i = fs->lfs_sepb; i--; segusep++)
    525 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    526 
    527 			/* But the current segment is still ACTIVE */
    528 			if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
    529 				((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
    530 			error = VOP_BWRITE(bp);
    531 		}
    532 	}
    533 
    534 	if (do_ckp || fs->lfs_doifile) {
    535 	redo:
    536 		vp = fs->lfs_ivnode;
    537 		/*
    538 		 * Depending on the circumstances of our calling, the ifile
    539 		 * inode might be locked.  If it is, and if it is locked by
    540 		 * us, we should VREF instead of vget here.
    541 		 */
    542 		need_unlock = 0;
    543 		if(VOP_ISLOCKED(vp)
    544 		   && vp->v_lock.lk_lockholder == curproc->p_pid) {
    545 			VREF(vp);
    546 		} else {
    547 			while (vget(vp, LK_EXCLUSIVE))
    548 				continue;
    549 			need_unlock = 1;
    550 		}
    551 		ip = VTOI(vp);
    552 		if (vp->v_dirtyblkhd.lh_first != NULL)
    553 			lfs_writefile(fs, sp, vp);
    554 		(void)lfs_writeinode(fs, sp, ip);
    555 
    556 		/* Only vput if we used vget() above. */
    557 		if(need_unlock)
    558 			vput(vp);
    559 		else
    560 			vrele(vp);
    561 
    562 		if (lfs_writeseg(fs, sp) && do_ckp)
    563 			goto redo;
    564 	} else {
    565 		(void) lfs_writeseg(fs, sp);
    566 	}
    567 
    568 	/*
    569 	 * If the I/O count is non-zero, sleep until it reaches zero.
    570 	 * At the moment, the user's process hangs around so we can
    571 	 * sleep.
    572 	 */
    573 	fs->lfs_doifile = 0;
    574 	if(writer_set && --fs->lfs_writer==0)
    575 		wakeup(&fs->lfs_dirops);
    576 
    577 	if(lfs_dostats) {
    578 		++lfs_stats.nwrites;
    579 		if (sp->seg_flags & SEGM_SYNC)
    580 			++lfs_stats.nsync_writes;
    581 		if (sp->seg_flags & SEGM_CKP)
    582 			++lfs_stats.ncheckpoints;
    583 	}
    584 	lfs_segunlock(fs);
    585 	return (0);
    586 }
    587 
    588 /*
    589  * Write the dirty blocks associated with a vnode.
    590  */
    591 void
    592 lfs_writefile(fs, sp, vp)
    593 	struct lfs *fs;
    594 	struct segment *sp;
    595 	struct vnode *vp;
    596 {
    597 	struct buf *bp;
    598 	struct finfo *fip;
    599 	IFILE *ifp;
    600 
    601 
    602 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    603 	    sp->sum_bytes_left < sizeof(struct finfo))
    604 		(void) lfs_writeseg(fs, sp);
    605 
    606 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    607 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    608 
    609 	if(vp->v_flag & VDIROP)
    610 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    611 
    612 	fip = sp->fip;
    613 	fip->fi_nblocks = 0;
    614 	fip->fi_ino = VTOI(vp)->i_number;
    615 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    616 	fip->fi_version = ifp->if_version;
    617 	brelse(bp);
    618 
    619 	/*
    620 	 * It may not be necessary to write the meta-data blocks at this point,
    621 	 * as the roll-forward recovery code should be able to reconstruct the
    622 	 * list.
    623 	 *
    624 	 * We have to write them anyway, though, under two conditions: (1) the
    625 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    626 	 * checkpointing.
    627 	 */
    628 	if((sp->seg_flags & SEGM_CLEAN)
    629 	   && VTOI(vp)->i_number != LFS_IFILE_INUM
    630 	   && !IS_FLUSHING(fs,vp))
    631 	{
    632 		lfs_gather(fs, sp, vp, lfs_match_fake);
    633 	} else
    634 		lfs_gather(fs, sp, vp, lfs_match_data);
    635 
    636 	if(lfs_writeindir
    637 	   || IS_FLUSHING(fs,vp)
    638 	   || (sp->seg_flags & SEGM_CKP))
    639 	{
    640 		lfs_gather(fs, sp, vp, lfs_match_indir);
    641 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    642 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
    643 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    644 /* #endif */
    645 	}
    646 	fip = sp->fip;
    647 	if (fip->fi_nblocks != 0) {
    648 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
    649 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
    650 		sp->start_lbp = &sp->fip->fi_blocks[0];
    651 	} else {
    652 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
    653 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    654 	}
    655 }
    656 
    657 int
    658 lfs_writeinode(fs, sp, ip)
    659 	struct lfs *fs;
    660 	struct segment *sp;
    661 	struct inode *ip;
    662 {
    663 	struct buf *bp, *ibp;
    664 	IFILE *ifp;
    665 	SEGUSE *sup;
    666 	ufs_daddr_t daddr;
    667 	ino_t ino;
    668 	int error, i, ndx;
    669 	int redo_ifile = 0;
    670 	struct timespec ts;
    671 	int gotblk=0;
    672 
    673 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
    674 		return(0);
    675 
    676 	/* Allocate a new inode block if necessary. */
    677 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
    678 		/* Allocate a new segment if necessary. */
    679 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    680 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    681 			(void) lfs_writeseg(fs, sp);
    682 
    683 		/* Get next inode block. */
    684 		daddr = fs->lfs_offset;
    685 		fs->lfs_offset += fsbtodb(fs, 1);
    686 		sp->ibp = *sp->cbpp++ =
    687 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
    688 		gotblk++;
    689 
    690 		/* Zero out inode numbers */
    691 		for (i = 0; i < INOPB(fs); ++i)
    692 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    693 
    694 		++sp->start_bpp;
    695 		fs->lfs_avail -= fsbtodb(fs, 1);
    696 		/* Set remaining space counters. */
    697 		sp->seg_bytes_left -= fs->lfs_bsize;
    698 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    699 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    700 			sp->ninodes / INOPB(fs) - 1;
    701 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    702 	}
    703 
    704 	/* Update the inode times and copy the inode onto the inode page. */
    705 	if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
    706 		--fs->lfs_uinodes;
    707 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    708 	LFS_ITIMES(ip, &ts, &ts, &ts);
    709 
    710 	if(ip->i_flag & IN_CLEANING)
    711 		ip->i_flag &= ~IN_CLEANING;
    712 	else
    713 		ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
    714 
    715 	/*
    716 	 * If this is the Ifile, and we've already written the Ifile in this
    717 	 * partial segment, just overwrite it (it's not on disk yet) and
    718 	 * continue.
    719 	 *
    720 	 * XXX we know that the bp that we get the second time around has
    721 	 * already been gathered.
    722 	 */
    723 	if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
    724 		*(sp->idp) = ip->i_din.ffs_din;
    725 		return 0;
    726 	}
    727 
    728 	bp = sp->ibp;
    729 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
    730 		ip->i_din.ffs_din;
    731 
    732 	if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    733 		sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
    734 	if(gotblk) {
    735 		bp->b_flags |= B_LOCKED;
    736 		brelse(bp);
    737 	}
    738 
    739 	/* Increment inode count in segment summary block. */
    740 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    741 
    742 	/* If this page is full, set flag to allocate a new page. */
    743 	if (++sp->ninodes % INOPB(fs) == 0)
    744 		sp->ibp = NULL;
    745 
    746 	/*
    747 	 * If updating the ifile, update the super-block.  Update the disk
    748 	 * address and access times for this inode in the ifile.
    749 	 */
    750 	ino = ip->i_number;
    751 	if (ino == LFS_IFILE_INUM) {
    752 		daddr = fs->lfs_idaddr;
    753 		fs->lfs_idaddr = bp->b_blkno;
    754 	} else {
    755 		LFS_IENTRY(ifp, fs, ino, ibp);
    756 		daddr = ifp->if_daddr;
    757 		ifp->if_daddr = bp->b_blkno;
    758 #ifdef LFS_DEBUG_NEXTFREE
    759 		if(ino > 3 && ifp->if_nextfree) {
    760 			vprint("lfs_writeinode",ITOV(ip));
    761 			printf("lfs_writeinode: updating free ino %d\n",
    762 				ip->i_number);
    763 		}
    764 #endif
    765 		error = VOP_BWRITE(ibp);
    766 	}
    767 
    768 	/*
    769 	 * No need to update segment usage if there was no former inode address
    770 	 * or if the last inode address is in the current partial segment.
    771 	 */
    772 	if (daddr != LFS_UNUSED_DADDR &&
    773 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    774 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    775 #ifdef DIAGNOSTIC
    776 		if (sup->su_nbytes < DINODE_SIZE) {
    777 			/* XXX -- Change to a panic. */
    778 			printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
    779 			       datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
    780 			panic("lfs_writeinode: negative bytes");
    781 			sup->su_nbytes = DINODE_SIZE;
    782 		}
    783 #endif
    784 		sup->su_nbytes -= DINODE_SIZE;
    785 		redo_ifile =
    786 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    787 		error = VOP_BWRITE(bp);
    788 	}
    789 	return (redo_ifile);
    790 }
    791 
    792 int
    793 lfs_gatherblock(sp, bp, sptr)
    794 	struct segment *sp;
    795 	struct buf *bp;
    796 	int *sptr;
    797 {
    798 	struct lfs *fs;
    799 	int version;
    800 
    801 	/*
    802 	 * If full, finish this segment.  We may be doing I/O, so
    803 	 * release and reacquire the splbio().
    804 	 */
    805 #ifdef DIAGNOSTIC
    806 	if (sp->vp == NULL)
    807 		panic ("lfs_gatherblock: Null vp in segment");
    808 #endif
    809 	fs = sp->fs;
    810 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    811 	    sp->seg_bytes_left < bp->b_bcount) {
    812 		if (sptr)
    813 			splx(*sptr);
    814 		lfs_updatemeta(sp);
    815 
    816 		version = sp->fip->fi_version;
    817 		(void) lfs_writeseg(fs, sp);
    818 
    819 		sp->fip->fi_version = version;
    820 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    821 		/* Add the current file to the segment summary. */
    822 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    823 		sp->sum_bytes_left -=
    824 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
    825 
    826 		if (sptr)
    827 			*sptr = splbio();
    828 		return(1);
    829 	}
    830 
    831 #ifdef DEBUG
    832 	if(bp->b_flags & B_GATHERED) {
    833 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
    834 		       sp->fip->fi_ino, bp->b_lblkno);
    835 		return(0);
    836 	}
    837 #endif
    838 	/* Insert into the buffer list, update the FINFO block. */
    839 	bp->b_flags |= B_GATHERED;
    840 	*sp->cbpp++ = bp;
    841 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    842 
    843 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    844 	sp->seg_bytes_left -= bp->b_bcount;
    845 	return(0);
    846 }
    847 
    848 int
    849 lfs_gather(fs, sp, vp, match)
    850 	struct lfs *fs;
    851 	struct segment *sp;
    852 	struct vnode *vp;
    853 	int (*match) __P((struct lfs *, struct buf *));
    854 {
    855 	struct buf *bp;
    856 	int s, count=0;
    857 
    858 	sp->vp = vp;
    859 	s = splbio();
    860 
    861 #ifndef LFS_NO_BACKBUF_HACK
    862 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    863 #else /* LFS_NO_BACKBUF_HACK */
    864 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    865 # define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
    866 # define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    867 # define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    868 /* Find last buffer. */
    869 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    870 	    bp = bp->b_vnbufs.le_next);
    871 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    872 #endif /* LFS_NO_BACKBUF_HACK */
    873 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
    874 			continue;
    875 		if(vp->v_type == VBLK) {
    876 			/* For block devices, just write the blocks. */
    877 			/* XXX Do we really need to even do this? */
    878 #ifdef DEBUG_LFS
    879 			if(count==0)
    880 				printf("BLK(");
    881 			printf(".");
    882 #endif
    883 			/* Get the block before bwrite, so we don't corrupt the free list */
    884 			bp->b_flags |= B_BUSY;
    885 			bremfree(bp);
    886 			bwrite(bp);
    887 		} else {
    888 #ifdef DIAGNOSTIC
    889 			if (!(bp->b_flags & B_DELWRI))
    890 				panic("lfs_gather: bp not B_DELWRI");
    891 			if (!(bp->b_flags & B_LOCKED)) {
    892 				printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
    893 				VOP_PRINT(bp->b_vp);
    894 				panic("lfs_gather: bp not B_LOCKED");
    895 			}
    896 #endif
    897 			if (lfs_gatherblock(sp, bp, &s)) {
    898 				goto loop;
    899 			}
    900 		}
    901 		count++;
    902 	}
    903 	splx(s);
    904 #ifdef DEBUG_LFS
    905 	if(vp->v_type == VBLK && count)
    906 		printf(")\n");
    907 #endif
    908 	lfs_updatemeta(sp);
    909 	sp->vp = NULL;
    910 	return count;
    911 }
    912 
    913 /*
    914  * Update the metadata that points to the blocks listed in the FINFO
    915  * array.
    916  */
    917 void
    918 lfs_updatemeta(sp)
    919 	struct segment *sp;
    920 {
    921 	SEGUSE *sup;
    922 	struct buf *bp;
    923 	struct lfs *fs;
    924 	struct vnode *vp;
    925 	struct indir a[NIADDR + 2], *ap;
    926 	struct inode *ip;
    927 	ufs_daddr_t daddr, lbn, off;
    928 	int error, i, nblocks, num;
    929 
    930 	vp = sp->vp;
    931 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    932 	if (nblocks < 0)
    933 		panic("This is a bad thing\n");
    934 	if (vp == NULL || nblocks == 0)
    935 		return;
    936 
    937 	/* Sort the blocks. */
    938 	/*
    939 	 * XXX KS - We have to sort even if the blocks come from the
    940 	 * cleaner, because there might be other pending blocks on the
    941 	 * same inode...and if we don't sort, and there are fragments
    942 	 * present, blocks may be written in the wrong place.
    943 	 */
    944 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
    945 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    946 
    947 	/*
    948 	 * Record the length of the last block in case it's a fragment.
    949 	 * If there are indirect blocks present, they sort last.  An
    950 	 * indirect block will be lfs_bsize and its presence indicates
    951 	 * that you cannot have fragments.
    952 	 */
    953 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    954 
    955 	/*
    956 	 * Assign disk addresses, and update references to the logical
    957 	 * block and the segment usage information.
    958 	 */
    959 	fs = sp->fs;
    960 	for (i = nblocks; i--; ++sp->start_bpp) {
    961 		lbn = *sp->start_lbp++;
    962 
    963 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    964 		if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
    965 			printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
    966 		}
    967 		fs->lfs_offset +=
    968 			fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    969 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    970 		if (error)
    971 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    972 		ip = VTOI(vp);
    973 		switch (num) {
    974 		case 0:
    975 			ip->i_ffs_db[lbn] = off;
    976 			break;
    977 		case 1:
    978 			ip->i_ffs_ib[a[0].in_off] = off;
    979 			break;
    980 		default:
    981 			ap = &a[num - 1];
    982 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    983 				panic("lfs_updatemeta: bread bno %d",
    984 				      ap->in_lbn);
    985 			/*
    986 			 * Bread may create a new (indirect) block which needs
    987 			 * to get counted for the inode.
    988 			 */
    989 			if (/* bp->b_blkno == -1 && */
    990 			    !(bp->b_flags & (B_DELWRI|B_DONE))) {
    991 				ip->i_ffs_blocks += fsbtodb(fs, 1);
    992 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    993 			}
    994 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    995 			VOP_BWRITE(bp);
    996 		}
    997 		/* Update segment usage information. */
    998 		if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    999 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
   1000 #ifdef DIAGNOSTIC
   1001 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
   1002 				/* XXX -- Change to a panic. */
   1003 				printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
   1004 				       datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
   1005 				printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
   1006 				       VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
   1007 				panic("lfs_updatemeta: negative bytes");
   1008 				sup->su_nbytes = (*sp->start_bpp)->b_bcount;
   1009 			}
   1010 #endif
   1011 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
   1012 			error = VOP_BWRITE(bp);
   1013 		}
   1014 	}
   1015 }
   1016 
   1017 /*
   1018  * Start a new segment.
   1019  */
   1020 int
   1021 lfs_initseg(fs)
   1022 	struct lfs *fs;
   1023 {
   1024 	struct segment *sp;
   1025 	SEGUSE *sup;
   1026 	SEGSUM *ssp;
   1027 	struct buf *bp;
   1028 	int repeat;
   1029 
   1030 	sp = fs->lfs_sp;
   1031 
   1032 	repeat = 0;
   1033 	/* Advance to the next segment. */
   1034 	if (!LFS_PARTIAL_FITS(fs)) {
   1035 		/* Wake up any cleaning procs waiting on this file system. */
   1036 		wakeup(&lfs_allclean_wakeup);
   1037 		wakeup(&fs->lfs_nextseg);
   1038 		lfs_newseg(fs);
   1039 		repeat = 1;
   1040 		fs->lfs_offset = fs->lfs_curseg;
   1041 		sp->seg_number = datosn(fs, fs->lfs_curseg);
   1042 		sp->seg_bytes_left = fs->lfs_dbpseg * DEF_BSIZE;
   1043 		/*
   1044 		 * If the segment contains a superblock, update the offset
   1045 		 * and summary address to skip over it.
   1046 		 */
   1047 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1048 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1049 			fs->lfs_offset += LFS_SBPAD / DEF_BSIZE;
   1050 			sp->seg_bytes_left -= LFS_SBPAD;
   1051 		}
   1052 		brelse(bp);
   1053 	} else {
   1054 		sp->seg_number = datosn(fs, fs->lfs_curseg);
   1055 		sp->seg_bytes_left = (fs->lfs_dbpseg -
   1056 				      (fs->lfs_offset - fs->lfs_curseg)) * DEF_BSIZE;
   1057 	}
   1058 	fs->lfs_lastpseg = fs->lfs_offset;
   1059 
   1060 	sp->fs = fs;
   1061 	sp->ibp = NULL;
   1062 	sp->idp = NULL;
   1063 	sp->ninodes = 0;
   1064 
   1065 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
   1066 	sp->cbpp = sp->bpp;
   1067 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
   1068 			       fs->lfs_offset, LFS_SUMMARY_SIZE);
   1069 	sp->segsum = (*sp->cbpp)->b_data;
   1070 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
   1071 	sp->start_bpp = ++sp->cbpp;
   1072 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEF_BSIZE;
   1073 
   1074 	/* Set point to SEGSUM, initialize it. */
   1075 	ssp = sp->segsum;
   1076 	ssp->ss_next = fs->lfs_nextseg;
   1077 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1078 	ssp->ss_magic = SS_MAGIC;
   1079 
   1080 	/* Set pointer to first FINFO, initialize it. */
   1081 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
   1082 	sp->fip->fi_nblocks = 0;
   1083 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1084 	sp->fip->fi_lastlength = 0;
   1085 
   1086 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
   1087 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
   1088 
   1089 	return(repeat);
   1090 }
   1091 
   1092 /*
   1093  * Return the next segment to write.
   1094  */
   1095 void
   1096 lfs_newseg(fs)
   1097 	struct lfs *fs;
   1098 {
   1099 	CLEANERINFO *cip;
   1100 	SEGUSE *sup;
   1101 	struct buf *bp;
   1102 	int curseg, isdirty, sn;
   1103 
   1104 	LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
   1105 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1106 	sup->su_nbytes = 0;
   1107 	sup->su_nsums = 0;
   1108 	sup->su_ninos = 0;
   1109 	(void) VOP_BWRITE(bp);
   1110 
   1111 	LFS_CLEANERINFO(cip, fs, bp);
   1112 	--cip->clean;
   1113 	++cip->dirty;
   1114 	fs->lfs_nclean = cip->clean;
   1115 	(void) VOP_BWRITE(bp);
   1116 
   1117 	fs->lfs_lastseg = fs->lfs_curseg;
   1118 	fs->lfs_curseg = fs->lfs_nextseg;
   1119 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
   1120 		sn = (sn + 1) % fs->lfs_nseg;
   1121 		if (sn == curseg)
   1122 			panic("lfs_nextseg: no clean segments");
   1123 		LFS_SEGENTRY(sup, fs, sn, bp);
   1124 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1125 		brelse(bp);
   1126 		if (!isdirty)
   1127 			break;
   1128 	}
   1129 
   1130 	++fs->lfs_nactive;
   1131 	fs->lfs_nextseg = sntoda(fs, sn);
   1132 	if(lfs_dostats) {
   1133 		++lfs_stats.segsused;
   1134 	}
   1135 }
   1136 
   1137 int
   1138 lfs_writeseg(fs, sp)
   1139 	struct lfs *fs;
   1140 	struct segment *sp;
   1141 {
   1142 	extern int locked_queue_count;
   1143 	extern long locked_queue_bytes;
   1144 	struct buf **bpp, *bp, *cbp;
   1145 	SEGUSE *sup;
   1146 	SEGSUM *ssp;
   1147 	dev_t i_dev;
   1148 	u_long *datap, *dp;
   1149 	int do_again, i, nblocks, s;
   1150 #ifdef LFS_TRACK_IOS
   1151 	int j;
   1152 #endif
   1153 	int (*strategy)__P((void *));
   1154 	struct vop_strategy_args vop_strategy_a;
   1155 	u_short ninos;
   1156 	struct vnode *devvp;
   1157 	char *p;
   1158 	struct vnode *vn;
   1159 	struct inode *ip;
   1160 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1161 	static int propeller;
   1162 	char propstring[4] = "-\\|/";
   1163 
   1164 	printf("%c\b",propstring[propeller++]);
   1165 	if(propeller==4)
   1166 		propeller = 0;
   1167 #endif
   1168 
   1169 	/*
   1170 	 * If there are no buffers other than the segment summary to write
   1171 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1172 	 * even if there aren't any buffers, you need to write the superblock.
   1173 	 */
   1174 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1175 		return (0);
   1176 
   1177 #ifdef DEBUG_LFS
   1178 	lfs_check_bpp(fs,sp,__FILE__,__LINE__);
   1179 #endif
   1180 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1181 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1182 
   1183 	/* Update the segment usage information. */
   1184 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1185 
   1186 	/* Loop through all blocks, except the segment summary. */
   1187 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1188 		if((*bpp)->b_vp != devvp)
   1189 			sup->su_nbytes += (*bpp)->b_bcount;
   1190 	}
   1191 
   1192 	ssp = (SEGSUM *)sp->segsum;
   1193 
   1194 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1195 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
   1196 	/* sup->su_nbytes += LFS_SUMMARY_SIZE; */
   1197 	sup->su_lastmod = time.tv_sec;
   1198 	sup->su_ninos += ninos;
   1199 	++sup->su_nsums;
   1200 
   1201 	do_again = !(bp->b_flags & B_GATHERED);
   1202 	(void)VOP_BWRITE(bp);
   1203 	/*
   1204 	 * Compute checksum across data and then across summary; the first
   1205 	 * block (the summary block) is skipped.  Set the create time here
   1206 	 * so that it's guaranteed to be later than the inode mod times.
   1207 	 *
   1208 	 * XXX
   1209 	 * Fix this to do it inline, instead of malloc/copy.
   1210 	 */
   1211 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
   1212 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1213 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1214 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
   1215 				panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
   1216 		} else {
   1217 			if( !((*bpp)->b_flags & B_CALL) ) {
   1218 				/*
   1219 				 * Before we record data for a checksm,
   1220 				 * make sure the data won't change in between
   1221 				 * the checksum calculation and the write,
   1222 				 * by marking the buffer B_BUSY.  It will
   1223 				 * be freed later by brelse().
   1224 				 */
   1225 			again:
   1226 				s = splbio();
   1227 				if((*bpp)->b_flags & B_BUSY) {
   1228 #ifdef DEBUG
   1229 					printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
   1230 					       VTOI((*bpp)->b_vp)->i_number,
   1231 					       bp->b_lblkno);
   1232 #endif
   1233 					(*bpp)->b_flags |= B_WANTED;
   1234 					tsleep((*bpp), (PRIBIO + 1),
   1235 					       "lfs_writeseg", 0);
   1236 					splx(s);
   1237 					goto again;
   1238 				}
   1239 				(*bpp)->b_flags |= B_BUSY;
   1240 				splx(s);
   1241 			}
   1242 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
   1243 		}
   1244 	}
   1245 	ssp->ss_create = time.tv_sec;
   1246 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
   1247 	ssp->ss_sumsum =
   1248 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
   1249 	free(datap, M_SEGMENT);
   1250 #ifdef DIAGNOSTIC
   1251 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEF_BSIZE)
   1252 		panic("lfs_writeseg: No diskspace for summary");
   1253 #endif
   1254 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEF_BSIZE);
   1255 
   1256 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1257 
   1258 	/*
   1259 	 * When we simply write the blocks we lose a rotation for every block
   1260 	 * written.  To avoid this problem, we allocate memory in chunks, copy
   1261 	 * the buffers into the chunk and write the chunk.  CHUNKSIZE is the
   1262 	 * largest size I/O devices can handle.
   1263 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
   1264 	 * and brelse the buffer (which will move them to the LRU list).  Add
   1265 	 * the B_CALL flag to the buffer header so we can count I/O's for the
   1266 	 * checkpoints and so we can release the allocated memory.
   1267 	 *
   1268 	 * XXX
   1269 	 * This should be removed if the new virtual memory system allows us to
   1270 	 * easily make the buffers contiguous in kernel memory and if that's
   1271 	 * fast enough.
   1272 	 */
   1273 
   1274 #define CHUNKSIZE MAXPHYS
   1275 
   1276 	if(devvp==NULL)
   1277 		panic("devvp is NULL");
   1278 	for (bpp = sp->bpp,i = nblocks; i;) {
   1279 		cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
   1280 		cbp->b_dev = i_dev;
   1281 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1282 		cbp->b_bcount = 0;
   1283 
   1284 #ifdef DIAGNOSTIC
   1285 		if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEF_BSIZE) != datosn(fs,cbp->b_blkno)) {
   1286 			panic("lfs_writeseg: Segment overwrite");
   1287 		}
   1288 #endif
   1289 
   1290 		s = splbio();
   1291 		if(fs->lfs_iocount >= LFS_THROTTLE) {
   1292 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
   1293 		}
   1294 		++fs->lfs_iocount;
   1295 #ifdef LFS_TRACK_IOS
   1296 		for(j=0;j<LFS_THROTTLE;j++) {
   1297 			if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
   1298 				fs->lfs_pending[j] = cbp->b_blkno;
   1299 				break;
   1300 			}
   1301 		}
   1302 #endif /* LFS_TRACK_IOS */
   1303 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
   1304 			bp = *bpp;
   1305 
   1306 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1307 				break;
   1308 
   1309 			/*
   1310 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1311 			 * We need to copy the data from user space rather than
   1312 			 * from the buffer indicated.
   1313 			 * XXX == what do I do on an error?
   1314 			 */
   1315 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1316 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1317 					panic("lfs_writeseg: copyin failed [2]");
   1318 			} else
   1319 				bcopy(bp->b_data, p, bp->b_bcount);
   1320 			p += bp->b_bcount;
   1321 			cbp->b_bcount += bp->b_bcount;
   1322 			if (bp->b_flags & B_LOCKED) {
   1323 				--locked_queue_count;
   1324 				locked_queue_bytes -= bp->b_bufsize;
   1325 			}
   1326 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
   1327 					 B_LOCKED | B_GATHERED);
   1328 			vn = bp->b_vp;
   1329 			if (bp->b_flags & B_CALL) {
   1330 				/* if B_CALL, it was created with newbuf */
   1331 				lfs_freebuf(bp);
   1332 			} else {
   1333 				bremfree(bp);
   1334 				bp->b_flags |= B_DONE;
   1335 				if(vn)
   1336 					reassignbuf(bp, vn);
   1337 				brelse(bp);
   1338 			}
   1339 			if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
   1340 				bp->b_flags &= ~B_NEEDCOMMIT;
   1341 				wakeup(bp);
   1342 			}
   1343 
   1344 			bpp++;
   1345 
   1346 			/*
   1347 			 * If this is the last block for this vnode, but
   1348 			 * there are other blocks on its dirty list,
   1349 			 * set IN_MODIFIED/IN_CLEANING depending on what
   1350 			 * sort of block.  Only do this for our mount point,
   1351 			 * not for, e.g., inode blocks that are attached to
   1352 			 * the devvp.
   1353 			 */
   1354 			if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
   1355 			   && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
   1356 			   vn->v_mount == fs->lfs_ivnode->v_mount)
   1357 			{
   1358 				ip = VTOI(vn);
   1359 #ifdef DEBUG_LFS
   1360 				printf("lfs_writeseg: marking ino %d\n",ip->i_number);
   1361 #endif
   1362 		       		if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
   1363 					fs->lfs_uinodes++;
   1364 					if(bp->b_flags & B_CALL)
   1365 						ip->i_flag |= IN_CLEANING;
   1366 					else
   1367 						ip->i_flag |= IN_MODIFIED;
   1368 				}
   1369 			}
   1370 			/* if(vn->v_dirtyblkhd.lh_first == NULL) */
   1371 				wakeup(vn);
   1372 		}
   1373 		++cbp->b_vp->v_numoutput;
   1374 		splx(s);
   1375 		/*
   1376 		 * XXXX This is a gross and disgusting hack.  Since these
   1377 		 * buffers are physically addressed, they hang off the
   1378 		 * device vnode (devvp).  As a result, they have no way
   1379 		 * of getting to the LFS superblock or lfs structure to
   1380 		 * keep track of the number of I/O's pending.  So, I am
   1381 		 * going to stuff the fs into the saveaddr field of
   1382 		 * the buffer (yuk).
   1383 		 */
   1384 		cbp->b_saveaddr = (caddr_t)fs;
   1385 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   1386 		vop_strategy_a.a_bp = cbp;
   1387 		(strategy)(&vop_strategy_a);
   1388 	}
   1389 	/*
   1390 	 * XXX
   1391 	 * Vinvalbuf can move locked buffers off the locked queue
   1392 	 * and we have no way of knowing about this.  So, after
   1393 	 * doing a big write, we recalculate how many buffers are
   1394 	 * really still left on the locked queue.
   1395 	 */
   1396 	lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
   1397 	wakeup(&locked_queue_count);
   1398 	if(lfs_dostats) {
   1399 		++lfs_stats.psegwrites;
   1400 		lfs_stats.blocktot += nblocks - 1;
   1401 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1402 			++lfs_stats.psyncwrites;
   1403 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1404 			++lfs_stats.pcleanwrites;
   1405 			lfs_stats.cleanblocks += nblocks - 1;
   1406 		}
   1407 	}
   1408 	return (lfs_initseg(fs) || do_again);
   1409 }
   1410 
   1411 void
   1412 lfs_writesuper(fs, daddr)
   1413 	struct lfs *fs;
   1414 	daddr_t daddr;
   1415 {
   1416 	struct buf *bp;
   1417 	dev_t i_dev;
   1418 	int (*strategy) __P((void *));
   1419 	int s;
   1420 	struct vop_strategy_args vop_strategy_a;
   1421 
   1422 #ifdef LFS_CANNOT_ROLLFW
   1423 	/*
   1424 	 * If we can write one superblock while another is in
   1425 	 * progress, we risk not having a complete checkpoint if we crash.
   1426 	 * So, block here if a superblock write is in progress.
   1427 	 */
   1428 	s = splbio();
   1429 	while(fs->lfs_sbactive) {
   1430 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   1431 	}
   1432 	fs->lfs_sbactive = daddr;
   1433 	splx(s);
   1434 #endif
   1435 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1436 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   1437 
   1438 	/* Set timestamp of this version of the superblock */
   1439 	fs->lfs_tstamp = time.tv_sec;
   1440 
   1441 	/* Checksum the superblock and copy it into a buffer. */
   1442 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1443 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
   1444 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   1445 
   1446 	bp->b_dev = i_dev;
   1447 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   1448 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   1449 	bp->b_iodone = lfs_supercallback;
   1450 	/* XXX KS - same nasty hack as above */
   1451 	bp->b_saveaddr = (caddr_t)fs;
   1452 
   1453 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   1454 	vop_strategy_a.a_bp = bp;
   1455 	s = splbio();
   1456 	++bp->b_vp->v_numoutput;
   1457 	splx(s);
   1458 	(strategy)(&vop_strategy_a);
   1459 }
   1460 
   1461 /*
   1462  * Logical block number match routines used when traversing the dirty block
   1463  * chain.
   1464  */
   1465 int
   1466 lfs_match_fake(fs, bp)
   1467 	struct lfs *fs;
   1468 	struct buf *bp;
   1469 {
   1470 	return (bp->b_flags & B_CALL);
   1471 }
   1472 
   1473 int
   1474 lfs_match_data(fs, bp)
   1475 	struct lfs *fs;
   1476 	struct buf *bp;
   1477 {
   1478 	return (bp->b_lblkno >= 0);
   1479 }
   1480 
   1481 int
   1482 lfs_match_indir(fs, bp)
   1483 	struct lfs *fs;
   1484 	struct buf *bp;
   1485 {
   1486 	int lbn;
   1487 
   1488 	lbn = bp->b_lblkno;
   1489 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1490 }
   1491 
   1492 int
   1493 lfs_match_dindir(fs, bp)
   1494 	struct lfs *fs;
   1495 	struct buf *bp;
   1496 {
   1497 	int lbn;
   1498 
   1499 	lbn = bp->b_lblkno;
   1500 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1501 }
   1502 
   1503 int
   1504 lfs_match_tindir(fs, bp)
   1505 	struct lfs *fs;
   1506 	struct buf *bp;
   1507 {
   1508 	int lbn;
   1509 
   1510 	lbn = bp->b_lblkno;
   1511 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1512 }
   1513 
   1514 /*
   1515  * XXX - The only buffers that are going to hit these functions are the
   1516  * segment write blocks, or the segment summaries, or the superblocks.
   1517  *
   1518  * All of the above are created by lfs_newbuf, and so do not need to be
   1519  * released via brelse.
   1520  */
   1521 void
   1522 lfs_callback(bp)
   1523 	struct buf *bp;
   1524 {
   1525 	struct lfs *fs;
   1526 #ifdef LFS_TRACK_IOS
   1527 	int j;
   1528 #endif
   1529 
   1530 	fs = (struct lfs *)bp->b_saveaddr;
   1531 #ifdef DIAGNOSTIC
   1532 	if (fs->lfs_iocount == 0)
   1533 		panic("lfs_callback: zero iocount\n");
   1534 #endif
   1535 	if (--fs->lfs_iocount < LFS_THROTTLE)
   1536 		wakeup(&fs->lfs_iocount);
   1537 #ifdef LFS_TRACK_IOS
   1538 	for(j=0;j<LFS_THROTTLE;j++) {
   1539 		if(fs->lfs_pending[j]==bp->b_blkno) {
   1540 			fs->lfs_pending[j] = LFS_UNUSED_DADDR;
   1541 			wakeup(&(fs->lfs_pending[j]));
   1542 			break;
   1543 		}
   1544 	}
   1545 #endif /* LFS_TRACK_IOS */
   1546 
   1547 	lfs_freebuf(bp);
   1548 }
   1549 
   1550 void
   1551 lfs_supercallback(bp)
   1552 	struct buf *bp;
   1553 {
   1554 #ifdef LFS_CANNOT_ROLLFW
   1555 	struct lfs *fs;
   1556 
   1557 	fs = (struct lfs *)bp->b_saveaddr;
   1558 	fs->lfs_sbactive=NULL;
   1559 	wakeup(&fs->lfs_sbactive);
   1560 #endif
   1561 	lfs_freebuf(bp);
   1562 }
   1563 
   1564 /*
   1565  * Shellsort (diminishing increment sort) from Data Structures and
   1566  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1567  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1568  * formula (8), page 95.  Roughly O(N^3/2).
   1569  */
   1570 /*
   1571  * This is our own private copy of shellsort because we want to sort
   1572  * two parallel arrays (the array of buffer pointers and the array of
   1573  * logical block numbers) simultaneously.  Note that we cast the array
   1574  * of logical block numbers to a unsigned in this routine so that the
   1575  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1576  */
   1577 
   1578 void
   1579 lfs_shellsort(bp_array, lb_array, nmemb)
   1580 	struct buf **bp_array;
   1581 	ufs_daddr_t *lb_array;
   1582 	register int nmemb;
   1583 {
   1584 	static int __rsshell_increments[] = { 4, 1, 0 };
   1585 	register int incr, *incrp, t1, t2;
   1586 	struct buf *bp_temp;
   1587 	u_long lb_temp;
   1588 
   1589 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1590 		for (t1 = incr; t1 < nmemb; ++t1)
   1591 			for (t2 = t1 - incr; t2 >= 0;)
   1592 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1593 					lb_temp = lb_array[t2];
   1594 					lb_array[t2] = lb_array[t2 + incr];
   1595 					lb_array[t2 + incr] = lb_temp;
   1596 					bp_temp = bp_array[t2];
   1597 					bp_array[t2] = bp_array[t2 + incr];
   1598 					bp_array[t2 + incr] = bp_temp;
   1599 					t2 -= incr;
   1600 				} else
   1601 					break;
   1602 }
   1603 
   1604 /*
   1605  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1606  */
   1607 int
   1608 lfs_vref(vp)
   1609 	register struct vnode *vp;
   1610 {
   1611 	/*
   1612 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   1613 	 * being able to flush all of the pages from this vnode, which
   1614 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   1615 	 */
   1616 	if (vp->v_flag & VXLOCK) {
   1617 		if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1618 			return 0;
   1619 		}
   1620 		return(1);
   1621 	}
   1622 	return (vget(vp, 0));
   1623 }
   1624 
   1625 /*
   1626  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1627  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1628  */
   1629 void
   1630 lfs_vunref(vp)
   1631 	register struct vnode *vp;
   1632 {
   1633 	/*
   1634 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   1635 	 */
   1636 	if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1637 		return;
   1638 	}
   1639 
   1640 	simple_lock(&vp->v_interlock);
   1641 #ifdef DIAGNOSTIC
   1642 	if(vp->v_usecount<=0) {
   1643 		printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
   1644 		printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
   1645 		panic("lfs_vunref: v_usecount<0");
   1646 	}
   1647 #endif
   1648 	vp->v_usecount--;
   1649 	if (vp->v_usecount > 0) {
   1650 		simple_unlock(&vp->v_interlock);
   1651 		return;
   1652 	}
   1653 #ifdef DIAGNOSTIC
   1654 	if(VOP_ISLOCKED(vp))
   1655 		panic("lfs_vunref: vnode locked");
   1656 #endif
   1657 	/*
   1658 	 * insert at tail of LRU list
   1659 	 */
   1660 	simple_lock(&vnode_free_list_slock);
   1661 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1662 	simple_unlock(&vnode_free_list_slock);
   1663 	simple_unlock(&vp->v_interlock);
   1664 }
   1665 
   1666 /*
   1667  * We use this when we have vnodes that were loaded in solely for cleaning.
   1668  * There is no reason to believe that these vnodes will be referenced again
   1669  * soon, since the cleaning process is unrelated to normal filesystem
   1670  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   1671  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   1672  * cleaning at the head of the list, instead.
   1673  */
   1674 void
   1675 lfs_vunref_head(vp)
   1676 	register struct vnode *vp;
   1677 {
   1678 	simple_lock(&vp->v_interlock);
   1679 #ifdef DIAGNOSTIC
   1680 	if(vp->v_usecount==0) {
   1681 		panic("lfs_vunref: v_usecount<0");
   1682 	}
   1683 #endif
   1684 	vp->v_usecount--;
   1685 	if (vp->v_usecount > 0) {
   1686 		simple_unlock(&vp->v_interlock);
   1687 		return;
   1688 	}
   1689 #ifdef DIAGNOSTIC
   1690 	if(VOP_ISLOCKED(vp))
   1691 		panic("lfs_vunref_head: vnode locked");
   1692 #endif
   1693 	/*
   1694 	 * insert at head of LRU list
   1695 	 */
   1696 	simple_lock(&vnode_free_list_slock);
   1697 	TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   1698 	simple_unlock(&vnode_free_list_slock);
   1699 	simple_unlock(&vp->v_interlock);
   1700 }
   1701 
   1702