lfs_segment.c revision 1.31.6.2 1 /* $NetBSD: lfs_segment.c,v 1.31.6.2 1999/12/27 18:36:40 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & IN_MODIFIED) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 }
206
207 /* If the node is being written, wait until that is done */
208 if(WRITEINPROG(vp)) {
209 #ifdef DEBUG_LFS
210 ivndebug(vp,"vflush/writeinprog");
211 #endif
212 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
213 }
214
215 /* Protect against VXLOCK deadlock in vinvalbuf() */
216 lfs_seglock(fs, SEGM_SYNC);
217
218 /* If we're supposed to flush a freed inode, just toss it */
219 /* XXX - seglock, so these buffers can't be gathered, right? */
220 if(ip->i_ffs_mode == 0) {
221 printf("lfs_vflush: ino %d is freed, not flushing\n",
222 ip->i_number);
223 s = splbio();
224 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
225 nbp = bp->b_vnbufs.le_next;
226 /* Copied from lfs_writeseg */
227 if (bp->b_flags & B_CALL) {
228 /* if B_CALL, it was created with newbuf */
229 lfs_freebuf(bp);
230 } else {
231 bremfree(bp);
232 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
233 B_LOCKED | B_GATHERED);
234 bp->b_flags |= B_DONE;
235 reassignbuf(bp, vp);
236 brelse(bp);
237 }
238 }
239 splx(s);
240 if(ip->i_flag & IN_CLEANING)
241 fs->lfs_uinodes--;
242 if(ip->i_flag & IN_MODIFIED)
243 fs->lfs_uinodes--;
244 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
245 printf("lfs_vflush: done not flushing ino %d\n",
246 ip->i_number);
247 lfs_segunlock(fs);
248 return 0;
249 }
250
251 SET_FLUSHING(fs,vp);
252 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
253 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
254 CLR_FLUSHING(fs,vp);
255 lfs_segunlock(fs);
256 return error;
257 }
258 sp = fs->lfs_sp;
259
260 if (vp->v_dirtyblkhd.lh_first == NULL) {
261 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
262 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
263 #ifdef DEBUG_LFS
264 ivndebug(vp,"vflush/clean");
265 #endif
266 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
267 }
268 else if(lfs_dostats) {
269 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
270 ++lfs_stats.vflush_invoked;
271 #ifdef DEBUG_LFS
272 ivndebug(vp,"vflush");
273 #endif
274 }
275
276 #ifdef DIAGNOSTIC
277 /* XXX KS This actually can happen right now, though it shouldn't(?) */
278 if(vp->v_flag & VDIROP) {
279 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
280 /* panic("VDIROP being flushed...this can\'t happen"); */
281 }
282 if(vp->v_usecount<0) {
283 printf("usecount=%ld\n",vp->v_usecount);
284 panic("lfs_vflush: usecount<0");
285 }
286 #endif
287
288 do {
289 do {
290 if (vp->v_dirtyblkhd.lh_first != NULL)
291 lfs_writefile(fs, sp, vp);
292 } while (lfs_writeinode(fs, sp, ip));
293 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
294
295 if(lfs_dostats) {
296 ++lfs_stats.nwrites;
297 if (sp->seg_flags & SEGM_SYNC)
298 ++lfs_stats.nsync_writes;
299 if (sp->seg_flags & SEGM_CKP)
300 ++lfs_stats.ncheckpoints;
301 }
302 lfs_segunlock(fs);
303
304 CLR_FLUSHING(fs,vp);
305 return (0);
306 }
307
308 #ifdef DEBUG_LFS_VERBOSE
309 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
310 #else
311 # define vndebug(vp,str)
312 #endif
313
314 int
315 lfs_writevnodes(fs, mp, sp, op)
316 struct lfs *fs;
317 struct mount *mp;
318 struct segment *sp;
319 int op;
320 {
321 struct inode *ip;
322 struct vnode *vp;
323 int inodes_written=0, only_cleaning;
324
325 #ifndef LFS_NO_BACKVP_HACK
326 /* BEGIN HACK */
327 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
328 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
329 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
330
331 /* Find last vnode. */
332 loop: for (vp = mp->mnt_vnodelist.lh_first;
333 vp && vp->v_mntvnodes.le_next != NULL;
334 vp = vp->v_mntvnodes.le_next);
335 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
336 #else
337 loop:
338 for (vp = mp->mnt_vnodelist.lh_first;
339 vp != NULL;
340 vp = vp->v_mntvnodes.le_next) {
341 #endif
342 /*
343 * If the vnode that we are about to sync is no longer
344 * associated with this mount point, start over.
345 */
346 if (vp->v_mount != mp)
347 goto loop;
348
349 ip = VTOI(vp);
350 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
351 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
352 vndebug(vp,"dirop");
353 continue;
354 }
355
356 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
357 vndebug(vp,"empty");
358 continue;
359 }
360
361 if (vp->v_type == VNON) {
362 continue;
363 }
364
365 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
366 && !(ip->i_flag & IN_CLEANING)) {
367 vndebug(vp,"cleaning");
368 continue;
369 }
370
371 if (lfs_vref(vp)) {
372 vndebug(vp,"vref");
373 continue;
374 }
375
376 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
377 if(WRITEINPROG(vp)) {
378 lfs_vunref(vp);
379 #ifdef DEBUG_LFS
380 ivndebug(vp,"writevnodes/writeinprog");
381 #endif
382 continue;
383 }
384 #endif
385 only_cleaning = 0;
386 /*
387 * Write the inode/file if dirty and it's not the
388 * the IFILE.
389 */
390 if ((ip->i_flag &
391 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
392 vp->v_dirtyblkhd.lh_first != NULL))
393 {
394 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
395
396 if(ip->i_number != LFS_IFILE_INUM
397 && vp->v_dirtyblkhd.lh_first != NULL)
398 {
399 lfs_writefile(fs, sp, vp);
400 }
401 if(vp->v_dirtyblkhd.lh_first != NULL) {
402 if(WRITEINPROG(vp)) {
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/write2");
405 #endif
406 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
407 #ifdef DEBUG_LFS
408 printf("<%d>",ip->i_number);
409 #endif
410 ip->i_flag |= IN_MODIFIED;
411 ++fs->lfs_uinodes;
412 }
413 }
414 (void) lfs_writeinode(fs, sp, ip);
415 inodes_written++;
416 }
417
418 if(vp->v_flag & VDIROP) {
419 --lfs_dirvcount;
420 vp->v_flag &= ~VDIROP;
421 wakeup(&lfs_dirvcount);
422 lfs_vunref(vp);
423 }
424
425 if(lfs_clean_vnhead && only_cleaning)
426 lfs_vunref_head(vp);
427 else
428 lfs_vunref(vp);
429 }
430 return inodes_written;
431 }
432
433 int
434 lfs_segwrite(mp, flags)
435 struct mount *mp;
436 int flags; /* Do a checkpoint. */
437 {
438 struct buf *bp;
439 struct inode *ip;
440 struct lfs *fs;
441 struct segment *sp;
442 struct vnode *vp;
443 SEGUSE *segusep;
444 ufs_daddr_t ibno;
445 int do_ckp, error, i;
446 int writer_set = 0;
447 int need_unlock = 0;
448
449 fs = VFSTOUFS(mp)->um_lfs;
450
451 lfs_imtime(fs);
452
453 /*
454 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
455 * clean segments, wait until cleaner writes.
456 */
457 if(!(flags & SEGM_CLEAN)
458 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
459 {
460 do {
461 if (fs->lfs_nclean <= MIN_FREE_SEGS
462 || fs->lfs_avail <= 0)
463 {
464 wakeup(&lfs_allclean_wakeup);
465 wakeup(&fs->lfs_nextseg);
466 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
467 "lfs_avail", 0);
468 if (error) {
469 return (error);
470 }
471 }
472 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
473 }
474
475 /*
476 * Allocate a segment structure and enough space to hold pointers to
477 * the maximum possible number of buffers which can be described in a
478 * single summary block.
479 */
480 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
481 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
482 sp = fs->lfs_sp;
483
484 /*
485 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
486 * in which case we have to flush *all* buffers off of this vnode.
487 * We don't care about other nodes, but write any non-dirop nodes
488 * anyway in anticipation of another getnewvnode().
489 *
490 * If we're cleaning we only write cleaning and ifile blocks, and
491 * no dirops, since otherwise we'd risk corruption in a crash.
492 */
493 if(fs->lfs_flushvp)
494 lfs_writevnodes(fs, mp, sp, VN_REG);
495 else if(sp->seg_flags & SEGM_CLEAN)
496 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
497 else {
498 lfs_writevnodes(fs, mp, sp, VN_REG);
499 while(fs->lfs_dirops)
500 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
501 "lfs writer", 0)))
502 {
503 free(sp->bpp, M_SEGMENT);
504 free(sp, M_SEGMENT);
505 return (error);
506 }
507 fs->lfs_writer++;
508 writer_set=1;
509 lfs_writevnodes(fs, mp, sp, VN_DIROP);
510 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
511 }
512
513 /*
514 * If we are doing a checkpoint, mark everything since the
515 * last checkpoint as no longer ACTIVE.
516 */
517 if (do_ckp) {
518 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
519 --ibno >= fs->lfs_cleansz; ) {
520 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
521
522 panic("lfs_segwrite: ifile read");
523 segusep = (SEGUSE *)bp->b_data;
524 for (i = fs->lfs_sepb; i--; segusep++)
525 segusep->su_flags &= ~SEGUSE_ACTIVE;
526
527 /* But the current segment is still ACTIVE */
528 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
529 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
530 error = VOP_BWRITE(bp);
531 }
532 }
533
534 if (do_ckp || fs->lfs_doifile) {
535 redo:
536 vp = fs->lfs_ivnode;
537 /*
538 * Depending on the circumstances of our calling, the ifile
539 * inode might be locked. If it is, and if it is locked by
540 * us, we should VREF instead of vget here.
541 */
542 need_unlock = 0;
543 if(VOP_ISLOCKED(vp)
544 && vp->v_lock.lk_lockholder == curproc->p_pid) {
545 VREF(vp);
546 } else {
547 while (vget(vp, LK_EXCLUSIVE))
548 continue;
549 need_unlock = 1;
550 }
551 ip = VTOI(vp);
552 if (vp->v_dirtyblkhd.lh_first != NULL)
553 lfs_writefile(fs, sp, vp);
554 (void)lfs_writeinode(fs, sp, ip);
555
556 /* Only vput if we used vget() above. */
557 if(need_unlock)
558 vput(vp);
559 else
560 vrele(vp);
561
562 if (lfs_writeseg(fs, sp) && do_ckp)
563 goto redo;
564 } else {
565 (void) lfs_writeseg(fs, sp);
566 }
567
568 /*
569 * If the I/O count is non-zero, sleep until it reaches zero.
570 * At the moment, the user's process hangs around so we can
571 * sleep.
572 */
573 fs->lfs_doifile = 0;
574 if(writer_set && --fs->lfs_writer==0)
575 wakeup(&fs->lfs_dirops);
576
577 if(lfs_dostats) {
578 ++lfs_stats.nwrites;
579 if (sp->seg_flags & SEGM_SYNC)
580 ++lfs_stats.nsync_writes;
581 if (sp->seg_flags & SEGM_CKP)
582 ++lfs_stats.ncheckpoints;
583 }
584 lfs_segunlock(fs);
585 return (0);
586 }
587
588 /*
589 * Write the dirty blocks associated with a vnode.
590 */
591 void
592 lfs_writefile(fs, sp, vp)
593 struct lfs *fs;
594 struct segment *sp;
595 struct vnode *vp;
596 {
597 struct buf *bp;
598 struct finfo *fip;
599 IFILE *ifp;
600
601
602 if (sp->seg_bytes_left < fs->lfs_bsize ||
603 sp->sum_bytes_left < sizeof(struct finfo))
604 (void) lfs_writeseg(fs, sp);
605
606 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
607 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
608
609 if(vp->v_flag & VDIROP)
610 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
611
612 fip = sp->fip;
613 fip->fi_nblocks = 0;
614 fip->fi_ino = VTOI(vp)->i_number;
615 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
616 fip->fi_version = ifp->if_version;
617 brelse(bp);
618
619 /*
620 * It may not be necessary to write the meta-data blocks at this point,
621 * as the roll-forward recovery code should be able to reconstruct the
622 * list.
623 *
624 * We have to write them anyway, though, under two conditions: (1) the
625 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
626 * checkpointing.
627 */
628 if((sp->seg_flags & SEGM_CLEAN)
629 && VTOI(vp)->i_number != LFS_IFILE_INUM
630 && !IS_FLUSHING(fs,vp))
631 {
632 lfs_gather(fs, sp, vp, lfs_match_fake);
633 } else
634 lfs_gather(fs, sp, vp, lfs_match_data);
635
636 if(lfs_writeindir
637 || IS_FLUSHING(fs,vp)
638 || (sp->seg_flags & SEGM_CKP))
639 {
640 lfs_gather(fs, sp, vp, lfs_match_indir);
641 lfs_gather(fs, sp, vp, lfs_match_dindir);
642 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
643 lfs_gather(fs, sp, vp, lfs_match_tindir);
644 /* #endif */
645 }
646 fip = sp->fip;
647 if (fip->fi_nblocks != 0) {
648 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
649 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
650 sp->start_lbp = &sp->fip->fi_blocks[0];
651 } else {
652 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
653 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
654 }
655 }
656
657 int
658 lfs_writeinode(fs, sp, ip)
659 struct lfs *fs;
660 struct segment *sp;
661 struct inode *ip;
662 {
663 struct buf *bp, *ibp;
664 IFILE *ifp;
665 SEGUSE *sup;
666 ufs_daddr_t daddr;
667 ino_t ino;
668 int error, i, ndx;
669 int redo_ifile = 0;
670 struct timespec ts;
671 int gotblk=0;
672
673 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
674 return(0);
675
676 /* Allocate a new inode block if necessary. */
677 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
678 /* Allocate a new segment if necessary. */
679 if (sp->seg_bytes_left < fs->lfs_bsize ||
680 sp->sum_bytes_left < sizeof(ufs_daddr_t))
681 (void) lfs_writeseg(fs, sp);
682
683 /* Get next inode block. */
684 daddr = fs->lfs_offset;
685 fs->lfs_offset += fsbtodb(fs, 1);
686 sp->ibp = *sp->cbpp++ =
687 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
688 gotblk++;
689
690 /* Zero out inode numbers */
691 for (i = 0; i < INOPB(fs); ++i)
692 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
693
694 ++sp->start_bpp;
695 fs->lfs_avail -= fsbtodb(fs, 1);
696 /* Set remaining space counters. */
697 sp->seg_bytes_left -= fs->lfs_bsize;
698 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
699 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
700 sp->ninodes / INOPB(fs) - 1;
701 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
702 }
703
704 /* Update the inode times and copy the inode onto the inode page. */
705 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
706 --fs->lfs_uinodes;
707 TIMEVAL_TO_TIMESPEC(&time, &ts);
708 LFS_ITIMES(ip, &ts, &ts, &ts);
709
710 if(ip->i_flag & IN_CLEANING)
711 ip->i_flag &= ~IN_CLEANING;
712 else
713 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
714
715 /*
716 * If this is the Ifile, and we've already written the Ifile in this
717 * partial segment, just overwrite it (it's not on disk yet) and
718 * continue.
719 *
720 * XXX we know that the bp that we get the second time around has
721 * already been gathered.
722 */
723 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
724 *(sp->idp) = ip->i_din.ffs_din;
725 return 0;
726 }
727
728 bp = sp->ibp;
729 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
730 ip->i_din.ffs_din;
731
732 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
733 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
734 if(gotblk) {
735 bp->b_flags |= B_LOCKED;
736 brelse(bp);
737 }
738
739 /* Increment inode count in segment summary block. */
740 ++((SEGSUM *)(sp->segsum))->ss_ninos;
741
742 /* If this page is full, set flag to allocate a new page. */
743 if (++sp->ninodes % INOPB(fs) == 0)
744 sp->ibp = NULL;
745
746 /*
747 * If updating the ifile, update the super-block. Update the disk
748 * address and access times for this inode in the ifile.
749 */
750 ino = ip->i_number;
751 if (ino == LFS_IFILE_INUM) {
752 daddr = fs->lfs_idaddr;
753 fs->lfs_idaddr = bp->b_blkno;
754 } else {
755 LFS_IENTRY(ifp, fs, ino, ibp);
756 daddr = ifp->if_daddr;
757 ifp->if_daddr = bp->b_blkno;
758 #ifdef LFS_DEBUG_NEXTFREE
759 if(ino > 3 && ifp->if_nextfree) {
760 vprint("lfs_writeinode",ITOV(ip));
761 printf("lfs_writeinode: updating free ino %d\n",
762 ip->i_number);
763 }
764 #endif
765 error = VOP_BWRITE(ibp);
766 }
767
768 /*
769 * No need to update segment usage if there was no former inode address
770 * or if the last inode address is in the current partial segment.
771 */
772 if (daddr != LFS_UNUSED_DADDR &&
773 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
774 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
775 #ifdef DIAGNOSTIC
776 if (sup->su_nbytes < DINODE_SIZE) {
777 /* XXX -- Change to a panic. */
778 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
779 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
780 panic("lfs_writeinode: negative bytes");
781 sup->su_nbytes = DINODE_SIZE;
782 }
783 #endif
784 sup->su_nbytes -= DINODE_SIZE;
785 redo_ifile =
786 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
787 error = VOP_BWRITE(bp);
788 }
789 return (redo_ifile);
790 }
791
792 int
793 lfs_gatherblock(sp, bp, sptr)
794 struct segment *sp;
795 struct buf *bp;
796 int *sptr;
797 {
798 struct lfs *fs;
799 int version;
800
801 /*
802 * If full, finish this segment. We may be doing I/O, so
803 * release and reacquire the splbio().
804 */
805 #ifdef DIAGNOSTIC
806 if (sp->vp == NULL)
807 panic ("lfs_gatherblock: Null vp in segment");
808 #endif
809 fs = sp->fs;
810 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
811 sp->seg_bytes_left < bp->b_bcount) {
812 if (sptr)
813 splx(*sptr);
814 lfs_updatemeta(sp);
815
816 version = sp->fip->fi_version;
817 (void) lfs_writeseg(fs, sp);
818
819 sp->fip->fi_version = version;
820 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
821 /* Add the current file to the segment summary. */
822 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
823 sp->sum_bytes_left -=
824 sizeof(struct finfo) - sizeof(ufs_daddr_t);
825
826 if (sptr)
827 *sptr = splbio();
828 return(1);
829 }
830
831 #ifdef DEBUG
832 if(bp->b_flags & B_GATHERED) {
833 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
834 sp->fip->fi_ino, bp->b_lblkno);
835 return(0);
836 }
837 #endif
838 /* Insert into the buffer list, update the FINFO block. */
839 bp->b_flags |= B_GATHERED;
840 *sp->cbpp++ = bp;
841 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
842
843 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
844 sp->seg_bytes_left -= bp->b_bcount;
845 return(0);
846 }
847
848 int
849 lfs_gather(fs, sp, vp, match)
850 struct lfs *fs;
851 struct segment *sp;
852 struct vnode *vp;
853 int (*match) __P((struct lfs *, struct buf *));
854 {
855 struct buf *bp;
856 int s, count=0;
857
858 sp->vp = vp;
859 s = splbio();
860
861 #ifndef LFS_NO_BACKBUF_HACK
862 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
863 #else /* LFS_NO_BACKBUF_HACK */
864 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
865 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
866 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
867 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
868 /* Find last buffer. */
869 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
870 bp = bp->b_vnbufs.le_next);
871 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
872 #endif /* LFS_NO_BACKBUF_HACK */
873 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
874 continue;
875 if(vp->v_type == VBLK) {
876 /* For block devices, just write the blocks. */
877 /* XXX Do we really need to even do this? */
878 #ifdef DEBUG_LFS
879 if(count==0)
880 printf("BLK(");
881 printf(".");
882 #endif
883 /* Get the block before bwrite, so we don't corrupt the free list */
884 bp->b_flags |= B_BUSY;
885 bremfree(bp);
886 bwrite(bp);
887 } else {
888 #ifdef DIAGNOSTIC
889 if (!(bp->b_flags & B_DELWRI))
890 panic("lfs_gather: bp not B_DELWRI");
891 if (!(bp->b_flags & B_LOCKED)) {
892 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
893 VOP_PRINT(bp->b_vp);
894 panic("lfs_gather: bp not B_LOCKED");
895 }
896 #endif
897 if (lfs_gatherblock(sp, bp, &s)) {
898 goto loop;
899 }
900 }
901 count++;
902 }
903 splx(s);
904 #ifdef DEBUG_LFS
905 if(vp->v_type == VBLK && count)
906 printf(")\n");
907 #endif
908 lfs_updatemeta(sp);
909 sp->vp = NULL;
910 return count;
911 }
912
913 /*
914 * Update the metadata that points to the blocks listed in the FINFO
915 * array.
916 */
917 void
918 lfs_updatemeta(sp)
919 struct segment *sp;
920 {
921 SEGUSE *sup;
922 struct buf *bp;
923 struct lfs *fs;
924 struct vnode *vp;
925 struct indir a[NIADDR + 2], *ap;
926 struct inode *ip;
927 ufs_daddr_t daddr, lbn, off;
928 int error, i, nblocks, num;
929
930 vp = sp->vp;
931 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
932 if (nblocks < 0)
933 panic("This is a bad thing\n");
934 if (vp == NULL || nblocks == 0)
935 return;
936
937 /* Sort the blocks. */
938 /*
939 * XXX KS - We have to sort even if the blocks come from the
940 * cleaner, because there might be other pending blocks on the
941 * same inode...and if we don't sort, and there are fragments
942 * present, blocks may be written in the wrong place.
943 */
944 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
945 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
946
947 /*
948 * Record the length of the last block in case it's a fragment.
949 * If there are indirect blocks present, they sort last. An
950 * indirect block will be lfs_bsize and its presence indicates
951 * that you cannot have fragments.
952 */
953 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
954
955 /*
956 * Assign disk addresses, and update references to the logical
957 * block and the segment usage information.
958 */
959 fs = sp->fs;
960 for (i = nblocks; i--; ++sp->start_bpp) {
961 lbn = *sp->start_lbp++;
962
963 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
964 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
965 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
966 }
967 fs->lfs_offset +=
968 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
969 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
970 if (error)
971 panic("lfs_updatemeta: ufs_bmaparray %d", error);
972 ip = VTOI(vp);
973 switch (num) {
974 case 0:
975 ip->i_ffs_db[lbn] = off;
976 break;
977 case 1:
978 ip->i_ffs_ib[a[0].in_off] = off;
979 break;
980 default:
981 ap = &a[num - 1];
982 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
983 panic("lfs_updatemeta: bread bno %d",
984 ap->in_lbn);
985 /*
986 * Bread may create a new (indirect) block which needs
987 * to get counted for the inode.
988 */
989 if (/* bp->b_blkno == -1 && */
990 !(bp->b_flags & (B_DELWRI|B_DONE))) {
991 ip->i_ffs_blocks += fsbtodb(fs, 1);
992 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
993 }
994 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
995 VOP_BWRITE(bp);
996 }
997 /* Update segment usage information. */
998 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
999 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1000 #ifdef DIAGNOSTIC
1001 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1002 /* XXX -- Change to a panic. */
1003 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1004 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1005 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1006 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1007 panic("lfs_updatemeta: negative bytes");
1008 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1009 }
1010 #endif
1011 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1012 error = VOP_BWRITE(bp);
1013 }
1014 }
1015 }
1016
1017 /*
1018 * Start a new segment.
1019 */
1020 int
1021 lfs_initseg(fs)
1022 struct lfs *fs;
1023 {
1024 struct segment *sp;
1025 SEGUSE *sup;
1026 SEGSUM *ssp;
1027 struct buf *bp;
1028 int repeat;
1029
1030 sp = fs->lfs_sp;
1031
1032 repeat = 0;
1033 /* Advance to the next segment. */
1034 if (!LFS_PARTIAL_FITS(fs)) {
1035 /* Wake up any cleaning procs waiting on this file system. */
1036 wakeup(&lfs_allclean_wakeup);
1037 wakeup(&fs->lfs_nextseg);
1038 lfs_newseg(fs);
1039 repeat = 1;
1040 fs->lfs_offset = fs->lfs_curseg;
1041 sp->seg_number = datosn(fs, fs->lfs_curseg);
1042 sp->seg_bytes_left = fs->lfs_dbpseg * DEF_BSIZE;
1043 /*
1044 * If the segment contains a superblock, update the offset
1045 * and summary address to skip over it.
1046 */
1047 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1048 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1049 fs->lfs_offset += LFS_SBPAD / DEF_BSIZE;
1050 sp->seg_bytes_left -= LFS_SBPAD;
1051 }
1052 brelse(bp);
1053 } else {
1054 sp->seg_number = datosn(fs, fs->lfs_curseg);
1055 sp->seg_bytes_left = (fs->lfs_dbpseg -
1056 (fs->lfs_offset - fs->lfs_curseg)) * DEF_BSIZE;
1057 }
1058 fs->lfs_lastpseg = fs->lfs_offset;
1059
1060 sp->fs = fs;
1061 sp->ibp = NULL;
1062 sp->idp = NULL;
1063 sp->ninodes = 0;
1064
1065 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1066 sp->cbpp = sp->bpp;
1067 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1068 fs->lfs_offset, LFS_SUMMARY_SIZE);
1069 sp->segsum = (*sp->cbpp)->b_data;
1070 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1071 sp->start_bpp = ++sp->cbpp;
1072 fs->lfs_offset += LFS_SUMMARY_SIZE / DEF_BSIZE;
1073
1074 /* Set point to SEGSUM, initialize it. */
1075 ssp = sp->segsum;
1076 ssp->ss_next = fs->lfs_nextseg;
1077 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1078 ssp->ss_magic = SS_MAGIC;
1079
1080 /* Set pointer to first FINFO, initialize it. */
1081 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1082 sp->fip->fi_nblocks = 0;
1083 sp->start_lbp = &sp->fip->fi_blocks[0];
1084 sp->fip->fi_lastlength = 0;
1085
1086 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1087 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1088
1089 return(repeat);
1090 }
1091
1092 /*
1093 * Return the next segment to write.
1094 */
1095 void
1096 lfs_newseg(fs)
1097 struct lfs *fs;
1098 {
1099 CLEANERINFO *cip;
1100 SEGUSE *sup;
1101 struct buf *bp;
1102 int curseg, isdirty, sn;
1103
1104 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1105 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1106 sup->su_nbytes = 0;
1107 sup->su_nsums = 0;
1108 sup->su_ninos = 0;
1109 (void) VOP_BWRITE(bp);
1110
1111 LFS_CLEANERINFO(cip, fs, bp);
1112 --cip->clean;
1113 ++cip->dirty;
1114 fs->lfs_nclean = cip->clean;
1115 (void) VOP_BWRITE(bp);
1116
1117 fs->lfs_lastseg = fs->lfs_curseg;
1118 fs->lfs_curseg = fs->lfs_nextseg;
1119 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1120 sn = (sn + 1) % fs->lfs_nseg;
1121 if (sn == curseg)
1122 panic("lfs_nextseg: no clean segments");
1123 LFS_SEGENTRY(sup, fs, sn, bp);
1124 isdirty = sup->su_flags & SEGUSE_DIRTY;
1125 brelse(bp);
1126 if (!isdirty)
1127 break;
1128 }
1129
1130 ++fs->lfs_nactive;
1131 fs->lfs_nextseg = sntoda(fs, sn);
1132 if(lfs_dostats) {
1133 ++lfs_stats.segsused;
1134 }
1135 }
1136
1137 int
1138 lfs_writeseg(fs, sp)
1139 struct lfs *fs;
1140 struct segment *sp;
1141 {
1142 extern int locked_queue_count;
1143 extern long locked_queue_bytes;
1144 struct buf **bpp, *bp, *cbp;
1145 SEGUSE *sup;
1146 SEGSUM *ssp;
1147 dev_t i_dev;
1148 u_long *datap, *dp;
1149 int do_again, i, nblocks, s;
1150 #ifdef LFS_TRACK_IOS
1151 int j;
1152 #endif
1153 int (*strategy)__P((void *));
1154 struct vop_strategy_args vop_strategy_a;
1155 u_short ninos;
1156 struct vnode *devvp;
1157 char *p;
1158 struct vnode *vn;
1159 struct inode *ip;
1160 #if defined(DEBUG) && defined(LFS_PROPELLER)
1161 static int propeller;
1162 char propstring[4] = "-\\|/";
1163
1164 printf("%c\b",propstring[propeller++]);
1165 if(propeller==4)
1166 propeller = 0;
1167 #endif
1168
1169 /*
1170 * If there are no buffers other than the segment summary to write
1171 * and it is not a checkpoint, don't do anything. On a checkpoint,
1172 * even if there aren't any buffers, you need to write the superblock.
1173 */
1174 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1175 return (0);
1176
1177 #ifdef DEBUG_LFS
1178 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1179 #endif
1180 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1181 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1182
1183 /* Update the segment usage information. */
1184 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1185
1186 /* Loop through all blocks, except the segment summary. */
1187 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1188 if((*bpp)->b_vp != devvp)
1189 sup->su_nbytes += (*bpp)->b_bcount;
1190 }
1191
1192 ssp = (SEGSUM *)sp->segsum;
1193
1194 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1195 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1196 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1197 sup->su_lastmod = time.tv_sec;
1198 sup->su_ninos += ninos;
1199 ++sup->su_nsums;
1200
1201 do_again = !(bp->b_flags & B_GATHERED);
1202 (void)VOP_BWRITE(bp);
1203 /*
1204 * Compute checksum across data and then across summary; the first
1205 * block (the summary block) is skipped. Set the create time here
1206 * so that it's guaranteed to be later than the inode mod times.
1207 *
1208 * XXX
1209 * Fix this to do it inline, instead of malloc/copy.
1210 */
1211 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1212 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1213 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1214 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1215 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1216 } else {
1217 if( !((*bpp)->b_flags & B_CALL) ) {
1218 /*
1219 * Before we record data for a checksm,
1220 * make sure the data won't change in between
1221 * the checksum calculation and the write,
1222 * by marking the buffer B_BUSY. It will
1223 * be freed later by brelse().
1224 */
1225 again:
1226 s = splbio();
1227 if((*bpp)->b_flags & B_BUSY) {
1228 #ifdef DEBUG
1229 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1230 VTOI((*bpp)->b_vp)->i_number,
1231 bp->b_lblkno);
1232 #endif
1233 (*bpp)->b_flags |= B_WANTED;
1234 tsleep((*bpp), (PRIBIO + 1),
1235 "lfs_writeseg", 0);
1236 splx(s);
1237 goto again;
1238 }
1239 (*bpp)->b_flags |= B_BUSY;
1240 splx(s);
1241 }
1242 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1243 }
1244 }
1245 ssp->ss_create = time.tv_sec;
1246 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1247 ssp->ss_sumsum =
1248 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1249 free(datap, M_SEGMENT);
1250 #ifdef DIAGNOSTIC
1251 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEF_BSIZE)
1252 panic("lfs_writeseg: No diskspace for summary");
1253 #endif
1254 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEF_BSIZE);
1255
1256 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1257
1258 /*
1259 * When we simply write the blocks we lose a rotation for every block
1260 * written. To avoid this problem, we allocate memory in chunks, copy
1261 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1262 * largest size I/O devices can handle.
1263 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1264 * and brelse the buffer (which will move them to the LRU list). Add
1265 * the B_CALL flag to the buffer header so we can count I/O's for the
1266 * checkpoints and so we can release the allocated memory.
1267 *
1268 * XXX
1269 * This should be removed if the new virtual memory system allows us to
1270 * easily make the buffers contiguous in kernel memory and if that's
1271 * fast enough.
1272 */
1273
1274 #define CHUNKSIZE MAXPHYS
1275
1276 if(devvp==NULL)
1277 panic("devvp is NULL");
1278 for (bpp = sp->bpp,i = nblocks; i;) {
1279 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1280 cbp->b_dev = i_dev;
1281 cbp->b_flags |= B_ASYNC | B_BUSY;
1282 cbp->b_bcount = 0;
1283
1284 #ifdef DIAGNOSTIC
1285 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEF_BSIZE) != datosn(fs,cbp->b_blkno)) {
1286 panic("lfs_writeseg: Segment overwrite");
1287 }
1288 #endif
1289
1290 s = splbio();
1291 if(fs->lfs_iocount >= LFS_THROTTLE) {
1292 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1293 }
1294 ++fs->lfs_iocount;
1295 #ifdef LFS_TRACK_IOS
1296 for(j=0;j<LFS_THROTTLE;j++) {
1297 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1298 fs->lfs_pending[j] = cbp->b_blkno;
1299 break;
1300 }
1301 }
1302 #endif /* LFS_TRACK_IOS */
1303 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1304 bp = *bpp;
1305
1306 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1307 break;
1308
1309 /*
1310 * Fake buffers from the cleaner are marked as B_INVAL.
1311 * We need to copy the data from user space rather than
1312 * from the buffer indicated.
1313 * XXX == what do I do on an error?
1314 */
1315 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1316 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1317 panic("lfs_writeseg: copyin failed [2]");
1318 } else
1319 bcopy(bp->b_data, p, bp->b_bcount);
1320 p += bp->b_bcount;
1321 cbp->b_bcount += bp->b_bcount;
1322 if (bp->b_flags & B_LOCKED) {
1323 --locked_queue_count;
1324 locked_queue_bytes -= bp->b_bufsize;
1325 }
1326 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1327 B_LOCKED | B_GATHERED);
1328 vn = bp->b_vp;
1329 if (bp->b_flags & B_CALL) {
1330 /* if B_CALL, it was created with newbuf */
1331 lfs_freebuf(bp);
1332 } else {
1333 bremfree(bp);
1334 bp->b_flags |= B_DONE;
1335 if(vn)
1336 reassignbuf(bp, vn);
1337 brelse(bp);
1338 }
1339 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1340 bp->b_flags &= ~B_NEEDCOMMIT;
1341 wakeup(bp);
1342 }
1343
1344 bpp++;
1345
1346 /*
1347 * If this is the last block for this vnode, but
1348 * there are other blocks on its dirty list,
1349 * set IN_MODIFIED/IN_CLEANING depending on what
1350 * sort of block. Only do this for our mount point,
1351 * not for, e.g., inode blocks that are attached to
1352 * the devvp.
1353 */
1354 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1355 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1356 vn->v_mount == fs->lfs_ivnode->v_mount)
1357 {
1358 ip = VTOI(vn);
1359 #ifdef DEBUG_LFS
1360 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1361 #endif
1362 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1363 fs->lfs_uinodes++;
1364 if(bp->b_flags & B_CALL)
1365 ip->i_flag |= IN_CLEANING;
1366 else
1367 ip->i_flag |= IN_MODIFIED;
1368 }
1369 }
1370 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1371 wakeup(vn);
1372 }
1373 ++cbp->b_vp->v_numoutput;
1374 splx(s);
1375 /*
1376 * XXXX This is a gross and disgusting hack. Since these
1377 * buffers are physically addressed, they hang off the
1378 * device vnode (devvp). As a result, they have no way
1379 * of getting to the LFS superblock or lfs structure to
1380 * keep track of the number of I/O's pending. So, I am
1381 * going to stuff the fs into the saveaddr field of
1382 * the buffer (yuk).
1383 */
1384 cbp->b_saveaddr = (caddr_t)fs;
1385 vop_strategy_a.a_desc = VDESC(vop_strategy);
1386 vop_strategy_a.a_bp = cbp;
1387 (strategy)(&vop_strategy_a);
1388 }
1389 /*
1390 * XXX
1391 * Vinvalbuf can move locked buffers off the locked queue
1392 * and we have no way of knowing about this. So, after
1393 * doing a big write, we recalculate how many buffers are
1394 * really still left on the locked queue.
1395 */
1396 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1397 wakeup(&locked_queue_count);
1398 if(lfs_dostats) {
1399 ++lfs_stats.psegwrites;
1400 lfs_stats.blocktot += nblocks - 1;
1401 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1402 ++lfs_stats.psyncwrites;
1403 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1404 ++lfs_stats.pcleanwrites;
1405 lfs_stats.cleanblocks += nblocks - 1;
1406 }
1407 }
1408 return (lfs_initseg(fs) || do_again);
1409 }
1410
1411 void
1412 lfs_writesuper(fs, daddr)
1413 struct lfs *fs;
1414 daddr_t daddr;
1415 {
1416 struct buf *bp;
1417 dev_t i_dev;
1418 int (*strategy) __P((void *));
1419 int s;
1420 struct vop_strategy_args vop_strategy_a;
1421
1422 #ifdef LFS_CANNOT_ROLLFW
1423 /*
1424 * If we can write one superblock while another is in
1425 * progress, we risk not having a complete checkpoint if we crash.
1426 * So, block here if a superblock write is in progress.
1427 */
1428 s = splbio();
1429 while(fs->lfs_sbactive) {
1430 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1431 }
1432 fs->lfs_sbactive = daddr;
1433 splx(s);
1434 #endif
1435 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1436 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1437
1438 /* Set timestamp of this version of the superblock */
1439 fs->lfs_tstamp = time.tv_sec;
1440
1441 /* Checksum the superblock and copy it into a buffer. */
1442 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1443 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1444 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1445
1446 bp->b_dev = i_dev;
1447 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1448 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1449 bp->b_iodone = lfs_supercallback;
1450 /* XXX KS - same nasty hack as above */
1451 bp->b_saveaddr = (caddr_t)fs;
1452
1453 vop_strategy_a.a_desc = VDESC(vop_strategy);
1454 vop_strategy_a.a_bp = bp;
1455 s = splbio();
1456 ++bp->b_vp->v_numoutput;
1457 splx(s);
1458 (strategy)(&vop_strategy_a);
1459 }
1460
1461 /*
1462 * Logical block number match routines used when traversing the dirty block
1463 * chain.
1464 */
1465 int
1466 lfs_match_fake(fs, bp)
1467 struct lfs *fs;
1468 struct buf *bp;
1469 {
1470 return (bp->b_flags & B_CALL);
1471 }
1472
1473 int
1474 lfs_match_data(fs, bp)
1475 struct lfs *fs;
1476 struct buf *bp;
1477 {
1478 return (bp->b_lblkno >= 0);
1479 }
1480
1481 int
1482 lfs_match_indir(fs, bp)
1483 struct lfs *fs;
1484 struct buf *bp;
1485 {
1486 int lbn;
1487
1488 lbn = bp->b_lblkno;
1489 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1490 }
1491
1492 int
1493 lfs_match_dindir(fs, bp)
1494 struct lfs *fs;
1495 struct buf *bp;
1496 {
1497 int lbn;
1498
1499 lbn = bp->b_lblkno;
1500 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1501 }
1502
1503 int
1504 lfs_match_tindir(fs, bp)
1505 struct lfs *fs;
1506 struct buf *bp;
1507 {
1508 int lbn;
1509
1510 lbn = bp->b_lblkno;
1511 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1512 }
1513
1514 /*
1515 * XXX - The only buffers that are going to hit these functions are the
1516 * segment write blocks, or the segment summaries, or the superblocks.
1517 *
1518 * All of the above are created by lfs_newbuf, and so do not need to be
1519 * released via brelse.
1520 */
1521 void
1522 lfs_callback(bp)
1523 struct buf *bp;
1524 {
1525 struct lfs *fs;
1526 #ifdef LFS_TRACK_IOS
1527 int j;
1528 #endif
1529
1530 fs = (struct lfs *)bp->b_saveaddr;
1531 #ifdef DIAGNOSTIC
1532 if (fs->lfs_iocount == 0)
1533 panic("lfs_callback: zero iocount\n");
1534 #endif
1535 if (--fs->lfs_iocount < LFS_THROTTLE)
1536 wakeup(&fs->lfs_iocount);
1537 #ifdef LFS_TRACK_IOS
1538 for(j=0;j<LFS_THROTTLE;j++) {
1539 if(fs->lfs_pending[j]==bp->b_blkno) {
1540 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1541 wakeup(&(fs->lfs_pending[j]));
1542 break;
1543 }
1544 }
1545 #endif /* LFS_TRACK_IOS */
1546
1547 lfs_freebuf(bp);
1548 }
1549
1550 void
1551 lfs_supercallback(bp)
1552 struct buf *bp;
1553 {
1554 #ifdef LFS_CANNOT_ROLLFW
1555 struct lfs *fs;
1556
1557 fs = (struct lfs *)bp->b_saveaddr;
1558 fs->lfs_sbactive=NULL;
1559 wakeup(&fs->lfs_sbactive);
1560 #endif
1561 lfs_freebuf(bp);
1562 }
1563
1564 /*
1565 * Shellsort (diminishing increment sort) from Data Structures and
1566 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1567 * see also Knuth Vol. 3, page 84. The increments are selected from
1568 * formula (8), page 95. Roughly O(N^3/2).
1569 */
1570 /*
1571 * This is our own private copy of shellsort because we want to sort
1572 * two parallel arrays (the array of buffer pointers and the array of
1573 * logical block numbers) simultaneously. Note that we cast the array
1574 * of logical block numbers to a unsigned in this routine so that the
1575 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1576 */
1577
1578 void
1579 lfs_shellsort(bp_array, lb_array, nmemb)
1580 struct buf **bp_array;
1581 ufs_daddr_t *lb_array;
1582 register int nmemb;
1583 {
1584 static int __rsshell_increments[] = { 4, 1, 0 };
1585 register int incr, *incrp, t1, t2;
1586 struct buf *bp_temp;
1587 u_long lb_temp;
1588
1589 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1590 for (t1 = incr; t1 < nmemb; ++t1)
1591 for (t2 = t1 - incr; t2 >= 0;)
1592 if (lb_array[t2] > lb_array[t2 + incr]) {
1593 lb_temp = lb_array[t2];
1594 lb_array[t2] = lb_array[t2 + incr];
1595 lb_array[t2 + incr] = lb_temp;
1596 bp_temp = bp_array[t2];
1597 bp_array[t2] = bp_array[t2 + incr];
1598 bp_array[t2 + incr] = bp_temp;
1599 t2 -= incr;
1600 } else
1601 break;
1602 }
1603
1604 /*
1605 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1606 */
1607 int
1608 lfs_vref(vp)
1609 register struct vnode *vp;
1610 {
1611 /*
1612 * If we return 1 here during a flush, we risk vinvalbuf() not
1613 * being able to flush all of the pages from this vnode, which
1614 * will cause it to panic. So, return 0 if a flush is in progress.
1615 */
1616 if (vp->v_flag & VXLOCK) {
1617 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1618 return 0;
1619 }
1620 return(1);
1621 }
1622 return (vget(vp, 0));
1623 }
1624
1625 /*
1626 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1627 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1628 */
1629 void
1630 lfs_vunref(vp)
1631 register struct vnode *vp;
1632 {
1633 /*
1634 * Analogous to lfs_vref, if the node is flushing, fake it.
1635 */
1636 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1637 return;
1638 }
1639
1640 simple_lock(&vp->v_interlock);
1641 #ifdef DIAGNOSTIC
1642 if(vp->v_usecount<=0) {
1643 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1644 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1645 panic("lfs_vunref: v_usecount<0");
1646 }
1647 #endif
1648 vp->v_usecount--;
1649 if (vp->v_usecount > 0) {
1650 simple_unlock(&vp->v_interlock);
1651 return;
1652 }
1653 #ifdef DIAGNOSTIC
1654 if(VOP_ISLOCKED(vp))
1655 panic("lfs_vunref: vnode locked");
1656 #endif
1657 /*
1658 * insert at tail of LRU list
1659 */
1660 simple_lock(&vnode_free_list_slock);
1661 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1662 simple_unlock(&vnode_free_list_slock);
1663 simple_unlock(&vp->v_interlock);
1664 }
1665
1666 /*
1667 * We use this when we have vnodes that were loaded in solely for cleaning.
1668 * There is no reason to believe that these vnodes will be referenced again
1669 * soon, since the cleaning process is unrelated to normal filesystem
1670 * activity. Putting cleaned vnodes at the tail of the list has the effect
1671 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1672 * cleaning at the head of the list, instead.
1673 */
1674 void
1675 lfs_vunref_head(vp)
1676 register struct vnode *vp;
1677 {
1678 simple_lock(&vp->v_interlock);
1679 #ifdef DIAGNOSTIC
1680 if(vp->v_usecount==0) {
1681 panic("lfs_vunref: v_usecount<0");
1682 }
1683 #endif
1684 vp->v_usecount--;
1685 if (vp->v_usecount > 0) {
1686 simple_unlock(&vp->v_interlock);
1687 return;
1688 }
1689 #ifdef DIAGNOSTIC
1690 if(VOP_ISLOCKED(vp))
1691 panic("lfs_vunref_head: vnode locked");
1692 #endif
1693 /*
1694 * insert at head of LRU list
1695 */
1696 simple_lock(&vnode_free_list_slock);
1697 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1698 simple_unlock(&vnode_free_list_slock);
1699 simple_unlock(&vp->v_interlock);
1700 }
1701
1702