Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.34
      1 /*	$NetBSD: lfs_segment.c,v 1.34 1999/11/12 16:56:48 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by the NetBSD
     21  *      Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     74 
     75 #include "opt_ddb.h"
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/namei.h>
     79 #include <sys/kernel.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/file.h>
     82 #include <sys/stat.h>
     83 #include <sys/buf.h>
     84 #include <sys/proc.h>
     85 #include <sys/conf.h>
     86 #include <sys/vnode.h>
     87 #include <sys/malloc.h>
     88 #include <sys/mount.h>
     89 
     90 #include <miscfs/specfs/specdev.h>
     91 #include <miscfs/fifofs/fifo.h>
     92 
     93 #include <ufs/ufs/quota.h>
     94 #include <ufs/ufs/inode.h>
     95 #include <ufs/ufs/dir.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/ufs_extern.h>
     98 
     99 #include <ufs/lfs/lfs.h>
    100 #include <ufs/lfs/lfs_extern.h>
    101 
    102 extern int count_lock_queue __P((void));
    103 extern struct simplelock vnode_free_list_slock;		/* XXX */
    104 extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
    105 
    106 /*
    107  * Determine if it's OK to start a partial in this segment, or if we need
    108  * to go on to a new segment.
    109  */
    110 #define	LFS_PARTIAL_FITS(fs) \
    111 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    112 	1 << (fs)->lfs_fsbtodb)
    113 
    114 void	 lfs_callback __P((struct buf *));
    115 int	 lfs_gather __P((struct lfs *, struct segment *,
    116 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
    117 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
    118 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
    119 int	 lfs_match_fake __P((struct lfs *, struct buf *));
    120 int	 lfs_match_data __P((struct lfs *, struct buf *));
    121 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
    122 int	 lfs_match_indir __P((struct lfs *, struct buf *));
    123 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
    124 void	 lfs_newseg __P((struct lfs *));
    125 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
    126 void	 lfs_supercallback __P((struct buf *));
    127 void	 lfs_updatemeta __P((struct segment *));
    128 int	 lfs_vref __P((struct vnode *));
    129 void	 lfs_vunref __P((struct vnode *));
    130 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
    131 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
    132 int	 lfs_writeseg __P((struct lfs *, struct segment *));
    133 void	 lfs_writesuper __P((struct lfs *, daddr_t));
    134 int	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
    135 	    struct segment *sp, int dirops));
    136 
    137 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    138 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
    139 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    140 int	lfs_dirvcount = 0;		/* # active dirops */
    141 
    142 /* Statistics Counters */
    143 int lfs_dostats = 1;
    144 struct lfs_stats lfs_stats;
    145 
    146 /* op values to lfs_writevnodes */
    147 #define	VN_REG	        0
    148 #define	VN_DIROP	1
    149 #define	VN_EMPTY	2
    150 #define VN_CLEAN        3
    151 
    152 #define LFS_MAX_ACTIVE          10
    153 
    154 /*
    155  * XXX KS - Set modification time on the Ifile, so the cleaner can
    156  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    157  * since we don't really need this to be flushed to disk (and in any
    158  * case that wouldn't happen to the Ifile until we checkpoint).
    159  */
    160 void
    161 lfs_imtime(fs)
    162 	struct lfs *fs;
    163 {
    164 	struct timespec ts;
    165 	struct inode *ip;
    166 
    167 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    168 	ip = VTOI(fs->lfs_ivnode);
    169 	ip->i_ffs_mtime = ts.tv_sec;
    170 	ip->i_ffs_mtimensec = ts.tv_nsec;
    171 }
    172 
    173 /*
    174  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    175  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    176  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    177  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    178  */
    179 
    180 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    181 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    182 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    183 
    184 int
    185 lfs_vflush(vp)
    186 	struct vnode *vp;
    187 {
    188 	struct inode *ip;
    189 	struct lfs *fs;
    190 	struct segment *sp;
    191 	struct buf *bp, *nbp;
    192 	int error, s;
    193 
    194 	ip = VTOI(vp);
    195 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    196 
    197 	if(ip->i_flag & IN_CLEANING) {
    198 #ifdef DEBUG_LFS
    199 		ivndebug(vp,"vflush/in_cleaning");
    200 #endif
    201 		ip->i_flag &= ~IN_CLEANING;
    202 		if(ip->i_flag & IN_MODIFIED) {
    203 			fs->lfs_uinodes--;
    204 		} else
    205 			ip->i_flag |= IN_MODIFIED;
    206 	}
    207 
    208 	/* If the node is being written, wait until that is done */
    209 	if(WRITEINPROG(vp)) {
    210 #ifdef DEBUG_LFS
    211 		ivndebug(vp,"vflush/writeinprog");
    212 #endif
    213 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    214 	}
    215 
    216 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    217 	lfs_seglock(fs, SEGM_SYNC);
    218 
    219 	/* If we're supposed to flush a freed inode, just toss it */
    220 	/* XXX - seglock, so these buffers can't be gathered, right? */
    221 	if(ip->i_ffs_mode == 0) {
    222 		printf("lfs_vflush: ino %d is freed, not flushing\n",
    223 			ip->i_number);
    224 		s = splbio();
    225 		for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
    226 			nbp = bp->b_vnbufs.le_next;
    227 			/* Copied from lfs_writeseg */
    228 			if (bp->b_flags & B_CALL) {
    229 				/* if B_CALL, it was created with newbuf */
    230 				lfs_freebuf(bp);
    231 			} else {
    232 				bremfree(bp);
    233 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    234                                          B_LOCKED | B_GATHERED);
    235 				bp->b_flags |= B_DONE;
    236 				reassignbuf(bp, vp);
    237 				brelse(bp);
    238 			}
    239 		}
    240 		splx(s);
    241 		if(ip->i_flag & IN_CLEANING)
    242 			fs->lfs_uinodes--;
    243 		if(ip->i_flag & IN_MODIFIED)
    244 			fs->lfs_uinodes--;
    245 		ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
    246 		printf("lfs_vflush: done not flushing ino %d\n",
    247 			ip->i_number);
    248 		lfs_segunlock(fs);
    249 		return 0;
    250 	}
    251 
    252 	SET_FLUSHING(fs,vp);
    253 	if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
    254 		error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
    255 		CLR_FLUSHING(fs,vp);
    256 		lfs_segunlock(fs);
    257 		return error;
    258 	}
    259 	sp = fs->lfs_sp;
    260 
    261 	if (vp->v_dirtyblkhd.lh_first == NULL) {
    262 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    263 	} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    264 #ifdef DEBUG_LFS
    265 		ivndebug(vp,"vflush/clean");
    266 #endif
    267 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    268 	}
    269 	else if(lfs_dostats) {
    270 		if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
    271 			++lfs_stats.vflush_invoked;
    272 #ifdef DEBUG_LFS
    273 		ivndebug(vp,"vflush");
    274 #endif
    275 	}
    276 
    277 #ifdef DIAGNOSTIC
    278 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    279 	if(vp->v_flag & VDIROP) {
    280 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    281 		/* panic("VDIROP being flushed...this can\'t happen"); */
    282 	}
    283 	if(vp->v_usecount<0) {
    284 		printf("usecount=%ld\n",vp->v_usecount);
    285 		panic("lfs_vflush: usecount<0");
    286 	}
    287 #endif
    288 
    289 	do {
    290 		do {
    291 			if (vp->v_dirtyblkhd.lh_first != NULL)
    292 				lfs_writefile(fs, sp, vp);
    293 		} while (lfs_writeinode(fs, sp, ip));
    294 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    295 
    296 	if(lfs_dostats) {
    297 		++lfs_stats.nwrites;
    298 		if (sp->seg_flags & SEGM_SYNC)
    299 			++lfs_stats.nsync_writes;
    300 		if (sp->seg_flags & SEGM_CKP)
    301 			++lfs_stats.ncheckpoints;
    302 	}
    303 	lfs_segunlock(fs);
    304 
    305 	CLR_FLUSHING(fs,vp);
    306 	return (0);
    307 }
    308 
    309 #ifdef DEBUG_LFS_VERBOSE
    310 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    311 #else
    312 # define vndebug(vp,str)
    313 #endif
    314 
    315 int
    316 lfs_writevnodes(fs, mp, sp, op)
    317 	struct lfs *fs;
    318 	struct mount *mp;
    319 	struct segment *sp;
    320 	int op;
    321 {
    322 	struct inode *ip;
    323 	struct vnode *vp;
    324 	int inodes_written=0, only_cleaning;
    325 
    326 #ifndef LFS_NO_BACKVP_HACK
    327 	/* BEGIN HACK */
    328 #define	VN_OFFSET	(((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
    329 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
    330 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
    331 
    332 	/* Find last vnode. */
    333  loop:	for (vp = mp->mnt_vnodelist.lh_first;
    334 	     vp && vp->v_mntvnodes.le_next != NULL;
    335 	     vp = vp->v_mntvnodes.le_next);
    336 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
    337 #else
    338 	loop:
    339 	for (vp = mp->mnt_vnodelist.lh_first;
    340 	     vp != NULL;
    341 	     vp = vp->v_mntvnodes.le_next) {
    342 #endif
    343 		/*
    344 		 * If the vnode that we are about to sync is no longer
    345 		 * associated with this mount point, start over.
    346 		 */
    347 		if (vp->v_mount != mp)
    348 			goto loop;
    349 
    350 		ip = VTOI(vp);
    351 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    352 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    353 			vndebug(vp,"dirop");
    354 			continue;
    355 		}
    356 
    357 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
    358 			vndebug(vp,"empty");
    359 			continue;
    360 		}
    361 
    362 		if (vp->v_type == VNON) {
    363 			continue;
    364 		}
    365 
    366 		if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    367 		   && !(ip->i_flag & IN_CLEANING)) {
    368 			vndebug(vp,"cleaning");
    369 			continue;
    370 		}
    371 
    372 		if (lfs_vref(vp)) {
    373 			vndebug(vp,"vref");
    374 			continue;
    375 		}
    376 
    377 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
    378 		if(WRITEINPROG(vp)) {
    379 			lfs_vunref(vp);
    380 #ifdef DEBUG_LFS
    381 			ivndebug(vp,"writevnodes/writeinprog");
    382 #endif
    383 			continue;
    384 		}
    385 #endif
    386 		only_cleaning = 0;
    387 		/*
    388 		 * Write the inode/file if dirty and it's not the
    389 		 * the IFILE.
    390 		 */
    391 		if ((ip->i_flag &
    392 		     (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
    393 		     vp->v_dirtyblkhd.lh_first != NULL))
    394 		{
    395 			only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
    396 
    397 			if(ip->i_number != LFS_IFILE_INUM
    398 			   && vp->v_dirtyblkhd.lh_first != NULL)
    399 			{
    400 				lfs_writefile(fs, sp, vp);
    401 			}
    402 			if(vp->v_dirtyblkhd.lh_first != NULL) {
    403 				if(WRITEINPROG(vp)) {
    404 #ifdef DEBUG_LFS
    405 					ivndebug(vp,"writevnodes/write2");
    406 #endif
    407 				} else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
    408 #ifdef DEBUG_LFS
    409 					printf("<%d>",ip->i_number);
    410 #endif
    411 					ip->i_flag |= IN_MODIFIED;
    412 					++fs->lfs_uinodes;
    413 				}
    414 			}
    415 			(void) lfs_writeinode(fs, sp, ip);
    416 			inodes_written++;
    417 		}
    418 
    419 		if(vp->v_flag & VDIROP) {
    420 			--lfs_dirvcount;
    421 			vp->v_flag &= ~VDIROP;
    422 			wakeup(&lfs_dirvcount);
    423 			lfs_vunref(vp);
    424 		}
    425 
    426 		if(lfs_clean_vnhead && only_cleaning)
    427 			lfs_vunref_head(vp);
    428 		else
    429 			lfs_vunref(vp);
    430 	}
    431 	return inodes_written;
    432 }
    433 
    434 int
    435 lfs_segwrite(mp, flags)
    436 	struct mount *mp;
    437 	int flags;			/* Do a checkpoint. */
    438 {
    439 	struct buf *bp;
    440 	struct inode *ip;
    441 	struct lfs *fs;
    442 	struct segment *sp;
    443 	struct vnode *vp;
    444 	SEGUSE *segusep;
    445 	ufs_daddr_t ibno;
    446 	int do_ckp, error, i;
    447 	int writer_set = 0;
    448 	int need_unlock = 0;
    449 
    450 	fs = VFSTOUFS(mp)->um_lfs;
    451 
    452 	lfs_imtime(fs);
    453 
    454 	/*
    455 	 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
    456 	 * clean segments, wait until cleaner writes.
    457 	 */
    458 	if(!(flags & SEGM_CLEAN)
    459 	   && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    460 	{
    461 		do {
    462 			if (fs->lfs_nclean <= MIN_FREE_SEGS
    463 			    || fs->lfs_avail <= 0)
    464 			{
    465 				wakeup(&lfs_allclean_wakeup);
    466 				wakeup(&fs->lfs_nextseg);
    467 				error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    468 					       "lfs_avail", 0);
    469 				if (error) {
    470 					return (error);
    471 				}
    472 			}
    473 		} while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
    474 	}
    475 
    476 	/*
    477 	 * Allocate a segment structure and enough space to hold pointers to
    478 	 * the maximum possible number of buffers which can be described in a
    479 	 * single summary block.
    480 	 */
    481 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    482 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    483 	sp = fs->lfs_sp;
    484 
    485 	/*
    486 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    487 	 * in which case we have to flush *all* buffers off of this vnode.
    488 	 */
    489 	if((sp->seg_flags & SEGM_CLEAN) && !(fs->lfs_flushvp))
    490 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    491 	else {
    492 		lfs_writevnodes(fs, mp, sp, VN_REG);
    493 		/*
    494 		 * XXX KS - If we're cleaning, we can't wait for dirops,
    495 		 * because they might be waiting on us.  The downside of this
    496 		 * is that, if we write anything besides cleaning blocks
    497 		 * while cleaning, the checkpoint is not completely
    498 		 * consistent.
    499 		 */
    500 		if(!(sp->seg_flags & SEGM_CLEAN)) {
    501 			while(fs->lfs_dirops)
    502 				if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    503 						"lfs writer", 0)))
    504 				{
    505 					free(sp->bpp, M_SEGMENT);
    506 					free(sp, M_SEGMENT);
    507 					return (error);
    508 				}
    509 			fs->lfs_writer++;
    510 			writer_set=1;
    511 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    512 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    513 		}
    514 	}
    515 
    516 	/*
    517 	 * If we are doing a checkpoint, mark everything since the
    518 	 * last checkpoint as no longer ACTIVE.
    519 	 */
    520 	if (do_ckp) {
    521 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    522 		     --ibno >= fs->lfs_cleansz; ) {
    523 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    524 
    525 				panic("lfs_segwrite: ifile read");
    526 			segusep = (SEGUSE *)bp->b_data;
    527 			for (i = fs->lfs_sepb; i--; segusep++)
    528 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    529 
    530 			/* But the current segment is still ACTIVE */
    531 			if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
    532 				((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
    533 			error = VOP_BWRITE(bp);
    534 		}
    535 	}
    536 
    537 	if (do_ckp || fs->lfs_doifile) {
    538 	redo:
    539 		vp = fs->lfs_ivnode;
    540 		/*
    541 		 * Depending on the circumstances of our calling, the ifile
    542 		 * inode might be locked.  If it is, and if it is locked by
    543 		 * us, we should VREF instead of vget here.
    544 		 */
    545 		need_unlock = 0;
    546 		if(VOP_ISLOCKED(vp)
    547 		   && vp->v_lock.lk_lockholder == curproc->p_pid) {
    548 			VREF(vp);
    549 		} else {
    550 			while (vget(vp, LK_EXCLUSIVE))
    551 				continue;
    552 			need_unlock = 1;
    553 		}
    554 		ip = VTOI(vp);
    555 		if (vp->v_dirtyblkhd.lh_first != NULL)
    556 			lfs_writefile(fs, sp, vp);
    557 		(void)lfs_writeinode(fs, sp, ip);
    558 
    559 		/* Only vput if we used vget() above. */
    560 		if(need_unlock)
    561 			vput(vp);
    562 		else
    563 			vrele(vp);
    564 
    565 		if (lfs_writeseg(fs, sp) && do_ckp)
    566 			goto redo;
    567 	} else {
    568 		(void) lfs_writeseg(fs, sp);
    569 	}
    570 
    571 	/*
    572 	 * If the I/O count is non-zero, sleep until it reaches zero.
    573 	 * At the moment, the user's process hangs around so we can
    574 	 * sleep.
    575 	 */
    576 	fs->lfs_doifile = 0;
    577 	if(writer_set && --fs->lfs_writer==0)
    578 		wakeup(&fs->lfs_dirops);
    579 
    580 	if(lfs_dostats) {
    581 		++lfs_stats.nwrites;
    582 		if (sp->seg_flags & SEGM_SYNC)
    583 			++lfs_stats.nsync_writes;
    584 		if (sp->seg_flags & SEGM_CKP)
    585 			++lfs_stats.ncheckpoints;
    586 	}
    587 	lfs_segunlock(fs);
    588 	return (0);
    589 }
    590 
    591 /*
    592  * Write the dirty blocks associated with a vnode.
    593  */
    594 void
    595 lfs_writefile(fs, sp, vp)
    596 	struct lfs *fs;
    597 	struct segment *sp;
    598 	struct vnode *vp;
    599 {
    600 	struct buf *bp;
    601 	struct finfo *fip;
    602 	IFILE *ifp;
    603 
    604 
    605 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    606 	    sp->sum_bytes_left < sizeof(struct finfo))
    607 		(void) lfs_writeseg(fs, sp);
    608 
    609 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    610 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    611 
    612 	if(vp->v_flag & VDIROP)
    613 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    614 
    615 	fip = sp->fip;
    616 	fip->fi_nblocks = 0;
    617 	fip->fi_ino = VTOI(vp)->i_number;
    618 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    619 	fip->fi_version = ifp->if_version;
    620 	brelse(bp);
    621 
    622 	/*
    623 	 * It may not be necessary to write the meta-data blocks at this point,
    624 	 * as the roll-forward recovery code should be able to reconstruct the
    625 	 * list.
    626 	 *
    627 	 * We have to write them anyway, though, under two conditions: (1) the
    628 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    629 	 * checkpointing.
    630 	 */
    631 	if((sp->seg_flags & SEGM_CLEAN)
    632 	   && VTOI(vp)->i_number != LFS_IFILE_INUM
    633 	   && !IS_FLUSHING(fs,vp))
    634 	{
    635 		lfs_gather(fs, sp, vp, lfs_match_fake);
    636 	} else
    637 		lfs_gather(fs, sp, vp, lfs_match_data);
    638 
    639 	if(lfs_writeindir
    640 	   || IS_FLUSHING(fs,vp)
    641 	   || (sp->seg_flags & SEGM_CKP))
    642 	{
    643 		lfs_gather(fs, sp, vp, lfs_match_indir);
    644 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    645 /* XXX KS - when is TRIPLE not true? */ /* #ifdef TRIPLE */
    646 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    647 /* #endif */
    648 	}
    649 	fip = sp->fip;
    650 	if (fip->fi_nblocks != 0) {
    651 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
    652 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
    653 		sp->start_lbp = &sp->fip->fi_blocks[0];
    654 	} else {
    655 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
    656 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    657 	}
    658 }
    659 
    660 int
    661 lfs_writeinode(fs, sp, ip)
    662 	struct lfs *fs;
    663 	struct segment *sp;
    664 	struct inode *ip;
    665 {
    666 	struct buf *bp, *ibp;
    667 	IFILE *ifp;
    668 	SEGUSE *sup;
    669 	ufs_daddr_t daddr;
    670 	ino_t ino;
    671 	int error, i, ndx;
    672 	int redo_ifile = 0;
    673 	struct timespec ts;
    674 	int gotblk=0;
    675 
    676 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
    677 		return(0);
    678 
    679 	/* Allocate a new inode block if necessary. */
    680 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
    681 		/* Allocate a new segment if necessary. */
    682 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    683 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    684 			(void) lfs_writeseg(fs, sp);
    685 
    686 		/* Get next inode block. */
    687 		daddr = fs->lfs_offset;
    688 		fs->lfs_offset += fsbtodb(fs, 1);
    689 		sp->ibp = *sp->cbpp++ =
    690 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
    691 		gotblk++;
    692 
    693 		/* Zero out inode numbers */
    694 		for (i = 0; i < INOPB(fs); ++i)
    695 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    696 
    697 		++sp->start_bpp;
    698 		fs->lfs_avail -= fsbtodb(fs, 1);
    699 		/* Set remaining space counters. */
    700 		sp->seg_bytes_left -= fs->lfs_bsize;
    701 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    702 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
    703 			sp->ninodes / INOPB(fs) - 1;
    704 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    705 	}
    706 
    707 	/* Update the inode times and copy the inode onto the inode page. */
    708 	if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
    709 		--fs->lfs_uinodes;
    710 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    711 	LFS_ITIMES(ip, &ts, &ts, &ts);
    712 
    713 	if(ip->i_flag & IN_CLEANING)
    714 		ip->i_flag &= ~IN_CLEANING;
    715 	else
    716 		ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
    717 
    718 	/*
    719 	 * If this is the Ifile, and we've already written the Ifile in this
    720 	 * partial segment, just overwrite it (it's not on disk yet) and
    721 	 * continue.
    722 	 *
    723 	 * XXX we know that the bp that we get the second time around has
    724 	 * already been gathered.
    725 	 */
    726 	if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
    727 		*(sp->idp) = ip->i_din.ffs_din;
    728 		return 0;
    729 	}
    730 
    731 	bp = sp->ibp;
    732 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
    733 		ip->i_din.ffs_din;
    734 
    735 	if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    736 		sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
    737 	if(gotblk) {
    738 		bp->b_flags |= B_LOCKED;
    739 		brelse(bp);
    740 	}
    741 
    742 	/* Increment inode count in segment summary block. */
    743 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    744 
    745 	/* If this page is full, set flag to allocate a new page. */
    746 	if (++sp->ninodes % INOPB(fs) == 0)
    747 		sp->ibp = NULL;
    748 
    749 	/*
    750 	 * If updating the ifile, update the super-block.  Update the disk
    751 	 * address and access times for this inode in the ifile.
    752 	 */
    753 	ino = ip->i_number;
    754 	if (ino == LFS_IFILE_INUM) {
    755 		daddr = fs->lfs_idaddr;
    756 		fs->lfs_idaddr = bp->b_blkno;
    757 	} else {
    758 		LFS_IENTRY(ifp, fs, ino, ibp);
    759 		daddr = ifp->if_daddr;
    760 		ifp->if_daddr = bp->b_blkno;
    761 #ifdef LFS_DEBUG_NEXTFREE
    762 		if(ino > 3 && ifp->if_nextfree) {
    763 			vprint("lfs_writeinode",ITOV(ip));
    764 			printf("lfs_writeinode: updating free ino %d\n",
    765 				ip->i_number);
    766 		}
    767 #endif
    768 		error = VOP_BWRITE(ibp);
    769 	}
    770 
    771 	/*
    772 	 * No need to update segment usage if there was no former inode address
    773 	 * or if the last inode address is in the current partial segment.
    774 	 */
    775 	if (daddr != LFS_UNUSED_DADDR &&
    776 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    777 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    778 #ifdef DIAGNOSTIC
    779 		if (sup->su_nbytes < DINODE_SIZE) {
    780 			/* XXX -- Change to a panic. */
    781 			printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
    782 			       datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
    783 			panic("lfs_writeinode: negative bytes");
    784 			sup->su_nbytes = DINODE_SIZE;
    785 		}
    786 #endif
    787 		sup->su_nbytes -= DINODE_SIZE;
    788 		redo_ifile =
    789 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    790 		error = VOP_BWRITE(bp);
    791 	}
    792 	return (redo_ifile);
    793 }
    794 
    795 int
    796 lfs_gatherblock(sp, bp, sptr)
    797 	struct segment *sp;
    798 	struct buf *bp;
    799 	int *sptr;
    800 {
    801 	struct lfs *fs;
    802 	int version;
    803 
    804 	/*
    805 	 * If full, finish this segment.  We may be doing I/O, so
    806 	 * release and reacquire the splbio().
    807 	 */
    808 #ifdef DIAGNOSTIC
    809 	if (sp->vp == NULL)
    810 		panic ("lfs_gatherblock: Null vp in segment");
    811 #endif
    812 	fs = sp->fs;
    813 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
    814 	    sp->seg_bytes_left < bp->b_bcount) {
    815 		if (sptr)
    816 			splx(*sptr);
    817 		lfs_updatemeta(sp);
    818 
    819 		version = sp->fip->fi_version;
    820 		(void) lfs_writeseg(fs, sp);
    821 
    822 		sp->fip->fi_version = version;
    823 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    824 		/* Add the current file to the segment summary. */
    825 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    826 		sp->sum_bytes_left -=
    827 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
    828 
    829 		if (sptr)
    830 			*sptr = splbio();
    831 		return(1);
    832 	}
    833 
    834 #ifdef DEBUG
    835 	if(bp->b_flags & B_GATHERED) {
    836 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
    837 		       sp->fip->fi_ino, bp->b_lblkno);
    838 		return(0);
    839 	}
    840 #endif
    841 	/* Insert into the buffer list, update the FINFO block. */
    842 	bp->b_flags |= B_GATHERED;
    843 	*sp->cbpp++ = bp;
    844 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    845 
    846 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    847 	sp->seg_bytes_left -= bp->b_bcount;
    848 	return(0);
    849 }
    850 
    851 int
    852 lfs_gather(fs, sp, vp, match)
    853 	struct lfs *fs;
    854 	struct segment *sp;
    855 	struct vnode *vp;
    856 	int (*match) __P((struct lfs *, struct buf *));
    857 {
    858 	struct buf *bp;
    859 	int s, count=0;
    860 
    861 	sp->vp = vp;
    862 	s = splbio();
    863 
    864 #ifndef LFS_NO_BACKBUF_HACK
    865 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    866 #else /* LFS_NO_BACKBUF_HACK */
    867 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
    868 # define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
    869 # define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
    870 # define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
    871 /* Find last buffer. */
    872 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
    873 	    bp = bp->b_vnbufs.le_next);
    874 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
    875 #endif /* LFS_NO_BACKBUF_HACK */
    876 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
    877 			continue;
    878 		if(vp->v_type == VBLK) {
    879 			/* For block devices, just write the blocks. */
    880 			/* XXX Do we really need to even do this? */
    881 #ifdef DEBUG_LFS
    882 			if(count==0)
    883 				printf("BLK(");
    884 			printf(".");
    885 #endif
    886 			/* Get the block before bwrite, so we don't corrupt the free list */
    887 			bp->b_flags |= B_BUSY;
    888 			bremfree(bp);
    889 			bwrite(bp);
    890 		} else {
    891 #ifdef DIAGNOSTIC
    892 			if (!(bp->b_flags & B_DELWRI))
    893 				panic("lfs_gather: bp not B_DELWRI");
    894 			if (!(bp->b_flags & B_LOCKED)) {
    895 				printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
    896 				VOP_PRINT(bp->b_vp);
    897 				panic("lfs_gather: bp not B_LOCKED");
    898 			}
    899 #endif
    900 			if (lfs_gatherblock(sp, bp, &s)) {
    901 				goto loop;
    902 			}
    903 		}
    904 		count++;
    905 	}
    906 	splx(s);
    907 #ifdef DEBUG_LFS
    908 	if(vp->v_type == VBLK && count)
    909 		printf(")\n");
    910 #endif
    911 	lfs_updatemeta(sp);
    912 	sp->vp = NULL;
    913 	return count;
    914 }
    915 
    916 /*
    917  * Update the metadata that points to the blocks listed in the FINFO
    918  * array.
    919  */
    920 void
    921 lfs_updatemeta(sp)
    922 	struct segment *sp;
    923 {
    924 	SEGUSE *sup;
    925 	struct buf *bp;
    926 	struct lfs *fs;
    927 	struct vnode *vp;
    928 	struct indir a[NIADDR + 2], *ap;
    929 	struct inode *ip;
    930 	ufs_daddr_t daddr, lbn, off;
    931 	int error, i, nblocks, num;
    932 
    933 	vp = sp->vp;
    934 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    935 	if (nblocks < 0)
    936 		panic("This is a bad thing\n");
    937 	if (vp == NULL || nblocks == 0)
    938 		return;
    939 
    940 	/* Sort the blocks. */
    941 	/*
    942 	 * XXX KS - We have to sort even if the blocks come from the
    943 	 * cleaner, because there might be other pending blocks on the
    944 	 * same inode...and if we don't sort, and there are fragments
    945 	 * present, blocks may be written in the wrong place.
    946 	 */
    947 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
    948 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    949 
    950 	/*
    951 	 * Record the length of the last block in case it's a fragment.
    952 	 * If there are indirect blocks present, they sort last.  An
    953 	 * indirect block will be lfs_bsize and its presence indicates
    954 	 * that you cannot have fragments.
    955 	 */
    956 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
    957 
    958 	/*
    959 	 * Assign disk addresses, and update references to the logical
    960 	 * block and the segment usage information.
    961 	 */
    962 	fs = sp->fs;
    963 	for (i = nblocks; i--; ++sp->start_bpp) {
    964 		lbn = *sp->start_lbp++;
    965 
    966 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    967 		if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
    968 			printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
    969 		}
    970 		fs->lfs_offset +=
    971 			fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
    972 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    973 		if (error)
    974 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    975 		ip = VTOI(vp);
    976 		switch (num) {
    977 		case 0:
    978 			ip->i_ffs_db[lbn] = off;
    979 			break;
    980 		case 1:
    981 			ip->i_ffs_ib[a[0].in_off] = off;
    982 			break;
    983 		default:
    984 			ap = &a[num - 1];
    985 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    986 				panic("lfs_updatemeta: bread bno %d",
    987 				      ap->in_lbn);
    988 			/*
    989 			 * Bread may create a new (indirect) block which needs
    990 			 * to get counted for the inode.
    991 			 */
    992 			if (/* bp->b_blkno == -1 && */
    993 			    !(bp->b_flags & (B_DELWRI|B_DONE))) {
    994 				ip->i_ffs_blocks += fsbtodb(fs, 1);
    995 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
    996 			}
    997 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
    998 			VOP_BWRITE(bp);
    999 		}
   1000 		/* Update segment usage information. */
   1001 		if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
   1002 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
   1003 #ifdef DIAGNOSTIC
   1004 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
   1005 				/* XXX -- Change to a panic. */
   1006 				printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
   1007 				       datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
   1008 				printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
   1009 				       VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
   1010 				panic("lfs_updatemeta: negative bytes");
   1011 				sup->su_nbytes = (*sp->start_bpp)->b_bcount;
   1012 			}
   1013 #endif
   1014 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
   1015 			error = VOP_BWRITE(bp);
   1016 		}
   1017 	}
   1018 }
   1019 
   1020 /*
   1021  * Start a new segment.
   1022  */
   1023 int
   1024 lfs_initseg(fs)
   1025 	struct lfs *fs;
   1026 {
   1027 	struct segment *sp;
   1028 	SEGUSE *sup;
   1029 	SEGSUM *ssp;
   1030 	struct buf *bp;
   1031 	int repeat;
   1032 
   1033 	sp = fs->lfs_sp;
   1034 
   1035 	repeat = 0;
   1036 	/* Advance to the next segment. */
   1037 	if (!LFS_PARTIAL_FITS(fs)) {
   1038 		/* Wake up any cleaning procs waiting on this file system. */
   1039 		wakeup(&lfs_allclean_wakeup);
   1040 		wakeup(&fs->lfs_nextseg);
   1041 		lfs_newseg(fs);
   1042 		repeat = 1;
   1043 		fs->lfs_offset = fs->lfs_curseg;
   1044 		sp->seg_number = datosn(fs, fs->lfs_curseg);
   1045 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
   1046 		/*
   1047 		 * If the segment contains a superblock, update the offset
   1048 		 * and summary address to skip over it.
   1049 		 */
   1050 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1051 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1052 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
   1053 			sp->seg_bytes_left -= LFS_SBPAD;
   1054 		}
   1055 		brelse(bp);
   1056 	} else {
   1057 		sp->seg_number = datosn(fs, fs->lfs_curseg);
   1058 		sp->seg_bytes_left = (fs->lfs_dbpseg -
   1059 				      (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
   1060 	}
   1061 	fs->lfs_lastpseg = fs->lfs_offset;
   1062 
   1063 	sp->fs = fs;
   1064 	sp->ibp = NULL;
   1065 	sp->idp = NULL;
   1066 	sp->ninodes = 0;
   1067 
   1068 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
   1069 	sp->cbpp = sp->bpp;
   1070 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
   1071 			       fs->lfs_offset, LFS_SUMMARY_SIZE);
   1072 	sp->segsum = (*sp->cbpp)->b_data;
   1073 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
   1074 	sp->start_bpp = ++sp->cbpp;
   1075 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
   1076 
   1077 	/* Set point to SEGSUM, initialize it. */
   1078 	ssp = sp->segsum;
   1079 	ssp->ss_next = fs->lfs_nextseg;
   1080 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1081 	ssp->ss_magic = SS_MAGIC;
   1082 
   1083 	/* Set pointer to first FINFO, initialize it. */
   1084 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
   1085 	sp->fip->fi_nblocks = 0;
   1086 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1087 	sp->fip->fi_lastlength = 0;
   1088 
   1089 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
   1090 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
   1091 
   1092 	return(repeat);
   1093 }
   1094 
   1095 /*
   1096  * Return the next segment to write.
   1097  */
   1098 void
   1099 lfs_newseg(fs)
   1100 	struct lfs *fs;
   1101 {
   1102 	CLEANERINFO *cip;
   1103 	SEGUSE *sup;
   1104 	struct buf *bp;
   1105 	int curseg, isdirty, sn;
   1106 
   1107 	LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
   1108 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1109 	sup->su_nbytes = 0;
   1110 	sup->su_nsums = 0;
   1111 	sup->su_ninos = 0;
   1112 	(void) VOP_BWRITE(bp);
   1113 
   1114 	LFS_CLEANERINFO(cip, fs, bp);
   1115 	--cip->clean;
   1116 	++cip->dirty;
   1117 	fs->lfs_nclean = cip->clean;
   1118 	(void) VOP_BWRITE(bp);
   1119 
   1120 	fs->lfs_lastseg = fs->lfs_curseg;
   1121 	fs->lfs_curseg = fs->lfs_nextseg;
   1122 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
   1123 		sn = (sn + 1) % fs->lfs_nseg;
   1124 		if (sn == curseg)
   1125 			panic("lfs_nextseg: no clean segments");
   1126 		LFS_SEGENTRY(sup, fs, sn, bp);
   1127 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1128 		brelse(bp);
   1129 		if (!isdirty)
   1130 			break;
   1131 	}
   1132 
   1133 	++fs->lfs_nactive;
   1134 	fs->lfs_nextseg = sntoda(fs, sn);
   1135 	if(lfs_dostats) {
   1136 		++lfs_stats.segsused;
   1137 	}
   1138 }
   1139 
   1140 int
   1141 lfs_writeseg(fs, sp)
   1142 	struct lfs *fs;
   1143 	struct segment *sp;
   1144 {
   1145 	extern int locked_queue_count;
   1146 	extern long locked_queue_bytes;
   1147 	struct buf **bpp, *bp, *cbp;
   1148 	SEGUSE *sup;
   1149 	SEGSUM *ssp;
   1150 	dev_t i_dev;
   1151 	u_long *datap, *dp;
   1152 	int do_again, i, nblocks, s;
   1153 #ifdef LFS_TRACK_IOS
   1154 	int j;
   1155 #endif
   1156 	int (*strategy)__P((void *));
   1157 	struct vop_strategy_args vop_strategy_a;
   1158 	u_short ninos;
   1159 	struct vnode *devvp;
   1160 	char *p;
   1161 	struct vnode *vn;
   1162 	struct inode *ip;
   1163 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1164 	static int propeller;
   1165 	char propstring[4] = "-\\|/";
   1166 
   1167 	printf("%c\b",propstring[propeller++]);
   1168 	if(propeller==4)
   1169 		propeller = 0;
   1170 #endif
   1171 
   1172 	/*
   1173 	 * If there are no buffers other than the segment summary to write
   1174 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1175 	 * even if there aren't any buffers, you need to write the superblock.
   1176 	 */
   1177 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1178 		return (0);
   1179 
   1180 #ifdef DEBUG_LFS
   1181 	lfs_check_bpp(fs,sp,__FILE__,__LINE__);
   1182 #endif
   1183 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1184 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1185 
   1186 	/* Update the segment usage information. */
   1187 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1188 
   1189 	/* Loop through all blocks, except the segment summary. */
   1190 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1191 		if((*bpp)->b_vp != devvp)
   1192 			sup->su_nbytes += (*bpp)->b_bcount;
   1193 	}
   1194 
   1195 	ssp = (SEGSUM *)sp->segsum;
   1196 
   1197 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1198 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
   1199 	/* sup->su_nbytes += LFS_SUMMARY_SIZE; */
   1200 	sup->su_lastmod = time.tv_sec;
   1201 	sup->su_ninos += ninos;
   1202 	++sup->su_nsums;
   1203 
   1204 	do_again = !(bp->b_flags & B_GATHERED);
   1205 	(void)VOP_BWRITE(bp);
   1206 	/*
   1207 	 * Compute checksum across data and then across summary; the first
   1208 	 * block (the summary block) is skipped.  Set the create time here
   1209 	 * so that it's guaranteed to be later than the inode mod times.
   1210 	 *
   1211 	 * XXX
   1212 	 * Fix this to do it inline, instead of malloc/copy.
   1213 	 */
   1214 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
   1215 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1216 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1217 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
   1218 				panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
   1219 		} else {
   1220 			if( !((*bpp)->b_flags & B_CALL) ) {
   1221 				/*
   1222 				 * Before we record data for a checksm,
   1223 				 * make sure the data won't change in between
   1224 				 * the checksum calculation and the write,
   1225 				 * by marking the buffer B_BUSY.  It will
   1226 				 * be freed later by brelse().
   1227 				 */
   1228 			again:
   1229 				s = splbio();
   1230 				if((*bpp)->b_flags & B_BUSY) {
   1231 #ifdef DEBUG
   1232 					printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
   1233 					       VTOI((*bpp)->b_vp)->i_number,
   1234 					       bp->b_lblkno);
   1235 #endif
   1236 					(*bpp)->b_flags |= B_WANTED;
   1237 					tsleep((*bpp), (PRIBIO + 1),
   1238 					       "lfs_writeseg", 0);
   1239 					splx(s);
   1240 					goto again;
   1241 				}
   1242 				(*bpp)->b_flags |= B_BUSY;
   1243 				splx(s);
   1244 			}
   1245 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
   1246 		}
   1247 	}
   1248 	ssp->ss_create = time.tv_sec;
   1249 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
   1250 	ssp->ss_sumsum =
   1251 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
   1252 	free(datap, M_SEGMENT);
   1253 #ifdef DIAGNOSTIC
   1254 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
   1255 		panic("lfs_writeseg: No diskspace for summary");
   1256 #endif
   1257 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
   1258 
   1259 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1260 
   1261 	/*
   1262 	 * When we simply write the blocks we lose a rotation for every block
   1263 	 * written.  To avoid this problem, we allocate memory in chunks, copy
   1264 	 * the buffers into the chunk and write the chunk.  CHUNKSIZE is the
   1265 	 * largest size I/O devices can handle.
   1266 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
   1267 	 * and brelse the buffer (which will move them to the LRU list).  Add
   1268 	 * the B_CALL flag to the buffer header so we can count I/O's for the
   1269 	 * checkpoints and so we can release the allocated memory.
   1270 	 *
   1271 	 * XXX
   1272 	 * This should be removed if the new virtual memory system allows us to
   1273 	 * easily make the buffers contiguous in kernel memory and if that's
   1274 	 * fast enough.
   1275 	 */
   1276 
   1277 #define CHUNKSIZE MAXPHYS
   1278 
   1279 	if(devvp==NULL)
   1280 		panic("devvp is NULL");
   1281 	for (bpp = sp->bpp,i = nblocks; i;) {
   1282 		cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
   1283 		cbp->b_dev = i_dev;
   1284 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1285 		cbp->b_bcount = 0;
   1286 
   1287 #ifdef DIAGNOSTIC
   1288 		if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
   1289 			panic("lfs_writeseg: Segment overwrite");
   1290 		}
   1291 #endif
   1292 
   1293 		if(fs->lfs_iocount >= LFS_THROTTLE) {
   1294 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
   1295 		}
   1296 		s = splbio();
   1297 		++fs->lfs_iocount;
   1298 #ifdef LFS_TRACK_IOS
   1299 		for(j=0;j<LFS_THROTTLE;j++) {
   1300 			if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
   1301 				fs->lfs_pending[j] = cbp->b_blkno;
   1302 				break;
   1303 			}
   1304 		}
   1305 #endif /* LFS_TRACK_IOS */
   1306 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
   1307 			bp = *bpp;
   1308 
   1309 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1310 				break;
   1311 
   1312 			/*
   1313 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1314 			 * We need to copy the data from user space rather than
   1315 			 * from the buffer indicated.
   1316 			 * XXX == what do I do on an error?
   1317 			 */
   1318 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1319 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1320 					panic("lfs_writeseg: copyin failed [2]");
   1321 			} else
   1322 				bcopy(bp->b_data, p, bp->b_bcount);
   1323 			p += bp->b_bcount;
   1324 			cbp->b_bcount += bp->b_bcount;
   1325 			if (bp->b_flags & B_LOCKED) {
   1326 				--locked_queue_count;
   1327 				locked_queue_bytes -= bp->b_bufsize;
   1328 			}
   1329 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
   1330 					 B_LOCKED | B_GATHERED);
   1331 			vn = bp->b_vp;
   1332 			if (bp->b_flags & B_CALL) {
   1333 				/* if B_CALL, it was created with newbuf */
   1334 				lfs_freebuf(bp);
   1335 			} else {
   1336 				bremfree(bp);
   1337 				bp->b_flags |= B_DONE;
   1338 				if(vn)
   1339 					reassignbuf(bp, vn);
   1340 				brelse(bp);
   1341 			}
   1342 			if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
   1343 				bp->b_flags &= ~B_NEEDCOMMIT;
   1344 				wakeup(bp);
   1345 			}
   1346 
   1347 			bpp++;
   1348 
   1349 			/*
   1350 			 * If this is the last block for this vnode, but
   1351 			 * there are other blocks on its dirty list,
   1352 			 * set IN_MODIFIED/IN_CLEANING depending on what
   1353 			 * sort of block.  Only do this for our mount point,
   1354 			 * not for, e.g., inode blocks that are attached to
   1355 			 * the devvp.
   1356 			 */
   1357 			if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
   1358 			   && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
   1359 			   vn->v_mount == fs->lfs_ivnode->v_mount)
   1360 			{
   1361 				ip = VTOI(vn);
   1362 #ifdef DEBUG_LFS
   1363 				printf("lfs_writeseg: marking ino %d\n",ip->i_number);
   1364 #endif
   1365 		       		if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
   1366 					fs->lfs_uinodes++;
   1367 					if(bp->b_flags & B_CALL)
   1368 						ip->i_flag |= IN_CLEANING;
   1369 					else
   1370 						ip->i_flag |= IN_MODIFIED;
   1371 				}
   1372 			}
   1373 			/* if(vn->v_dirtyblkhd.lh_first == NULL) */
   1374 				wakeup(vn);
   1375 		}
   1376 		++cbp->b_vp->v_numoutput;
   1377 		splx(s);
   1378 		/*
   1379 		 * XXXX This is a gross and disgusting hack.  Since these
   1380 		 * buffers are physically addressed, they hang off the
   1381 		 * device vnode (devvp).  As a result, they have no way
   1382 		 * of getting to the LFS superblock or lfs structure to
   1383 		 * keep track of the number of I/O's pending.  So, I am
   1384 		 * going to stuff the fs into the saveaddr field of
   1385 		 * the buffer (yuk).
   1386 		 */
   1387 		cbp->b_saveaddr = (caddr_t)fs;
   1388 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   1389 		vop_strategy_a.a_bp = cbp;
   1390 		(strategy)(&vop_strategy_a);
   1391 	}
   1392 	/*
   1393 	 * XXX
   1394 	 * Vinvalbuf can move locked buffers off the locked queue
   1395 	 * and we have no way of knowing about this.  So, after
   1396 	 * doing a big write, we recalculate how many buffers are
   1397 	 * really still left on the locked queue.
   1398 	 */
   1399 	lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
   1400 	wakeup(&locked_queue_count);
   1401 	if(lfs_dostats) {
   1402 		++lfs_stats.psegwrites;
   1403 		lfs_stats.blocktot += nblocks - 1;
   1404 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1405 			++lfs_stats.psyncwrites;
   1406 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1407 			++lfs_stats.pcleanwrites;
   1408 			lfs_stats.cleanblocks += nblocks - 1;
   1409 		}
   1410 	}
   1411 	return (lfs_initseg(fs) || do_again);
   1412 }
   1413 
   1414 void
   1415 lfs_writesuper(fs, daddr)
   1416 	struct lfs *fs;
   1417 	daddr_t daddr;
   1418 {
   1419 	struct buf *bp;
   1420 	dev_t i_dev;
   1421 	int (*strategy) __P((void *));
   1422 	int s;
   1423 	struct vop_strategy_args vop_strategy_a;
   1424 
   1425 #ifdef LFS_CANNOT_ROLLFW
   1426 	/*
   1427 	 * If we can write one superblock while another is in
   1428 	 * progress, we risk not having a complete checkpoint if we crash.
   1429 	 * So, block here if a superblock write is in progress.
   1430 	 *
   1431 	 * XXX - should be a proper lock, not this hack
   1432 	 */
   1433 	while(fs->lfs_sbactive) {
   1434 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   1435 	}
   1436 	fs->lfs_sbactive = daddr;
   1437 #endif
   1438 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1439 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   1440 
   1441 	/* Set timestamp of this version of the superblock */
   1442 	fs->lfs_tstamp = time.tv_sec;
   1443 
   1444 	/* Checksum the superblock and copy it into a buffer. */
   1445 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1446 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
   1447 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   1448 
   1449 	bp->b_dev = i_dev;
   1450 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   1451 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   1452 	bp->b_iodone = lfs_supercallback;
   1453 	/* XXX KS - same nasty hack as above */
   1454 	bp->b_saveaddr = (caddr_t)fs;
   1455 
   1456 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   1457 	vop_strategy_a.a_bp = bp;
   1458 	s = splbio();
   1459 	++bp->b_vp->v_numoutput;
   1460 	splx(s);
   1461 	(strategy)(&vop_strategy_a);
   1462 }
   1463 
   1464 /*
   1465  * Logical block number match routines used when traversing the dirty block
   1466  * chain.
   1467  */
   1468 int
   1469 lfs_match_fake(fs, bp)
   1470 	struct lfs *fs;
   1471 	struct buf *bp;
   1472 {
   1473 	return (bp->b_flags & B_CALL);
   1474 }
   1475 
   1476 int
   1477 lfs_match_data(fs, bp)
   1478 	struct lfs *fs;
   1479 	struct buf *bp;
   1480 {
   1481 	return (bp->b_lblkno >= 0);
   1482 }
   1483 
   1484 int
   1485 lfs_match_indir(fs, bp)
   1486 	struct lfs *fs;
   1487 	struct buf *bp;
   1488 {
   1489 	int lbn;
   1490 
   1491 	lbn = bp->b_lblkno;
   1492 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   1493 }
   1494 
   1495 int
   1496 lfs_match_dindir(fs, bp)
   1497 	struct lfs *fs;
   1498 	struct buf *bp;
   1499 {
   1500 	int lbn;
   1501 
   1502 	lbn = bp->b_lblkno;
   1503 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   1504 }
   1505 
   1506 int
   1507 lfs_match_tindir(fs, bp)
   1508 	struct lfs *fs;
   1509 	struct buf *bp;
   1510 {
   1511 	int lbn;
   1512 
   1513 	lbn = bp->b_lblkno;
   1514 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   1515 }
   1516 
   1517 /*
   1518  * XXX - The only buffers that are going to hit these functions are the
   1519  * segment write blocks, or the segment summaries, or the superblocks.
   1520  *
   1521  * All of the above are created by lfs_newbuf, and so do not need to be
   1522  * released via brelse.
   1523  */
   1524 void
   1525 lfs_callback(bp)
   1526 	struct buf *bp;
   1527 {
   1528 	struct lfs *fs;
   1529 #ifdef LFS_TRACK_IOS
   1530 	int j;
   1531 #endif
   1532 
   1533 	fs = (struct lfs *)bp->b_saveaddr;
   1534 #ifdef DIAGNOSTIC
   1535 	if (fs->lfs_iocount == 0)
   1536 		panic("lfs_callback: zero iocount\n");
   1537 #endif
   1538 	if (--fs->lfs_iocount < LFS_THROTTLE)
   1539 		wakeup(&fs->lfs_iocount);
   1540 #ifdef LFS_TRACK_IOS
   1541 	for(j=0;j<LFS_THROTTLE;j++) {
   1542 		if(fs->lfs_pending[j]==bp->b_blkno) {
   1543 			fs->lfs_pending[j] = LFS_UNUSED_DADDR;
   1544 			wakeup(&(fs->lfs_pending[j]));
   1545 			break;
   1546 		}
   1547 	}
   1548 #endif /* LFS_TRACK_IOS */
   1549 
   1550 	lfs_freebuf(bp);
   1551 }
   1552 
   1553 void
   1554 lfs_supercallback(bp)
   1555 	struct buf *bp;
   1556 {
   1557 #ifdef LFS_CANNOT_ROLLFW
   1558 	struct lfs *fs;
   1559 
   1560 	fs = (struct lfs *)bp->b_saveaddr;
   1561 	fs->lfs_sbactive=NULL;
   1562 	wakeup(&fs->lfs_sbactive);
   1563 #endif
   1564 	lfs_freebuf(bp);
   1565 }
   1566 
   1567 /*
   1568  * Shellsort (diminishing increment sort) from Data Structures and
   1569  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1570  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1571  * formula (8), page 95.  Roughly O(N^3/2).
   1572  */
   1573 /*
   1574  * This is our own private copy of shellsort because we want to sort
   1575  * two parallel arrays (the array of buffer pointers and the array of
   1576  * logical block numbers) simultaneously.  Note that we cast the array
   1577  * of logical block numbers to a unsigned in this routine so that the
   1578  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1579  */
   1580 
   1581 void
   1582 lfs_shellsort(bp_array, lb_array, nmemb)
   1583 	struct buf **bp_array;
   1584 	ufs_daddr_t *lb_array;
   1585 	register int nmemb;
   1586 {
   1587 	static int __rsshell_increments[] = { 4, 1, 0 };
   1588 	register int incr, *incrp, t1, t2;
   1589 	struct buf *bp_temp;
   1590 	u_long lb_temp;
   1591 
   1592 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1593 		for (t1 = incr; t1 < nmemb; ++t1)
   1594 			for (t2 = t1 - incr; t2 >= 0;)
   1595 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1596 					lb_temp = lb_array[t2];
   1597 					lb_array[t2] = lb_array[t2 + incr];
   1598 					lb_array[t2 + incr] = lb_temp;
   1599 					bp_temp = bp_array[t2];
   1600 					bp_array[t2] = bp_array[t2 + incr];
   1601 					bp_array[t2 + incr] = bp_temp;
   1602 					t2 -= incr;
   1603 				} else
   1604 					break;
   1605 }
   1606 
   1607 /*
   1608  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1609  */
   1610 int
   1611 lfs_vref(vp)
   1612 	register struct vnode *vp;
   1613 {
   1614 	/*
   1615 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   1616 	 * being able to flush all of the pages from this vnode, which
   1617 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   1618 	 */
   1619 	if (vp->v_flag & VXLOCK) {
   1620 		if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1621 			return 0;
   1622 		}
   1623 		return(1);
   1624 	}
   1625 	return (vget(vp, 0));
   1626 }
   1627 
   1628 /*
   1629  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   1630  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   1631  */
   1632 void
   1633 lfs_vunref(vp)
   1634 	register struct vnode *vp;
   1635 {
   1636 	/*
   1637 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   1638 	 */
   1639 	if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   1640 		return;
   1641 	}
   1642 
   1643 	simple_lock(&vp->v_interlock);
   1644 #ifdef DIAGNOSTIC
   1645 	if(vp->v_usecount<=0) {
   1646 		printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
   1647 		printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
   1648 		panic("lfs_vunref: v_usecount<0");
   1649 	}
   1650 #endif
   1651 	vp->v_usecount--;
   1652 	if (vp->v_usecount > 0) {
   1653 		simple_unlock(&vp->v_interlock);
   1654 		return;
   1655 	}
   1656 #ifdef DIAGNOSTIC
   1657 	if(VOP_ISLOCKED(vp))
   1658 		panic("lfs_vunref: vnode locked");
   1659 #endif
   1660 	/*
   1661 	 * insert at tail of LRU list
   1662 	 */
   1663 	simple_lock(&vnode_free_list_slock);
   1664 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   1665 	simple_unlock(&vnode_free_list_slock);
   1666 	simple_unlock(&vp->v_interlock);
   1667 }
   1668 
   1669 /*
   1670  * We use this when we have vnodes that were loaded in solely for cleaning.
   1671  * There is no reason to believe that these vnodes will be referenced again
   1672  * soon, since the cleaning process is unrelated to normal filesystem
   1673  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   1674  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   1675  * cleaning at the head of the list, instead.
   1676  */
   1677 void
   1678 lfs_vunref_head(vp)
   1679 	register struct vnode *vp;
   1680 {
   1681 	simple_lock(&vp->v_interlock);
   1682 #ifdef DIAGNOSTIC
   1683 	if(vp->v_usecount==0) {
   1684 		panic("lfs_vunref: v_usecount<0");
   1685 	}
   1686 #endif
   1687 	vp->v_usecount--;
   1688 	if (vp->v_usecount > 0) {
   1689 		simple_unlock(&vp->v_interlock);
   1690 		return;
   1691 	}
   1692 #ifdef DIAGNOSTIC
   1693 	if(VOP_ISLOCKED(vp))
   1694 		panic("lfs_vunref_head: vnode locked");
   1695 #endif
   1696 	/*
   1697 	 * insert at head of LRU list
   1698 	 */
   1699 	simple_lock(&vnode_free_list_slock);
   1700 	TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   1701 	simple_unlock(&vnode_free_list_slock);
   1702 	simple_unlock(&vp->v_interlock);
   1703 }
   1704 
   1705