lfs_segment.c revision 1.38 1 /* $NetBSD: lfs_segment.c,v 1.38 2000/01/14 21:38:46 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & IN_MODIFIED) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & IN_MODIFIED)
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346
347 #ifndef LFS_NO_BACKVP_HACK
348 /* BEGIN HACK */
349 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
350 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
351 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
352
353 /* Find last vnode. */
354 loop: for (vp = mp->mnt_vnodelist.lh_first;
355 vp && vp->v_mntvnodes.le_next != NULL;
356 vp = vp->v_mntvnodes.le_next);
357 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
358 #else
359 loop:
360 for (vp = mp->mnt_vnodelist.lh_first;
361 vp != NULL;
362 vp = vp->v_mntvnodes.le_next) {
363 #endif
364 /*
365 * If the vnode that we are about to sync is no longer
366 * associated with this mount point, start over.
367 */
368 if (vp->v_mount != mp)
369 goto loop;
370
371 ip = VTOI(vp);
372 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
373 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
374 vndebug(vp,"dirop");
375 continue;
376 }
377
378 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
379 vndebug(vp,"empty");
380 continue;
381 }
382
383 if (vp->v_type == VNON) {
384 continue;
385 }
386
387 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
388 && vp != fs->lfs_flushvp
389 && !(ip->i_flag & IN_CLEANING)) {
390 vndebug(vp,"cleaning");
391 continue;
392 }
393
394 if (lfs_vref(vp)) {
395 vndebug(vp,"vref");
396 continue;
397 }
398
399 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
400 if(WRITEINPROG(vp)) {
401 lfs_vunref(vp);
402 #ifdef DEBUG_LFS
403 ivndebug(vp,"writevnodes/writeinprog");
404 #endif
405 continue;
406 }
407 #endif
408 only_cleaning = 0;
409 /*
410 * Write the inode/file if dirty and it's not the
411 * the IFILE.
412 */
413 if ((ip->i_flag &
414 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
415 vp->v_dirtyblkhd.lh_first != NULL))
416 {
417 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
418
419 if(ip->i_number != LFS_IFILE_INUM
420 && vp->v_dirtyblkhd.lh_first != NULL)
421 {
422 lfs_writefile(fs, sp, vp);
423 }
424 if(vp->v_dirtyblkhd.lh_first != NULL) {
425 if(WRITEINPROG(vp)) {
426 #ifdef DEBUG_LFS
427 ivndebug(vp,"writevnodes/write2");
428 #endif
429 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
430 #ifdef DEBUG_LFS
431 printf("<%d>",ip->i_number);
432 #endif
433 ip->i_flag |= IN_MODIFIED;
434 ++fs->lfs_uinodes;
435 }
436 }
437 (void) lfs_writeinode(fs, sp, ip);
438 inodes_written++;
439 }
440
441 if(vp->v_flag & VDIROP) {
442 --lfs_dirvcount;
443 vp->v_flag &= ~VDIROP;
444 wakeup(&lfs_dirvcount);
445 lfs_vunref(vp);
446 }
447
448 if(lfs_clean_vnhead && only_cleaning)
449 lfs_vunref_head(vp);
450 else
451 lfs_vunref(vp);
452 }
453 return inodes_written;
454 }
455
456 int
457 lfs_segwrite(mp, flags)
458 struct mount *mp;
459 int flags; /* Do a checkpoint. */
460 {
461 struct buf *bp;
462 struct inode *ip;
463 struct lfs *fs;
464 struct segment *sp;
465 struct vnode *vp;
466 SEGUSE *segusep;
467 ufs_daddr_t ibno;
468 int do_ckp, error, i;
469 int writer_set = 0;
470 int need_unlock = 0;
471
472 fs = VFSTOUFS(mp)->um_lfs;
473
474 lfs_imtime(fs);
475
476 /*
477 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
478 * clean segments, wait until cleaner writes.
479 */
480 if(!(flags & SEGM_CLEAN)
481 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
482 {
483 do {
484 if (fs->lfs_nclean <= MIN_FREE_SEGS
485 || fs->lfs_avail <= 0)
486 {
487 wakeup(&lfs_allclean_wakeup);
488 wakeup(&fs->lfs_nextseg);
489 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
490 "lfs_avail", 0);
491 if (error) {
492 return (error);
493 }
494 }
495 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
496 }
497
498 /*
499 * Allocate a segment structure and enough space to hold pointers to
500 * the maximum possible number of buffers which can be described in a
501 * single summary block.
502 */
503 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
504 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
505 sp = fs->lfs_sp;
506
507 /*
508 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
509 * in which case we have to flush *all* buffers off of this vnode.
510 * We don't care about other nodes, but write any non-dirop nodes
511 * anyway in anticipation of another getnewvnode().
512 *
513 * If we're cleaning we only write cleaning and ifile blocks, and
514 * no dirops, since otherwise we'd risk corruption in a crash.
515 */
516 if(sp->seg_flags & SEGM_CLEAN)
517 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
518 else {
519 lfs_writevnodes(fs, mp, sp, VN_REG);
520 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
521 while(fs->lfs_dirops)
522 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
523 "lfs writer", 0)))
524 {
525 free(sp->bpp, M_SEGMENT);
526 free(sp, M_SEGMENT);
527 return (error);
528 }
529 fs->lfs_writer++;
530 writer_set=1;
531 lfs_writevnodes(fs, mp, sp, VN_DIROP);
532 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
533 }
534 }
535
536 /*
537 * If we are doing a checkpoint, mark everything since the
538 * last checkpoint as no longer ACTIVE.
539 */
540 if (do_ckp) {
541 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
542 --ibno >= fs->lfs_cleansz; ) {
543 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
544
545 panic("lfs_segwrite: ifile read");
546 segusep = (SEGUSE *)bp->b_data;
547 for (i = fs->lfs_sepb; i--; segusep++)
548 segusep->su_flags &= ~SEGUSE_ACTIVE;
549
550 /* But the current segment is still ACTIVE */
551 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
552 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
553 error = VOP_BWRITE(bp);
554 }
555 }
556
557 if (do_ckp || fs->lfs_doifile) {
558 redo:
559 vp = fs->lfs_ivnode;
560 /*
561 * Depending on the circumstances of our calling, the ifile
562 * inode might be locked. If it is, and if it is locked by
563 * us, we should VREF instead of vget here.
564 */
565 need_unlock = 0;
566 if(VOP_ISLOCKED(vp)
567 && vp->v_lock.lk_lockholder == curproc->p_pid) {
568 VREF(vp);
569 } else {
570 while (vget(vp, LK_EXCLUSIVE))
571 continue;
572 need_unlock = 1;
573 }
574 ip = VTOI(vp);
575 if (vp->v_dirtyblkhd.lh_first != NULL)
576 lfs_writefile(fs, sp, vp);
577 (void)lfs_writeinode(fs, sp, ip);
578
579 /* Only vput if we used vget() above. */
580 if(need_unlock)
581 vput(vp);
582 else
583 vrele(vp);
584
585 if (lfs_writeseg(fs, sp) && do_ckp)
586 goto redo;
587 } else {
588 (void) lfs_writeseg(fs, sp);
589 }
590
591 /*
592 * If the I/O count is non-zero, sleep until it reaches zero.
593 * At the moment, the user's process hangs around so we can
594 * sleep.
595 */
596 fs->lfs_doifile = 0;
597 if(writer_set && --fs->lfs_writer==0)
598 wakeup(&fs->lfs_dirops);
599
600 if(lfs_dostats) {
601 ++lfs_stats.nwrites;
602 if (sp->seg_flags & SEGM_SYNC)
603 ++lfs_stats.nsync_writes;
604 if (sp->seg_flags & SEGM_CKP)
605 ++lfs_stats.ncheckpoints;
606 }
607 lfs_segunlock(fs);
608 return (0);
609 }
610
611 /*
612 * Write the dirty blocks associated with a vnode.
613 */
614 void
615 lfs_writefile(fs, sp, vp)
616 struct lfs *fs;
617 struct segment *sp;
618 struct vnode *vp;
619 {
620 struct buf *bp;
621 struct finfo *fip;
622 IFILE *ifp;
623
624
625 if (sp->seg_bytes_left < fs->lfs_bsize ||
626 sp->sum_bytes_left < sizeof(struct finfo))
627 (void) lfs_writeseg(fs, sp);
628
629 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
630 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
631
632 if(vp->v_flag & VDIROP)
633 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
634
635 fip = sp->fip;
636 fip->fi_nblocks = 0;
637 fip->fi_ino = VTOI(vp)->i_number;
638 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
639 fip->fi_version = ifp->if_version;
640 brelse(bp);
641
642 if(sp->seg_flags & SEGM_CLEAN)
643 {
644 lfs_gather(fs, sp, vp, lfs_match_fake);
645 /*
646 * For a file being flushed, we need to write *all* blocks.
647 * This means writing the cleaning blocks first, and then
648 * immediately following with any non-cleaning blocks.
649 * The same is true of the Ifile since checkpoints assume
650 * that all valid Ifile blocks are written.
651 */
652 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
653 lfs_gather(fs, sp, vp, lfs_match_data);
654 } else
655 lfs_gather(fs, sp, vp, lfs_match_data);
656
657 /*
658 * It may not be necessary to write the meta-data blocks at this point,
659 * as the roll-forward recovery code should be able to reconstruct the
660 * list.
661 *
662 * We have to write them anyway, though, under two conditions: (1) the
663 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
664 * checkpointing.
665 */
666 if(lfs_writeindir
667 || IS_FLUSHING(fs,vp)
668 || (sp->seg_flags & SEGM_CKP))
669 {
670 lfs_gather(fs, sp, vp, lfs_match_indir);
671 lfs_gather(fs, sp, vp, lfs_match_dindir);
672 lfs_gather(fs, sp, vp, lfs_match_tindir);
673 }
674 fip = sp->fip;
675 if (fip->fi_nblocks != 0) {
676 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
677 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
678 sp->start_lbp = &sp->fip->fi_blocks[0];
679 } else {
680 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
681 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
682 }
683 }
684
685 int
686 lfs_writeinode(fs, sp, ip)
687 struct lfs *fs;
688 struct segment *sp;
689 struct inode *ip;
690 {
691 struct buf *bp, *ibp;
692 IFILE *ifp;
693 SEGUSE *sup;
694 ufs_daddr_t daddr;
695 ino_t ino;
696 int error, i, ndx;
697 int redo_ifile = 0;
698 struct timespec ts;
699 int gotblk=0;
700
701 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
702 return(0);
703
704 /* Allocate a new inode block if necessary. */
705 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
706 /* Allocate a new segment if necessary. */
707 if (sp->seg_bytes_left < fs->lfs_bsize ||
708 sp->sum_bytes_left < sizeof(ufs_daddr_t))
709 (void) lfs_writeseg(fs, sp);
710
711 /* Get next inode block. */
712 daddr = fs->lfs_offset;
713 fs->lfs_offset += fsbtodb(fs, 1);
714 sp->ibp = *sp->cbpp++ =
715 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
716 gotblk++;
717
718 /* Zero out inode numbers */
719 for (i = 0; i < INOPB(fs); ++i)
720 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
721
722 ++sp->start_bpp;
723 fs->lfs_avail -= fsbtodb(fs, 1);
724 /* Set remaining space counters. */
725 sp->seg_bytes_left -= fs->lfs_bsize;
726 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
727 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
728 sp->ninodes / INOPB(fs) - 1;
729 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
730 }
731
732 /* Update the inode times and copy the inode onto the inode page. */
733 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
734 --fs->lfs_uinodes;
735 TIMEVAL_TO_TIMESPEC(&time, &ts);
736 LFS_ITIMES(ip, &ts, &ts, &ts);
737
738 if(ip->i_flag & IN_CLEANING)
739 ip->i_flag &= ~IN_CLEANING;
740 else
741 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
742
743 /*
744 * If this is the Ifile, and we've already written the Ifile in this
745 * partial segment, just overwrite it (it's not on disk yet) and
746 * continue.
747 *
748 * XXX we know that the bp that we get the second time around has
749 * already been gathered.
750 */
751 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
752 *(sp->idp) = ip->i_din.ffs_din;
753 return 0;
754 }
755
756 bp = sp->ibp;
757 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
758 ip->i_din.ffs_din;
759
760 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
761 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
762 if(gotblk) {
763 bp->b_flags |= B_LOCKED;
764 brelse(bp);
765 }
766
767 /* Increment inode count in segment summary block. */
768 ++((SEGSUM *)(sp->segsum))->ss_ninos;
769
770 /* If this page is full, set flag to allocate a new page. */
771 if (++sp->ninodes % INOPB(fs) == 0)
772 sp->ibp = NULL;
773
774 /*
775 * If updating the ifile, update the super-block. Update the disk
776 * address and access times for this inode in the ifile.
777 */
778 ino = ip->i_number;
779 if (ino == LFS_IFILE_INUM) {
780 daddr = fs->lfs_idaddr;
781 fs->lfs_idaddr = bp->b_blkno;
782 } else {
783 LFS_IENTRY(ifp, fs, ino, ibp);
784 daddr = ifp->if_daddr;
785 ifp->if_daddr = bp->b_blkno;
786 #ifdef LFS_DEBUG_NEXTFREE
787 if(ino > 3 && ifp->if_nextfree) {
788 vprint("lfs_writeinode",ITOV(ip));
789 printf("lfs_writeinode: updating free ino %d\n",
790 ip->i_number);
791 }
792 #endif
793 error = VOP_BWRITE(ibp);
794 }
795
796 /*
797 * No need to update segment usage if there was no former inode address
798 * or if the last inode address is in the current partial segment.
799 */
800 if (daddr != LFS_UNUSED_DADDR &&
801 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
802 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
803 #ifdef DIAGNOSTIC
804 if (sup->su_nbytes < DINODE_SIZE) {
805 /* XXX -- Change to a panic. */
806 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
807 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
808 panic("lfs_writeinode: negative bytes");
809 sup->su_nbytes = DINODE_SIZE;
810 }
811 #endif
812 sup->su_nbytes -= DINODE_SIZE;
813 redo_ifile =
814 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
815 error = VOP_BWRITE(bp);
816 }
817 return (redo_ifile);
818 }
819
820 int
821 lfs_gatherblock(sp, bp, sptr)
822 struct segment *sp;
823 struct buf *bp;
824 int *sptr;
825 {
826 struct lfs *fs;
827 int version;
828
829 /*
830 * If full, finish this segment. We may be doing I/O, so
831 * release and reacquire the splbio().
832 */
833 #ifdef DIAGNOSTIC
834 if (sp->vp == NULL)
835 panic ("lfs_gatherblock: Null vp in segment");
836 #endif
837 fs = sp->fs;
838 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
839 sp->seg_bytes_left < bp->b_bcount) {
840 if (sptr)
841 splx(*sptr);
842 lfs_updatemeta(sp);
843
844 version = sp->fip->fi_version;
845 (void) lfs_writeseg(fs, sp);
846
847 sp->fip->fi_version = version;
848 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
849 /* Add the current file to the segment summary. */
850 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
851 sp->sum_bytes_left -=
852 sizeof(struct finfo) - sizeof(ufs_daddr_t);
853
854 if (sptr)
855 *sptr = splbio();
856 return(1);
857 }
858
859 #ifdef DEBUG
860 if(bp->b_flags & B_GATHERED) {
861 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
862 sp->fip->fi_ino, bp->b_lblkno);
863 return(0);
864 }
865 #endif
866 /* Insert into the buffer list, update the FINFO block. */
867 bp->b_flags |= B_GATHERED;
868 *sp->cbpp++ = bp;
869 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
870
871 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
872 sp->seg_bytes_left -= bp->b_bcount;
873 return(0);
874 }
875
876 int
877 lfs_gather(fs, sp, vp, match)
878 struct lfs *fs;
879 struct segment *sp;
880 struct vnode *vp;
881 int (*match) __P((struct lfs *, struct buf *));
882 {
883 struct buf *bp;
884 int s, count=0;
885
886 sp->vp = vp;
887 s = splbio();
888
889 #ifndef LFS_NO_BACKBUF_HACK
890 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
891 #else /* LFS_NO_BACKBUF_HACK */
892 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
893 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
894 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
895 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
896 /* Find last buffer. */
897 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
898 bp = bp->b_vnbufs.le_next);
899 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
900 #endif /* LFS_NO_BACKBUF_HACK */
901 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
902 continue;
903 if(vp->v_type == VBLK) {
904 /* For block devices, just write the blocks. */
905 /* XXX Do we really need to even do this? */
906 #ifdef DEBUG_LFS
907 if(count==0)
908 printf("BLK(");
909 printf(".");
910 #endif
911 /* Get the block before bwrite, so we don't corrupt the free list */
912 bp->b_flags |= B_BUSY;
913 bremfree(bp);
914 bwrite(bp);
915 } else {
916 #ifdef DIAGNOSTIC
917 if (!(bp->b_flags & B_DELWRI))
918 panic("lfs_gather: bp not B_DELWRI");
919 if (!(bp->b_flags & B_LOCKED)) {
920 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
921 VOP_PRINT(bp->b_vp);
922 panic("lfs_gather: bp not B_LOCKED");
923 }
924 #endif
925 if (lfs_gatherblock(sp, bp, &s)) {
926 goto loop;
927 }
928 }
929 count++;
930 }
931 splx(s);
932 #ifdef DEBUG_LFS
933 if(vp->v_type == VBLK && count)
934 printf(")\n");
935 #endif
936 lfs_updatemeta(sp);
937 sp->vp = NULL;
938 return count;
939 }
940
941 /*
942 * Update the metadata that points to the blocks listed in the FINFO
943 * array.
944 */
945 void
946 lfs_updatemeta(sp)
947 struct segment *sp;
948 {
949 SEGUSE *sup;
950 struct buf *bp;
951 struct lfs *fs;
952 struct vnode *vp;
953 struct indir a[NIADDR + 2], *ap;
954 struct inode *ip;
955 ufs_daddr_t daddr, lbn, off;
956 int error, i, nblocks, num;
957
958 vp = sp->vp;
959 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
960 if (nblocks < 0)
961 panic("This is a bad thing\n");
962 if (vp == NULL || nblocks == 0)
963 return;
964
965 /* Sort the blocks. */
966 /*
967 * XXX KS - We have to sort even if the blocks come from the
968 * cleaner, because there might be other pending blocks on the
969 * same inode...and if we don't sort, and there are fragments
970 * present, blocks may be written in the wrong place.
971 */
972 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
973 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
974
975 /*
976 * Record the length of the last block in case it's a fragment.
977 * If there are indirect blocks present, they sort last. An
978 * indirect block will be lfs_bsize and its presence indicates
979 * that you cannot have fragments.
980 */
981 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
982
983 /*
984 * Assign disk addresses, and update references to the logical
985 * block and the segment usage information.
986 */
987 fs = sp->fs;
988 for (i = nblocks; i--; ++sp->start_bpp) {
989 lbn = *sp->start_lbp++;
990
991 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
992 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
993 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
994 }
995 fs->lfs_offset +=
996 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
997 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
998 if (error)
999 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1000 ip = VTOI(vp);
1001 switch (num) {
1002 case 0:
1003 ip->i_ffs_db[lbn] = off;
1004 break;
1005 case 1:
1006 ip->i_ffs_ib[a[0].in_off] = off;
1007 break;
1008 default:
1009 ap = &a[num - 1];
1010 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1011 panic("lfs_updatemeta: bread bno %d",
1012 ap->in_lbn);
1013 /*
1014 * Bread may create a new (indirect) block which needs
1015 * to get counted for the inode.
1016 */
1017 if (/* bp->b_blkno == -1 && */
1018 !(bp->b_flags & (B_DELWRI|B_DONE))) {
1019 ip->i_ffs_blocks += fsbtodb(fs, 1);
1020 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1021 }
1022 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1023 VOP_BWRITE(bp);
1024 }
1025 /* Update segment usage information. */
1026 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1027 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1028 #ifdef DIAGNOSTIC
1029 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1030 /* XXX -- Change to a panic. */
1031 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1032 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1033 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1034 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1035 panic("lfs_updatemeta: negative bytes");
1036 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1037 }
1038 #endif
1039 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1040 error = VOP_BWRITE(bp);
1041 }
1042 }
1043 }
1044
1045 /*
1046 * Start a new segment.
1047 */
1048 int
1049 lfs_initseg(fs)
1050 struct lfs *fs;
1051 {
1052 struct segment *sp;
1053 SEGUSE *sup;
1054 SEGSUM *ssp;
1055 struct buf *bp;
1056 int repeat;
1057
1058 sp = fs->lfs_sp;
1059
1060 repeat = 0;
1061 /* Advance to the next segment. */
1062 if (!LFS_PARTIAL_FITS(fs)) {
1063 /* Wake up any cleaning procs waiting on this file system. */
1064 wakeup(&lfs_allclean_wakeup);
1065 wakeup(&fs->lfs_nextseg);
1066 lfs_newseg(fs);
1067 repeat = 1;
1068 fs->lfs_offset = fs->lfs_curseg;
1069 sp->seg_number = datosn(fs, fs->lfs_curseg);
1070 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1071 /*
1072 * If the segment contains a superblock, update the offset
1073 * and summary address to skip over it.
1074 */
1075 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1076 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1077 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1078 sp->seg_bytes_left -= LFS_SBPAD;
1079 }
1080 brelse(bp);
1081 } else {
1082 sp->seg_number = datosn(fs, fs->lfs_curseg);
1083 sp->seg_bytes_left = (fs->lfs_dbpseg -
1084 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1085 }
1086 fs->lfs_lastpseg = fs->lfs_offset;
1087
1088 sp->fs = fs;
1089 sp->ibp = NULL;
1090 sp->idp = NULL;
1091 sp->ninodes = 0;
1092
1093 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1094 sp->cbpp = sp->bpp;
1095 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1096 fs->lfs_offset, LFS_SUMMARY_SIZE);
1097 sp->segsum = (*sp->cbpp)->b_data;
1098 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1099 sp->start_bpp = ++sp->cbpp;
1100 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1101
1102 /* Set point to SEGSUM, initialize it. */
1103 ssp = sp->segsum;
1104 ssp->ss_next = fs->lfs_nextseg;
1105 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1106 ssp->ss_magic = SS_MAGIC;
1107
1108 /* Set pointer to first FINFO, initialize it. */
1109 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1110 sp->fip->fi_nblocks = 0;
1111 sp->start_lbp = &sp->fip->fi_blocks[0];
1112 sp->fip->fi_lastlength = 0;
1113
1114 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1115 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1116
1117 return(repeat);
1118 }
1119
1120 /*
1121 * Return the next segment to write.
1122 */
1123 void
1124 lfs_newseg(fs)
1125 struct lfs *fs;
1126 {
1127 CLEANERINFO *cip;
1128 SEGUSE *sup;
1129 struct buf *bp;
1130 int curseg, isdirty, sn;
1131
1132 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1133 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1134 sup->su_nbytes = 0;
1135 sup->su_nsums = 0;
1136 sup->su_ninos = 0;
1137 (void) VOP_BWRITE(bp);
1138
1139 LFS_CLEANERINFO(cip, fs, bp);
1140 --cip->clean;
1141 ++cip->dirty;
1142 fs->lfs_nclean = cip->clean;
1143 (void) VOP_BWRITE(bp);
1144
1145 fs->lfs_lastseg = fs->lfs_curseg;
1146 fs->lfs_curseg = fs->lfs_nextseg;
1147 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1148 sn = (sn + 1) % fs->lfs_nseg;
1149 if (sn == curseg)
1150 panic("lfs_nextseg: no clean segments");
1151 LFS_SEGENTRY(sup, fs, sn, bp);
1152 isdirty = sup->su_flags & SEGUSE_DIRTY;
1153 brelse(bp);
1154 if (!isdirty)
1155 break;
1156 }
1157
1158 ++fs->lfs_nactive;
1159 fs->lfs_nextseg = sntoda(fs, sn);
1160 if(lfs_dostats) {
1161 ++lfs_stats.segsused;
1162 }
1163 }
1164
1165 int
1166 lfs_writeseg(fs, sp)
1167 struct lfs *fs;
1168 struct segment *sp;
1169 {
1170 extern int locked_queue_count;
1171 extern long locked_queue_bytes;
1172 struct buf **bpp, *bp, *cbp;
1173 SEGUSE *sup;
1174 SEGSUM *ssp;
1175 dev_t i_dev;
1176 u_long *datap, *dp;
1177 int do_again, i, nblocks, s;
1178 #ifdef LFS_TRACK_IOS
1179 int j;
1180 #endif
1181 int (*strategy)__P((void *));
1182 struct vop_strategy_args vop_strategy_a;
1183 u_short ninos;
1184 struct vnode *devvp;
1185 char *p;
1186 struct vnode *vn;
1187 struct inode *ip;
1188 #if defined(DEBUG) && defined(LFS_PROPELLER)
1189 static int propeller;
1190 char propstring[4] = "-\\|/";
1191
1192 printf("%c\b",propstring[propeller++]);
1193 if(propeller==4)
1194 propeller = 0;
1195 #endif
1196
1197 /*
1198 * If there are no buffers other than the segment summary to write
1199 * and it is not a checkpoint, don't do anything. On a checkpoint,
1200 * even if there aren't any buffers, you need to write the superblock.
1201 */
1202 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1203 return (0);
1204
1205 #ifdef DEBUG_LFS
1206 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1207 #endif
1208 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1209 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1210
1211 /* Update the segment usage information. */
1212 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1213
1214 /* Loop through all blocks, except the segment summary. */
1215 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1216 if((*bpp)->b_vp != devvp)
1217 sup->su_nbytes += (*bpp)->b_bcount;
1218 }
1219
1220 ssp = (SEGSUM *)sp->segsum;
1221
1222 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1223 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1224 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1225 sup->su_lastmod = time.tv_sec;
1226 sup->su_ninos += ninos;
1227 ++sup->su_nsums;
1228
1229 do_again = !(bp->b_flags & B_GATHERED);
1230 (void)VOP_BWRITE(bp);
1231 /*
1232 * Compute checksum across data and then across summary; the first
1233 * block (the summary block) is skipped. Set the create time here
1234 * so that it's guaranteed to be later than the inode mod times.
1235 *
1236 * XXX
1237 * Fix this to do it inline, instead of malloc/copy.
1238 */
1239 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1240 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1241 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1242 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1243 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1244 } else {
1245 if( !((*bpp)->b_flags & B_CALL) ) {
1246 /*
1247 * Before we record data for a checksm,
1248 * make sure the data won't change in between
1249 * the checksum calculation and the write,
1250 * by marking the buffer B_BUSY. It will
1251 * be freed later by brelse().
1252 */
1253 again:
1254 s = splbio();
1255 if((*bpp)->b_flags & B_BUSY) {
1256 #ifdef DEBUG
1257 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1258 VTOI((*bpp)->b_vp)->i_number,
1259 bp->b_lblkno);
1260 #endif
1261 (*bpp)->b_flags |= B_WANTED;
1262 tsleep((*bpp), (PRIBIO + 1),
1263 "lfs_writeseg", 0);
1264 splx(s);
1265 goto again;
1266 }
1267 (*bpp)->b_flags |= B_BUSY;
1268 splx(s);
1269 }
1270 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1271 }
1272 }
1273 ssp->ss_create = time.tv_sec;
1274 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1275 ssp->ss_sumsum =
1276 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1277 free(datap, M_SEGMENT);
1278 #ifdef DIAGNOSTIC
1279 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1280 panic("lfs_writeseg: No diskspace for summary");
1281 #endif
1282 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1283
1284 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1285
1286 /*
1287 * When we simply write the blocks we lose a rotation for every block
1288 * written. To avoid this problem, we allocate memory in chunks, copy
1289 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1290 * largest size I/O devices can handle.
1291 * When the data is copied to the chunk, turn off the the B_LOCKED bit
1292 * and brelse the buffer (which will move them to the LRU list). Add
1293 * the B_CALL flag to the buffer header so we can count I/O's for the
1294 * checkpoints and so we can release the allocated memory.
1295 *
1296 * XXX
1297 * This should be removed if the new virtual memory system allows us to
1298 * easily make the buffers contiguous in kernel memory and if that's
1299 * fast enough.
1300 */
1301
1302 #define CHUNKSIZE MAXPHYS
1303
1304 if(devvp==NULL)
1305 panic("devvp is NULL");
1306 for (bpp = sp->bpp,i = nblocks; i;) {
1307 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1308 cbp->b_dev = i_dev;
1309 cbp->b_flags |= B_ASYNC | B_BUSY;
1310 cbp->b_bcount = 0;
1311
1312 #ifdef DIAGNOSTIC
1313 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1314 panic("lfs_writeseg: Segment overwrite");
1315 }
1316 #endif
1317
1318 s = splbio();
1319 if(fs->lfs_iocount >= LFS_THROTTLE) {
1320 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1321 }
1322 ++fs->lfs_iocount;
1323 #ifdef LFS_TRACK_IOS
1324 for(j=0;j<LFS_THROTTLE;j++) {
1325 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1326 fs->lfs_pending[j] = cbp->b_blkno;
1327 break;
1328 }
1329 }
1330 #endif /* LFS_TRACK_IOS */
1331 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1332 bp = *bpp;
1333
1334 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1335 break;
1336
1337 /*
1338 * Fake buffers from the cleaner are marked as B_INVAL.
1339 * We need to copy the data from user space rather than
1340 * from the buffer indicated.
1341 * XXX == what do I do on an error?
1342 */
1343 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1344 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1345 panic("lfs_writeseg: copyin failed [2]");
1346 } else
1347 bcopy(bp->b_data, p, bp->b_bcount);
1348 p += bp->b_bcount;
1349 cbp->b_bcount += bp->b_bcount;
1350 if (bp->b_flags & B_LOCKED) {
1351 --locked_queue_count;
1352 locked_queue_bytes -= bp->b_bufsize;
1353 }
1354 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1355 B_LOCKED | B_GATHERED);
1356 vn = bp->b_vp;
1357 if (bp->b_flags & B_CALL) {
1358 /* if B_CALL, it was created with newbuf */
1359 lfs_freebuf(bp);
1360 } else {
1361 bremfree(bp);
1362 bp->b_flags |= B_DONE;
1363 if(vn)
1364 reassignbuf(bp, vn);
1365 brelse(bp);
1366 }
1367 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1368 bp->b_flags &= ~B_NEEDCOMMIT;
1369 wakeup(bp);
1370 }
1371
1372 bpp++;
1373
1374 /*
1375 * If this is the last block for this vnode, but
1376 * there are other blocks on its dirty list,
1377 * set IN_MODIFIED/IN_CLEANING depending on what
1378 * sort of block. Only do this for our mount point,
1379 * not for, e.g., inode blocks that are attached to
1380 * the devvp.
1381 */
1382 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1383 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1384 vn->v_mount == fs->lfs_ivnode->v_mount)
1385 {
1386 ip = VTOI(vn);
1387 #ifdef DEBUG_LFS
1388 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1389 #endif
1390 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1391 fs->lfs_uinodes++;
1392 if(bp->b_flags & B_CALL)
1393 ip->i_flag |= IN_CLEANING;
1394 else
1395 ip->i_flag |= IN_MODIFIED;
1396 }
1397 }
1398 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1399 wakeup(vn);
1400 }
1401 ++cbp->b_vp->v_numoutput;
1402 splx(s);
1403 /*
1404 * XXXX This is a gross and disgusting hack. Since these
1405 * buffers are physically addressed, they hang off the
1406 * device vnode (devvp). As a result, they have no way
1407 * of getting to the LFS superblock or lfs structure to
1408 * keep track of the number of I/O's pending. So, I am
1409 * going to stuff the fs into the saveaddr field of
1410 * the buffer (yuk).
1411 */
1412 cbp->b_saveaddr = (caddr_t)fs;
1413 vop_strategy_a.a_desc = VDESC(vop_strategy);
1414 vop_strategy_a.a_bp = cbp;
1415 (strategy)(&vop_strategy_a);
1416 }
1417 /*
1418 * XXX
1419 * Vinvalbuf can move locked buffers off the locked queue
1420 * and we have no way of knowing about this. So, after
1421 * doing a big write, we recalculate how many buffers are
1422 * really still left on the locked queue.
1423 */
1424 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1425 wakeup(&locked_queue_count);
1426 if(lfs_dostats) {
1427 ++lfs_stats.psegwrites;
1428 lfs_stats.blocktot += nblocks - 1;
1429 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1430 ++lfs_stats.psyncwrites;
1431 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1432 ++lfs_stats.pcleanwrites;
1433 lfs_stats.cleanblocks += nblocks - 1;
1434 }
1435 }
1436 return (lfs_initseg(fs) || do_again);
1437 }
1438
1439 void
1440 lfs_writesuper(fs, daddr)
1441 struct lfs *fs;
1442 daddr_t daddr;
1443 {
1444 struct buf *bp;
1445 dev_t i_dev;
1446 int (*strategy) __P((void *));
1447 int s;
1448 struct vop_strategy_args vop_strategy_a;
1449
1450 #ifdef LFS_CANNOT_ROLLFW
1451 /*
1452 * If we can write one superblock while another is in
1453 * progress, we risk not having a complete checkpoint if we crash.
1454 * So, block here if a superblock write is in progress.
1455 */
1456 s = splbio();
1457 while(fs->lfs_sbactive) {
1458 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1459 }
1460 fs->lfs_sbactive = daddr;
1461 splx(s);
1462 #endif
1463 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1464 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1465
1466 /* Set timestamp of this version of the superblock */
1467 fs->lfs_tstamp = time.tv_sec;
1468
1469 /* Checksum the superblock and copy it into a buffer. */
1470 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1471 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1472 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1473
1474 bp->b_dev = i_dev;
1475 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1476 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1477 bp->b_iodone = lfs_supercallback;
1478 /* XXX KS - same nasty hack as above */
1479 bp->b_saveaddr = (caddr_t)fs;
1480
1481 vop_strategy_a.a_desc = VDESC(vop_strategy);
1482 vop_strategy_a.a_bp = bp;
1483 s = splbio();
1484 ++bp->b_vp->v_numoutput;
1485 splx(s);
1486 (strategy)(&vop_strategy_a);
1487 }
1488
1489 /*
1490 * Logical block number match routines used when traversing the dirty block
1491 * chain.
1492 */
1493 int
1494 lfs_match_fake(fs, bp)
1495 struct lfs *fs;
1496 struct buf *bp;
1497 {
1498 return (bp->b_flags & B_CALL);
1499 }
1500
1501 int
1502 lfs_match_data(fs, bp)
1503 struct lfs *fs;
1504 struct buf *bp;
1505 {
1506 return (bp->b_lblkno >= 0);
1507 }
1508
1509 int
1510 lfs_match_indir(fs, bp)
1511 struct lfs *fs;
1512 struct buf *bp;
1513 {
1514 int lbn;
1515
1516 lbn = bp->b_lblkno;
1517 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1518 }
1519
1520 int
1521 lfs_match_dindir(fs, bp)
1522 struct lfs *fs;
1523 struct buf *bp;
1524 {
1525 int lbn;
1526
1527 lbn = bp->b_lblkno;
1528 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1529 }
1530
1531 int
1532 lfs_match_tindir(fs, bp)
1533 struct lfs *fs;
1534 struct buf *bp;
1535 {
1536 int lbn;
1537
1538 lbn = bp->b_lblkno;
1539 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1540 }
1541
1542 /*
1543 * XXX - The only buffers that are going to hit these functions are the
1544 * segment write blocks, or the segment summaries, or the superblocks.
1545 *
1546 * All of the above are created by lfs_newbuf, and so do not need to be
1547 * released via brelse.
1548 */
1549 void
1550 lfs_callback(bp)
1551 struct buf *bp;
1552 {
1553 struct lfs *fs;
1554 #ifdef LFS_TRACK_IOS
1555 int j;
1556 #endif
1557
1558 fs = (struct lfs *)bp->b_saveaddr;
1559 #ifdef DIAGNOSTIC
1560 if (fs->lfs_iocount == 0)
1561 panic("lfs_callback: zero iocount\n");
1562 #endif
1563 if (--fs->lfs_iocount < LFS_THROTTLE)
1564 wakeup(&fs->lfs_iocount);
1565 #ifdef LFS_TRACK_IOS
1566 for(j=0;j<LFS_THROTTLE;j++) {
1567 if(fs->lfs_pending[j]==bp->b_blkno) {
1568 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1569 wakeup(&(fs->lfs_pending[j]));
1570 break;
1571 }
1572 }
1573 #endif /* LFS_TRACK_IOS */
1574
1575 lfs_freebuf(bp);
1576 }
1577
1578 void
1579 lfs_supercallback(bp)
1580 struct buf *bp;
1581 {
1582 #ifdef LFS_CANNOT_ROLLFW
1583 struct lfs *fs;
1584
1585 fs = (struct lfs *)bp->b_saveaddr;
1586 fs->lfs_sbactive=NULL;
1587 wakeup(&fs->lfs_sbactive);
1588 #endif
1589 lfs_freebuf(bp);
1590 }
1591
1592 /*
1593 * Shellsort (diminishing increment sort) from Data Structures and
1594 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1595 * see also Knuth Vol. 3, page 84. The increments are selected from
1596 * formula (8), page 95. Roughly O(N^3/2).
1597 */
1598 /*
1599 * This is our own private copy of shellsort because we want to sort
1600 * two parallel arrays (the array of buffer pointers and the array of
1601 * logical block numbers) simultaneously. Note that we cast the array
1602 * of logical block numbers to a unsigned in this routine so that the
1603 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1604 */
1605
1606 void
1607 lfs_shellsort(bp_array, lb_array, nmemb)
1608 struct buf **bp_array;
1609 ufs_daddr_t *lb_array;
1610 register int nmemb;
1611 {
1612 static int __rsshell_increments[] = { 4, 1, 0 };
1613 register int incr, *incrp, t1, t2;
1614 struct buf *bp_temp;
1615 u_long lb_temp;
1616
1617 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1618 for (t1 = incr; t1 < nmemb; ++t1)
1619 for (t2 = t1 - incr; t2 >= 0;)
1620 if (lb_array[t2] > lb_array[t2 + incr]) {
1621 lb_temp = lb_array[t2];
1622 lb_array[t2] = lb_array[t2 + incr];
1623 lb_array[t2 + incr] = lb_temp;
1624 bp_temp = bp_array[t2];
1625 bp_array[t2] = bp_array[t2 + incr];
1626 bp_array[t2 + incr] = bp_temp;
1627 t2 -= incr;
1628 } else
1629 break;
1630 }
1631
1632 /*
1633 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1634 */
1635 int
1636 lfs_vref(vp)
1637 register struct vnode *vp;
1638 {
1639 /*
1640 * If we return 1 here during a flush, we risk vinvalbuf() not
1641 * being able to flush all of the pages from this vnode, which
1642 * will cause it to panic. So, return 0 if a flush is in progress.
1643 */
1644 if (vp->v_flag & VXLOCK) {
1645 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1646 return 0;
1647 }
1648 return(1);
1649 }
1650 return (vget(vp, 0));
1651 }
1652
1653 /*
1654 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1655 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1656 */
1657 void
1658 lfs_vunref(vp)
1659 register struct vnode *vp;
1660 {
1661 /*
1662 * Analogous to lfs_vref, if the node is flushing, fake it.
1663 */
1664 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1665 return;
1666 }
1667
1668 simple_lock(&vp->v_interlock);
1669 #ifdef DIAGNOSTIC
1670 if(vp->v_usecount<=0) {
1671 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1672 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1673 panic("lfs_vunref: v_usecount<0");
1674 }
1675 #endif
1676 vp->v_usecount--;
1677 if (vp->v_usecount > 0) {
1678 simple_unlock(&vp->v_interlock);
1679 return;
1680 }
1681 #ifdef DIAGNOSTIC
1682 if(VOP_ISLOCKED(vp))
1683 panic("lfs_vunref: vnode locked");
1684 #endif
1685 /*
1686 * insert at tail of LRU list
1687 */
1688 simple_lock(&vnode_free_list_slock);
1689 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1690 simple_unlock(&vnode_free_list_slock);
1691 simple_unlock(&vp->v_interlock);
1692 }
1693
1694 /*
1695 * We use this when we have vnodes that were loaded in solely for cleaning.
1696 * There is no reason to believe that these vnodes will be referenced again
1697 * soon, since the cleaning process is unrelated to normal filesystem
1698 * activity. Putting cleaned vnodes at the tail of the list has the effect
1699 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1700 * cleaning at the head of the list, instead.
1701 */
1702 void
1703 lfs_vunref_head(vp)
1704 register struct vnode *vp;
1705 {
1706 simple_lock(&vp->v_interlock);
1707 #ifdef DIAGNOSTIC
1708 if(vp->v_usecount==0) {
1709 panic("lfs_vunref: v_usecount<0");
1710 }
1711 #endif
1712 vp->v_usecount--;
1713 if (vp->v_usecount > 0) {
1714 simple_unlock(&vp->v_interlock);
1715 return;
1716 }
1717 #ifdef DIAGNOSTIC
1718 if(VOP_ISLOCKED(vp))
1719 panic("lfs_vunref_head: vnode locked");
1720 #endif
1721 /*
1722 * insert at head of LRU list
1723 */
1724 simple_lock(&vnode_free_list_slock);
1725 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1726 simple_unlock(&vnode_free_list_slock);
1727 simple_unlock(&vp->v_interlock);
1728 }
1729
1730