lfs_segment.c revision 1.41 1 /* $NetBSD: lfs_segment.c,v 1.41 2000/03/13 23:52:41 soren Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & IN_MODIFIED) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & IN_MODIFIED)
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346
347 #ifndef LFS_NO_BACKVP_HACK
348 /* BEGIN HACK */
349 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
350 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
351 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
352
353 /* Find last vnode. */
354 loop: for (vp = mp->mnt_vnodelist.lh_first;
355 vp && vp->v_mntvnodes.le_next != NULL;
356 vp = vp->v_mntvnodes.le_next);
357 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
358 #else
359 loop:
360 for (vp = mp->mnt_vnodelist.lh_first;
361 vp != NULL;
362 vp = vp->v_mntvnodes.le_next) {
363 #endif
364 /*
365 * If the vnode that we are about to sync is no longer
366 * associated with this mount point, start over.
367 */
368 if (vp->v_mount != mp)
369 goto loop;
370
371 ip = VTOI(vp);
372 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
373 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
374 vndebug(vp,"dirop");
375 continue;
376 }
377
378 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
379 vndebug(vp,"empty");
380 continue;
381 }
382
383 if (vp->v_type == VNON) {
384 continue;
385 }
386
387 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
388 && vp != fs->lfs_flushvp
389 && !(ip->i_flag & IN_CLEANING)) {
390 vndebug(vp,"cleaning");
391 continue;
392 }
393
394 if (lfs_vref(vp)) {
395 vndebug(vp,"vref");
396 continue;
397 }
398
399 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
400 if(WRITEINPROG(vp)) {
401 lfs_vunref(vp);
402 #ifdef DEBUG_LFS
403 ivndebug(vp,"writevnodes/writeinprog");
404 #endif
405 continue;
406 }
407 #endif
408 only_cleaning = 0;
409 /*
410 * Write the inode/file if dirty and it's not the
411 * the IFILE.
412 */
413 if ((ip->i_flag &
414 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
415 vp->v_dirtyblkhd.lh_first != NULL))
416 {
417 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
418
419 if(ip->i_number != LFS_IFILE_INUM
420 && vp->v_dirtyblkhd.lh_first != NULL)
421 {
422 lfs_writefile(fs, sp, vp);
423 }
424 if(vp->v_dirtyblkhd.lh_first != NULL) {
425 if(WRITEINPROG(vp)) {
426 #ifdef DEBUG_LFS
427 ivndebug(vp,"writevnodes/write2");
428 #endif
429 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
430 #ifdef DEBUG_LFS
431 printf("<%d>",ip->i_number);
432 #endif
433 ip->i_flag |= IN_MODIFIED;
434 ++fs->lfs_uinodes;
435 }
436 }
437 (void) lfs_writeinode(fs, sp, ip);
438 inodes_written++;
439 }
440
441 if(lfs_clean_vnhead && only_cleaning)
442 lfs_vunref_head(vp);
443 else
444 lfs_vunref(vp);
445 }
446 return inodes_written;
447 }
448
449 int
450 lfs_segwrite(mp, flags)
451 struct mount *mp;
452 int flags; /* Do a checkpoint. */
453 {
454 struct buf *bp;
455 struct inode *ip;
456 struct lfs *fs;
457 struct segment *sp;
458 struct vnode *vp;
459 SEGUSE *segusep;
460 ufs_daddr_t ibno;
461 int do_ckp, error, i;
462 int writer_set = 0;
463 int need_unlock = 0;
464
465 fs = VFSTOUFS(mp)->um_lfs;
466
467 lfs_imtime(fs);
468
469 /*
470 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
471 * clean segments, wait until cleaner writes.
472 */
473 if(!(flags & SEGM_CLEAN)
474 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
475 {
476 do {
477 if (fs->lfs_nclean <= MIN_FREE_SEGS
478 || fs->lfs_avail <= 0)
479 {
480 wakeup(&lfs_allclean_wakeup);
481 wakeup(&fs->lfs_nextseg);
482 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
483 "lfs_avail", 0);
484 if (error) {
485 return (error);
486 }
487 }
488 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
489 }
490
491 /*
492 * Allocate a segment structure and enough space to hold pointers to
493 * the maximum possible number of buffers which can be described in a
494 * single summary block.
495 */
496 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
497 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
498 sp = fs->lfs_sp;
499
500 /*
501 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
502 * in which case we have to flush *all* buffers off of this vnode.
503 * We don't care about other nodes, but write any non-dirop nodes
504 * anyway in anticipation of another getnewvnode().
505 *
506 * If we're cleaning we only write cleaning and ifile blocks, and
507 * no dirops, since otherwise we'd risk corruption in a crash.
508 */
509 if(sp->seg_flags & SEGM_CLEAN)
510 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
511 else {
512 lfs_writevnodes(fs, mp, sp, VN_REG);
513 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
514 while(fs->lfs_dirops)
515 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
516 "lfs writer", 0)))
517 {
518 free(sp->bpp, M_SEGMENT);
519 free(sp, M_SEGMENT);
520 return (error);
521 }
522 fs->lfs_writer++;
523 writer_set=1;
524 lfs_writevnodes(fs, mp, sp, VN_DIROP);
525 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
526 }
527 }
528
529 /*
530 * If we are doing a checkpoint, mark everything since the
531 * last checkpoint as no longer ACTIVE.
532 */
533 if (do_ckp) {
534 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
535 --ibno >= fs->lfs_cleansz; ) {
536 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
537
538 panic("lfs_segwrite: ifile read");
539 segusep = (SEGUSE *)bp->b_data;
540 for (i = fs->lfs_sepb; i--; segusep++)
541 segusep->su_flags &= ~SEGUSE_ACTIVE;
542
543 /* But the current segment is still ACTIVE */
544 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
545 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
546 error = VOP_BWRITE(bp);
547 }
548 }
549
550 if (do_ckp || fs->lfs_doifile) {
551 redo:
552 vp = fs->lfs_ivnode;
553 /*
554 * Depending on the circumstances of our calling, the ifile
555 * inode might be locked. If it is, and if it is locked by
556 * us, we should VREF instead of vget here.
557 */
558 need_unlock = 0;
559 if(VOP_ISLOCKED(vp)
560 && vp->v_lock.lk_lockholder == curproc->p_pid) {
561 VREF(vp);
562 } else {
563 while (vget(vp, LK_EXCLUSIVE))
564 continue;
565 need_unlock = 1;
566 }
567 ip = VTOI(vp);
568 if (vp->v_dirtyblkhd.lh_first != NULL)
569 lfs_writefile(fs, sp, vp);
570 (void)lfs_writeinode(fs, sp, ip);
571
572 /* Only vput if we used vget() above. */
573 if(need_unlock)
574 vput(vp);
575 else
576 vrele(vp);
577
578 if (lfs_writeseg(fs, sp) && do_ckp)
579 goto redo;
580 } else {
581 (void) lfs_writeseg(fs, sp);
582 }
583
584 /*
585 * If the I/O count is non-zero, sleep until it reaches zero.
586 * At the moment, the user's process hangs around so we can
587 * sleep.
588 */
589 fs->lfs_doifile = 0;
590 if(writer_set && --fs->lfs_writer==0)
591 wakeup(&fs->lfs_dirops);
592
593 if(lfs_dostats) {
594 ++lfs_stats.nwrites;
595 if (sp->seg_flags & SEGM_SYNC)
596 ++lfs_stats.nsync_writes;
597 if (sp->seg_flags & SEGM_CKP)
598 ++lfs_stats.ncheckpoints;
599 }
600 lfs_segunlock(fs);
601 return (0);
602 }
603
604 /*
605 * Write the dirty blocks associated with a vnode.
606 */
607 void
608 lfs_writefile(fs, sp, vp)
609 struct lfs *fs;
610 struct segment *sp;
611 struct vnode *vp;
612 {
613 struct buf *bp;
614 struct finfo *fip;
615 IFILE *ifp;
616
617
618 if (sp->seg_bytes_left < fs->lfs_bsize ||
619 sp->sum_bytes_left < sizeof(struct finfo))
620 (void) lfs_writeseg(fs, sp);
621
622 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
623 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
624
625 if(vp->v_flag & VDIROP)
626 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
627
628 fip = sp->fip;
629 fip->fi_nblocks = 0;
630 fip->fi_ino = VTOI(vp)->i_number;
631 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
632 fip->fi_version = ifp->if_version;
633 brelse(bp);
634
635 if(sp->seg_flags & SEGM_CLEAN)
636 {
637 lfs_gather(fs, sp, vp, lfs_match_fake);
638 /*
639 * For a file being flushed, we need to write *all* blocks.
640 * This means writing the cleaning blocks first, and then
641 * immediately following with any non-cleaning blocks.
642 * The same is true of the Ifile since checkpoints assume
643 * that all valid Ifile blocks are written.
644 */
645 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
646 lfs_gather(fs, sp, vp, lfs_match_data);
647 } else
648 lfs_gather(fs, sp, vp, lfs_match_data);
649
650 /*
651 * It may not be necessary to write the meta-data blocks at this point,
652 * as the roll-forward recovery code should be able to reconstruct the
653 * list.
654 *
655 * We have to write them anyway, though, under two conditions: (1) the
656 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
657 * checkpointing.
658 */
659 if(lfs_writeindir
660 || IS_FLUSHING(fs,vp)
661 || (sp->seg_flags & SEGM_CKP))
662 {
663 lfs_gather(fs, sp, vp, lfs_match_indir);
664 lfs_gather(fs, sp, vp, lfs_match_dindir);
665 lfs_gather(fs, sp, vp, lfs_match_tindir);
666 }
667 fip = sp->fip;
668 if (fip->fi_nblocks != 0) {
669 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
670 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
671 sp->start_lbp = &sp->fip->fi_blocks[0];
672 } else {
673 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
674 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
675 }
676 }
677
678 int
679 lfs_writeinode(fs, sp, ip)
680 struct lfs *fs;
681 struct segment *sp;
682 struct inode *ip;
683 {
684 struct buf *bp, *ibp;
685 IFILE *ifp;
686 SEGUSE *sup;
687 ufs_daddr_t daddr;
688 ino_t ino;
689 int error, i, ndx;
690 int redo_ifile = 0;
691 struct timespec ts;
692 int gotblk=0;
693
694 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
695 return(0);
696
697 /* Allocate a new inode block if necessary. */
698 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
699 /* Allocate a new segment if necessary. */
700 if (sp->seg_bytes_left < fs->lfs_bsize ||
701 sp->sum_bytes_left < sizeof(ufs_daddr_t))
702 (void) lfs_writeseg(fs, sp);
703
704 /* Get next inode block. */
705 daddr = fs->lfs_offset;
706 fs->lfs_offset += fsbtodb(fs, 1);
707 sp->ibp = *sp->cbpp++ =
708 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
709 gotblk++;
710
711 /* Zero out inode numbers */
712 for (i = 0; i < INOPB(fs); ++i)
713 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
714
715 ++sp->start_bpp;
716 fs->lfs_avail -= fsbtodb(fs, 1);
717 /* Set remaining space counters. */
718 sp->seg_bytes_left -= fs->lfs_bsize;
719 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
720 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
721 sp->ninodes / INOPB(fs) - 1;
722 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
723 }
724
725 /* Update the inode times and copy the inode onto the inode page. */
726 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
727 --fs->lfs_uinodes;
728 TIMEVAL_TO_TIMESPEC(&time, &ts);
729 LFS_ITIMES(ip, &ts, &ts, &ts);
730
731 if(ip->i_flag & IN_CLEANING)
732 ip->i_flag &= ~IN_CLEANING;
733 else
734 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
735
736 /*
737 * If this is the Ifile, and we've already written the Ifile in this
738 * partial segment, just overwrite it (it's not on disk yet) and
739 * continue.
740 *
741 * XXX we know that the bp that we get the second time around has
742 * already been gathered.
743 */
744 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
745 *(sp->idp) = ip->i_din.ffs_din;
746 return 0;
747 }
748
749 bp = sp->ibp;
750 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
751 ip->i_din.ffs_din;
752
753 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
754 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
755 if(gotblk) {
756 bp->b_flags |= B_LOCKED;
757 brelse(bp);
758 }
759
760 /* Increment inode count in segment summary block. */
761 ++((SEGSUM *)(sp->segsum))->ss_ninos;
762
763 /* If this page is full, set flag to allocate a new page. */
764 if (++sp->ninodes % INOPB(fs) == 0)
765 sp->ibp = NULL;
766
767 /*
768 * If updating the ifile, update the super-block. Update the disk
769 * address and access times for this inode in the ifile.
770 */
771 ino = ip->i_number;
772 if (ino == LFS_IFILE_INUM) {
773 daddr = fs->lfs_idaddr;
774 fs->lfs_idaddr = bp->b_blkno;
775 } else {
776 LFS_IENTRY(ifp, fs, ino, ibp);
777 daddr = ifp->if_daddr;
778 ifp->if_daddr = bp->b_blkno;
779 #ifdef LFS_DEBUG_NEXTFREE
780 if(ino > 3 && ifp->if_nextfree) {
781 vprint("lfs_writeinode",ITOV(ip));
782 printf("lfs_writeinode: updating free ino %d\n",
783 ip->i_number);
784 }
785 #endif
786 error = VOP_BWRITE(ibp);
787 }
788
789 /*
790 * No need to update segment usage if there was no former inode address
791 * or if the last inode address is in the current partial segment.
792 */
793 if (daddr != LFS_UNUSED_DADDR &&
794 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
795 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
796 #ifdef DIAGNOSTIC
797 if (sup->su_nbytes < DINODE_SIZE) {
798 /* XXX -- Change to a panic. */
799 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
800 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
801 panic("lfs_writeinode: negative bytes");
802 sup->su_nbytes = DINODE_SIZE;
803 }
804 #endif
805 sup->su_nbytes -= DINODE_SIZE;
806 redo_ifile =
807 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
808 error = VOP_BWRITE(bp);
809 }
810 return (redo_ifile);
811 }
812
813 int
814 lfs_gatherblock(sp, bp, sptr)
815 struct segment *sp;
816 struct buf *bp;
817 int *sptr;
818 {
819 struct lfs *fs;
820 int version;
821
822 /*
823 * If full, finish this segment. We may be doing I/O, so
824 * release and reacquire the splbio().
825 */
826 #ifdef DIAGNOSTIC
827 if (sp->vp == NULL)
828 panic ("lfs_gatherblock: Null vp in segment");
829 #endif
830 fs = sp->fs;
831 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
832 sp->seg_bytes_left < bp->b_bcount) {
833 if (sptr)
834 splx(*sptr);
835 lfs_updatemeta(sp);
836
837 version = sp->fip->fi_version;
838 (void) lfs_writeseg(fs, sp);
839
840 sp->fip->fi_version = version;
841 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
842 /* Add the current file to the segment summary. */
843 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
844 sp->sum_bytes_left -=
845 sizeof(struct finfo) - sizeof(ufs_daddr_t);
846
847 if (sptr)
848 *sptr = splbio();
849 return(1);
850 }
851
852 #ifdef DEBUG
853 if(bp->b_flags & B_GATHERED) {
854 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
855 sp->fip->fi_ino, bp->b_lblkno);
856 return(0);
857 }
858 #endif
859 /* Insert into the buffer list, update the FINFO block. */
860 bp->b_flags |= B_GATHERED;
861 *sp->cbpp++ = bp;
862 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
863
864 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
865 sp->seg_bytes_left -= bp->b_bcount;
866 return(0);
867 }
868
869 int
870 lfs_gather(fs, sp, vp, match)
871 struct lfs *fs;
872 struct segment *sp;
873 struct vnode *vp;
874 int (*match) __P((struct lfs *, struct buf *));
875 {
876 struct buf *bp;
877 int s, count=0;
878
879 sp->vp = vp;
880 s = splbio();
881
882 #ifndef LFS_NO_BACKBUF_HACK
883 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
884 #else /* LFS_NO_BACKBUF_HACK */
885 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
886 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
887 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
888 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
889 /* Find last buffer. */
890 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
891 bp = bp->b_vnbufs.le_next);
892 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
893 #endif /* LFS_NO_BACKBUF_HACK */
894 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
895 continue;
896 if(vp->v_type == VBLK) {
897 /* For block devices, just write the blocks. */
898 /* XXX Do we really need to even do this? */
899 #ifdef DEBUG_LFS
900 if(count==0)
901 printf("BLK(");
902 printf(".");
903 #endif
904 /* Get the block before bwrite, so we don't corrupt the free list */
905 bp->b_flags |= B_BUSY;
906 bremfree(bp);
907 bwrite(bp);
908 } else {
909 #ifdef DIAGNOSTIC
910 if (!(bp->b_flags & B_DELWRI))
911 panic("lfs_gather: bp not B_DELWRI");
912 if (!(bp->b_flags & B_LOCKED)) {
913 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
914 VOP_PRINT(bp->b_vp);
915 panic("lfs_gather: bp not B_LOCKED");
916 }
917 #endif
918 if (lfs_gatherblock(sp, bp, &s)) {
919 goto loop;
920 }
921 }
922 count++;
923 }
924 splx(s);
925 #ifdef DEBUG_LFS
926 if(vp->v_type == VBLK && count)
927 printf(")\n");
928 #endif
929 lfs_updatemeta(sp);
930 sp->vp = NULL;
931 return count;
932 }
933
934 /*
935 * Update the metadata that points to the blocks listed in the FINFO
936 * array.
937 */
938 void
939 lfs_updatemeta(sp)
940 struct segment *sp;
941 {
942 SEGUSE *sup;
943 struct buf *bp;
944 struct lfs *fs;
945 struct vnode *vp;
946 struct indir a[NIADDR + 2], *ap;
947 struct inode *ip;
948 ufs_daddr_t daddr, lbn, off;
949 int error, i, nblocks, num;
950
951 vp = sp->vp;
952 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
953 if (nblocks < 0)
954 panic("This is a bad thing\n");
955 if (vp == NULL || nblocks == 0)
956 return;
957
958 /* Sort the blocks. */
959 /*
960 * XXX KS - We have to sort even if the blocks come from the
961 * cleaner, because there might be other pending blocks on the
962 * same inode...and if we don't sort, and there are fragments
963 * present, blocks may be written in the wrong place.
964 */
965 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
966 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
967
968 /*
969 * Record the length of the last block in case it's a fragment.
970 * If there are indirect blocks present, they sort last. An
971 * indirect block will be lfs_bsize and its presence indicates
972 * that you cannot have fragments.
973 */
974 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
975
976 /*
977 * Assign disk addresses, and update references to the logical
978 * block and the segment usage information.
979 */
980 fs = sp->fs;
981 for (i = nblocks; i--; ++sp->start_bpp) {
982 lbn = *sp->start_lbp++;
983
984 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
985 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
986 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
987 }
988 fs->lfs_offset +=
989 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
990 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
991 if (error)
992 panic("lfs_updatemeta: ufs_bmaparray %d", error);
993 ip = VTOI(vp);
994 switch (num) {
995 case 0:
996 ip->i_ffs_db[lbn] = off;
997 break;
998 case 1:
999 ip->i_ffs_ib[a[0].in_off] = off;
1000 break;
1001 default:
1002 ap = &a[num - 1];
1003 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1004 panic("lfs_updatemeta: bread bno %d",
1005 ap->in_lbn);
1006 /*
1007 * Bread may create a new (indirect) block which needs
1008 * to get counted for the inode.
1009 */
1010 if (/* bp->b_blkno == -1 && */
1011 !(bp->b_flags & (B_DELWRI|B_DONE))) {
1012 ip->i_ffs_blocks += fsbtodb(fs, 1);
1013 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1014 }
1015 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1016 VOP_BWRITE(bp);
1017 }
1018 /* Update segment usage information. */
1019 if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1020 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1021 #ifdef DIAGNOSTIC
1022 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1023 /* XXX -- Change to a panic. */
1024 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1025 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1026 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1027 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1028 panic("lfs_updatemeta: negative bytes");
1029 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1030 }
1031 #endif
1032 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1033 error = VOP_BWRITE(bp);
1034 }
1035 }
1036 }
1037
1038 /*
1039 * Start a new segment.
1040 */
1041 int
1042 lfs_initseg(fs)
1043 struct lfs *fs;
1044 {
1045 struct segment *sp;
1046 SEGUSE *sup;
1047 SEGSUM *ssp;
1048 struct buf *bp;
1049 int repeat;
1050
1051 sp = fs->lfs_sp;
1052
1053 repeat = 0;
1054 /* Advance to the next segment. */
1055 if (!LFS_PARTIAL_FITS(fs)) {
1056 /* Wake up any cleaning procs waiting on this file system. */
1057 wakeup(&lfs_allclean_wakeup);
1058 wakeup(&fs->lfs_nextseg);
1059 lfs_newseg(fs);
1060 repeat = 1;
1061 fs->lfs_offset = fs->lfs_curseg;
1062 sp->seg_number = datosn(fs, fs->lfs_curseg);
1063 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1064 /*
1065 * If the segment contains a superblock, update the offset
1066 * and summary address to skip over it.
1067 */
1068 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1069 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1070 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1071 sp->seg_bytes_left -= LFS_SBPAD;
1072 }
1073 brelse(bp);
1074 } else {
1075 sp->seg_number = datosn(fs, fs->lfs_curseg);
1076 sp->seg_bytes_left = (fs->lfs_dbpseg -
1077 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1078 }
1079 fs->lfs_lastpseg = fs->lfs_offset;
1080
1081 sp->fs = fs;
1082 sp->ibp = NULL;
1083 sp->idp = NULL;
1084 sp->ninodes = 0;
1085
1086 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1087 sp->cbpp = sp->bpp;
1088 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1089 fs->lfs_offset, LFS_SUMMARY_SIZE);
1090 sp->segsum = (*sp->cbpp)->b_data;
1091 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1092 sp->start_bpp = ++sp->cbpp;
1093 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1094
1095 /* Set point to SEGSUM, initialize it. */
1096 ssp = sp->segsum;
1097 ssp->ss_next = fs->lfs_nextseg;
1098 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1099 ssp->ss_magic = SS_MAGIC;
1100
1101 /* Set pointer to first FINFO, initialize it. */
1102 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1103 sp->fip->fi_nblocks = 0;
1104 sp->start_lbp = &sp->fip->fi_blocks[0];
1105 sp->fip->fi_lastlength = 0;
1106
1107 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1108 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1109
1110 return(repeat);
1111 }
1112
1113 /*
1114 * Return the next segment to write.
1115 */
1116 void
1117 lfs_newseg(fs)
1118 struct lfs *fs;
1119 {
1120 CLEANERINFO *cip;
1121 SEGUSE *sup;
1122 struct buf *bp;
1123 int curseg, isdirty, sn;
1124
1125 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1126 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1127 sup->su_nbytes = 0;
1128 sup->su_nsums = 0;
1129 sup->su_ninos = 0;
1130 (void) VOP_BWRITE(bp);
1131
1132 LFS_CLEANERINFO(cip, fs, bp);
1133 --cip->clean;
1134 ++cip->dirty;
1135 fs->lfs_nclean = cip->clean;
1136 (void) VOP_BWRITE(bp);
1137
1138 fs->lfs_lastseg = fs->lfs_curseg;
1139 fs->lfs_curseg = fs->lfs_nextseg;
1140 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1141 sn = (sn + 1) % fs->lfs_nseg;
1142 if (sn == curseg)
1143 panic("lfs_nextseg: no clean segments");
1144 LFS_SEGENTRY(sup, fs, sn, bp);
1145 isdirty = sup->su_flags & SEGUSE_DIRTY;
1146 brelse(bp);
1147 if (!isdirty)
1148 break;
1149 }
1150
1151 ++fs->lfs_nactive;
1152 fs->lfs_nextseg = sntoda(fs, sn);
1153 if(lfs_dostats) {
1154 ++lfs_stats.segsused;
1155 }
1156 }
1157
1158 int
1159 lfs_writeseg(fs, sp)
1160 struct lfs *fs;
1161 struct segment *sp;
1162 {
1163 extern int locked_queue_count;
1164 extern long locked_queue_bytes;
1165 struct buf **bpp, *bp, *cbp;
1166 SEGUSE *sup;
1167 SEGSUM *ssp;
1168 dev_t i_dev;
1169 u_long *datap, *dp;
1170 int do_again, i, nblocks, s;
1171 #ifdef LFS_TRACK_IOS
1172 int j;
1173 #endif
1174 int (*strategy)__P((void *));
1175 struct vop_strategy_args vop_strategy_a;
1176 u_short ninos;
1177 struct vnode *devvp;
1178 char *p;
1179 struct vnode *vn;
1180 struct inode *ip;
1181 #if defined(DEBUG) && defined(LFS_PROPELLER)
1182 static int propeller;
1183 char propstring[4] = "-\\|/";
1184
1185 printf("%c\b",propstring[propeller++]);
1186 if(propeller==4)
1187 propeller = 0;
1188 #endif
1189
1190 /*
1191 * If there are no buffers other than the segment summary to write
1192 * and it is not a checkpoint, don't do anything. On a checkpoint,
1193 * even if there aren't any buffers, you need to write the superblock.
1194 */
1195 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1196 return (0);
1197
1198 #ifdef DEBUG_LFS
1199 lfs_check_bpp(fs,sp,__FILE__,__LINE__);
1200 #endif
1201 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1202 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1203
1204 /* Update the segment usage information. */
1205 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1206
1207 /* Loop through all blocks, except the segment summary. */
1208 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1209 if((*bpp)->b_vp != devvp)
1210 sup->su_nbytes += (*bpp)->b_bcount;
1211 }
1212
1213 ssp = (SEGSUM *)sp->segsum;
1214
1215 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1216 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1217 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1218 sup->su_lastmod = time.tv_sec;
1219 sup->su_ninos += ninos;
1220 ++sup->su_nsums;
1221
1222 do_again = !(bp->b_flags & B_GATHERED);
1223 (void)VOP_BWRITE(bp);
1224 /*
1225 * Compute checksum across data and then across summary; the first
1226 * block (the summary block) is skipped. Set the create time here
1227 * so that it's guaranteed to be later than the inode mod times.
1228 *
1229 * XXX
1230 * Fix this to do it inline, instead of malloc/copy.
1231 */
1232 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1233 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1234 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1235 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1236 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1237 } else {
1238 if( !((*bpp)->b_flags & B_CALL) ) {
1239 /*
1240 * Before we record data for a checksm,
1241 * make sure the data won't change in between
1242 * the checksum calculation and the write,
1243 * by marking the buffer B_BUSY. It will
1244 * be freed later by brelse().
1245 */
1246 again:
1247 s = splbio();
1248 if((*bpp)->b_flags & B_BUSY) {
1249 #ifdef DEBUG
1250 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1251 VTOI((*bpp)->b_vp)->i_number,
1252 bp->b_lblkno);
1253 #endif
1254 (*bpp)->b_flags |= B_WANTED;
1255 tsleep((*bpp), (PRIBIO + 1),
1256 "lfs_writeseg", 0);
1257 splx(s);
1258 goto again;
1259 }
1260 (*bpp)->b_flags |= B_BUSY;
1261 splx(s);
1262 }
1263 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1264 }
1265 }
1266 ssp->ss_create = time.tv_sec;
1267 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1268 ssp->ss_sumsum =
1269 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1270 free(datap, M_SEGMENT);
1271 #ifdef DIAGNOSTIC
1272 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1273 panic("lfs_writeseg: No diskspace for summary");
1274 #endif
1275 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1276
1277 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1278
1279 /*
1280 * When we simply write the blocks we lose a rotation for every block
1281 * written. To avoid this problem, we allocate memory in chunks, copy
1282 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1283 * largest size I/O devices can handle.
1284 * When the data is copied to the chunk, turn off the B_LOCKED bit
1285 * and brelse the buffer (which will move them to the LRU list). Add
1286 * the B_CALL flag to the buffer header so we can count I/O's for the
1287 * checkpoints and so we can release the allocated memory.
1288 *
1289 * XXX
1290 * This should be removed if the new virtual memory system allows us to
1291 * easily make the buffers contiguous in kernel memory and if that's
1292 * fast enough.
1293 */
1294
1295 #define CHUNKSIZE MAXPHYS
1296
1297 if(devvp==NULL)
1298 panic("devvp is NULL");
1299 for (bpp = sp->bpp,i = nblocks; i;) {
1300 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1301 cbp->b_dev = i_dev;
1302 cbp->b_flags |= B_ASYNC | B_BUSY;
1303 cbp->b_bcount = 0;
1304
1305 #ifdef DIAGNOSTIC
1306 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1307 panic("lfs_writeseg: Segment overwrite");
1308 }
1309 #endif
1310
1311 s = splbio();
1312 if(fs->lfs_iocount >= LFS_THROTTLE) {
1313 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1314 }
1315 ++fs->lfs_iocount;
1316 #ifdef LFS_TRACK_IOS
1317 for(j=0;j<LFS_THROTTLE;j++) {
1318 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1319 fs->lfs_pending[j] = cbp->b_blkno;
1320 break;
1321 }
1322 }
1323 #endif /* LFS_TRACK_IOS */
1324 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1325 bp = *bpp;
1326
1327 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1328 break;
1329
1330 /*
1331 * Fake buffers from the cleaner are marked as B_INVAL.
1332 * We need to copy the data from user space rather than
1333 * from the buffer indicated.
1334 * XXX == what do I do on an error?
1335 */
1336 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1337 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1338 panic("lfs_writeseg: copyin failed [2]");
1339 } else
1340 bcopy(bp->b_data, p, bp->b_bcount);
1341 p += bp->b_bcount;
1342 cbp->b_bcount += bp->b_bcount;
1343 if (bp->b_flags & B_LOCKED) {
1344 --locked_queue_count;
1345 locked_queue_bytes -= bp->b_bufsize;
1346 }
1347 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1348 B_LOCKED | B_GATHERED);
1349 vn = bp->b_vp;
1350 if (bp->b_flags & B_CALL) {
1351 /* if B_CALL, it was created with newbuf */
1352 lfs_freebuf(bp);
1353 } else {
1354 bremfree(bp);
1355 bp->b_flags |= B_DONE;
1356 if(vn)
1357 reassignbuf(bp, vn);
1358 brelse(bp);
1359 }
1360 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1361 bp->b_flags &= ~B_NEEDCOMMIT;
1362 wakeup(bp);
1363 }
1364
1365 bpp++;
1366
1367 /*
1368 * If this is the last block for this vnode, but
1369 * there are other blocks on its dirty list,
1370 * set IN_MODIFIED/IN_CLEANING depending on what
1371 * sort of block. Only do this for our mount point,
1372 * not for, e.g., inode blocks that are attached to
1373 * the devvp.
1374 */
1375 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1376 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1377 vn->v_mount == fs->lfs_ivnode->v_mount)
1378 {
1379 ip = VTOI(vn);
1380 #ifdef DEBUG_LFS
1381 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1382 #endif
1383 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1384 fs->lfs_uinodes++;
1385 if(bp->b_flags & B_CALL)
1386 ip->i_flag |= IN_CLEANING;
1387 else
1388 ip->i_flag |= IN_MODIFIED;
1389 }
1390 }
1391 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1392 wakeup(vn);
1393 }
1394 ++cbp->b_vp->v_numoutput;
1395 splx(s);
1396 /*
1397 * XXXX This is a gross and disgusting hack. Since these
1398 * buffers are physically addressed, they hang off the
1399 * device vnode (devvp). As a result, they have no way
1400 * of getting to the LFS superblock or lfs structure to
1401 * keep track of the number of I/O's pending. So, I am
1402 * going to stuff the fs into the saveaddr field of
1403 * the buffer (yuk).
1404 */
1405 cbp->b_saveaddr = (caddr_t)fs;
1406 vop_strategy_a.a_desc = VDESC(vop_strategy);
1407 vop_strategy_a.a_bp = cbp;
1408 (strategy)(&vop_strategy_a);
1409 }
1410 /*
1411 * XXX
1412 * Vinvalbuf can move locked buffers off the locked queue
1413 * and we have no way of knowing about this. So, after
1414 * doing a big write, we recalculate how many buffers are
1415 * really still left on the locked queue.
1416 */
1417 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1418 wakeup(&locked_queue_count);
1419 if(lfs_dostats) {
1420 ++lfs_stats.psegwrites;
1421 lfs_stats.blocktot += nblocks - 1;
1422 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1423 ++lfs_stats.psyncwrites;
1424 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1425 ++lfs_stats.pcleanwrites;
1426 lfs_stats.cleanblocks += nblocks - 1;
1427 }
1428 }
1429 return (lfs_initseg(fs) || do_again);
1430 }
1431
1432 void
1433 lfs_writesuper(fs, daddr)
1434 struct lfs *fs;
1435 daddr_t daddr;
1436 {
1437 struct buf *bp;
1438 dev_t i_dev;
1439 int (*strategy) __P((void *));
1440 int s;
1441 struct vop_strategy_args vop_strategy_a;
1442
1443 #ifdef LFS_CANNOT_ROLLFW
1444 /*
1445 * If we can write one superblock while another is in
1446 * progress, we risk not having a complete checkpoint if we crash.
1447 * So, block here if a superblock write is in progress.
1448 */
1449 s = splbio();
1450 while(fs->lfs_sbactive) {
1451 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1452 }
1453 fs->lfs_sbactive = daddr;
1454 splx(s);
1455 #endif
1456 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1457 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1458
1459 /* Set timestamp of this version of the superblock */
1460 fs->lfs_tstamp = time.tv_sec;
1461
1462 /* Checksum the superblock and copy it into a buffer. */
1463 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1464 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1465 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1466
1467 bp->b_dev = i_dev;
1468 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1469 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1470 bp->b_iodone = lfs_supercallback;
1471 /* XXX KS - same nasty hack as above */
1472 bp->b_saveaddr = (caddr_t)fs;
1473
1474 vop_strategy_a.a_desc = VDESC(vop_strategy);
1475 vop_strategy_a.a_bp = bp;
1476 s = splbio();
1477 ++bp->b_vp->v_numoutput;
1478 splx(s);
1479 (strategy)(&vop_strategy_a);
1480 }
1481
1482 /*
1483 * Logical block number match routines used when traversing the dirty block
1484 * chain.
1485 */
1486 int
1487 lfs_match_fake(fs, bp)
1488 struct lfs *fs;
1489 struct buf *bp;
1490 {
1491 return (bp->b_flags & B_CALL);
1492 }
1493
1494 int
1495 lfs_match_data(fs, bp)
1496 struct lfs *fs;
1497 struct buf *bp;
1498 {
1499 return (bp->b_lblkno >= 0);
1500 }
1501
1502 int
1503 lfs_match_indir(fs, bp)
1504 struct lfs *fs;
1505 struct buf *bp;
1506 {
1507 int lbn;
1508
1509 lbn = bp->b_lblkno;
1510 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1511 }
1512
1513 int
1514 lfs_match_dindir(fs, bp)
1515 struct lfs *fs;
1516 struct buf *bp;
1517 {
1518 int lbn;
1519
1520 lbn = bp->b_lblkno;
1521 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1522 }
1523
1524 int
1525 lfs_match_tindir(fs, bp)
1526 struct lfs *fs;
1527 struct buf *bp;
1528 {
1529 int lbn;
1530
1531 lbn = bp->b_lblkno;
1532 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1533 }
1534
1535 /*
1536 * XXX - The only buffers that are going to hit these functions are the
1537 * segment write blocks, or the segment summaries, or the superblocks.
1538 *
1539 * All of the above are created by lfs_newbuf, and so do not need to be
1540 * released via brelse.
1541 */
1542 void
1543 lfs_callback(bp)
1544 struct buf *bp;
1545 {
1546 struct lfs *fs;
1547 #ifdef LFS_TRACK_IOS
1548 int j;
1549 #endif
1550
1551 fs = (struct lfs *)bp->b_saveaddr;
1552 #ifdef DIAGNOSTIC
1553 if (fs->lfs_iocount == 0)
1554 panic("lfs_callback: zero iocount\n");
1555 #endif
1556 if (--fs->lfs_iocount < LFS_THROTTLE)
1557 wakeup(&fs->lfs_iocount);
1558 #ifdef LFS_TRACK_IOS
1559 for(j=0;j<LFS_THROTTLE;j++) {
1560 if(fs->lfs_pending[j]==bp->b_blkno) {
1561 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1562 wakeup(&(fs->lfs_pending[j]));
1563 break;
1564 }
1565 }
1566 #endif /* LFS_TRACK_IOS */
1567
1568 lfs_freebuf(bp);
1569 }
1570
1571 void
1572 lfs_supercallback(bp)
1573 struct buf *bp;
1574 {
1575 #ifdef LFS_CANNOT_ROLLFW
1576 struct lfs *fs;
1577
1578 fs = (struct lfs *)bp->b_saveaddr;
1579 fs->lfs_sbactive=NULL;
1580 wakeup(&fs->lfs_sbactive);
1581 #endif
1582 lfs_freebuf(bp);
1583 }
1584
1585 /*
1586 * Shellsort (diminishing increment sort) from Data Structures and
1587 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1588 * see also Knuth Vol. 3, page 84. The increments are selected from
1589 * formula (8), page 95. Roughly O(N^3/2).
1590 */
1591 /*
1592 * This is our own private copy of shellsort because we want to sort
1593 * two parallel arrays (the array of buffer pointers and the array of
1594 * logical block numbers) simultaneously. Note that we cast the array
1595 * of logical block numbers to a unsigned in this routine so that the
1596 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1597 */
1598
1599 void
1600 lfs_shellsort(bp_array, lb_array, nmemb)
1601 struct buf **bp_array;
1602 ufs_daddr_t *lb_array;
1603 register int nmemb;
1604 {
1605 static int __rsshell_increments[] = { 4, 1, 0 };
1606 register int incr, *incrp, t1, t2;
1607 struct buf *bp_temp;
1608 u_long lb_temp;
1609
1610 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1611 for (t1 = incr; t1 < nmemb; ++t1)
1612 for (t2 = t1 - incr; t2 >= 0;)
1613 if (lb_array[t2] > lb_array[t2 + incr]) {
1614 lb_temp = lb_array[t2];
1615 lb_array[t2] = lb_array[t2 + incr];
1616 lb_array[t2 + incr] = lb_temp;
1617 bp_temp = bp_array[t2];
1618 bp_array[t2] = bp_array[t2 + incr];
1619 bp_array[t2 + incr] = bp_temp;
1620 t2 -= incr;
1621 } else
1622 break;
1623 }
1624
1625 /*
1626 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1627 */
1628 int
1629 lfs_vref(vp)
1630 register struct vnode *vp;
1631 {
1632 /*
1633 * If we return 1 here during a flush, we risk vinvalbuf() not
1634 * being able to flush all of the pages from this vnode, which
1635 * will cause it to panic. So, return 0 if a flush is in progress.
1636 */
1637 if (vp->v_flag & VXLOCK) {
1638 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1639 return 0;
1640 }
1641 return(1);
1642 }
1643 return (vget(vp, 0));
1644 }
1645
1646 /*
1647 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1648 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1649 */
1650 void
1651 lfs_vunref(vp)
1652 register struct vnode *vp;
1653 {
1654 /*
1655 * Analogous to lfs_vref, if the node is flushing, fake it.
1656 */
1657 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1658 return;
1659 }
1660
1661 simple_lock(&vp->v_interlock);
1662 #ifdef DIAGNOSTIC
1663 if(vp->v_usecount<=0) {
1664 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1665 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1666 panic("lfs_vunref: v_usecount<0");
1667 }
1668 #endif
1669 vp->v_usecount--;
1670 if (vp->v_usecount > 0) {
1671 simple_unlock(&vp->v_interlock);
1672 return;
1673 }
1674 #ifdef DIAGNOSTIC
1675 if(VOP_ISLOCKED(vp))
1676 panic("lfs_vunref: vnode locked");
1677 #endif
1678 /*
1679 * insert at tail of LRU list
1680 */
1681 simple_lock(&vnode_free_list_slock);
1682 if (vp->v_holdcnt > 0)
1683 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1684 else
1685 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1686 simple_unlock(&vnode_free_list_slock);
1687 simple_unlock(&vp->v_interlock);
1688 }
1689
1690 /*
1691 * We use this when we have vnodes that were loaded in solely for cleaning.
1692 * There is no reason to believe that these vnodes will be referenced again
1693 * soon, since the cleaning process is unrelated to normal filesystem
1694 * activity. Putting cleaned vnodes at the tail of the list has the effect
1695 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1696 * cleaning at the head of the list, instead.
1697 */
1698 void
1699 lfs_vunref_head(vp)
1700 register struct vnode *vp;
1701 {
1702 simple_lock(&vp->v_interlock);
1703 #ifdef DIAGNOSTIC
1704 if(vp->v_usecount==0) {
1705 panic("lfs_vunref: v_usecount<0");
1706 }
1707 #endif
1708 vp->v_usecount--;
1709 if (vp->v_usecount > 0) {
1710 simple_unlock(&vp->v_interlock);
1711 return;
1712 }
1713 #ifdef DIAGNOSTIC
1714 if(VOP_ISLOCKED(vp))
1715 panic("lfs_vunref_head: vnode locked");
1716 #endif
1717 /*
1718 * insert at head of LRU list
1719 */
1720 simple_lock(&vnode_free_list_slock);
1721 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1722 simple_unlock(&vnode_free_list_slock);
1723 simple_unlock(&vp->v_interlock);
1724 }
1725
1726