lfs_segment.c revision 1.43 1 /* $NetBSD: lfs_segment.c,v 1.43 2000/05/05 20:59:21 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & IN_MODIFIED) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & IN_MODIFIED)
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346 int needs_unlock;
347
348 #ifndef LFS_NO_BACKVP_HACK
349 /* BEGIN HACK */
350 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
351 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
352 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
353
354 /* Find last vnode. */
355 loop: for (vp = mp->mnt_vnodelist.lh_first;
356 vp && vp->v_mntvnodes.le_next != NULL;
357 vp = vp->v_mntvnodes.le_next);
358 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
359 #else
360 loop:
361 for (vp = mp->mnt_vnodelist.lh_first;
362 vp != NULL;
363 vp = vp->v_mntvnodes.le_next) {
364 #endif
365 /*
366 * If the vnode that we are about to sync is no longer
367 * associated with this mount point, start over.
368 */
369 if (vp->v_mount != mp)
370 goto loop;
371
372 ip = VTOI(vp);
373 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
374 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
375 vndebug(vp,"dirop");
376 continue;
377 }
378
379 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
380 vndebug(vp,"empty");
381 continue;
382 }
383
384 if (vp->v_type == VNON) {
385 continue;
386 }
387
388 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
389 && vp != fs->lfs_flushvp
390 && !(ip->i_flag & IN_CLEANING)) {
391 vndebug(vp,"cleaning");
392 continue;
393 }
394
395 if (lfs_vref(vp)) {
396 vndebug(vp,"vref");
397 continue;
398 }
399
400 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
401 if(WRITEINPROG(vp)) {
402 lfs_vunref(vp);
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/writeinprog");
405 #endif
406 continue;
407 }
408 #endif
409
410 needs_unlock = 0;
411 if(VOP_ISLOCKED(vp)) {
412 if (vp != fs->lfs_ivnode &&
413 vp->v_lock.lk_lockholder != curproc->p_pid) {
414 #ifdef DEBUG_LFS
415 printf("lfs_writevnodes: not writing ino %d, locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 continue;
420 }
421 } else {
422 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
423 needs_unlock = 1;
424 }
425
426 only_cleaning = 0;
427 /*
428 * Write the inode/file if dirty and it's not the
429 * the IFILE.
430 */
431 if ((ip->i_flag &
432 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
433 vp->v_dirtyblkhd.lh_first != NULL))
434 {
435 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
436
437 if(ip->i_number != LFS_IFILE_INUM
438 && vp->v_dirtyblkhd.lh_first != NULL)
439 {
440 lfs_writefile(fs, sp, vp);
441 }
442 if(vp->v_dirtyblkhd.lh_first != NULL) {
443 if(WRITEINPROG(vp)) {
444 #ifdef DEBUG_LFS
445 ivndebug(vp,"writevnodes/write2");
446 #endif
447 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
448 #ifdef DEBUG_LFS
449 printf("<%d>",ip->i_number);
450 #endif
451 ip->i_flag |= IN_MODIFIED;
452 ++fs->lfs_uinodes;
453 }
454 }
455 (void) lfs_writeinode(fs, sp, ip);
456 inodes_written++;
457 }
458
459 if(needs_unlock)
460 VOP_UNLOCK(vp,0);
461
462 if(lfs_clean_vnhead && only_cleaning)
463 lfs_vunref_head(vp);
464 else
465 lfs_vunref(vp);
466 }
467 return inodes_written;
468 }
469
470 int
471 lfs_segwrite(mp, flags)
472 struct mount *mp;
473 int flags; /* Do a checkpoint. */
474 {
475 struct buf *bp;
476 struct inode *ip;
477 struct lfs *fs;
478 struct segment *sp;
479 struct vnode *vp;
480 SEGUSE *segusep;
481 ufs_daddr_t ibno;
482 int do_ckp, error, i;
483 int writer_set = 0;
484 int need_unlock = 0;
485
486 fs = VFSTOUFS(mp)->um_lfs;
487
488 lfs_imtime(fs);
489
490 /*
491 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
492 * clean segments, wait until cleaner writes.
493 */
494 if(!(flags & SEGM_CLEAN)
495 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
496 {
497 do {
498 if (fs->lfs_nclean <= MIN_FREE_SEGS
499 || fs->lfs_avail <= 0)
500 {
501 wakeup(&lfs_allclean_wakeup);
502 wakeup(&fs->lfs_nextseg);
503 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
504 "lfs_avail", 0);
505 if (error) {
506 return (error);
507 }
508 }
509 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
510 }
511
512 /*
513 * Allocate a segment structure and enough space to hold pointers to
514 * the maximum possible number of buffers which can be described in a
515 * single summary block.
516 */
517 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
518 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
519 sp = fs->lfs_sp;
520
521 /*
522 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
523 * in which case we have to flush *all* buffers off of this vnode.
524 * We don't care about other nodes, but write any non-dirop nodes
525 * anyway in anticipation of another getnewvnode().
526 *
527 * If we're cleaning we only write cleaning and ifile blocks, and
528 * no dirops, since otherwise we'd risk corruption in a crash.
529 */
530 if(sp->seg_flags & SEGM_CLEAN)
531 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
532 else {
533 lfs_writevnodes(fs, mp, sp, VN_REG);
534 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
535 while(fs->lfs_dirops)
536 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
537 "lfs writer", 0)))
538 {
539 free(sp->bpp, M_SEGMENT);
540 free(sp, M_SEGMENT);
541 return (error);
542 }
543 fs->lfs_writer++;
544 writer_set=1;
545 lfs_writevnodes(fs, mp, sp, VN_DIROP);
546 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
547 }
548 }
549
550 /*
551 * If we are doing a checkpoint, mark everything since the
552 * last checkpoint as no longer ACTIVE.
553 */
554 if (do_ckp) {
555 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
556 --ibno >= fs->lfs_cleansz; ) {
557 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
558
559 panic("lfs_segwrite: ifile read");
560 segusep = (SEGUSE *)bp->b_data;
561 for (i = fs->lfs_sepb; i--; segusep++)
562 segusep->su_flags &= ~SEGUSE_ACTIVE;
563
564 /* But the current segment is still ACTIVE */
565 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
566 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
567 error = VOP_BWRITE(bp);
568 }
569 }
570
571 if (do_ckp || fs->lfs_doifile) {
572 redo:
573 vp = fs->lfs_ivnode;
574 /*
575 * Depending on the circumstances of our calling, the ifile
576 * inode might be locked. If it is, and if it is locked by
577 * us, we should VREF instead of vget here.
578 */
579 need_unlock = 0;
580 if(VOP_ISLOCKED(vp)
581 && vp->v_lock.lk_lockholder == curproc->p_pid) {
582 VREF(vp);
583 } else {
584 while (vget(vp, LK_EXCLUSIVE))
585 continue;
586 need_unlock = 1;
587 }
588 ip = VTOI(vp);
589 if (vp->v_dirtyblkhd.lh_first != NULL)
590 lfs_writefile(fs, sp, vp);
591 (void)lfs_writeinode(fs, sp, ip);
592
593 /* Only vput if we used vget() above. */
594 if(need_unlock)
595 vput(vp);
596 else
597 vrele(vp);
598
599 if (lfs_writeseg(fs, sp) && do_ckp)
600 goto redo;
601 } else {
602 (void) lfs_writeseg(fs, sp);
603 }
604
605 /*
606 * If the I/O count is non-zero, sleep until it reaches zero.
607 * At the moment, the user's process hangs around so we can
608 * sleep.
609 */
610 fs->lfs_doifile = 0;
611 if(writer_set && --fs->lfs_writer==0)
612 wakeup(&fs->lfs_dirops);
613
614 if(lfs_dostats) {
615 ++lfs_stats.nwrites;
616 if (sp->seg_flags & SEGM_SYNC)
617 ++lfs_stats.nsync_writes;
618 if (sp->seg_flags & SEGM_CKP)
619 ++lfs_stats.ncheckpoints;
620 }
621 lfs_segunlock(fs);
622 return (0);
623 }
624
625 /*
626 * Write the dirty blocks associated with a vnode.
627 */
628 void
629 lfs_writefile(fs, sp, vp)
630 struct lfs *fs;
631 struct segment *sp;
632 struct vnode *vp;
633 {
634 struct buf *bp;
635 struct finfo *fip;
636 IFILE *ifp;
637
638
639 if (sp->seg_bytes_left < fs->lfs_bsize ||
640 sp->sum_bytes_left < sizeof(struct finfo))
641 (void) lfs_writeseg(fs, sp);
642
643 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
644 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
645
646 if(vp->v_flag & VDIROP)
647 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
648
649 fip = sp->fip;
650 fip->fi_nblocks = 0;
651 fip->fi_ino = VTOI(vp)->i_number;
652 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
653 fip->fi_version = ifp->if_version;
654 brelse(bp);
655
656 if(sp->seg_flags & SEGM_CLEAN)
657 {
658 lfs_gather(fs, sp, vp, lfs_match_fake);
659 /*
660 * For a file being flushed, we need to write *all* blocks.
661 * This means writing the cleaning blocks first, and then
662 * immediately following with any non-cleaning blocks.
663 * The same is true of the Ifile since checkpoints assume
664 * that all valid Ifile blocks are written.
665 */
666 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
667 lfs_gather(fs, sp, vp, lfs_match_data);
668 } else
669 lfs_gather(fs, sp, vp, lfs_match_data);
670
671 /*
672 * It may not be necessary to write the meta-data blocks at this point,
673 * as the roll-forward recovery code should be able to reconstruct the
674 * list.
675 *
676 * We have to write them anyway, though, under two conditions: (1) the
677 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
678 * checkpointing.
679 */
680 if(lfs_writeindir
681 || IS_FLUSHING(fs,vp)
682 || (sp->seg_flags & SEGM_CKP))
683 {
684 lfs_gather(fs, sp, vp, lfs_match_indir);
685 lfs_gather(fs, sp, vp, lfs_match_dindir);
686 lfs_gather(fs, sp, vp, lfs_match_tindir);
687 }
688 fip = sp->fip;
689 if (fip->fi_nblocks != 0) {
690 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
691 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
692 sp->start_lbp = &sp->fip->fi_blocks[0];
693 } else {
694 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
695 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
696 }
697 }
698
699 int
700 lfs_writeinode(fs, sp, ip)
701 struct lfs *fs;
702 struct segment *sp;
703 struct inode *ip;
704 {
705 struct buf *bp, *ibp;
706 IFILE *ifp;
707 SEGUSE *sup;
708 ufs_daddr_t daddr;
709 ino_t ino;
710 int error, i, ndx;
711 int redo_ifile = 0;
712 struct timespec ts;
713 int gotblk=0;
714
715 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
716 return(0);
717
718 /* Allocate a new inode block if necessary. */
719 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
720 /* Allocate a new segment if necessary. */
721 if (sp->seg_bytes_left < fs->lfs_bsize ||
722 sp->sum_bytes_left < sizeof(ufs_daddr_t))
723 (void) lfs_writeseg(fs, sp);
724
725 /* Get next inode block. */
726 daddr = fs->lfs_offset;
727 fs->lfs_offset += fsbtodb(fs, 1);
728 sp->ibp = *sp->cbpp++ =
729 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
730 gotblk++;
731
732 /* Zero out inode numbers */
733 for (i = 0; i < INOPB(fs); ++i)
734 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
735
736 ++sp->start_bpp;
737 fs->lfs_avail -= fsbtodb(fs, 1);
738 /* Set remaining space counters. */
739 sp->seg_bytes_left -= fs->lfs_bsize;
740 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
741 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
742 sp->ninodes / INOPB(fs) - 1;
743 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
744 }
745
746 /* Update the inode times and copy the inode onto the inode page. */
747 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
748 --fs->lfs_uinodes;
749 TIMEVAL_TO_TIMESPEC(&time, &ts);
750 LFS_ITIMES(ip, &ts, &ts, &ts);
751
752 if(ip->i_flag & IN_CLEANING)
753 ip->i_flag &= ~IN_CLEANING;
754 else
755 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
756
757 /*
758 * If this is the Ifile, and we've already written the Ifile in this
759 * partial segment, just overwrite it (it's not on disk yet) and
760 * continue.
761 *
762 * XXX we know that the bp that we get the second time around has
763 * already been gathered.
764 */
765 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
766 *(sp->idp) = ip->i_din.ffs_din;
767 return 0;
768 }
769
770 bp = sp->ibp;
771 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
772 ip->i_din.ffs_din;
773
774 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
775 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
776 if(gotblk) {
777 bp->b_flags |= B_LOCKED;
778 brelse(bp);
779 }
780
781 /* Increment inode count in segment summary block. */
782 ++((SEGSUM *)(sp->segsum))->ss_ninos;
783
784 /* If this page is full, set flag to allocate a new page. */
785 if (++sp->ninodes % INOPB(fs) == 0)
786 sp->ibp = NULL;
787
788 /*
789 * If updating the ifile, update the super-block. Update the disk
790 * address and access times for this inode in the ifile.
791 */
792 ino = ip->i_number;
793 if (ino == LFS_IFILE_INUM) {
794 daddr = fs->lfs_idaddr;
795 fs->lfs_idaddr = bp->b_blkno;
796 } else {
797 LFS_IENTRY(ifp, fs, ino, ibp);
798 daddr = ifp->if_daddr;
799 ifp->if_daddr = bp->b_blkno;
800 #ifdef LFS_DEBUG_NEXTFREE
801 if(ino > 3 && ifp->if_nextfree) {
802 vprint("lfs_writeinode",ITOV(ip));
803 printf("lfs_writeinode: updating free ino %d\n",
804 ip->i_number);
805 }
806 #endif
807 error = VOP_BWRITE(ibp);
808 }
809
810 /*
811 * No need to update segment usage if there was no former inode address
812 * or if the last inode address is in the current partial segment.
813 */
814 if (daddr != LFS_UNUSED_DADDR &&
815 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
816 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
817 #ifdef DIAGNOSTIC
818 if (sup->su_nbytes < DINODE_SIZE) {
819 /* XXX -- Change to a panic. */
820 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
821 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
822 panic("lfs_writeinode: negative bytes");
823 sup->su_nbytes = DINODE_SIZE;
824 }
825 #endif
826 sup->su_nbytes -= DINODE_SIZE;
827 redo_ifile =
828 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
829 error = VOP_BWRITE(bp);
830 }
831 return (redo_ifile);
832 }
833
834 int
835 lfs_gatherblock(sp, bp, sptr)
836 struct segment *sp;
837 struct buf *bp;
838 int *sptr;
839 {
840 struct lfs *fs;
841 int version;
842
843 /*
844 * If full, finish this segment. We may be doing I/O, so
845 * release and reacquire the splbio().
846 */
847 #ifdef DIAGNOSTIC
848 if (sp->vp == NULL)
849 panic ("lfs_gatherblock: Null vp in segment");
850 #endif
851 fs = sp->fs;
852 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
853 sp->seg_bytes_left < bp->b_bcount) {
854 if (sptr)
855 splx(*sptr);
856 lfs_updatemeta(sp);
857
858 version = sp->fip->fi_version;
859 (void) lfs_writeseg(fs, sp);
860
861 sp->fip->fi_version = version;
862 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
863 /* Add the current file to the segment summary. */
864 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
865 sp->sum_bytes_left -=
866 sizeof(struct finfo) - sizeof(ufs_daddr_t);
867
868 if (sptr)
869 *sptr = splbio();
870 return(1);
871 }
872
873 #ifdef DEBUG
874 if(bp->b_flags & B_GATHERED) {
875 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
876 sp->fip->fi_ino, bp->b_lblkno);
877 return(0);
878 }
879 #endif
880 /* Insert into the buffer list, update the FINFO block. */
881 bp->b_flags |= B_GATHERED;
882 *sp->cbpp++ = bp;
883 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
884
885 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
886 sp->seg_bytes_left -= bp->b_bcount;
887 return(0);
888 }
889
890 int
891 lfs_gather(fs, sp, vp, match)
892 struct lfs *fs;
893 struct segment *sp;
894 struct vnode *vp;
895 int (*match) __P((struct lfs *, struct buf *));
896 {
897 struct buf *bp;
898 int s, count=0;
899
900 sp->vp = vp;
901 s = splbio();
902
903 #ifndef LFS_NO_BACKBUF_HACK
904 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
905 #else /* LFS_NO_BACKBUF_HACK */
906 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
907 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
908 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
909 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
910 /* Find last buffer. */
911 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
912 bp = bp->b_vnbufs.le_next);
913 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
914 #endif /* LFS_NO_BACKBUF_HACK */
915 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
916 continue;
917 if(vp->v_type == VBLK) {
918 /* For block devices, just write the blocks. */
919 /* XXX Do we really need to even do this? */
920 #ifdef DEBUG_LFS
921 if(count==0)
922 printf("BLK(");
923 printf(".");
924 #endif
925 /* Get the block before bwrite, so we don't corrupt the free list */
926 bp->b_flags |= B_BUSY;
927 bremfree(bp);
928 bwrite(bp);
929 } else {
930 #ifdef DIAGNOSTIC
931 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
932 printf("lfs_gather: lbn %d is B_INVAL\n",
933 bp->b_lblkno);
934 VOP_PRINT(bp->b_vp);
935 }
936 if (!(bp->b_flags & B_DELWRI))
937 panic("lfs_gather: bp not B_DELWRI");
938 if (!(bp->b_flags & B_LOCKED)) {
939 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
940 VOP_PRINT(bp->b_vp);
941 panic("lfs_gather: bp not B_LOCKED");
942 }
943 #endif
944 if (lfs_gatherblock(sp, bp, &s)) {
945 goto loop;
946 }
947 }
948 count++;
949 }
950 splx(s);
951 #ifdef DEBUG_LFS
952 if(vp->v_type == VBLK && count)
953 printf(")\n");
954 #endif
955 lfs_updatemeta(sp);
956 sp->vp = NULL;
957 return count;
958 }
959
960 /*
961 * Update the metadata that points to the blocks listed in the FINFO
962 * array.
963 */
964 void
965 lfs_updatemeta(sp)
966 struct segment *sp;
967 {
968 SEGUSE *sup;
969 struct buf *bp, *ibp;
970 struct lfs *fs;
971 struct vnode *vp;
972 struct indir a[NIADDR + 2], *ap;
973 struct inode *ip;
974 ufs_daddr_t daddr, lbn, off;
975 daddr_t ooff;
976 int error, i, nblocks, num;
977
978 vp = sp->vp;
979 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
980 if (nblocks < 0)
981 panic("This is a bad thing\n");
982 if (vp == NULL || nblocks == 0)
983 return;
984
985 /* Sort the blocks. */
986 /*
987 * XXX KS - We have to sort even if the blocks come from the
988 * cleaner, because there might be other pending blocks on the
989 * same inode...and if we don't sort, and there are fragments
990 * present, blocks may be written in the wrong place.
991 */
992 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
993 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
994
995 /*
996 * Record the length of the last block in case it's a fragment.
997 * If there are indirect blocks present, they sort last. An
998 * indirect block will be lfs_bsize and its presence indicates
999 * that you cannot have fragments.
1000 */
1001 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1002
1003 /*
1004 * Assign disk addresses, and update references to the logical
1005 * block and the segment usage information.
1006 */
1007 fs = sp->fs;
1008 for (i = nblocks; i--; ++sp->start_bpp) {
1009 lbn = *sp->start_lbp++;
1010
1011 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1012 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1013 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
1014 }
1015 fs->lfs_offset +=
1016 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1017 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1018 if (error)
1019 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1020 ip = VTOI(vp);
1021 switch (num) {
1022 case 0:
1023 ooff = ip->i_ffs_db[lbn];
1024 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1025 #ifdef DEBUG_LFS
1026 printf("lfs_updatemeta[1]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1027 #else
1028 ;
1029 #endif
1030 } else
1031 ip->i_ffs_db[lbn] = off;
1032 break;
1033 case 1:
1034 ooff = ip->i_ffs_ib[a[0].in_off];
1035 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1036 #ifdef DEBUG_LFS
1037 printf("lfs_updatemeta[2]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1038 #else
1039 ;
1040 #endif
1041 } else
1042 ip->i_ffs_ib[a[0].in_off] = off;
1043 break;
1044 default:
1045 ap = &a[num - 1];
1046 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1047 panic("lfs_updatemeta: bread bno %d",
1048 ap->in_lbn);
1049 /*
1050 * Bread may create a new (indirect) block which needs
1051 * to get counted for the inode.
1052 *
1053 * XXX - why would it ever do this (except possibly
1054 * for the Ifile)? lfs_balloc is supposed to take
1055 * care of this.
1056 */
1057 if (bp->b_blkno == UNASSIGNED) {
1058 ip->i_ffs_blocks += fsbtodb(fs, 1);
1059 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1060
1061 /* Note the new address */
1062 bp->b_blkno = UNWRITTEN;
1063
1064 if(num == 2) {
1065 ip->i_ffs_ib[a[0].in_off] = UNWRITTEN;
1066 } else {
1067 ap = &a[num - 2];
1068 if (bread(vp, ap->in_lbn,
1069 fs->lfs_bsize, NOCRED, &ibp))
1070 panic("lfs_updatemeta: bread bno %d",
1071 ap->in_lbn);
1072 ((ufs_daddr_t *)ibp->b_data)[ap->in_off] = UNWRITTEN;
1073 VOP_BWRITE(ibp);
1074 }
1075 }
1076 #ifdef DEBUG
1077 else if(!(bp->b_flags & (B_DONE|B_DELWRI)))
1078 printf("lfs_updatemeta: unaccounted indirect block ino %d block %d\n", ip->i_number, ap->in_lbn);
1079 #endif
1080 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1081 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1082 #ifdef DEBUG_LFS
1083 printf("lfs_updatemeta[3]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1084 #else
1085 ;
1086 #endif
1087 brelse(bp);
1088 } else {
1089 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1090 VOP_BWRITE(bp);
1091 }
1092 }
1093 /* Update segment usage information. */
1094 if (daddr > 0 && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1095 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1096 #ifdef DIAGNOSTIC
1097 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1098 /* XXX -- Change to a panic. */
1099 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1100 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1101 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1102 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1103 panic("lfs_updatemeta: negative bytes");
1104 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1105 }
1106 #endif
1107 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1108 error = VOP_BWRITE(bp);
1109 }
1110 }
1111 }
1112
1113 /*
1114 * Start a new segment.
1115 */
1116 int
1117 lfs_initseg(fs)
1118 struct lfs *fs;
1119 {
1120 struct segment *sp;
1121 SEGUSE *sup;
1122 SEGSUM *ssp;
1123 struct buf *bp;
1124 int repeat;
1125
1126 sp = fs->lfs_sp;
1127
1128 repeat = 0;
1129 /* Advance to the next segment. */
1130 if (!LFS_PARTIAL_FITS(fs)) {
1131 /* Wake up any cleaning procs waiting on this file system. */
1132 wakeup(&lfs_allclean_wakeup);
1133 wakeup(&fs->lfs_nextseg);
1134 lfs_newseg(fs);
1135 repeat = 1;
1136 fs->lfs_offset = fs->lfs_curseg;
1137 sp->seg_number = datosn(fs, fs->lfs_curseg);
1138 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1139 /*
1140 * If the segment contains a superblock, update the offset
1141 * and summary address to skip over it.
1142 */
1143 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1144 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1145 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1146 sp->seg_bytes_left -= LFS_SBPAD;
1147 }
1148 brelse(bp);
1149 } else {
1150 sp->seg_number = datosn(fs, fs->lfs_curseg);
1151 sp->seg_bytes_left = (fs->lfs_dbpseg -
1152 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1153 }
1154 fs->lfs_lastpseg = fs->lfs_offset;
1155
1156 sp->fs = fs;
1157 sp->ibp = NULL;
1158 sp->idp = NULL;
1159 sp->ninodes = 0;
1160
1161 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1162 sp->cbpp = sp->bpp;
1163 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1164 fs->lfs_offset, LFS_SUMMARY_SIZE);
1165 sp->segsum = (*sp->cbpp)->b_data;
1166 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1167 sp->start_bpp = ++sp->cbpp;
1168 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1169
1170 /* Set point to SEGSUM, initialize it. */
1171 ssp = sp->segsum;
1172 ssp->ss_next = fs->lfs_nextseg;
1173 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1174 ssp->ss_magic = SS_MAGIC;
1175
1176 /* Set pointer to first FINFO, initialize it. */
1177 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1178 sp->fip->fi_nblocks = 0;
1179 sp->start_lbp = &sp->fip->fi_blocks[0];
1180 sp->fip->fi_lastlength = 0;
1181
1182 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1183 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1184
1185 return(repeat);
1186 }
1187
1188 /*
1189 * Return the next segment to write.
1190 */
1191 void
1192 lfs_newseg(fs)
1193 struct lfs *fs;
1194 {
1195 CLEANERINFO *cip;
1196 SEGUSE *sup;
1197 struct buf *bp;
1198 int curseg, isdirty, sn;
1199
1200 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1201 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1202 sup->su_nbytes = 0;
1203 sup->su_nsums = 0;
1204 sup->su_ninos = 0;
1205 (void) VOP_BWRITE(bp);
1206
1207 LFS_CLEANERINFO(cip, fs, bp);
1208 --cip->clean;
1209 ++cip->dirty;
1210 fs->lfs_nclean = cip->clean;
1211 (void) VOP_BWRITE(bp);
1212
1213 fs->lfs_lastseg = fs->lfs_curseg;
1214 fs->lfs_curseg = fs->lfs_nextseg;
1215 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1216 sn = (sn + 1) % fs->lfs_nseg;
1217 if (sn == curseg)
1218 panic("lfs_nextseg: no clean segments");
1219 LFS_SEGENTRY(sup, fs, sn, bp);
1220 isdirty = sup->su_flags & SEGUSE_DIRTY;
1221 brelse(bp);
1222 if (!isdirty)
1223 break;
1224 }
1225
1226 ++fs->lfs_nactive;
1227 fs->lfs_nextseg = sntoda(fs, sn);
1228 if(lfs_dostats) {
1229 ++lfs_stats.segsused;
1230 }
1231 }
1232
1233 int
1234 lfs_writeseg(fs, sp)
1235 struct lfs *fs;
1236 struct segment *sp;
1237 {
1238 extern int locked_queue_count;
1239 extern long locked_queue_bytes;
1240 struct buf **bpp, *bp, *cbp;
1241 SEGUSE *sup;
1242 SEGSUM *ssp;
1243 dev_t i_dev;
1244 u_long *datap, *dp;
1245 int do_again, i, nblocks, s;
1246 #ifdef LFS_TRACK_IOS
1247 int j;
1248 #endif
1249 int (*strategy)__P((void *));
1250 struct vop_strategy_args vop_strategy_a;
1251 u_short ninos;
1252 struct vnode *devvp;
1253 char *p;
1254 struct vnode *vn;
1255 struct inode *ip;
1256 #if defined(DEBUG) && defined(LFS_PROPELLER)
1257 static int propeller;
1258 char propstring[4] = "-\\|/";
1259
1260 printf("%c\b",propstring[propeller++]);
1261 if(propeller==4)
1262 propeller = 0;
1263 #endif
1264
1265 /*
1266 * If there are no buffers other than the segment summary to write
1267 * and it is not a checkpoint, don't do anything. On a checkpoint,
1268 * even if there aren't any buffers, you need to write the superblock.
1269 */
1270 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1271 return (0);
1272
1273 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1274 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1275
1276 /* Update the segment usage information. */
1277 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1278
1279 /* Loop through all blocks, except the segment summary. */
1280 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1281 if((*bpp)->b_vp != devvp)
1282 sup->su_nbytes += (*bpp)->b_bcount;
1283 }
1284
1285 ssp = (SEGSUM *)sp->segsum;
1286
1287 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1288 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1289 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1290 sup->su_lastmod = time.tv_sec;
1291 sup->su_ninos += ninos;
1292 ++sup->su_nsums;
1293
1294 do_again = !(bp->b_flags & B_GATHERED);
1295 (void)VOP_BWRITE(bp);
1296 /*
1297 * Compute checksum across data and then across summary; the first
1298 * block (the summary block) is skipped. Set the create time here
1299 * so that it's guaranteed to be later than the inode mod times.
1300 *
1301 * XXX
1302 * Fix this to do it inline, instead of malloc/copy.
1303 */
1304 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1305 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1306 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1307 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1308 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1309 } else {
1310 if( !((*bpp)->b_flags & B_CALL) ) {
1311 /*
1312 * Before we record data for a checksm,
1313 * make sure the data won't change in between
1314 * the checksum calculation and the write,
1315 * by marking the buffer B_BUSY. It will
1316 * be freed later by brelse().
1317 */
1318 again:
1319 s = splbio();
1320 if((*bpp)->b_flags & B_BUSY) {
1321 #ifdef DEBUG
1322 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1323 VTOI((*bpp)->b_vp)->i_number,
1324 bp->b_lblkno);
1325 #endif
1326 (*bpp)->b_flags |= B_WANTED;
1327 tsleep((*bpp), (PRIBIO + 1),
1328 "lfs_writeseg", 0);
1329 splx(s);
1330 goto again;
1331 }
1332 (*bpp)->b_flags |= B_BUSY;
1333 splx(s);
1334 }
1335 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1336 }
1337 }
1338 ssp->ss_create = time.tv_sec;
1339 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1340 ssp->ss_sumsum =
1341 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1342 free(datap, M_SEGMENT);
1343 #ifdef DIAGNOSTIC
1344 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1345 panic("lfs_writeseg: No diskspace for summary");
1346 #endif
1347 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1348
1349 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1350
1351 /*
1352 * When we simply write the blocks we lose a rotation for every block
1353 * written. To avoid this problem, we allocate memory in chunks, copy
1354 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1355 * largest size I/O devices can handle.
1356 * When the data is copied to the chunk, turn off the B_LOCKED bit
1357 * and brelse the buffer (which will move them to the LRU list). Add
1358 * the B_CALL flag to the buffer header so we can count I/O's for the
1359 * checkpoints and so we can release the allocated memory.
1360 *
1361 * XXX
1362 * This should be removed if the new virtual memory system allows us to
1363 * easily make the buffers contiguous in kernel memory and if that's
1364 * fast enough.
1365 */
1366
1367 #define CHUNKSIZE MAXPHYS
1368
1369 if(devvp==NULL)
1370 panic("devvp is NULL");
1371 for (bpp = sp->bpp,i = nblocks; i;) {
1372 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1373 cbp->b_dev = i_dev;
1374 cbp->b_flags |= B_ASYNC | B_BUSY;
1375 cbp->b_bcount = 0;
1376
1377 #ifdef DIAGNOSTIC
1378 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1379 panic("lfs_writeseg: Segment overwrite");
1380 }
1381 #endif
1382
1383 s = splbio();
1384 if(fs->lfs_iocount >= LFS_THROTTLE) {
1385 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1386 }
1387 ++fs->lfs_iocount;
1388 #ifdef LFS_TRACK_IOS
1389 for(j=0;j<LFS_THROTTLE;j++) {
1390 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1391 fs->lfs_pending[j] = cbp->b_blkno;
1392 break;
1393 }
1394 }
1395 #endif /* LFS_TRACK_IOS */
1396 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1397 bp = *bpp;
1398
1399 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1400 break;
1401
1402 /*
1403 * Fake buffers from the cleaner are marked as B_INVAL.
1404 * We need to copy the data from user space rather than
1405 * from the buffer indicated.
1406 * XXX == what do I do on an error?
1407 */
1408 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1409 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1410 panic("lfs_writeseg: copyin failed [2]");
1411 } else
1412 bcopy(bp->b_data, p, bp->b_bcount);
1413 p += bp->b_bcount;
1414 cbp->b_bcount += bp->b_bcount;
1415 if (bp->b_flags & B_LOCKED) {
1416 --locked_queue_count;
1417 locked_queue_bytes -= bp->b_bufsize;
1418 }
1419 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1420 B_LOCKED | B_GATHERED);
1421 vn = bp->b_vp;
1422 if (bp->b_flags & B_CALL) {
1423 /* if B_CALL, it was created with newbuf */
1424 lfs_freebuf(bp);
1425 } else {
1426 bremfree(bp);
1427 bp->b_flags |= B_DONE;
1428 if(vn)
1429 reassignbuf(bp, vn);
1430 brelse(bp);
1431 }
1432 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1433 bp->b_flags &= ~B_NEEDCOMMIT;
1434 wakeup(bp);
1435 }
1436
1437 bpp++;
1438
1439 /*
1440 * If this is the last block for this vnode, but
1441 * there are other blocks on its dirty list,
1442 * set IN_MODIFIED/IN_CLEANING depending on what
1443 * sort of block. Only do this for our mount point,
1444 * not for, e.g., inode blocks that are attached to
1445 * the devvp.
1446 */
1447 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1448 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1449 vn->v_mount == fs->lfs_ivnode->v_mount)
1450 {
1451 ip = VTOI(vn);
1452 #ifdef DEBUG_LFS
1453 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1454 #endif
1455 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1456 fs->lfs_uinodes++;
1457 if(bp->b_flags & B_CALL)
1458 ip->i_flag |= IN_CLEANING;
1459 else
1460 ip->i_flag |= IN_MODIFIED;
1461 }
1462 }
1463 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1464 wakeup(vn);
1465 }
1466 ++cbp->b_vp->v_numoutput;
1467 splx(s);
1468 /*
1469 * XXXX This is a gross and disgusting hack. Since these
1470 * buffers are physically addressed, they hang off the
1471 * device vnode (devvp). As a result, they have no way
1472 * of getting to the LFS superblock or lfs structure to
1473 * keep track of the number of I/O's pending. So, I am
1474 * going to stuff the fs into the saveaddr field of
1475 * the buffer (yuk).
1476 */
1477 cbp->b_saveaddr = (caddr_t)fs;
1478 vop_strategy_a.a_desc = VDESC(vop_strategy);
1479 vop_strategy_a.a_bp = cbp;
1480 (strategy)(&vop_strategy_a);
1481 }
1482 /*
1483 * XXX
1484 * Vinvalbuf can move locked buffers off the locked queue
1485 * and we have no way of knowing about this. So, after
1486 * doing a big write, we recalculate how many buffers are
1487 * really still left on the locked queue.
1488 */
1489 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1490 wakeup(&locked_queue_count);
1491 if(lfs_dostats) {
1492 ++lfs_stats.psegwrites;
1493 lfs_stats.blocktot += nblocks - 1;
1494 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1495 ++lfs_stats.psyncwrites;
1496 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1497 ++lfs_stats.pcleanwrites;
1498 lfs_stats.cleanblocks += nblocks - 1;
1499 }
1500 }
1501 return (lfs_initseg(fs) || do_again);
1502 }
1503
1504 void
1505 lfs_writesuper(fs, daddr)
1506 struct lfs *fs;
1507 daddr_t daddr;
1508 {
1509 struct buf *bp;
1510 dev_t i_dev;
1511 int (*strategy) __P((void *));
1512 int s;
1513 struct vop_strategy_args vop_strategy_a;
1514
1515 #ifdef LFS_CANNOT_ROLLFW
1516 /*
1517 * If we can write one superblock while another is in
1518 * progress, we risk not having a complete checkpoint if we crash.
1519 * So, block here if a superblock write is in progress.
1520 */
1521 s = splbio();
1522 while(fs->lfs_sbactive) {
1523 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1524 }
1525 fs->lfs_sbactive = daddr;
1526 splx(s);
1527 #endif
1528 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1529 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1530
1531 /* Set timestamp of this version of the superblock */
1532 fs->lfs_tstamp = time.tv_sec;
1533
1534 /* Checksum the superblock and copy it into a buffer. */
1535 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1536 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1537 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1538
1539 bp->b_dev = i_dev;
1540 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1541 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1542 bp->b_iodone = lfs_supercallback;
1543 /* XXX KS - same nasty hack as above */
1544 bp->b_saveaddr = (caddr_t)fs;
1545
1546 vop_strategy_a.a_desc = VDESC(vop_strategy);
1547 vop_strategy_a.a_bp = bp;
1548 s = splbio();
1549 ++bp->b_vp->v_numoutput;
1550 splx(s);
1551 (strategy)(&vop_strategy_a);
1552 }
1553
1554 /*
1555 * Logical block number match routines used when traversing the dirty block
1556 * chain.
1557 */
1558 int
1559 lfs_match_fake(fs, bp)
1560 struct lfs *fs;
1561 struct buf *bp;
1562 {
1563 return (bp->b_flags & B_CALL);
1564 }
1565
1566 int
1567 lfs_match_data(fs, bp)
1568 struct lfs *fs;
1569 struct buf *bp;
1570 {
1571 return (bp->b_lblkno >= 0);
1572 }
1573
1574 int
1575 lfs_match_indir(fs, bp)
1576 struct lfs *fs;
1577 struct buf *bp;
1578 {
1579 int lbn;
1580
1581 lbn = bp->b_lblkno;
1582 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1583 }
1584
1585 int
1586 lfs_match_dindir(fs, bp)
1587 struct lfs *fs;
1588 struct buf *bp;
1589 {
1590 int lbn;
1591
1592 lbn = bp->b_lblkno;
1593 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1594 }
1595
1596 int
1597 lfs_match_tindir(fs, bp)
1598 struct lfs *fs;
1599 struct buf *bp;
1600 {
1601 int lbn;
1602
1603 lbn = bp->b_lblkno;
1604 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1605 }
1606
1607 /*
1608 * XXX - The only buffers that are going to hit these functions are the
1609 * segment write blocks, or the segment summaries, or the superblocks.
1610 *
1611 * All of the above are created by lfs_newbuf, and so do not need to be
1612 * released via brelse.
1613 */
1614 void
1615 lfs_callback(bp)
1616 struct buf *bp;
1617 {
1618 struct lfs *fs;
1619 #ifdef LFS_TRACK_IOS
1620 int j;
1621 #endif
1622
1623 fs = (struct lfs *)bp->b_saveaddr;
1624 #ifdef DIAGNOSTIC
1625 if (fs->lfs_iocount == 0)
1626 panic("lfs_callback: zero iocount\n");
1627 #endif
1628 if (--fs->lfs_iocount < LFS_THROTTLE)
1629 wakeup(&fs->lfs_iocount);
1630 #ifdef LFS_TRACK_IOS
1631 for(j=0;j<LFS_THROTTLE;j++) {
1632 if(fs->lfs_pending[j]==bp->b_blkno) {
1633 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1634 wakeup(&(fs->lfs_pending[j]));
1635 break;
1636 }
1637 }
1638 #endif /* LFS_TRACK_IOS */
1639
1640 lfs_freebuf(bp);
1641 }
1642
1643 void
1644 lfs_supercallback(bp)
1645 struct buf *bp;
1646 {
1647 #ifdef LFS_CANNOT_ROLLFW
1648 struct lfs *fs;
1649
1650 fs = (struct lfs *)bp->b_saveaddr;
1651 fs->lfs_sbactive=NULL;
1652 wakeup(&fs->lfs_sbactive);
1653 #endif
1654 lfs_freebuf(bp);
1655 }
1656
1657 /*
1658 * Shellsort (diminishing increment sort) from Data Structures and
1659 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1660 * see also Knuth Vol. 3, page 84. The increments are selected from
1661 * formula (8), page 95. Roughly O(N^3/2).
1662 */
1663 /*
1664 * This is our own private copy of shellsort because we want to sort
1665 * two parallel arrays (the array of buffer pointers and the array of
1666 * logical block numbers) simultaneously. Note that we cast the array
1667 * of logical block numbers to a unsigned in this routine so that the
1668 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1669 */
1670
1671 void
1672 lfs_shellsort(bp_array, lb_array, nmemb)
1673 struct buf **bp_array;
1674 ufs_daddr_t *lb_array;
1675 int nmemb;
1676 {
1677 static int __rsshell_increments[] = { 4, 1, 0 };
1678 int incr, *incrp, t1, t2;
1679 struct buf *bp_temp;
1680 u_long lb_temp;
1681
1682 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1683 for (t1 = incr; t1 < nmemb; ++t1)
1684 for (t2 = t1 - incr; t2 >= 0;)
1685 if (lb_array[t2] > lb_array[t2 + incr]) {
1686 lb_temp = lb_array[t2];
1687 lb_array[t2] = lb_array[t2 + incr];
1688 lb_array[t2 + incr] = lb_temp;
1689 bp_temp = bp_array[t2];
1690 bp_array[t2] = bp_array[t2 + incr];
1691 bp_array[t2 + incr] = bp_temp;
1692 t2 -= incr;
1693 } else
1694 break;
1695 }
1696
1697 /*
1698 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1699 */
1700 int
1701 lfs_vref(vp)
1702 struct vnode *vp;
1703 {
1704 /*
1705 * If we return 1 here during a flush, we risk vinvalbuf() not
1706 * being able to flush all of the pages from this vnode, which
1707 * will cause it to panic. So, return 0 if a flush is in progress.
1708 */
1709 if (vp->v_flag & VXLOCK) {
1710 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1711 return 0;
1712 }
1713 return(1);
1714 }
1715 return (vget(vp, 0));
1716 }
1717
1718 /*
1719 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1720 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1721 */
1722 void
1723 lfs_vunref(vp)
1724 struct vnode *vp;
1725 {
1726 /*
1727 * Analogous to lfs_vref, if the node is flushing, fake it.
1728 */
1729 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1730 return;
1731 }
1732
1733 simple_lock(&vp->v_interlock);
1734 #ifdef DIAGNOSTIC
1735 if(vp->v_usecount<=0) {
1736 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1737 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1738 panic("lfs_vunref: v_usecount<0");
1739 }
1740 #endif
1741 vp->v_usecount--;
1742 if (vp->v_usecount > 0) {
1743 simple_unlock(&vp->v_interlock);
1744 return;
1745 }
1746 #ifdef DIAGNOSTIC
1747 if(VOP_ISLOCKED(vp))
1748 panic("lfs_vunref: vnode locked");
1749 #endif
1750 /*
1751 * insert at tail of LRU list
1752 */
1753 simple_lock(&vnode_free_list_slock);
1754 if (vp->v_holdcnt > 0)
1755 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1756 else
1757 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1758 simple_unlock(&vnode_free_list_slock);
1759 simple_unlock(&vp->v_interlock);
1760 }
1761
1762 /*
1763 * We use this when we have vnodes that were loaded in solely for cleaning.
1764 * There is no reason to believe that these vnodes will be referenced again
1765 * soon, since the cleaning process is unrelated to normal filesystem
1766 * activity. Putting cleaned vnodes at the tail of the list has the effect
1767 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1768 * cleaning at the head of the list, instead.
1769 */
1770 void
1771 lfs_vunref_head(vp)
1772 struct vnode *vp;
1773 {
1774 simple_lock(&vp->v_interlock);
1775 #ifdef DIAGNOSTIC
1776 if(vp->v_usecount==0) {
1777 panic("lfs_vunref: v_usecount<0");
1778 }
1779 #endif
1780 vp->v_usecount--;
1781 if (vp->v_usecount > 0) {
1782 simple_unlock(&vp->v_interlock);
1783 return;
1784 }
1785 #ifdef DIAGNOSTIC
1786 if(VOP_ISLOCKED(vp))
1787 panic("lfs_vunref_head: vnode locked");
1788 #endif
1789 /*
1790 * insert at head of LRU list
1791 */
1792 simple_lock(&vnode_free_list_slock);
1793 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1794 simple_unlock(&vnode_free_list_slock);
1795 simple_unlock(&vp->v_interlock);
1796 }
1797
1798