lfs_segment.c revision 1.46 1 /* $NetBSD: lfs_segment.c,v 1.46 2000/05/27 00:19:53 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & IN_MODIFIED) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & IN_MODIFIED)
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346 int needs_unlock;
347
348 #ifndef LFS_NO_BACKVP_HACK
349 /* BEGIN HACK */
350 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
351 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
352 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
353
354 /* Find last vnode. */
355 loop: for (vp = mp->mnt_vnodelist.lh_first;
356 vp && vp->v_mntvnodes.le_next != NULL;
357 vp = vp->v_mntvnodes.le_next);
358 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
359 #else
360 loop:
361 for (vp = mp->mnt_vnodelist.lh_first;
362 vp != NULL;
363 vp = vp->v_mntvnodes.le_next) {
364 #endif
365 /*
366 * If the vnode that we are about to sync is no longer
367 * associated with this mount point, start over.
368 */
369 if (vp->v_mount != mp)
370 goto loop;
371
372 ip = VTOI(vp);
373 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
374 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
375 vndebug(vp,"dirop");
376 continue;
377 }
378
379 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
380 vndebug(vp,"empty");
381 continue;
382 }
383
384 if (vp->v_type == VNON) {
385 continue;
386 }
387
388 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
389 && vp != fs->lfs_flushvp
390 && !(ip->i_flag & IN_CLEANING)) {
391 vndebug(vp,"cleaning");
392 continue;
393 }
394
395 if (lfs_vref(vp)) {
396 vndebug(vp,"vref");
397 continue;
398 }
399
400 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
401 if(WRITEINPROG(vp)) {
402 lfs_vunref(vp);
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/writeinprog");
405 #endif
406 continue;
407 }
408 #endif
409
410 needs_unlock = 0;
411 if(VOP_ISLOCKED(vp)) {
412 if (vp != fs->lfs_ivnode &&
413 vp->v_lock.lk_lockholder != curproc->p_pid) {
414 #ifdef DEBUG_LFS
415 printf("lfs_writevnodes: not writing ino %d, locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 lfs_vunref(vp);
420 continue;
421 }
422 } else if (vp != fs->lfs_ivnode) {
423 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
424 needs_unlock = 1;
425 }
426
427 only_cleaning = 0;
428 /*
429 * Write the inode/file if dirty and it's not the
430 * the IFILE.
431 */
432 if ((ip->i_flag &
433 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
434 vp->v_dirtyblkhd.lh_first != NULL))
435 {
436 only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
437
438 if(ip->i_number != LFS_IFILE_INUM
439 && vp->v_dirtyblkhd.lh_first != NULL)
440 {
441 lfs_writefile(fs, sp, vp);
442 }
443 if(vp->v_dirtyblkhd.lh_first != NULL) {
444 if(WRITEINPROG(vp)) {
445 #ifdef DEBUG_LFS
446 ivndebug(vp,"writevnodes/write2");
447 #endif
448 } else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
449 #ifdef DEBUG_LFS
450 printf("<%d>",ip->i_number);
451 #endif
452 ip->i_flag |= IN_MODIFIED;
453 ++fs->lfs_uinodes;
454 }
455 }
456 (void) lfs_writeinode(fs, sp, ip);
457 inodes_written++;
458 }
459
460 if(needs_unlock)
461 VOP_UNLOCK(vp,0);
462
463 if(lfs_clean_vnhead && only_cleaning)
464 lfs_vunref_head(vp);
465 else
466 lfs_vunref(vp);
467 }
468 return inodes_written;
469 }
470
471 int
472 lfs_segwrite(mp, flags)
473 struct mount *mp;
474 int flags; /* Do a checkpoint. */
475 {
476 struct buf *bp;
477 struct inode *ip;
478 struct lfs *fs;
479 struct segment *sp;
480 struct vnode *vp;
481 SEGUSE *segusep;
482 ufs_daddr_t ibno;
483 int do_ckp, error, i;
484 int writer_set = 0;
485 int need_unlock = 0;
486
487 fs = VFSTOUFS(mp)->um_lfs;
488
489 lfs_imtime(fs);
490
491 /*
492 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
493 * clean segments, wait until cleaner writes.
494 */
495 if(!(flags & SEGM_CLEAN)
496 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
497 {
498 do {
499 if (fs->lfs_nclean <= MIN_FREE_SEGS
500 || fs->lfs_avail <= 0)
501 {
502 wakeup(&lfs_allclean_wakeup);
503 wakeup(&fs->lfs_nextseg);
504 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
505 "lfs_avail", 0);
506 if (error) {
507 return (error);
508 }
509 }
510 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
511 }
512
513 /*
514 * Allocate a segment structure and enough space to hold pointers to
515 * the maximum possible number of buffers which can be described in a
516 * single summary block.
517 */
518 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
519 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
520 sp = fs->lfs_sp;
521
522 /*
523 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
524 * in which case we have to flush *all* buffers off of this vnode.
525 * We don't care about other nodes, but write any non-dirop nodes
526 * anyway in anticipation of another getnewvnode().
527 *
528 * If we're cleaning we only write cleaning and ifile blocks, and
529 * no dirops, since otherwise we'd risk corruption in a crash.
530 */
531 if(sp->seg_flags & SEGM_CLEAN)
532 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
533 else {
534 lfs_writevnodes(fs, mp, sp, VN_REG);
535 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
536 while(fs->lfs_dirops)
537 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
538 "lfs writer", 0)))
539 {
540 free(sp->bpp, M_SEGMENT);
541 free(sp, M_SEGMENT);
542 return (error);
543 }
544 fs->lfs_writer++;
545 writer_set=1;
546 lfs_writevnodes(fs, mp, sp, VN_DIROP);
547 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
548 }
549 }
550
551 /*
552 * If we are doing a checkpoint, mark everything since the
553 * last checkpoint as no longer ACTIVE.
554 */
555 if (do_ckp) {
556 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
557 --ibno >= fs->lfs_cleansz; ) {
558 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
559
560 panic("lfs_segwrite: ifile read");
561 segusep = (SEGUSE *)bp->b_data;
562 for (i = fs->lfs_sepb; i--; segusep++)
563 segusep->su_flags &= ~SEGUSE_ACTIVE;
564
565 /* But the current segment is still ACTIVE */
566 if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
567 ((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
568 error = VOP_BWRITE(bp);
569 }
570 }
571
572 if (do_ckp || fs->lfs_doifile) {
573 redo:
574 vp = fs->lfs_ivnode;
575 /*
576 * Depending on the circumstances of our calling, the ifile
577 * inode might be locked. If it is, and if it is locked by
578 * us, we should VREF instead of vget here.
579 */
580 need_unlock = 0;
581 if(VOP_ISLOCKED(vp)
582 && vp->v_lock.lk_lockholder == curproc->p_pid) {
583 VREF(vp);
584 } else {
585 while (vget(vp, LK_EXCLUSIVE))
586 continue;
587 need_unlock = 1;
588 }
589 ip = VTOI(vp);
590 if (vp->v_dirtyblkhd.lh_first != NULL)
591 lfs_writefile(fs, sp, vp);
592 (void)lfs_writeinode(fs, sp, ip);
593
594 /* Only vput if we used vget() above. */
595 if(need_unlock)
596 vput(vp);
597 else
598 vrele(vp);
599
600 if (lfs_writeseg(fs, sp) && do_ckp)
601 goto redo;
602 } else {
603 (void) lfs_writeseg(fs, sp);
604 }
605
606 /*
607 * If the I/O count is non-zero, sleep until it reaches zero.
608 * At the moment, the user's process hangs around so we can
609 * sleep.
610 */
611 fs->lfs_doifile = 0;
612 if(writer_set && --fs->lfs_writer==0)
613 wakeup(&fs->lfs_dirops);
614
615 if(lfs_dostats) {
616 ++lfs_stats.nwrites;
617 if (sp->seg_flags & SEGM_SYNC)
618 ++lfs_stats.nsync_writes;
619 if (sp->seg_flags & SEGM_CKP)
620 ++lfs_stats.ncheckpoints;
621 }
622 lfs_segunlock(fs);
623 return (0);
624 }
625
626 /*
627 * Write the dirty blocks associated with a vnode.
628 */
629 void
630 lfs_writefile(fs, sp, vp)
631 struct lfs *fs;
632 struct segment *sp;
633 struct vnode *vp;
634 {
635 struct buf *bp;
636 struct finfo *fip;
637 IFILE *ifp;
638
639
640 if (sp->seg_bytes_left < fs->lfs_bsize ||
641 sp->sum_bytes_left < sizeof(struct finfo))
642 (void) lfs_writeseg(fs, sp);
643
644 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
645 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
646
647 if(vp->v_flag & VDIROP)
648 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
649
650 fip = sp->fip;
651 fip->fi_nblocks = 0;
652 fip->fi_ino = VTOI(vp)->i_number;
653 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
654 fip->fi_version = ifp->if_version;
655 brelse(bp);
656
657 if(sp->seg_flags & SEGM_CLEAN)
658 {
659 lfs_gather(fs, sp, vp, lfs_match_fake);
660 /*
661 * For a file being flushed, we need to write *all* blocks.
662 * This means writing the cleaning blocks first, and then
663 * immediately following with any non-cleaning blocks.
664 * The same is true of the Ifile since checkpoints assume
665 * that all valid Ifile blocks are written.
666 */
667 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
668 lfs_gather(fs, sp, vp, lfs_match_data);
669 } else
670 lfs_gather(fs, sp, vp, lfs_match_data);
671
672 /*
673 * It may not be necessary to write the meta-data blocks at this point,
674 * as the roll-forward recovery code should be able to reconstruct the
675 * list.
676 *
677 * We have to write them anyway, though, under two conditions: (1) the
678 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
679 * checkpointing.
680 */
681 if(lfs_writeindir
682 || IS_FLUSHING(fs,vp)
683 || (sp->seg_flags & SEGM_CKP))
684 {
685 lfs_gather(fs, sp, vp, lfs_match_indir);
686 lfs_gather(fs, sp, vp, lfs_match_dindir);
687 lfs_gather(fs, sp, vp, lfs_match_tindir);
688 }
689 fip = sp->fip;
690 if (fip->fi_nblocks != 0) {
691 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
692 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
693 sp->start_lbp = &sp->fip->fi_blocks[0];
694 } else {
695 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
696 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
697 }
698 }
699
700 int
701 lfs_writeinode(fs, sp, ip)
702 struct lfs *fs;
703 struct segment *sp;
704 struct inode *ip;
705 {
706 struct buf *bp, *ibp;
707 IFILE *ifp;
708 SEGUSE *sup;
709 ufs_daddr_t daddr;
710 ino_t ino;
711 int error, i, ndx;
712 int redo_ifile = 0;
713 struct timespec ts;
714 int gotblk=0;
715
716 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
717 return(0);
718
719 /* Allocate a new inode block if necessary. */
720 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
721 /* Allocate a new segment if necessary. */
722 if (sp->seg_bytes_left < fs->lfs_bsize ||
723 sp->sum_bytes_left < sizeof(ufs_daddr_t))
724 (void) lfs_writeseg(fs, sp);
725
726 /* Get next inode block. */
727 daddr = fs->lfs_offset;
728 fs->lfs_offset += fsbtodb(fs, 1);
729 sp->ibp = *sp->cbpp++ =
730 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
731 gotblk++;
732
733 /* Zero out inode numbers */
734 for (i = 0; i < INOPB(fs); ++i)
735 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
736
737 ++sp->start_bpp;
738 fs->lfs_avail -= fsbtodb(fs, 1);
739 /* Set remaining space counters. */
740 sp->seg_bytes_left -= fs->lfs_bsize;
741 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
742 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
743 sp->ninodes / INOPB(fs) - 1;
744 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
745 }
746
747 /* Update the inode times and copy the inode onto the inode page. */
748 if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
749 --fs->lfs_uinodes;
750 TIMEVAL_TO_TIMESPEC(&time, &ts);
751 LFS_ITIMES(ip, &ts, &ts, &ts);
752
753 if(ip->i_flag & IN_CLEANING)
754 ip->i_flag &= ~IN_CLEANING;
755 else
756 ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
757
758 /*
759 * If this is the Ifile, and we've already written the Ifile in this
760 * partial segment, just overwrite it (it's not on disk yet) and
761 * continue.
762 *
763 * XXX we know that the bp that we get the second time around has
764 * already been gathered.
765 */
766 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
767 *(sp->idp) = ip->i_din.ffs_din;
768 return 0;
769 }
770
771 bp = sp->ibp;
772 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
773 ip->i_din.ffs_din;
774
775 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
776 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
777 if(gotblk) {
778 bp->b_flags |= B_LOCKED;
779 brelse(bp);
780 }
781
782 /* Increment inode count in segment summary block. */
783 ++((SEGSUM *)(sp->segsum))->ss_ninos;
784
785 /* If this page is full, set flag to allocate a new page. */
786 if (++sp->ninodes % INOPB(fs) == 0)
787 sp->ibp = NULL;
788
789 /*
790 * If updating the ifile, update the super-block. Update the disk
791 * address and access times for this inode in the ifile.
792 */
793 ino = ip->i_number;
794 if (ino == LFS_IFILE_INUM) {
795 daddr = fs->lfs_idaddr;
796 fs->lfs_idaddr = bp->b_blkno;
797 } else {
798 LFS_IENTRY(ifp, fs, ino, ibp);
799 daddr = ifp->if_daddr;
800 ifp->if_daddr = bp->b_blkno;
801 #ifdef LFS_DEBUG_NEXTFREE
802 if(ino > 3 && ifp->if_nextfree) {
803 vprint("lfs_writeinode",ITOV(ip));
804 printf("lfs_writeinode: updating free ino %d\n",
805 ip->i_number);
806 }
807 #endif
808 error = VOP_BWRITE(ibp);
809 }
810
811 /*
812 * No need to update segment usage if there was no former inode address
813 * or if the last inode address is in the current partial segment.
814 */
815 if (daddr != LFS_UNUSED_DADDR &&
816 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
817 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
818 #ifdef DIAGNOSTIC
819 if (sup->su_nbytes < DINODE_SIZE) {
820 /* XXX -- Change to a panic. */
821 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
822 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
823 panic("lfs_writeinode: negative bytes");
824 sup->su_nbytes = DINODE_SIZE;
825 }
826 #endif
827 sup->su_nbytes -= DINODE_SIZE;
828 redo_ifile =
829 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
830 error = VOP_BWRITE(bp);
831 }
832 return (redo_ifile);
833 }
834
835 int
836 lfs_gatherblock(sp, bp, sptr)
837 struct segment *sp;
838 struct buf *bp;
839 int *sptr;
840 {
841 struct lfs *fs;
842 int version;
843
844 /*
845 * If full, finish this segment. We may be doing I/O, so
846 * release and reacquire the splbio().
847 */
848 #ifdef DIAGNOSTIC
849 if (sp->vp == NULL)
850 panic ("lfs_gatherblock: Null vp in segment");
851 #endif
852 fs = sp->fs;
853 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
854 sp->seg_bytes_left < bp->b_bcount) {
855 if (sptr)
856 splx(*sptr);
857 lfs_updatemeta(sp);
858
859 version = sp->fip->fi_version;
860 (void) lfs_writeseg(fs, sp);
861
862 sp->fip->fi_version = version;
863 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
864 /* Add the current file to the segment summary. */
865 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
866 sp->sum_bytes_left -=
867 sizeof(struct finfo) - sizeof(ufs_daddr_t);
868
869 if (sptr)
870 *sptr = splbio();
871 return(1);
872 }
873
874 #ifdef DEBUG
875 if(bp->b_flags & B_GATHERED) {
876 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
877 sp->fip->fi_ino, bp->b_lblkno);
878 return(0);
879 }
880 #endif
881 /* Insert into the buffer list, update the FINFO block. */
882 bp->b_flags |= B_GATHERED;
883 *sp->cbpp++ = bp;
884 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
885
886 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
887 sp->seg_bytes_left -= bp->b_bcount;
888 return(0);
889 }
890
891 int
892 lfs_gather(fs, sp, vp, match)
893 struct lfs *fs;
894 struct segment *sp;
895 struct vnode *vp;
896 int (*match) __P((struct lfs *, struct buf *));
897 {
898 struct buf *bp;
899 int s, count=0;
900
901 sp->vp = vp;
902 s = splbio();
903
904 #ifndef LFS_NO_BACKBUF_HACK
905 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
906 #else /* LFS_NO_BACKBUF_HACK */
907 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
908 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
909 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
910 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
911 /* Find last buffer. */
912 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
913 bp = bp->b_vnbufs.le_next);
914 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
915 #endif /* LFS_NO_BACKBUF_HACK */
916 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
917 continue;
918 if(vp->v_type == VBLK) {
919 /* For block devices, just write the blocks. */
920 /* XXX Do we really need to even do this? */
921 #ifdef DEBUG_LFS
922 if(count==0)
923 printf("BLK(");
924 printf(".");
925 #endif
926 /* Get the block before bwrite, so we don't corrupt the free list */
927 bp->b_flags |= B_BUSY;
928 bremfree(bp);
929 bwrite(bp);
930 } else {
931 #ifdef DIAGNOSTIC
932 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
933 printf("lfs_gather: lbn %d is B_INVAL\n",
934 bp->b_lblkno);
935 VOP_PRINT(bp->b_vp);
936 }
937 if (!(bp->b_flags & B_DELWRI))
938 panic("lfs_gather: bp not B_DELWRI");
939 if (!(bp->b_flags & B_LOCKED)) {
940 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
941 VOP_PRINT(bp->b_vp);
942 panic("lfs_gather: bp not B_LOCKED");
943 }
944 #endif
945 if (lfs_gatherblock(sp, bp, &s)) {
946 goto loop;
947 }
948 }
949 count++;
950 }
951 splx(s);
952 #ifdef DEBUG_LFS
953 if(vp->v_type == VBLK && count)
954 printf(")\n");
955 #endif
956 lfs_updatemeta(sp);
957 sp->vp = NULL;
958 return count;
959 }
960
961 /*
962 * Update the metadata that points to the blocks listed in the FINFO
963 * array.
964 */
965 void
966 lfs_updatemeta(sp)
967 struct segment *sp;
968 {
969 SEGUSE *sup;
970 struct buf *bp, *ibp;
971 struct lfs *fs;
972 struct vnode *vp;
973 struct indir a[NIADDR + 2], *ap;
974 struct inode *ip;
975 ufs_daddr_t daddr, lbn, off;
976 daddr_t ooff;
977 int error, i, nblocks, num;
978
979 vp = sp->vp;
980 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
981 if (nblocks < 0)
982 panic("This is a bad thing\n");
983 if (vp == NULL || nblocks == 0)
984 return;
985
986 /* Sort the blocks. */
987 /*
988 * XXX KS - We have to sort even if the blocks come from the
989 * cleaner, because there might be other pending blocks on the
990 * same inode...and if we don't sort, and there are fragments
991 * present, blocks may be written in the wrong place.
992 */
993 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
994 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
995
996 /*
997 * Record the length of the last block in case it's a fragment.
998 * If there are indirect blocks present, they sort last. An
999 * indirect block will be lfs_bsize and its presence indicates
1000 * that you cannot have fragments.
1001 */
1002 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1003
1004 /*
1005 * Assign disk addresses, and update references to the logical
1006 * block and the segment usage information.
1007 */
1008 fs = sp->fs;
1009 for (i = nblocks; i--; ++sp->start_bpp) {
1010 lbn = *sp->start_lbp++;
1011
1012 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1013 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1014 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
1015 }
1016 fs->lfs_offset +=
1017 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1018 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1019 if (error)
1020 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1021 ip = VTOI(vp);
1022 switch (num) {
1023 case 0:
1024 ooff = ip->i_ffs_db[lbn];
1025 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1026 #ifdef DEBUG_LFS
1027 printf("lfs_updatemeta[1]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1028 #endif
1029 } else
1030 ip->i_ffs_db[lbn] = off;
1031 break;
1032 case 1:
1033 ooff = ip->i_ffs_ib[a[0].in_off];
1034 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1035 #ifdef DEBUG_LFS
1036 printf("lfs_updatemeta[2]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1037 #endif
1038 } else
1039 ip->i_ffs_ib[a[0].in_off] = off;
1040 break;
1041 default:
1042 ap = &a[num - 1];
1043 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1044 panic("lfs_updatemeta: bread bno %d",
1045 ap->in_lbn);
1046 /*
1047 * Bread may create a new (indirect) block which needs
1048 * to get counted for the inode.
1049 *
1050 * XXX - why would it ever do this (except possibly
1051 * for the Ifile)? lfs_balloc is supposed to take
1052 * care of this.
1053 */
1054 if (bp->b_blkno == UNASSIGNED) {
1055 ip->i_ffs_blocks += fsbtodb(fs, 1);
1056 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1057
1058 /* Note the new address */
1059 bp->b_blkno = UNWRITTEN;
1060
1061 if(num == 2) {
1062 ip->i_ffs_ib[a[0].in_off] = UNWRITTEN;
1063 } else {
1064 ap = &a[num - 2];
1065 if (bread(vp, ap->in_lbn,
1066 fs->lfs_bsize, NOCRED, &ibp))
1067 panic("lfs_updatemeta: bread bno %d",
1068 ap->in_lbn);
1069 ((ufs_daddr_t *)ibp->b_data)[ap->in_off] = UNWRITTEN;
1070 VOP_BWRITE(ibp);
1071 }
1072 }
1073 #ifdef DEBUG
1074 else if(!(bp->b_flags & (B_DONE|B_DELWRI)))
1075 printf("lfs_updatemeta: unaccounted indirect block ino %d block %d\n", ip->i_number, ap->in_lbn);
1076 #endif
1077 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1078 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1079 #ifdef DEBUG_LFS
1080 printf("lfs_updatemeta[3]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1081 #endif
1082 brelse(bp);
1083 } else {
1084 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1085 VOP_BWRITE(bp);
1086 }
1087 }
1088 /* Update segment usage information. */
1089 if (daddr > 0 && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
1090 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1091 #ifdef DIAGNOSTIC
1092 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1093 /* XXX -- Change to a panic. */
1094 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1095 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1096 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1097 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1098 panic("lfs_updatemeta: negative bytes");
1099 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1100 }
1101 #endif
1102 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1103 error = VOP_BWRITE(bp);
1104 }
1105 }
1106 }
1107
1108 /*
1109 * Start a new segment.
1110 */
1111 int
1112 lfs_initseg(fs)
1113 struct lfs *fs;
1114 {
1115 struct segment *sp;
1116 SEGUSE *sup;
1117 SEGSUM *ssp;
1118 struct buf *bp;
1119 int repeat;
1120
1121 sp = fs->lfs_sp;
1122
1123 repeat = 0;
1124 /* Advance to the next segment. */
1125 if (!LFS_PARTIAL_FITS(fs)) {
1126 /* Wake up any cleaning procs waiting on this file system. */
1127 wakeup(&lfs_allclean_wakeup);
1128 wakeup(&fs->lfs_nextseg);
1129 lfs_newseg(fs);
1130 repeat = 1;
1131 fs->lfs_offset = fs->lfs_curseg;
1132 sp->seg_number = datosn(fs, fs->lfs_curseg);
1133 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1134 /*
1135 * If the segment contains a superblock, update the offset
1136 * and summary address to skip over it.
1137 */
1138 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1139 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1140 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1141 sp->seg_bytes_left -= LFS_SBPAD;
1142 }
1143 brelse(bp);
1144 } else {
1145 sp->seg_number = datosn(fs, fs->lfs_curseg);
1146 sp->seg_bytes_left = (fs->lfs_dbpseg -
1147 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1148 }
1149 fs->lfs_lastpseg = fs->lfs_offset;
1150
1151 sp->fs = fs;
1152 sp->ibp = NULL;
1153 sp->idp = NULL;
1154 sp->ninodes = 0;
1155
1156 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1157 sp->cbpp = sp->bpp;
1158 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1159 fs->lfs_offset, LFS_SUMMARY_SIZE);
1160 sp->segsum = (*sp->cbpp)->b_data;
1161 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1162 sp->start_bpp = ++sp->cbpp;
1163 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1164
1165 /* Set point to SEGSUM, initialize it. */
1166 ssp = sp->segsum;
1167 ssp->ss_next = fs->lfs_nextseg;
1168 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1169 ssp->ss_magic = SS_MAGIC;
1170
1171 /* Set pointer to first FINFO, initialize it. */
1172 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1173 sp->fip->fi_nblocks = 0;
1174 sp->start_lbp = &sp->fip->fi_blocks[0];
1175 sp->fip->fi_lastlength = 0;
1176
1177 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1178 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1179
1180 return(repeat);
1181 }
1182
1183 /*
1184 * Return the next segment to write.
1185 */
1186 void
1187 lfs_newseg(fs)
1188 struct lfs *fs;
1189 {
1190 CLEANERINFO *cip;
1191 SEGUSE *sup;
1192 struct buf *bp;
1193 int curseg, isdirty, sn;
1194
1195 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1196 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1197 sup->su_nbytes = 0;
1198 sup->su_nsums = 0;
1199 sup->su_ninos = 0;
1200 (void) VOP_BWRITE(bp);
1201
1202 LFS_CLEANERINFO(cip, fs, bp);
1203 --cip->clean;
1204 ++cip->dirty;
1205 fs->lfs_nclean = cip->clean;
1206 (void) VOP_BWRITE(bp);
1207
1208 fs->lfs_lastseg = fs->lfs_curseg;
1209 fs->lfs_curseg = fs->lfs_nextseg;
1210 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1211 sn = (sn + 1) % fs->lfs_nseg;
1212 if (sn == curseg)
1213 panic("lfs_nextseg: no clean segments");
1214 LFS_SEGENTRY(sup, fs, sn, bp);
1215 isdirty = sup->su_flags & SEGUSE_DIRTY;
1216 brelse(bp);
1217 if (!isdirty)
1218 break;
1219 }
1220
1221 ++fs->lfs_nactive;
1222 fs->lfs_nextseg = sntoda(fs, sn);
1223 if(lfs_dostats) {
1224 ++lfs_stats.segsused;
1225 }
1226 }
1227
1228 int
1229 lfs_writeseg(fs, sp)
1230 struct lfs *fs;
1231 struct segment *sp;
1232 {
1233 extern int locked_queue_count;
1234 extern long locked_queue_bytes;
1235 struct buf **bpp, *bp, *cbp;
1236 SEGUSE *sup;
1237 SEGSUM *ssp;
1238 dev_t i_dev;
1239 u_long *datap, *dp;
1240 int do_again, i, nblocks, s;
1241 #ifdef LFS_TRACK_IOS
1242 int j;
1243 #endif
1244 int (*strategy)__P((void *));
1245 struct vop_strategy_args vop_strategy_a;
1246 u_short ninos;
1247 struct vnode *devvp;
1248 char *p;
1249 struct vnode *vn;
1250 struct inode *ip;
1251 #if defined(DEBUG) && defined(LFS_PROPELLER)
1252 static int propeller;
1253 char propstring[4] = "-\\|/";
1254
1255 printf("%c\b",propstring[propeller++]);
1256 if(propeller==4)
1257 propeller = 0;
1258 #endif
1259
1260 /*
1261 * If there are no buffers other than the segment summary to write
1262 * and it is not a checkpoint, don't do anything. On a checkpoint,
1263 * even if there aren't any buffers, you need to write the superblock.
1264 */
1265 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1266 return (0);
1267
1268 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1269 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1270
1271 /* Update the segment usage information. */
1272 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1273
1274 /* Loop through all blocks, except the segment summary. */
1275 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1276 if((*bpp)->b_vp != devvp)
1277 sup->su_nbytes += (*bpp)->b_bcount;
1278 }
1279
1280 ssp = (SEGSUM *)sp->segsum;
1281
1282 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1283 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1284 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1285 sup->su_lastmod = time.tv_sec;
1286 sup->su_ninos += ninos;
1287 ++sup->su_nsums;
1288
1289 do_again = !(bp->b_flags & B_GATHERED);
1290 (void)VOP_BWRITE(bp);
1291 /*
1292 * Compute checksum across data and then across summary; the first
1293 * block (the summary block) is skipped. Set the create time here
1294 * so that it's guaranteed to be later than the inode mod times.
1295 *
1296 * XXX
1297 * Fix this to do it inline, instead of malloc/copy.
1298 */
1299 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1300 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1301 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1302 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1303 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1304 } else {
1305 if( !((*bpp)->b_flags & B_CALL) ) {
1306 /*
1307 * Before we record data for a checksm,
1308 * make sure the data won't change in between
1309 * the checksum calculation and the write,
1310 * by marking the buffer B_BUSY. It will
1311 * be freed later by brelse().
1312 */
1313 again:
1314 s = splbio();
1315 if((*bpp)->b_flags & B_BUSY) {
1316 #ifdef DEBUG
1317 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1318 VTOI((*bpp)->b_vp)->i_number,
1319 bp->b_lblkno);
1320 #endif
1321 (*bpp)->b_flags |= B_WANTED;
1322 tsleep((*bpp), (PRIBIO + 1),
1323 "lfs_writeseg", 0);
1324 splx(s);
1325 goto again;
1326 }
1327 (*bpp)->b_flags |= B_BUSY;
1328 splx(s);
1329 }
1330 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1331 }
1332 }
1333 ssp->ss_create = time.tv_sec;
1334 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1335 ssp->ss_sumsum =
1336 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1337 free(datap, M_SEGMENT);
1338 #ifdef DIAGNOSTIC
1339 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1340 panic("lfs_writeseg: No diskspace for summary");
1341 #endif
1342 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1343
1344 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1345
1346 /*
1347 * When we simply write the blocks we lose a rotation for every block
1348 * written. To avoid this problem, we allocate memory in chunks, copy
1349 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1350 * largest size I/O devices can handle.
1351 * When the data is copied to the chunk, turn off the B_LOCKED bit
1352 * and brelse the buffer (which will move them to the LRU list). Add
1353 * the B_CALL flag to the buffer header so we can count I/O's for the
1354 * checkpoints and so we can release the allocated memory.
1355 *
1356 * XXX
1357 * This should be removed if the new virtual memory system allows us to
1358 * easily make the buffers contiguous in kernel memory and if that's
1359 * fast enough.
1360 */
1361
1362 #define CHUNKSIZE MAXPHYS
1363
1364 if(devvp==NULL)
1365 panic("devvp is NULL");
1366 for (bpp = sp->bpp,i = nblocks; i;) {
1367 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1368 cbp->b_dev = i_dev;
1369 cbp->b_flags |= B_ASYNC | B_BUSY;
1370 cbp->b_bcount = 0;
1371
1372 #ifdef DIAGNOSTIC
1373 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1374 panic("lfs_writeseg: Segment overwrite");
1375 }
1376 #endif
1377
1378 s = splbio();
1379 if(fs->lfs_iocount >= LFS_THROTTLE) {
1380 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1381 }
1382 ++fs->lfs_iocount;
1383 #ifdef LFS_TRACK_IOS
1384 for(j=0;j<LFS_THROTTLE;j++) {
1385 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1386 fs->lfs_pending[j] = cbp->b_blkno;
1387 break;
1388 }
1389 }
1390 #endif /* LFS_TRACK_IOS */
1391 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1392 bp = *bpp;
1393
1394 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1395 break;
1396
1397 /*
1398 * Fake buffers from the cleaner are marked as B_INVAL.
1399 * We need to copy the data from user space rather than
1400 * from the buffer indicated.
1401 * XXX == what do I do on an error?
1402 */
1403 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1404 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1405 panic("lfs_writeseg: copyin failed [2]");
1406 } else
1407 bcopy(bp->b_data, p, bp->b_bcount);
1408 p += bp->b_bcount;
1409 cbp->b_bcount += bp->b_bcount;
1410 if (bp->b_flags & B_LOCKED) {
1411 --locked_queue_count;
1412 locked_queue_bytes -= bp->b_bufsize;
1413 }
1414 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1415 B_LOCKED | B_GATHERED);
1416 vn = bp->b_vp;
1417 if (bp->b_flags & B_CALL) {
1418 /* if B_CALL, it was created with newbuf */
1419 lfs_freebuf(bp);
1420 } else {
1421 bremfree(bp);
1422 bp->b_flags |= B_DONE;
1423 if(vn)
1424 reassignbuf(bp, vn);
1425 brelse(bp);
1426 }
1427 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1428 bp->b_flags &= ~B_NEEDCOMMIT;
1429 wakeup(bp);
1430 }
1431
1432 bpp++;
1433
1434 /*
1435 * If this is the last block for this vnode, but
1436 * there are other blocks on its dirty list,
1437 * set IN_MODIFIED/IN_CLEANING depending on what
1438 * sort of block. Only do this for our mount point,
1439 * not for, e.g., inode blocks that are attached to
1440 * the devvp.
1441 */
1442 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1443 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1444 vn->v_mount == fs->lfs_ivnode->v_mount)
1445 {
1446 ip = VTOI(vn);
1447 #ifdef DEBUG_LFS
1448 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1449 #endif
1450 if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
1451 fs->lfs_uinodes++;
1452 if(bp->b_flags & B_CALL)
1453 ip->i_flag |= IN_CLEANING;
1454 else
1455 ip->i_flag |= IN_MODIFIED;
1456 }
1457 }
1458 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1459 wakeup(vn);
1460 }
1461 ++cbp->b_vp->v_numoutput;
1462 splx(s);
1463 /*
1464 * XXXX This is a gross and disgusting hack. Since these
1465 * buffers are physically addressed, they hang off the
1466 * device vnode (devvp). As a result, they have no way
1467 * of getting to the LFS superblock or lfs structure to
1468 * keep track of the number of I/O's pending. So, I am
1469 * going to stuff the fs into the saveaddr field of
1470 * the buffer (yuk).
1471 */
1472 cbp->b_saveaddr = (caddr_t)fs;
1473 vop_strategy_a.a_desc = VDESC(vop_strategy);
1474 vop_strategy_a.a_bp = cbp;
1475 (strategy)(&vop_strategy_a);
1476 }
1477 /*
1478 * XXX
1479 * Vinvalbuf can move locked buffers off the locked queue
1480 * and we have no way of knowing about this. So, after
1481 * doing a big write, we recalculate how many buffers are
1482 * really still left on the locked queue.
1483 */
1484 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1485 wakeup(&locked_queue_count);
1486 if(lfs_dostats) {
1487 ++lfs_stats.psegwrites;
1488 lfs_stats.blocktot += nblocks - 1;
1489 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1490 ++lfs_stats.psyncwrites;
1491 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1492 ++lfs_stats.pcleanwrites;
1493 lfs_stats.cleanblocks += nblocks - 1;
1494 }
1495 }
1496 return (lfs_initseg(fs) || do_again);
1497 }
1498
1499 void
1500 lfs_writesuper(fs, daddr)
1501 struct lfs *fs;
1502 daddr_t daddr;
1503 {
1504 struct buf *bp;
1505 dev_t i_dev;
1506 int (*strategy) __P((void *));
1507 int s;
1508 struct vop_strategy_args vop_strategy_a;
1509
1510 #ifdef LFS_CANNOT_ROLLFW
1511 /*
1512 * If we can write one superblock while another is in
1513 * progress, we risk not having a complete checkpoint if we crash.
1514 * So, block here if a superblock write is in progress.
1515 */
1516 s = splbio();
1517 while(fs->lfs_sbactive) {
1518 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1519 }
1520 fs->lfs_sbactive = daddr;
1521 splx(s);
1522 #endif
1523 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1524 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1525
1526 /* Set timestamp of this version of the superblock */
1527 fs->lfs_tstamp = time.tv_sec;
1528
1529 /* Checksum the superblock and copy it into a buffer. */
1530 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1531 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1532 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1533
1534 bp->b_dev = i_dev;
1535 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1536 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1537 bp->b_iodone = lfs_supercallback;
1538 /* XXX KS - same nasty hack as above */
1539 bp->b_saveaddr = (caddr_t)fs;
1540
1541 vop_strategy_a.a_desc = VDESC(vop_strategy);
1542 vop_strategy_a.a_bp = bp;
1543 s = splbio();
1544 ++bp->b_vp->v_numoutput;
1545 splx(s);
1546 (strategy)(&vop_strategy_a);
1547 }
1548
1549 /*
1550 * Logical block number match routines used when traversing the dirty block
1551 * chain.
1552 */
1553 int
1554 lfs_match_fake(fs, bp)
1555 struct lfs *fs;
1556 struct buf *bp;
1557 {
1558 return (bp->b_flags & B_CALL);
1559 }
1560
1561 int
1562 lfs_match_data(fs, bp)
1563 struct lfs *fs;
1564 struct buf *bp;
1565 {
1566 return (bp->b_lblkno >= 0);
1567 }
1568
1569 int
1570 lfs_match_indir(fs, bp)
1571 struct lfs *fs;
1572 struct buf *bp;
1573 {
1574 int lbn;
1575
1576 lbn = bp->b_lblkno;
1577 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1578 }
1579
1580 int
1581 lfs_match_dindir(fs, bp)
1582 struct lfs *fs;
1583 struct buf *bp;
1584 {
1585 int lbn;
1586
1587 lbn = bp->b_lblkno;
1588 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1589 }
1590
1591 int
1592 lfs_match_tindir(fs, bp)
1593 struct lfs *fs;
1594 struct buf *bp;
1595 {
1596 int lbn;
1597
1598 lbn = bp->b_lblkno;
1599 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1600 }
1601
1602 /*
1603 * XXX - The only buffers that are going to hit these functions are the
1604 * segment write blocks, or the segment summaries, or the superblocks.
1605 *
1606 * All of the above are created by lfs_newbuf, and so do not need to be
1607 * released via brelse.
1608 */
1609 void
1610 lfs_callback(bp)
1611 struct buf *bp;
1612 {
1613 struct lfs *fs;
1614 #ifdef LFS_TRACK_IOS
1615 int j;
1616 #endif
1617
1618 fs = (struct lfs *)bp->b_saveaddr;
1619 #ifdef DIAGNOSTIC
1620 if (fs->lfs_iocount == 0)
1621 panic("lfs_callback: zero iocount\n");
1622 #endif
1623 if (--fs->lfs_iocount < LFS_THROTTLE)
1624 wakeup(&fs->lfs_iocount);
1625 #ifdef LFS_TRACK_IOS
1626 for(j=0;j<LFS_THROTTLE;j++) {
1627 if(fs->lfs_pending[j]==bp->b_blkno) {
1628 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1629 wakeup(&(fs->lfs_pending[j]));
1630 break;
1631 }
1632 }
1633 #endif /* LFS_TRACK_IOS */
1634
1635 lfs_freebuf(bp);
1636 }
1637
1638 void
1639 lfs_supercallback(bp)
1640 struct buf *bp;
1641 {
1642 #ifdef LFS_CANNOT_ROLLFW
1643 struct lfs *fs;
1644
1645 fs = (struct lfs *)bp->b_saveaddr;
1646 fs->lfs_sbactive = 0;
1647 wakeup(&fs->lfs_sbactive);
1648 #endif
1649 lfs_freebuf(bp);
1650 }
1651
1652 /*
1653 * Shellsort (diminishing increment sort) from Data Structures and
1654 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1655 * see also Knuth Vol. 3, page 84. The increments are selected from
1656 * formula (8), page 95. Roughly O(N^3/2).
1657 */
1658 /*
1659 * This is our own private copy of shellsort because we want to sort
1660 * two parallel arrays (the array of buffer pointers and the array of
1661 * logical block numbers) simultaneously. Note that we cast the array
1662 * of logical block numbers to a unsigned in this routine so that the
1663 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1664 */
1665
1666 void
1667 lfs_shellsort(bp_array, lb_array, nmemb)
1668 struct buf **bp_array;
1669 ufs_daddr_t *lb_array;
1670 int nmemb;
1671 {
1672 static int __rsshell_increments[] = { 4, 1, 0 };
1673 int incr, *incrp, t1, t2;
1674 struct buf *bp_temp;
1675 u_long lb_temp;
1676
1677 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1678 for (t1 = incr; t1 < nmemb; ++t1)
1679 for (t2 = t1 - incr; t2 >= 0;)
1680 if (lb_array[t2] > lb_array[t2 + incr]) {
1681 lb_temp = lb_array[t2];
1682 lb_array[t2] = lb_array[t2 + incr];
1683 lb_array[t2 + incr] = lb_temp;
1684 bp_temp = bp_array[t2];
1685 bp_array[t2] = bp_array[t2 + incr];
1686 bp_array[t2 + incr] = bp_temp;
1687 t2 -= incr;
1688 } else
1689 break;
1690 }
1691
1692 /*
1693 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1694 */
1695 int
1696 lfs_vref(vp)
1697 struct vnode *vp;
1698 {
1699 /*
1700 * If we return 1 here during a flush, we risk vinvalbuf() not
1701 * being able to flush all of the pages from this vnode, which
1702 * will cause it to panic. So, return 0 if a flush is in progress.
1703 */
1704 if (vp->v_flag & VXLOCK) {
1705 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1706 return 0;
1707 }
1708 return(1);
1709 }
1710 return (vget(vp, 0));
1711 }
1712
1713 /*
1714 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1715 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1716 */
1717 void
1718 lfs_vunref(vp)
1719 struct vnode *vp;
1720 {
1721 /*
1722 * Analogous to lfs_vref, if the node is flushing, fake it.
1723 */
1724 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1725 return;
1726 }
1727
1728 simple_lock(&vp->v_interlock);
1729 #ifdef DIAGNOSTIC
1730 if(vp->v_usecount<=0) {
1731 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1732 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1733 panic("lfs_vunref: v_usecount<0");
1734 }
1735 #endif
1736 vp->v_usecount--;
1737 if (vp->v_usecount > 0) {
1738 simple_unlock(&vp->v_interlock);
1739 return;
1740 }
1741 #ifdef DIAGNOSTIC
1742 if(VOP_ISLOCKED(vp))
1743 panic("lfs_vunref: vnode locked");
1744 #endif
1745 /*
1746 * insert at tail of LRU list
1747 */
1748 simple_lock(&vnode_free_list_slock);
1749 if (vp->v_holdcnt > 0)
1750 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1751 else
1752 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1753 simple_unlock(&vnode_free_list_slock);
1754 simple_unlock(&vp->v_interlock);
1755 }
1756
1757 /*
1758 * We use this when we have vnodes that were loaded in solely for cleaning.
1759 * There is no reason to believe that these vnodes will be referenced again
1760 * soon, since the cleaning process is unrelated to normal filesystem
1761 * activity. Putting cleaned vnodes at the tail of the list has the effect
1762 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1763 * cleaning at the head of the list, instead.
1764 */
1765 void
1766 lfs_vunref_head(vp)
1767 struct vnode *vp;
1768 {
1769 simple_lock(&vp->v_interlock);
1770 #ifdef DIAGNOSTIC
1771 if(vp->v_usecount==0) {
1772 panic("lfs_vunref: v_usecount<0");
1773 }
1774 #endif
1775 vp->v_usecount--;
1776 if (vp->v_usecount > 0) {
1777 simple_unlock(&vp->v_interlock);
1778 return;
1779 }
1780 #ifdef DIAGNOSTIC
1781 if(VOP_ISLOCKED(vp))
1782 panic("lfs_vunref_head: vnode locked");
1783 #endif
1784 /*
1785 * insert at head of LRU list
1786 */
1787 simple_lock(&vnode_free_list_slock);
1788 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1789 simple_unlock(&vnode_free_list_slock);
1790 simple_unlock(&vp->v_interlock);
1791 }
1792
1793