lfs_segment.c revision 1.51 1 /* $NetBSD: lfs_segment.c,v 1.51 2000/06/27 20:00:03 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED)) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED))
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~IN_ALLMOD;
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346 int needs_unlock;
347
348 #ifndef LFS_NO_BACKVP_HACK
349 /* BEGIN HACK */
350 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
351 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
352 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
353
354 /* Find last vnode. */
355 loop: for (vp = mp->mnt_vnodelist.lh_first;
356 vp && vp->v_mntvnodes.le_next != NULL;
357 vp = vp->v_mntvnodes.le_next);
358 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
359 #else
360 loop:
361 for (vp = mp->mnt_vnodelist.lh_first;
362 vp != NULL;
363 vp = vp->v_mntvnodes.le_next) {
364 #endif
365 /*
366 * If the vnode that we are about to sync is no longer
367 * associated with this mount point, start over.
368 */
369 if (vp->v_mount != mp)
370 goto loop;
371
372 ip = VTOI(vp);
373 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
374 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
375 vndebug(vp,"dirop");
376 continue;
377 }
378
379 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
380 vndebug(vp,"empty");
381 continue;
382 }
383
384 if (vp->v_type == VNON) {
385 continue;
386 }
387
388 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
389 && vp != fs->lfs_flushvp
390 && !(ip->i_flag & IN_CLEANING)) {
391 vndebug(vp,"cleaning");
392 continue;
393 }
394
395 if (lfs_vref(vp)) {
396 vndebug(vp,"vref");
397 continue;
398 }
399
400 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
401 if(WRITEINPROG(vp)) {
402 lfs_vunref(vp);
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/writeinprog");
405 #endif
406 continue;
407 }
408 #endif
409
410 needs_unlock = 0;
411 if(VOP_ISLOCKED(vp)) {
412 if (vp != fs->lfs_ivnode &&
413 vp->v_lock.lk_lockholder != curproc->p_pid) {
414 #ifdef DEBUG_LFS
415 printf("lfs_writevnodes: not writing ino %d, locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 lfs_vunref(vp);
420 continue;
421 }
422 } else if (vp != fs->lfs_ivnode) {
423 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
424 needs_unlock = 1;
425 }
426
427 only_cleaning = 0;
428 /*
429 * Write the inode/file if dirty and it's not the
430 * the IFILE.
431 */
432 if ((ip->i_flag & IN_ALLMOD) ||
433 (vp->v_dirtyblkhd.lh_first != NULL))
434 {
435 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
436
437 if(ip->i_number != LFS_IFILE_INUM
438 && vp->v_dirtyblkhd.lh_first != NULL)
439 {
440 lfs_writefile(fs, sp, vp);
441 }
442 if(vp->v_dirtyblkhd.lh_first != NULL) {
443 if(WRITEINPROG(vp)) {
444 #ifdef DEBUG_LFS
445 ivndebug(vp,"writevnodes/write2");
446 #endif
447 } else if(!(ip->i_flag & IN_ALLMOD)) {
448 #ifdef DEBUG_LFS
449 printf("<%d>",ip->i_number);
450 #endif
451 ip->i_flag |= IN_MODIFIED;
452 ++fs->lfs_uinodes;
453 }
454 }
455 (void) lfs_writeinode(fs, sp, ip);
456 inodes_written++;
457 }
458
459 if(needs_unlock)
460 VOP_UNLOCK(vp,0);
461
462 if(lfs_clean_vnhead && only_cleaning)
463 lfs_vunref_head(vp);
464 else
465 lfs_vunref(vp);
466 }
467 return inodes_written;
468 }
469
470 int
471 lfs_segwrite(mp, flags)
472 struct mount *mp;
473 int flags; /* Do a checkpoint. */
474 {
475 struct buf *bp;
476 struct inode *ip;
477 struct lfs *fs;
478 struct segment *sp;
479 struct vnode *vp;
480 SEGUSE *segusep;
481 ufs_daddr_t ibno;
482 int do_ckp, error, i;
483 int writer_set = 0;
484 int need_unlock = 0;
485
486 fs = VFSTOUFS(mp)->um_lfs;
487
488 lfs_imtime(fs);
489
490 /*
491 * If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
492 * clean segments, wait until cleaner writes.
493 */
494 if(!(flags & SEGM_CLEAN)
495 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
496 {
497 do {
498 if (fs->lfs_nclean <= MIN_FREE_SEGS
499 || fs->lfs_avail <= 0)
500 {
501 wakeup(&lfs_allclean_wakeup);
502 wakeup(&fs->lfs_nextseg);
503 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
504 "lfs_avail", 0);
505 if (error) {
506 return (error);
507 }
508 }
509 } while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
510 }
511
512 /*
513 * Allocate a segment structure and enough space to hold pointers to
514 * the maximum possible number of buffers which can be described in a
515 * single summary block.
516 */
517 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
518 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
519 sp = fs->lfs_sp;
520
521 /*
522 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
523 * in which case we have to flush *all* buffers off of this vnode.
524 * We don't care about other nodes, but write any non-dirop nodes
525 * anyway in anticipation of another getnewvnode().
526 *
527 * If we're cleaning we only write cleaning and ifile blocks, and
528 * no dirops, since otherwise we'd risk corruption in a crash.
529 */
530 if(sp->seg_flags & SEGM_CLEAN)
531 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
532 else {
533 lfs_writevnodes(fs, mp, sp, VN_REG);
534 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
535 while(fs->lfs_dirops)
536 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
537 "lfs writer", 0)))
538 {
539 free(sp->bpp, M_SEGMENT);
540 free(sp, M_SEGMENT);
541 return (error);
542 }
543 fs->lfs_writer++;
544 writer_set=1;
545 lfs_writevnodes(fs, mp, sp, VN_DIROP);
546 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
547 }
548 }
549
550 /*
551 * If we are doing a checkpoint, mark everything since the
552 * last checkpoint as no longer ACTIVE.
553 */
554 if (do_ckp) {
555 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
556 --ibno >= fs->lfs_cleansz; ) {
557 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
558
559 panic("lfs_segwrite: ifile read");
560 segusep = (SEGUSE *)bp->b_data;
561 for (i = fs->lfs_sepb; i--; segusep++)
562 segusep->su_flags &= ~SEGUSE_ACTIVE;
563
564 /* But the current segment is still ACTIVE */
565 segusep = (SEGUSE *)bp->b_data;
566 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
567 (ibno-fs->lfs_cleansz))
568 segusep[datosn(fs, fs->lfs_curseg) %
569 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
570 error = VOP_BWRITE(bp);
571 }
572 }
573
574 if (do_ckp || fs->lfs_doifile) {
575 redo:
576 vp = fs->lfs_ivnode;
577 /*
578 * Depending on the circumstances of our calling, the ifile
579 * inode might be locked. If it is, and if it is locked by
580 * us, we should VREF instead of vget here.
581 */
582 need_unlock = 0;
583 if(VOP_ISLOCKED(vp)
584 && vp->v_lock.lk_lockholder == curproc->p_pid) {
585 VREF(vp);
586 } else {
587 while (vget(vp, LK_EXCLUSIVE))
588 continue;
589 need_unlock = 1;
590 }
591 ip = VTOI(vp);
592 if (vp->v_dirtyblkhd.lh_first != NULL)
593 lfs_writefile(fs, sp, vp);
594 (void)lfs_writeinode(fs, sp, ip);
595
596 /* Only vput if we used vget() above. */
597 if(need_unlock)
598 vput(vp);
599 else
600 vrele(vp);
601
602 if (lfs_writeseg(fs, sp) && do_ckp)
603 goto redo;
604 } else {
605 (void) lfs_writeseg(fs, sp);
606 }
607
608 /*
609 * If the I/O count is non-zero, sleep until it reaches zero.
610 * At the moment, the user's process hangs around so we can
611 * sleep.
612 */
613 fs->lfs_doifile = 0;
614 if(writer_set && --fs->lfs_writer==0)
615 wakeup(&fs->lfs_dirops);
616
617 if(lfs_dostats) {
618 ++lfs_stats.nwrites;
619 if (sp->seg_flags & SEGM_SYNC)
620 ++lfs_stats.nsync_writes;
621 if (sp->seg_flags & SEGM_CKP)
622 ++lfs_stats.ncheckpoints;
623 }
624 lfs_segunlock(fs);
625 return (0);
626 }
627
628 /*
629 * Write the dirty blocks associated with a vnode.
630 */
631 void
632 lfs_writefile(fs, sp, vp)
633 struct lfs *fs;
634 struct segment *sp;
635 struct vnode *vp;
636 {
637 struct buf *bp;
638 struct finfo *fip;
639 IFILE *ifp;
640
641
642 if (sp->seg_bytes_left < fs->lfs_bsize ||
643 sp->sum_bytes_left < sizeof(struct finfo))
644 (void) lfs_writeseg(fs, sp);
645
646 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
647 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
648
649 if(vp->v_flag & VDIROP)
650 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
651
652 fip = sp->fip;
653 fip->fi_nblocks = 0;
654 fip->fi_ino = VTOI(vp)->i_number;
655 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
656 fip->fi_version = ifp->if_version;
657 brelse(bp);
658
659 if(sp->seg_flags & SEGM_CLEAN)
660 {
661 lfs_gather(fs, sp, vp, lfs_match_fake);
662 /*
663 * For a file being flushed, we need to write *all* blocks.
664 * This means writing the cleaning blocks first, and then
665 * immediately following with any non-cleaning blocks.
666 * The same is true of the Ifile since checkpoints assume
667 * that all valid Ifile blocks are written.
668 */
669 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
670 lfs_gather(fs, sp, vp, lfs_match_data);
671 } else
672 lfs_gather(fs, sp, vp, lfs_match_data);
673
674 /*
675 * It may not be necessary to write the meta-data blocks at this point,
676 * as the roll-forward recovery code should be able to reconstruct the
677 * list.
678 *
679 * We have to write them anyway, though, under two conditions: (1) the
680 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
681 * checkpointing.
682 */
683 if(lfs_writeindir
684 || IS_FLUSHING(fs,vp)
685 || (sp->seg_flags & SEGM_CKP))
686 {
687 lfs_gather(fs, sp, vp, lfs_match_indir);
688 lfs_gather(fs, sp, vp, lfs_match_dindir);
689 lfs_gather(fs, sp, vp, lfs_match_tindir);
690 }
691 fip = sp->fip;
692 if (fip->fi_nblocks != 0) {
693 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
694 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
695 sp->start_lbp = &sp->fip->fi_blocks[0];
696 } else {
697 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
698 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
699 }
700 }
701
702 int
703 lfs_writeinode(fs, sp, ip)
704 struct lfs *fs;
705 struct segment *sp;
706 struct inode *ip;
707 {
708 struct buf *bp, *ibp;
709 IFILE *ifp;
710 SEGUSE *sup;
711 ufs_daddr_t daddr;
712 ino_t ino;
713 int error, i, ndx;
714 int redo_ifile = 0;
715 struct timespec ts;
716 int gotblk=0;
717
718 if (!(ip->i_flag & IN_ALLMOD))
719 return(0);
720
721 /* Allocate a new inode block if necessary. */
722 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
723 /* Allocate a new segment if necessary. */
724 if (sp->seg_bytes_left < fs->lfs_bsize ||
725 sp->sum_bytes_left < sizeof(ufs_daddr_t))
726 (void) lfs_writeseg(fs, sp);
727
728 /* Get next inode block. */
729 daddr = fs->lfs_offset;
730 fs->lfs_offset += fsbtodb(fs, 1);
731 sp->ibp = *sp->cbpp++ =
732 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
733 gotblk++;
734
735 /* Zero out inode numbers */
736 for (i = 0; i < INOPB(fs); ++i)
737 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
738
739 ++sp->start_bpp;
740 fs->lfs_avail -= fsbtodb(fs, 1);
741 /* Set remaining space counters. */
742 sp->seg_bytes_left -= fs->lfs_bsize;
743 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
744 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
745 sp->ninodes / INOPB(fs) - 1;
746 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
747 }
748
749 /* Update the inode times and copy the inode onto the inode page. */
750 if (ip->i_flag & (IN_CLEANING | IN_MODIFIED | IN_ACCESSED))
751 --fs->lfs_uinodes;
752 TIMEVAL_TO_TIMESPEC(&time, &ts);
753 LFS_ITIMES(ip, &ts, &ts, &ts);
754
755 /* XXX IN_ALLMOD */
756 if(ip->i_flag & IN_CLEANING)
757 ip->i_flag &= ~IN_CLEANING;
758 else
759 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED |
760 IN_UPDATE | IN_ACCESSED);
761
762 /*
763 * If this is the Ifile, and we've already written the Ifile in this
764 * partial segment, just overwrite it (it's not on disk yet) and
765 * continue.
766 *
767 * XXX we know that the bp that we get the second time around has
768 * already been gathered.
769 */
770 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
771 *(sp->idp) = ip->i_din.ffs_din;
772 return 0;
773 }
774
775 bp = sp->ibp;
776 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
777 ip->i_din.ffs_din;
778
779 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
780 sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
781 if(gotblk) {
782 bp->b_flags |= B_LOCKED;
783 brelse(bp);
784 }
785
786 /* Increment inode count in segment summary block. */
787 ++((SEGSUM *)(sp->segsum))->ss_ninos;
788
789 /* If this page is full, set flag to allocate a new page. */
790 if (++sp->ninodes % INOPB(fs) == 0)
791 sp->ibp = NULL;
792
793 /*
794 * If updating the ifile, update the super-block. Update the disk
795 * address and access times for this inode in the ifile.
796 */
797 ino = ip->i_number;
798 if (ino == LFS_IFILE_INUM) {
799 daddr = fs->lfs_idaddr;
800 fs->lfs_idaddr = bp->b_blkno;
801 } else {
802 LFS_IENTRY(ifp, fs, ino, ibp);
803 daddr = ifp->if_daddr;
804 ifp->if_daddr = bp->b_blkno;
805 #ifdef LFS_DEBUG_NEXTFREE
806 if(ino > 3 && ifp->if_nextfree) {
807 vprint("lfs_writeinode",ITOV(ip));
808 printf("lfs_writeinode: updating free ino %d\n",
809 ip->i_number);
810 }
811 #endif
812 error = VOP_BWRITE(ibp);
813 }
814
815 /*
816 * No need to update segment usage if there was no former inode address
817 * or if the last inode address is in the current partial segment.
818 */
819 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
820 printf("lfs_writeinode: last inode addr in current pseg "
821 "(ino %d daddr 0x%x)\n" /* XXX ANSI */, ino, daddr);
822 if (daddr != LFS_UNUSED_DADDR) {
823 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
824 #ifdef DIAGNOSTIC
825 if (sup->su_nbytes < DINODE_SIZE) {
826 /* XXX -- Change to a panic. */
827 printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
828 datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
829 panic("lfs_writeinode: negative bytes");
830 sup->su_nbytes = DINODE_SIZE;
831 }
832 #endif
833 sup->su_nbytes -= DINODE_SIZE;
834 redo_ifile =
835 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
836 error = VOP_BWRITE(bp);
837 }
838 return (redo_ifile);
839 }
840
841 int
842 lfs_gatherblock(sp, bp, sptr)
843 struct segment *sp;
844 struct buf *bp;
845 int *sptr;
846 {
847 struct lfs *fs;
848 int version;
849
850 /*
851 * If full, finish this segment. We may be doing I/O, so
852 * release and reacquire the splbio().
853 */
854 #ifdef DIAGNOSTIC
855 if (sp->vp == NULL)
856 panic ("lfs_gatherblock: Null vp in segment");
857 #endif
858 fs = sp->fs;
859 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
860 sp->seg_bytes_left < bp->b_bcount) {
861 if (sptr)
862 splx(*sptr);
863 lfs_updatemeta(sp);
864
865 version = sp->fip->fi_version;
866 (void) lfs_writeseg(fs, sp);
867
868 sp->fip->fi_version = version;
869 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
870 /* Add the current file to the segment summary. */
871 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
872 sp->sum_bytes_left -=
873 sizeof(struct finfo) - sizeof(ufs_daddr_t);
874
875 if (sptr)
876 *sptr = splbio();
877 return(1);
878 }
879
880 #ifdef DEBUG
881 if(bp->b_flags & B_GATHERED) {
882 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
883 sp->fip->fi_ino, bp->b_lblkno);
884 return(0);
885 }
886 #endif
887 /* Insert into the buffer list, update the FINFO block. */
888 bp->b_flags |= B_GATHERED;
889 *sp->cbpp++ = bp;
890 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
891
892 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
893 sp->seg_bytes_left -= bp->b_bcount;
894 return(0);
895 }
896
897 int
898 lfs_gather(fs, sp, vp, match)
899 struct lfs *fs;
900 struct segment *sp;
901 struct vnode *vp;
902 int (*match) __P((struct lfs *, struct buf *));
903 {
904 struct buf *bp;
905 int s, count=0;
906
907 sp->vp = vp;
908 s = splbio();
909
910 #ifndef LFS_NO_BACKBUF_HACK
911 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
912 #else /* LFS_NO_BACKBUF_HACK */
913 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
914 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
915 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
916 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
917 /* Find last buffer. */
918 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
919 bp = bp->b_vnbufs.le_next);
920 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
921 #endif /* LFS_NO_BACKBUF_HACK */
922 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
923 continue;
924 if(vp->v_type == VBLK) {
925 /* For block devices, just write the blocks. */
926 /* XXX Do we really need to even do this? */
927 #ifdef DEBUG_LFS
928 if(count==0)
929 printf("BLK(");
930 printf(".");
931 #endif
932 /* Get the block before bwrite, so we don't corrupt the free list */
933 bp->b_flags |= B_BUSY;
934 bremfree(bp);
935 bwrite(bp);
936 } else {
937 #ifdef DIAGNOSTIC
938 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
939 printf("lfs_gather: lbn %d is B_INVAL\n",
940 bp->b_lblkno);
941 VOP_PRINT(bp->b_vp);
942 }
943 if (!(bp->b_flags & B_DELWRI))
944 panic("lfs_gather: bp not B_DELWRI");
945 if (!(bp->b_flags & B_LOCKED)) {
946 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
947 VOP_PRINT(bp->b_vp);
948 panic("lfs_gather: bp not B_LOCKED");
949 }
950 #endif
951 if (lfs_gatherblock(sp, bp, &s)) {
952 goto loop;
953 }
954 }
955 count++;
956 }
957 splx(s);
958 #ifdef DEBUG_LFS
959 if(vp->v_type == VBLK && count)
960 printf(")\n");
961 #endif
962 lfs_updatemeta(sp);
963 sp->vp = NULL;
964 return count;
965 }
966
967 /*
968 * Update the metadata that points to the blocks listed in the FINFO
969 * array.
970 */
971 void
972 lfs_updatemeta(sp)
973 struct segment *sp;
974 {
975 SEGUSE *sup;
976 struct buf *bp, *ibp;
977 struct lfs *fs;
978 struct vnode *vp;
979 struct indir a[NIADDR + 2], *ap;
980 struct inode *ip;
981 ufs_daddr_t daddr, lbn, off;
982 daddr_t ooff;
983 int error, i, nblocks, num;
984
985 vp = sp->vp;
986 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
987 if (nblocks < 0)
988 panic("This is a bad thing\n");
989 if (vp == NULL || nblocks == 0)
990 return;
991
992 /* Sort the blocks. */
993 /*
994 * XXX KS - We have to sort even if the blocks come from the
995 * cleaner, because there might be other pending blocks on the
996 * same inode...and if we don't sort, and there are fragments
997 * present, blocks may be written in the wrong place.
998 */
999 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1000 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1001
1002 /*
1003 * Record the length of the last block in case it's a fragment.
1004 * If there are indirect blocks present, they sort last. An
1005 * indirect block will be lfs_bsize and its presence indicates
1006 * that you cannot have fragments.
1007 */
1008 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1009
1010 /*
1011 * Assign disk addresses, and update references to the logical
1012 * block and the segment usage information.
1013 */
1014 fs = sp->fs;
1015 for (i = nblocks; i--; ++sp->start_bpp) {
1016 lbn = *sp->start_lbp++;
1017
1018 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1019 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1020 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
1021 }
1022 fs->lfs_offset +=
1023 fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1024 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1025 if (error)
1026 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1027 ip = VTOI(vp);
1028 switch (num) {
1029 case 0:
1030 ooff = ip->i_ffs_db[lbn];
1031 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1032 #ifdef DEBUG_LFS
1033 printf("lfs_updatemeta[1]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1034 #endif
1035 } else
1036 ip->i_ffs_db[lbn] = off;
1037 break;
1038 case 1:
1039 ooff = ip->i_ffs_ib[a[0].in_off];
1040 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1041 #ifdef DEBUG_LFS
1042 printf("lfs_updatemeta[2]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1043 #endif
1044 } else
1045 ip->i_ffs_ib[a[0].in_off] = off;
1046 break;
1047 default:
1048 ap = &a[num - 1];
1049 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1050 panic("lfs_updatemeta: bread bno %d",
1051 ap->in_lbn);
1052 /*
1053 * Bread may create a new (indirect) block which needs
1054 * to get counted for the inode.
1055 *
1056 * XXX - why would it ever do this (except possibly
1057 * for the Ifile)? lfs_balloc is supposed to take
1058 * care of this.
1059 */
1060 if (bp->b_blkno == UNASSIGNED) {
1061 ip->i_ffs_blocks += fsbtodb(fs, 1);
1062 fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
1063
1064 /* Note the new address */
1065 bp->b_blkno = UNWRITTEN;
1066
1067 if(num == 2) {
1068 ip->i_ffs_ib[a[0].in_off] = UNWRITTEN;
1069 } else {
1070 ap = &a[num - 2];
1071 if (bread(vp, ap->in_lbn,
1072 fs->lfs_bsize, NOCRED, &ibp))
1073 panic("lfs_updatemeta: bread bno %d",
1074 ap->in_lbn);
1075 ((ufs_daddr_t *)ibp->b_data)[ap->in_off] = UNWRITTEN;
1076 VOP_BWRITE(ibp);
1077 }
1078 }
1079 #ifdef DEBUG
1080 else if(!(bp->b_flags & (B_DONE|B_DELWRI)))
1081 printf("lfs_updatemeta: unaccounted indirect block ino %d block %d\n", ip->i_number, ap->in_lbn);
1082 #endif
1083 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1084 if(vp != fs->lfs_ivnode && (ooff == 0 || ooff == UNASSIGNED)) {
1085 #ifdef DEBUG_LFS
1086 printf("lfs_updatemeta[3]: warning: writing ino %d lbn %d at 0x%x, was 0x%x\n", ip->i_number, lbn, off, ooff);
1087 #endif
1088 brelse(bp);
1089 } else {
1090 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1091 VOP_BWRITE(bp);
1092 }
1093 }
1094 /* Update segment usage information. */
1095 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1096 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1097 "in same pseg\n", VTOI(sp->vp)->i_number,
1098 (*sp->start_bpp)->b_lblkno, daddr);
1099 }
1100 if (daddr > 0) {
1101 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1102 #ifdef DIAGNOSTIC
1103 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1104 /* XXX -- Change to a panic. */
1105 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1106 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1107 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1108 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1109 panic("lfs_updatemeta: negative bytes");
1110 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1111 }
1112 #endif
1113 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1114 error = VOP_BWRITE(bp);
1115 }
1116 }
1117 }
1118
1119 /*
1120 * Start a new segment.
1121 */
1122 int
1123 lfs_initseg(fs)
1124 struct lfs *fs;
1125 {
1126 struct segment *sp;
1127 SEGUSE *sup;
1128 SEGSUM *ssp;
1129 struct buf *bp;
1130 int repeat;
1131
1132 sp = fs->lfs_sp;
1133
1134 repeat = 0;
1135 /* Advance to the next segment. */
1136 if (!LFS_PARTIAL_FITS(fs)) {
1137 /* Wake up any cleaning procs waiting on this file system. */
1138 wakeup(&lfs_allclean_wakeup);
1139 wakeup(&fs->lfs_nextseg);
1140 lfs_newseg(fs);
1141 repeat = 1;
1142 fs->lfs_offset = fs->lfs_curseg;
1143 sp->seg_number = datosn(fs, fs->lfs_curseg);
1144 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1145 /*
1146 * If the segment contains a superblock, update the offset
1147 * and summary address to skip over it.
1148 */
1149 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1150 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1151 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1152 sp->seg_bytes_left -= LFS_SBPAD;
1153 }
1154 brelse(bp);
1155 } else {
1156 sp->seg_number = datosn(fs, fs->lfs_curseg);
1157 sp->seg_bytes_left = (fs->lfs_dbpseg -
1158 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1159 }
1160 fs->lfs_lastpseg = fs->lfs_offset;
1161
1162 sp->fs = fs;
1163 sp->ibp = NULL;
1164 sp->idp = NULL;
1165 sp->ninodes = 0;
1166
1167 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1168 sp->cbpp = sp->bpp;
1169 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1170 fs->lfs_offset, LFS_SUMMARY_SIZE);
1171 sp->segsum = (*sp->cbpp)->b_data;
1172 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1173 sp->start_bpp = ++sp->cbpp;
1174 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1175
1176 /* Set point to SEGSUM, initialize it. */
1177 ssp = sp->segsum;
1178 ssp->ss_next = fs->lfs_nextseg;
1179 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1180 ssp->ss_magic = SS_MAGIC;
1181
1182 /* Set pointer to first FINFO, initialize it. */
1183 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1184 sp->fip->fi_nblocks = 0;
1185 sp->start_lbp = &sp->fip->fi_blocks[0];
1186 sp->fip->fi_lastlength = 0;
1187
1188 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1189 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1190
1191 return(repeat);
1192 }
1193
1194 /*
1195 * Return the next segment to write.
1196 */
1197 void
1198 lfs_newseg(fs)
1199 struct lfs *fs;
1200 {
1201 CLEANERINFO *cip;
1202 SEGUSE *sup;
1203 struct buf *bp;
1204 int curseg, isdirty, sn;
1205
1206 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1207 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1208 sup->su_nbytes = 0;
1209 sup->su_nsums = 0;
1210 sup->su_ninos = 0;
1211 (void) VOP_BWRITE(bp);
1212
1213 LFS_CLEANERINFO(cip, fs, bp);
1214 --cip->clean;
1215 ++cip->dirty;
1216 fs->lfs_nclean = cip->clean;
1217 (void) VOP_BWRITE(bp);
1218
1219 fs->lfs_lastseg = fs->lfs_curseg;
1220 fs->lfs_curseg = fs->lfs_nextseg;
1221 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1222 sn = (sn + 1) % fs->lfs_nseg;
1223 if (sn == curseg)
1224 panic("lfs_nextseg: no clean segments");
1225 LFS_SEGENTRY(sup, fs, sn, bp);
1226 isdirty = sup->su_flags & SEGUSE_DIRTY;
1227 brelse(bp);
1228 if (!isdirty)
1229 break;
1230 }
1231
1232 ++fs->lfs_nactive;
1233 fs->lfs_nextseg = sntoda(fs, sn);
1234 if(lfs_dostats) {
1235 ++lfs_stats.segsused;
1236 }
1237 }
1238
1239 int
1240 lfs_writeseg(fs, sp)
1241 struct lfs *fs;
1242 struct segment *sp;
1243 {
1244 extern int locked_queue_count;
1245 extern long locked_queue_bytes;
1246 struct buf **bpp, *bp, *cbp;
1247 SEGUSE *sup;
1248 SEGSUM *ssp;
1249 dev_t i_dev;
1250 u_long *datap, *dp;
1251 int do_again, i, nblocks, s;
1252 #ifdef LFS_TRACK_IOS
1253 int j;
1254 #endif
1255 int (*strategy)__P((void *));
1256 struct vop_strategy_args vop_strategy_a;
1257 u_short ninos;
1258 struct vnode *devvp;
1259 char *p;
1260 struct vnode *vn;
1261 struct inode *ip;
1262 #if defined(DEBUG) && defined(LFS_PROPELLER)
1263 static int propeller;
1264 char propstring[4] = "-\\|/";
1265
1266 printf("%c\b",propstring[propeller++]);
1267 if(propeller==4)
1268 propeller = 0;
1269 #endif
1270
1271 /*
1272 * If there are no buffers other than the segment summary to write
1273 * and it is not a checkpoint, don't do anything. On a checkpoint,
1274 * even if there aren't any buffers, you need to write the superblock.
1275 */
1276 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1277 return (0);
1278
1279 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1280 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1281
1282 /* Update the segment usage information. */
1283 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1284
1285 /* Loop through all blocks, except the segment summary. */
1286 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1287 if((*bpp)->b_vp != devvp)
1288 sup->su_nbytes += (*bpp)->b_bcount;
1289 }
1290
1291 ssp = (SEGSUM *)sp->segsum;
1292
1293 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1294 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1295 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1296 sup->su_lastmod = time.tv_sec;
1297 sup->su_ninos += ninos;
1298 ++sup->su_nsums;
1299
1300 do_again = !(bp->b_flags & B_GATHERED);
1301 (void)VOP_BWRITE(bp);
1302 /*
1303 * Compute checksum across data and then across summary; the first
1304 * block (the summary block) is skipped. Set the create time here
1305 * so that it's guaranteed to be later than the inode mod times.
1306 *
1307 * XXX
1308 * Fix this to do it inline, instead of malloc/copy.
1309 */
1310 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1311 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1312 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1313 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1314 panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
1315 } else {
1316 if( !((*bpp)->b_flags & B_CALL) ) {
1317 /*
1318 * Before we record data for a checksm,
1319 * make sure the data won't change in between
1320 * the checksum calculation and the write,
1321 * by marking the buffer B_BUSY. It will
1322 * be freed later by brelse().
1323 */
1324 again:
1325 s = splbio();
1326 if((*bpp)->b_flags & B_BUSY) {
1327 #ifdef DEBUG
1328 printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
1329 VTOI((*bpp)->b_vp)->i_number,
1330 bp->b_lblkno);
1331 #endif
1332 (*bpp)->b_flags |= B_WANTED;
1333 tsleep((*bpp), (PRIBIO + 1),
1334 "lfs_writeseg", 0);
1335 splx(s);
1336 goto again;
1337 }
1338 (*bpp)->b_flags |= B_BUSY;
1339 splx(s);
1340 }
1341 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1342 }
1343 }
1344 ssp->ss_create = time.tv_sec;
1345 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1346 ssp->ss_sumsum =
1347 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1348 free(datap, M_SEGMENT);
1349 #ifdef DIAGNOSTIC
1350 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
1351 panic("lfs_writeseg: No diskspace for summary");
1352 #endif
1353 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1354
1355 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1356
1357 /*
1358 * When we simply write the blocks we lose a rotation for every block
1359 * written. To avoid this problem, we allocate memory in chunks, copy
1360 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1361 * largest size I/O devices can handle.
1362 * When the data is copied to the chunk, turn off the B_LOCKED bit
1363 * and brelse the buffer (which will move them to the LRU list). Add
1364 * the B_CALL flag to the buffer header so we can count I/O's for the
1365 * checkpoints and so we can release the allocated memory.
1366 *
1367 * XXX
1368 * This should be removed if the new virtual memory system allows us to
1369 * easily make the buffers contiguous in kernel memory and if that's
1370 * fast enough.
1371 */
1372
1373 #define CHUNKSIZE MAXPHYS
1374
1375 if(devvp==NULL)
1376 panic("devvp is NULL");
1377 for (bpp = sp->bpp,i = nblocks; i;) {
1378 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1379 cbp->b_dev = i_dev;
1380 cbp->b_flags |= B_ASYNC | B_BUSY;
1381 cbp->b_bcount = 0;
1382
1383 #ifdef DIAGNOSTIC
1384 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1385 panic("lfs_writeseg: Segment overwrite");
1386 }
1387 #endif
1388
1389 s = splbio();
1390 if(fs->lfs_iocount >= LFS_THROTTLE) {
1391 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1392 }
1393 ++fs->lfs_iocount;
1394 #ifdef LFS_TRACK_IOS
1395 for(j=0;j<LFS_THROTTLE;j++) {
1396 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1397 fs->lfs_pending[j] = cbp->b_blkno;
1398 break;
1399 }
1400 }
1401 #endif /* LFS_TRACK_IOS */
1402 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1403 bp = *bpp;
1404
1405 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1406 break;
1407
1408 /*
1409 * Fake buffers from the cleaner are marked as B_INVAL.
1410 * We need to copy the data from user space rather than
1411 * from the buffer indicated.
1412 * XXX == what do I do on an error?
1413 */
1414 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1415 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1416 panic("lfs_writeseg: copyin failed [2]");
1417 } else
1418 bcopy(bp->b_data, p, bp->b_bcount);
1419 p += bp->b_bcount;
1420 cbp->b_bcount += bp->b_bcount;
1421 if (bp->b_flags & B_LOCKED) {
1422 --locked_queue_count;
1423 locked_queue_bytes -= bp->b_bufsize;
1424 }
1425 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1426 B_LOCKED | B_GATHERED);
1427 vn = bp->b_vp;
1428 if (bp->b_flags & B_CALL) {
1429 /* if B_CALL, it was created with newbuf */
1430 lfs_freebuf(bp);
1431 } else {
1432 bremfree(bp);
1433 bp->b_flags |= B_DONE;
1434 if(vn)
1435 reassignbuf(bp, vn);
1436 brelse(bp);
1437 }
1438 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1439 bp->b_flags &= ~B_NEEDCOMMIT;
1440 wakeup(bp);
1441 }
1442
1443 bpp++;
1444
1445 /*
1446 * If this is the last block for this vnode, but
1447 * there are other blocks on its dirty list,
1448 * set IN_MODIFIED/IN_CLEANING depending on what
1449 * sort of block. Only do this for our mount point,
1450 * not for, e.g., inode blocks that are attached to
1451 * the devvp.
1452 */
1453 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1454 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1455 vn->v_mount == fs->lfs_ivnode->v_mount)
1456 {
1457 ip = VTOI(vn);
1458 #ifdef DEBUG_LFS
1459 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1460 #endif
1461 if(!(ip->i_flag & (IN_CLEANING | IN_MODIFIED |
1462 IN_ACCESSED))) {
1463 fs->lfs_uinodes++;
1464 if(bp->b_flags & B_CALL)
1465 ip->i_flag |= IN_CLEANING;
1466 else
1467 ip->i_flag |= IN_MODIFIED;
1468 }
1469 }
1470 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1471 wakeup(vn);
1472 }
1473 ++cbp->b_vp->v_numoutput;
1474 splx(s);
1475 /*
1476 * XXXX This is a gross and disgusting hack. Since these
1477 * buffers are physically addressed, they hang off the
1478 * device vnode (devvp). As a result, they have no way
1479 * of getting to the LFS superblock or lfs structure to
1480 * keep track of the number of I/O's pending. So, I am
1481 * going to stuff the fs into the saveaddr field of
1482 * the buffer (yuk).
1483 */
1484 cbp->b_saveaddr = (caddr_t)fs;
1485 vop_strategy_a.a_desc = VDESC(vop_strategy);
1486 vop_strategy_a.a_bp = cbp;
1487 (strategy)(&vop_strategy_a);
1488 }
1489 /*
1490 * XXX
1491 * Vinvalbuf can move locked buffers off the locked queue
1492 * and we have no way of knowing about this. So, after
1493 * doing a big write, we recalculate how many buffers are
1494 * really still left on the locked queue.
1495 */
1496 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1497 wakeup(&locked_queue_count);
1498 if(lfs_dostats) {
1499 ++lfs_stats.psegwrites;
1500 lfs_stats.blocktot += nblocks - 1;
1501 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1502 ++lfs_stats.psyncwrites;
1503 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1504 ++lfs_stats.pcleanwrites;
1505 lfs_stats.cleanblocks += nblocks - 1;
1506 }
1507 }
1508 return (lfs_initseg(fs) || do_again);
1509 }
1510
1511 void
1512 lfs_writesuper(fs, daddr)
1513 struct lfs *fs;
1514 daddr_t daddr;
1515 {
1516 struct buf *bp;
1517 dev_t i_dev;
1518 int (*strategy) __P((void *));
1519 int s;
1520 struct vop_strategy_args vop_strategy_a;
1521
1522 #ifdef LFS_CANNOT_ROLLFW
1523 /*
1524 * If we can write one superblock while another is in
1525 * progress, we risk not having a complete checkpoint if we crash.
1526 * So, block here if a superblock write is in progress.
1527 */
1528 s = splbio();
1529 while(fs->lfs_sbactive) {
1530 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1531 }
1532 fs->lfs_sbactive = daddr;
1533 splx(s);
1534 #endif
1535 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1536 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1537
1538 /* Set timestamp of this version of the superblock */
1539 fs->lfs_tstamp = time.tv_sec;
1540
1541 /* Checksum the superblock and copy it into a buffer. */
1542 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1543 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1544 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1545
1546 bp->b_dev = i_dev;
1547 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1548 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1549 bp->b_iodone = lfs_supercallback;
1550 /* XXX KS - same nasty hack as above */
1551 bp->b_saveaddr = (caddr_t)fs;
1552
1553 vop_strategy_a.a_desc = VDESC(vop_strategy);
1554 vop_strategy_a.a_bp = bp;
1555 s = splbio();
1556 ++bp->b_vp->v_numoutput;
1557 splx(s);
1558 (strategy)(&vop_strategy_a);
1559 }
1560
1561 /*
1562 * Logical block number match routines used when traversing the dirty block
1563 * chain.
1564 */
1565 int
1566 lfs_match_fake(fs, bp)
1567 struct lfs *fs;
1568 struct buf *bp;
1569 {
1570 return (bp->b_flags & B_CALL);
1571 }
1572
1573 int
1574 lfs_match_data(fs, bp)
1575 struct lfs *fs;
1576 struct buf *bp;
1577 {
1578 return (bp->b_lblkno >= 0);
1579 }
1580
1581 int
1582 lfs_match_indir(fs, bp)
1583 struct lfs *fs;
1584 struct buf *bp;
1585 {
1586 int lbn;
1587
1588 lbn = bp->b_lblkno;
1589 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1590 }
1591
1592 int
1593 lfs_match_dindir(fs, bp)
1594 struct lfs *fs;
1595 struct buf *bp;
1596 {
1597 int lbn;
1598
1599 lbn = bp->b_lblkno;
1600 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1601 }
1602
1603 int
1604 lfs_match_tindir(fs, bp)
1605 struct lfs *fs;
1606 struct buf *bp;
1607 {
1608 int lbn;
1609
1610 lbn = bp->b_lblkno;
1611 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1612 }
1613
1614 /*
1615 * XXX - The only buffers that are going to hit these functions are the
1616 * segment write blocks, or the segment summaries, or the superblocks.
1617 *
1618 * All of the above are created by lfs_newbuf, and so do not need to be
1619 * released via brelse.
1620 */
1621 void
1622 lfs_callback(bp)
1623 struct buf *bp;
1624 {
1625 struct lfs *fs;
1626 #ifdef LFS_TRACK_IOS
1627 int j;
1628 #endif
1629
1630 fs = (struct lfs *)bp->b_saveaddr;
1631 #ifdef DIAGNOSTIC
1632 if (fs->lfs_iocount == 0)
1633 panic("lfs_callback: zero iocount\n");
1634 #endif
1635 if (--fs->lfs_iocount < LFS_THROTTLE)
1636 wakeup(&fs->lfs_iocount);
1637 #ifdef LFS_TRACK_IOS
1638 for(j=0;j<LFS_THROTTLE;j++) {
1639 if(fs->lfs_pending[j]==bp->b_blkno) {
1640 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1641 wakeup(&(fs->lfs_pending[j]));
1642 break;
1643 }
1644 }
1645 #endif /* LFS_TRACK_IOS */
1646
1647 lfs_freebuf(bp);
1648 }
1649
1650 void
1651 lfs_supercallback(bp)
1652 struct buf *bp;
1653 {
1654 #ifdef LFS_CANNOT_ROLLFW
1655 struct lfs *fs;
1656
1657 fs = (struct lfs *)bp->b_saveaddr;
1658 fs->lfs_sbactive = 0;
1659 wakeup(&fs->lfs_sbactive);
1660 #endif
1661 lfs_freebuf(bp);
1662 }
1663
1664 /*
1665 * Shellsort (diminishing increment sort) from Data Structures and
1666 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1667 * see also Knuth Vol. 3, page 84. The increments are selected from
1668 * formula (8), page 95. Roughly O(N^3/2).
1669 */
1670 /*
1671 * This is our own private copy of shellsort because we want to sort
1672 * two parallel arrays (the array of buffer pointers and the array of
1673 * logical block numbers) simultaneously. Note that we cast the array
1674 * of logical block numbers to a unsigned in this routine so that the
1675 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1676 */
1677
1678 void
1679 lfs_shellsort(bp_array, lb_array, nmemb)
1680 struct buf **bp_array;
1681 ufs_daddr_t *lb_array;
1682 int nmemb;
1683 {
1684 static int __rsshell_increments[] = { 4, 1, 0 };
1685 int incr, *incrp, t1, t2;
1686 struct buf *bp_temp;
1687 u_long lb_temp;
1688
1689 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1690 for (t1 = incr; t1 < nmemb; ++t1)
1691 for (t2 = t1 - incr; t2 >= 0;)
1692 if (lb_array[t2] > lb_array[t2 + incr]) {
1693 lb_temp = lb_array[t2];
1694 lb_array[t2] = lb_array[t2 + incr];
1695 lb_array[t2 + incr] = lb_temp;
1696 bp_temp = bp_array[t2];
1697 bp_array[t2] = bp_array[t2 + incr];
1698 bp_array[t2 + incr] = bp_temp;
1699 t2 -= incr;
1700 } else
1701 break;
1702 }
1703
1704 /*
1705 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1706 */
1707 int
1708 lfs_vref(vp)
1709 struct vnode *vp;
1710 {
1711 /*
1712 * If we return 1 here during a flush, we risk vinvalbuf() not
1713 * being able to flush all of the pages from this vnode, which
1714 * will cause it to panic. So, return 0 if a flush is in progress.
1715 */
1716 if (vp->v_flag & VXLOCK) {
1717 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1718 return 0;
1719 }
1720 return(1);
1721 }
1722 return (vget(vp, 0));
1723 }
1724
1725 /*
1726 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1727 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1728 */
1729 void
1730 lfs_vunref(vp)
1731 struct vnode *vp;
1732 {
1733 /*
1734 * Analogous to lfs_vref, if the node is flushing, fake it.
1735 */
1736 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1737 return;
1738 }
1739
1740 simple_lock(&vp->v_interlock);
1741 #ifdef DIAGNOSTIC
1742 if(vp->v_usecount<=0) {
1743 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1744 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1745 panic("lfs_vunref: v_usecount<0");
1746 }
1747 #endif
1748 vp->v_usecount--;
1749 if (vp->v_usecount > 0) {
1750 simple_unlock(&vp->v_interlock);
1751 return;
1752 }
1753 /*
1754 * insert at tail of LRU list
1755 */
1756 simple_lock(&vnode_free_list_slock);
1757 if (vp->v_holdcnt > 0)
1758 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1759 else
1760 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1761 simple_unlock(&vnode_free_list_slock);
1762 simple_unlock(&vp->v_interlock);
1763 }
1764
1765 /*
1766 * We use this when we have vnodes that were loaded in solely for cleaning.
1767 * There is no reason to believe that these vnodes will be referenced again
1768 * soon, since the cleaning process is unrelated to normal filesystem
1769 * activity. Putting cleaned vnodes at the tail of the list has the effect
1770 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1771 * cleaning at the head of the list, instead.
1772 */
1773 void
1774 lfs_vunref_head(vp)
1775 struct vnode *vp;
1776 {
1777 simple_lock(&vp->v_interlock);
1778 #ifdef DIAGNOSTIC
1779 if(vp->v_usecount==0) {
1780 panic("lfs_vunref: v_usecount<0");
1781 }
1782 #endif
1783 vp->v_usecount--;
1784 if (vp->v_usecount > 0) {
1785 simple_unlock(&vp->v_interlock);
1786 return;
1787 }
1788 #ifdef DIAGNOSTIC
1789 if(VOP_ISLOCKED(vp))
1790 panic("lfs_vunref_head: vnode locked");
1791 #endif
1792 /*
1793 * insert at head of LRU list
1794 */
1795 simple_lock(&vnode_free_list_slock);
1796 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1797 simple_unlock(&vnode_free_list_slock);
1798 simple_unlock(&vp->v_interlock);
1799 }
1800
1801