lfs_segment.c revision 1.53 1 /* $NetBSD: lfs_segment.c,v 1.53 2000/07/03 01:45:52 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 ip->i_flag &= ~IN_CLEANING;
201 if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED)) {
202 fs->lfs_uinodes--;
203 } else
204 ip->i_flag |= IN_MODIFIED;
205 /*
206 * Toss any cleaning buffers that have real counterparts
207 * to avoid losing new data
208 */
209 s = splbio();
210 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
211 nbp = bp->b_vnbufs.le_next;
212 if(bp->b_flags & B_CALL) {
213 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
214 tbp=tnbp)
215 {
216 tnbp = tbp->b_vnbufs.le_next;
217 if(tbp->b_vp == bp->b_vp
218 && tbp->b_lblkno == bp->b_lblkno
219 && tbp != bp)
220 {
221 lfs_freebuf(bp);
222 }
223 }
224 }
225 }
226 splx(s);
227 }
228
229 /* If the node is being written, wait until that is done */
230 if(WRITEINPROG(vp)) {
231 #ifdef DEBUG_LFS
232 ivndebug(vp,"vflush/writeinprog");
233 #endif
234 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
235 }
236
237 /* Protect against VXLOCK deadlock in vinvalbuf() */
238 lfs_seglock(fs, SEGM_SYNC);
239
240 /* If we're supposed to flush a freed inode, just toss it */
241 /* XXX - seglock, so these buffers can't be gathered, right? */
242 if(ip->i_ffs_mode == 0) {
243 printf("lfs_vflush: ino %d is freed, not flushing\n",
244 ip->i_number);
245 s = splbio();
246 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
247 nbp = bp->b_vnbufs.le_next;
248 /* Copied from lfs_writeseg */
249 if (bp->b_flags & B_CALL) {
250 /* if B_CALL, it was created with newbuf */
251 lfs_freebuf(bp);
252 } else {
253 bremfree(bp);
254 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
255 B_LOCKED | B_GATHERED);
256 bp->b_flags |= B_DONE;
257 reassignbuf(bp, vp);
258 brelse(bp);
259 }
260 }
261 splx(s);
262 if(ip->i_flag & IN_CLEANING)
263 fs->lfs_uinodes--;
264 if(ip->i_flag & (IN_MODIFIED | IN_ACCESSED))
265 fs->lfs_uinodes--;
266 ip->i_flag &= ~IN_ALLMOD;
267 printf("lfs_vflush: done not flushing ino %d\n",
268 ip->i_number);
269 lfs_segunlock(fs);
270 return 0;
271 }
272
273 SET_FLUSHING(fs,vp);
274 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
275 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
276 CLR_FLUSHING(fs,vp);
277 lfs_segunlock(fs);
278 return error;
279 }
280 sp = fs->lfs_sp;
281
282 if (vp->v_dirtyblkhd.lh_first == NULL) {
283 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
284 } else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
285 #ifdef DEBUG_LFS
286 ivndebug(vp,"vflush/clean");
287 #endif
288 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
289 }
290 else if(lfs_dostats) {
291 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
292 ++lfs_stats.vflush_invoked;
293 #ifdef DEBUG_LFS
294 ivndebug(vp,"vflush");
295 #endif
296 }
297
298 #ifdef DIAGNOSTIC
299 /* XXX KS This actually can happen right now, though it shouldn't(?) */
300 if(vp->v_flag & VDIROP) {
301 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
302 /* panic("VDIROP being flushed...this can\'t happen"); */
303 }
304 if(vp->v_usecount<0) {
305 printf("usecount=%ld\n",vp->v_usecount);
306 panic("lfs_vflush: usecount<0");
307 }
308 #endif
309
310 do {
311 do {
312 if (vp->v_dirtyblkhd.lh_first != NULL)
313 lfs_writefile(fs, sp, vp);
314 } while (lfs_writeinode(fs, sp, ip));
315 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
316
317 if(lfs_dostats) {
318 ++lfs_stats.nwrites;
319 if (sp->seg_flags & SEGM_SYNC)
320 ++lfs_stats.nsync_writes;
321 if (sp->seg_flags & SEGM_CKP)
322 ++lfs_stats.ncheckpoints;
323 }
324 lfs_segunlock(fs);
325
326 CLR_FLUSHING(fs,vp);
327 return (0);
328 }
329
330 #ifdef DEBUG_LFS_VERBOSE
331 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
332 #else
333 # define vndebug(vp,str)
334 #endif
335
336 int
337 lfs_writevnodes(fs, mp, sp, op)
338 struct lfs *fs;
339 struct mount *mp;
340 struct segment *sp;
341 int op;
342 {
343 struct inode *ip;
344 struct vnode *vp;
345 int inodes_written=0, only_cleaning;
346 int needs_unlock;
347
348 #ifndef LFS_NO_BACKVP_HACK
349 /* BEGIN HACK */
350 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
351 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
352 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
353
354 /* Find last vnode. */
355 loop: for (vp = mp->mnt_vnodelist.lh_first;
356 vp && vp->v_mntvnodes.le_next != NULL;
357 vp = vp->v_mntvnodes.le_next);
358 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
359 #else
360 loop:
361 for (vp = mp->mnt_vnodelist.lh_first;
362 vp != NULL;
363 vp = vp->v_mntvnodes.le_next) {
364 #endif
365 /*
366 * If the vnode that we are about to sync is no longer
367 * associated with this mount point, start over.
368 */
369 if (vp->v_mount != mp)
370 goto loop;
371
372 ip = VTOI(vp);
373 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
374 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
375 vndebug(vp,"dirop");
376 continue;
377 }
378
379 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
380 vndebug(vp,"empty");
381 continue;
382 }
383
384 if (vp->v_type == VNON) {
385 continue;
386 }
387
388 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
389 && vp != fs->lfs_flushvp
390 && !(ip->i_flag & IN_CLEANING)) {
391 vndebug(vp,"cleaning");
392 continue;
393 }
394
395 if (lfs_vref(vp)) {
396 vndebug(vp,"vref");
397 continue;
398 }
399
400 #if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
401 if(WRITEINPROG(vp)) {
402 lfs_vunref(vp);
403 #ifdef DEBUG_LFS
404 ivndebug(vp,"writevnodes/writeinprog");
405 #endif
406 continue;
407 }
408 #endif
409
410 needs_unlock = 0;
411 if (VOP_ISLOCKED(vp)) {
412 if (vp != fs->lfs_ivnode &&
413 vp->v_lock.lk_lockholder != curproc->p_pid) {
414 #ifdef DEBUG_LFS
415 printf("lfs_writevnodes: not writing ino %d, locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 lfs_vunref(vp);
420 continue;
421 }
422 } else if (vp != fs->lfs_ivnode) {
423 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
424 needs_unlock = 1;
425 }
426
427 only_cleaning = 0;
428 /*
429 * Write the inode/file if dirty and it's not the
430 * the IFILE.
431 */
432 if ((ip->i_flag & IN_ALLMOD) ||
433 (vp->v_dirtyblkhd.lh_first != NULL))
434 {
435 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
436
437 if(ip->i_number != LFS_IFILE_INUM
438 && vp->v_dirtyblkhd.lh_first != NULL)
439 {
440 lfs_writefile(fs, sp, vp);
441 }
442 if(vp->v_dirtyblkhd.lh_first != NULL) {
443 if(WRITEINPROG(vp)) {
444 #ifdef DEBUG_LFS
445 ivndebug(vp,"writevnodes/write2");
446 #endif
447 } else if(!(ip->i_flag & IN_ALLMOD)) {
448 #ifdef DEBUG_LFS
449 printf("<%d>",ip->i_number);
450 #endif
451 ip->i_flag |= IN_MODIFIED;
452 ++fs->lfs_uinodes;
453 }
454 }
455 (void) lfs_writeinode(fs, sp, ip);
456 inodes_written++;
457 }
458
459 if (needs_unlock)
460 VOP_UNLOCK(vp, 0);
461
462 if (lfs_clean_vnhead && only_cleaning)
463 lfs_vunref_head(vp);
464 else
465 lfs_vunref(vp);
466 }
467 return inodes_written;
468 }
469
470 int
471 lfs_segwrite(mp, flags)
472 struct mount *mp;
473 int flags; /* Do a checkpoint. */
474 {
475 struct buf *bp;
476 struct inode *ip;
477 struct lfs *fs;
478 struct segment *sp;
479 struct vnode *vp;
480 SEGUSE *segusep;
481 ufs_daddr_t ibno;
482 int do_ckp, error, i;
483 int writer_set = 0;
484 int need_unlock = 0;
485
486 fs = VFSTOUFS(mp)->um_lfs;
487
488 if (fs->lfs_ronly)
489 return EROFS;
490
491 lfs_imtime(fs);
492
493 /*
494 * If we are not the cleaner, and we have fewer than lfs_minfreeseg
495 * clean segments, wait until cleaner writes.
496 */
497 if(!(flags & SEGM_CLEAN)
498 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
499 {
500 do {
501 if (fs->lfs_nclean <= fs->lfs_minfreeseg ||
502 fs->lfs_avail <= 0)
503 {
504 wakeup(&lfs_allclean_wakeup);
505 wakeup(&fs->lfs_nextseg);
506 error = tsleep(&fs->lfs_avail, PRIBIO + 1,
507 "lfs_avail", 0);
508 if (error) {
509 return (error);
510 }
511 }
512 } while (fs->lfs_nclean <= fs->lfs_minfreeseg ||
513 fs->lfs_avail <= 0);
514 }
515
516 /*
517 * Allocate a segment structure and enough space to hold pointers to
518 * the maximum possible number of buffers which can be described in a
519 * single summary block.
520 */
521 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
522 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
523 sp = fs->lfs_sp;
524
525 /*
526 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
527 * in which case we have to flush *all* buffers off of this vnode.
528 * We don't care about other nodes, but write any non-dirop nodes
529 * anyway in anticipation of another getnewvnode().
530 *
531 * If we're cleaning we only write cleaning and ifile blocks, and
532 * no dirops, since otherwise we'd risk corruption in a crash.
533 */
534 if(sp->seg_flags & SEGM_CLEAN)
535 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
536 else {
537 lfs_writevnodes(fs, mp, sp, VN_REG);
538 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
539 while(fs->lfs_dirops)
540 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
541 "lfs writer", 0)))
542 {
543 free(sp->bpp, M_SEGMENT);
544 free(sp, M_SEGMENT);
545 return (error);
546 }
547 fs->lfs_writer++;
548 writer_set=1;
549 lfs_writevnodes(fs, mp, sp, VN_DIROP);
550 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
551 }
552 }
553
554 /*
555 * If we are doing a checkpoint, mark everything since the
556 * last checkpoint as no longer ACTIVE.
557 */
558 if (do_ckp) {
559 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
560 --ibno >= fs->lfs_cleansz; ) {
561 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
562
563 panic("lfs_segwrite: ifile read");
564 segusep = (SEGUSE *)bp->b_data;
565 for (i = fs->lfs_sepb; i--; segusep++)
566 segusep->su_flags &= ~SEGUSE_ACTIVE;
567
568 /* But the current segment is still ACTIVE */
569 segusep = (SEGUSE *)bp->b_data;
570 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
571 (ibno-fs->lfs_cleansz))
572 segusep[datosn(fs, fs->lfs_curseg) %
573 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
574 error = VOP_BWRITE(bp);
575 }
576 }
577
578 if (do_ckp || fs->lfs_doifile) {
579 redo:
580 vp = fs->lfs_ivnode;
581 /*
582 * Depending on the circumstances of our calling, the ifile
583 * inode might be locked. If it is, and if it is locked by
584 * us, we should VREF instead of vget here.
585 */
586 need_unlock = 0;
587 if(VOP_ISLOCKED(vp)
588 && vp->v_lock.lk_lockholder == curproc->p_pid) {
589 VREF(vp);
590 } else {
591 while (vget(vp, LK_EXCLUSIVE))
592 continue;
593 need_unlock = 1;
594 }
595 ip = VTOI(vp);
596 if (vp->v_dirtyblkhd.lh_first != NULL)
597 lfs_writefile(fs, sp, vp);
598 (void)lfs_writeinode(fs, sp, ip);
599
600 /* Only vput if we used vget() above. */
601 if(need_unlock)
602 vput(vp);
603 else
604 vrele(vp);
605
606 if (lfs_writeseg(fs, sp) && do_ckp)
607 goto redo;
608 } else {
609 (void) lfs_writeseg(fs, sp);
610 }
611
612 /*
613 * If the I/O count is non-zero, sleep until it reaches zero.
614 * At the moment, the user's process hangs around so we can
615 * sleep.
616 */
617 fs->lfs_doifile = 0;
618 if(writer_set && --fs->lfs_writer==0)
619 wakeup(&fs->lfs_dirops);
620
621 if(lfs_dostats) {
622 ++lfs_stats.nwrites;
623 if (sp->seg_flags & SEGM_SYNC)
624 ++lfs_stats.nsync_writes;
625 if (sp->seg_flags & SEGM_CKP)
626 ++lfs_stats.ncheckpoints;
627 }
628 lfs_segunlock(fs);
629 return (0);
630 }
631
632 /*
633 * Write the dirty blocks associated with a vnode.
634 */
635 void
636 lfs_writefile(fs, sp, vp)
637 struct lfs *fs;
638 struct segment *sp;
639 struct vnode *vp;
640 {
641 struct buf *bp;
642 struct finfo *fip;
643 IFILE *ifp;
644
645
646 if (sp->seg_bytes_left < fs->lfs_bsize ||
647 sp->sum_bytes_left < sizeof(struct finfo))
648 (void) lfs_writeseg(fs, sp);
649
650 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
651 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
652
653 if(vp->v_flag & VDIROP)
654 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
655
656 fip = sp->fip;
657 fip->fi_nblocks = 0;
658 fip->fi_ino = VTOI(vp)->i_number;
659 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
660 fip->fi_version = ifp->if_version;
661 brelse(bp);
662
663 if(sp->seg_flags & SEGM_CLEAN)
664 {
665 lfs_gather(fs, sp, vp, lfs_match_fake);
666 /*
667 * For a file being flushed, we need to write *all* blocks.
668 * This means writing the cleaning blocks first, and then
669 * immediately following with any non-cleaning blocks.
670 * The same is true of the Ifile since checkpoints assume
671 * that all valid Ifile blocks are written.
672 */
673 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
674 lfs_gather(fs, sp, vp, lfs_match_data);
675 } else
676 lfs_gather(fs, sp, vp, lfs_match_data);
677
678 /*
679 * It may not be necessary to write the meta-data blocks at this point,
680 * as the roll-forward recovery code should be able to reconstruct the
681 * list.
682 *
683 * We have to write them anyway, though, under two conditions: (1) the
684 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
685 * checkpointing.
686 */
687 if(lfs_writeindir
688 || IS_FLUSHING(fs,vp)
689 || (sp->seg_flags & SEGM_CKP))
690 {
691 lfs_gather(fs, sp, vp, lfs_match_indir);
692 lfs_gather(fs, sp, vp, lfs_match_dindir);
693 lfs_gather(fs, sp, vp, lfs_match_tindir);
694 }
695 fip = sp->fip;
696 if (fip->fi_nblocks != 0) {
697 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
698 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
699 sp->start_lbp = &sp->fip->fi_blocks[0];
700 } else {
701 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
702 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
703 }
704 }
705
706 int
707 lfs_writeinode(fs, sp, ip)
708 struct lfs *fs;
709 struct segment *sp;
710 struct inode *ip;
711 {
712 struct buf *bp, *ibp;
713 struct dinode *cdp;
714 IFILE *ifp;
715 SEGUSE *sup;
716 ufs_daddr_t daddr;
717 daddr_t *daddrp;
718 ino_t ino;
719 int error, i, ndx;
720 int redo_ifile = 0;
721 struct timespec ts;
722 int gotblk=0;
723
724 if (!(ip->i_flag & IN_ALLMOD))
725 return(0);
726
727 /* Allocate a new inode block if necessary. */
728 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
729 /* Allocate a new segment if necessary. */
730 if (sp->seg_bytes_left < fs->lfs_bsize ||
731 sp->sum_bytes_left < sizeof(ufs_daddr_t))
732 (void) lfs_writeseg(fs, sp);
733
734 /* Get next inode block. */
735 daddr = fs->lfs_offset;
736 fs->lfs_offset += fsbtodb(fs, 1);
737 sp->ibp = *sp->cbpp++ =
738 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
739 gotblk++;
740
741 /* Zero out inode numbers */
742 for (i = 0; i < INOPB(fs); ++i)
743 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
744
745 ++sp->start_bpp;
746 fs->lfs_avail -= fsbtodb(fs, 1);
747 /* Set remaining space counters. */
748 sp->seg_bytes_left -= fs->lfs_bsize;
749 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
750 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
751 sp->ninodes / INOPB(fs) - 1;
752 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
753 }
754
755 /* Update the inode times and copy the inode onto the inode page. */
756 if (ip->i_flag & (IN_CLEANING | IN_MODIFIED | IN_ACCESSED))
757 --fs->lfs_uinodes;
758 TIMEVAL_TO_TIMESPEC(&time, &ts);
759 LFS_ITIMES(ip, &ts, &ts, &ts);
760
761 /* XXX IN_ALLMOD */
762 if(ip->i_flag & IN_CLEANING)
763 ip->i_flag &= ~IN_CLEANING;
764 else
765 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED |
766 IN_UPDATE | IN_ACCESSED);
767
768 /*
769 * If this is the Ifile, and we've already written the Ifile in this
770 * partial segment, just overwrite it (it's not on disk yet) and
771 * continue.
772 *
773 * XXX we know that the bp that we get the second time around has
774 * already been gathered.
775 */
776 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
777 *(sp->idp) = ip->i_din.ffs_din;
778 return 0;
779 }
780
781 bp = sp->ibp;
782 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
783 *cdp = ip->i_din.ffs_din;
784
785 /*
786 * If we are cleaning, ensure that we don't write UNWRITTEN disk
787 * addresses to disk.
788 */
789 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
790 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
791 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
792 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
793 daddrp++) {
794 if (*daddrp == UNWRITTEN) {
795 #ifdef DEBUG
796 printf("lfs_writeinode: wiping UNWRITTEN\n");
797 #endif
798 *daddrp = 0;
799 }
800 }
801 }
802
803 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
804 sp->idp = ((struct dinode *)bp->b_data) +
805 (sp->ninodes % INOPB(fs));
806 if(gotblk) {
807 bp->b_flags |= B_LOCKED;
808 brelse(bp);
809 }
810
811 /* Increment inode count in segment summary block. */
812 ++((SEGSUM *)(sp->segsum))->ss_ninos;
813
814 /* If this page is full, set flag to allocate a new page. */
815 if (++sp->ninodes % INOPB(fs) == 0)
816 sp->ibp = NULL;
817
818 /*
819 * If updating the ifile, update the super-block. Update the disk
820 * address and access times for this inode in the ifile.
821 */
822 ino = ip->i_number;
823 if (ino == LFS_IFILE_INUM) {
824 daddr = fs->lfs_idaddr;
825 fs->lfs_idaddr = bp->b_blkno;
826 } else {
827 LFS_IENTRY(ifp, fs, ino, ibp);
828 daddr = ifp->if_daddr;
829 ifp->if_daddr = bp->b_blkno;
830 #ifdef LFS_DEBUG_NEXTFREE
831 if(ino > 3 && ifp->if_nextfree) {
832 vprint("lfs_writeinode",ITOV(ip));
833 printf("lfs_writeinode: updating free ino %d\n",
834 ip->i_number);
835 }
836 #endif
837 error = VOP_BWRITE(ibp);
838 }
839
840 /*
841 * No need to update segment usage if there was no former inode
842 * address or if the last inode address is in the current
843 * partial segment.
844 */
845 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
846 printf("lfs_writeinode: last inode addr in current pseg "
847 "(ino %d daddr 0x%x)\n", ino, daddr);
848 if (daddr != LFS_UNUSED_DADDR) {
849 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
850 #ifdef DIAGNOSTIC
851 if (sup->su_nbytes < DINODE_SIZE) {
852 printf("lfs_writeinode: negative bytes "
853 "(segment %d short by %d)\n",
854 datosn(fs, daddr),
855 (int)DINODE_SIZE - sup->su_nbytes);
856 panic("lfs_writeinode: negative bytes");
857 sup->su_nbytes = DINODE_SIZE;
858 }
859 #endif
860 sup->su_nbytes -= DINODE_SIZE;
861 redo_ifile =
862 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
863 error = VOP_BWRITE(bp);
864 }
865 return (redo_ifile);
866 }
867
868 int
869 lfs_gatherblock(sp, bp, sptr)
870 struct segment *sp;
871 struct buf *bp;
872 int *sptr;
873 {
874 struct lfs *fs;
875 int version;
876
877 /*
878 * If full, finish this segment. We may be doing I/O, so
879 * release and reacquire the splbio().
880 */
881 #ifdef DIAGNOSTIC
882 if (sp->vp == NULL)
883 panic ("lfs_gatherblock: Null vp in segment");
884 #endif
885 fs = sp->fs;
886 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
887 sp->seg_bytes_left < bp->b_bcount) {
888 if (sptr)
889 splx(*sptr);
890 lfs_updatemeta(sp);
891
892 version = sp->fip->fi_version;
893 (void) lfs_writeseg(fs, sp);
894
895 sp->fip->fi_version = version;
896 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
897 /* Add the current file to the segment summary. */
898 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
899 sp->sum_bytes_left -=
900 sizeof(struct finfo) - sizeof(ufs_daddr_t);
901
902 if (sptr)
903 *sptr = splbio();
904 return(1);
905 }
906
907 #ifdef DEBUG
908 if(bp->b_flags & B_GATHERED) {
909 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
910 sp->fip->fi_ino, bp->b_lblkno);
911 return(0);
912 }
913 #endif
914 /* Insert into the buffer list, update the FINFO block. */
915 bp->b_flags |= B_GATHERED;
916 *sp->cbpp++ = bp;
917 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
918
919 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
920 sp->seg_bytes_left -= bp->b_bcount;
921 return(0);
922 }
923
924 int
925 lfs_gather(fs, sp, vp, match)
926 struct lfs *fs;
927 struct segment *sp;
928 struct vnode *vp;
929 int (*match) __P((struct lfs *, struct buf *));
930 {
931 struct buf *bp;
932 int s, count=0;
933
934 sp->vp = vp;
935 s = splbio();
936
937 #ifndef LFS_NO_BACKBUF_HACK
938 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
939 #else /* LFS_NO_BACKBUF_HACK */
940 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
941 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
942 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
943 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
944 /* Find last buffer. */
945 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
946 bp = bp->b_vnbufs.le_next);
947 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
948 #endif /* LFS_NO_BACKBUF_HACK */
949 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
950 continue;
951 if(vp->v_type == VBLK) {
952 /* For block devices, just write the blocks. */
953 /* XXX Do we really need to even do this? */
954 #ifdef DEBUG_LFS
955 if(count==0)
956 printf("BLK(");
957 printf(".");
958 #endif
959 /* Get the block before bwrite, so we don't corrupt the free list */
960 bp->b_flags |= B_BUSY;
961 bremfree(bp);
962 bwrite(bp);
963 } else {
964 #ifdef DIAGNOSTIC
965 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
966 printf("lfs_gather: lbn %d is B_INVAL\n",
967 bp->b_lblkno);
968 VOP_PRINT(bp->b_vp);
969 }
970 if (!(bp->b_flags & B_DELWRI))
971 panic("lfs_gather: bp not B_DELWRI");
972 if (!(bp->b_flags & B_LOCKED)) {
973 printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
974 VOP_PRINT(bp->b_vp);
975 panic("lfs_gather: bp not B_LOCKED");
976 }
977 #endif
978 if (lfs_gatherblock(sp, bp, &s)) {
979 goto loop;
980 }
981 }
982 count++;
983 }
984 splx(s);
985 #ifdef DEBUG_LFS
986 if(vp->v_type == VBLK && count)
987 printf(")\n");
988 #endif
989 lfs_updatemeta(sp);
990 sp->vp = NULL;
991 return count;
992 }
993
994 /*
995 * Update the metadata that points to the blocks listed in the FINFO
996 * array.
997 */
998 void
999 lfs_updatemeta(sp)
1000 struct segment *sp;
1001 {
1002 SEGUSE *sup;
1003 struct buf *bp, *ibp;
1004 struct lfs *fs;
1005 struct vnode *vp;
1006 struct indir a[NIADDR + 2], *ap;
1007 struct inode *ip;
1008 ufs_daddr_t daddr, lbn, off;
1009 daddr_t ooff;
1010 int error, i, nblocks, num;
1011 int bb;
1012
1013 vp = sp->vp;
1014 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1015 if (nblocks < 0)
1016 panic("This is a bad thing\n");
1017 if (vp == NULL || nblocks == 0)
1018 return;
1019
1020 /* Sort the blocks. */
1021 /*
1022 * XXX KS - We have to sort even if the blocks come from the
1023 * cleaner, because there might be other pending blocks on the
1024 * same inode...and if we don't sort, and there are fragments
1025 * present, blocks may be written in the wrong place.
1026 */
1027 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1028 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1029
1030 /*
1031 * Record the length of the last block in case it's a fragment.
1032 * If there are indirect blocks present, they sort last. An
1033 * indirect block will be lfs_bsize and its presence indicates
1034 * that you cannot have fragments.
1035 */
1036 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1037
1038 /*
1039 * Assign disk addresses, and update references to the logical
1040 * block and the segment usage information.
1041 */
1042 fs = sp->fs;
1043 for (i = nblocks; i--; ++sp->start_bpp) {
1044 lbn = *sp->start_lbp++;
1045
1046 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1047 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1048 printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
1049 }
1050 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1051 fs->lfs_offset += bb;
1052 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1053 if (error)
1054 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1055 ip = VTOI(vp);
1056 switch (num) {
1057 case 0:
1058 ooff = ip->i_ffs_db[lbn];
1059 if(vp != fs->lfs_ivnode && ooff == 0) {
1060 #ifdef DEBUG_LFS
1061 printf("lfs_updatemeta[1]: warning: writing "
1062 "ino %d lbn %d at 0x%x, was 0x%x\n",
1063 ip->i_number, lbn, off, ooff);
1064 #endif
1065 } else {
1066 if (ooff == UNWRITTEN)
1067 ip->i_ffs_blocks += bb;
1068 ip->i_ffs_db[lbn] = off;
1069 }
1070 break;
1071 case 1:
1072 ooff = ip->i_ffs_ib[a[0].in_off];
1073 if(vp != fs->lfs_ivnode && ooff == 0) {
1074 #ifdef DEBUG_LFS
1075 printf("lfs_updatemeta[2]: warning: writing "
1076 "ino %d lbn %d at 0x%x, was 0x%x\n",
1077 ip->i_number, lbn, off, ooff);
1078 #endif
1079 } else {
1080 if (ooff == UNWRITTEN)
1081 ip->i_ffs_blocks += bb;
1082 ip->i_ffs_ib[a[0].in_off] = off;
1083 }
1084 break;
1085 default:
1086 ap = &a[num - 1];
1087 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1088 panic("lfs_updatemeta: bread bno %d",
1089 ap->in_lbn);
1090 /*
1091 * Bread may create a new (indirect) block which needs
1092 * to get counted for the inode.
1093 *
1094 * XXX - why would it ever do this (except possibly
1095 * for the Ifile)? lfs_balloc is supposed to take
1096 * care of this.
1097 */
1098 if (bp->b_blkno == UNASSIGNED) {
1099 printf("lfs_updatemeta: creating lbn %d for "
1100 "ino %d", ap->in_lbn, ip->i_number);
1101 ip->i_lfs_effnblks += fsbtodb(fs, 1);
1102 fs->lfs_bfree -= fsbtodb(fs, 1);
1103
1104 /* Note the new address */
1105 bp->b_blkno = UNWRITTEN;
1106
1107 if(num == 2) {
1108 ip->i_ffs_ib[a[0].in_off] = UNWRITTEN;
1109 } else {
1110 ap = &a[num - 2];
1111 if (bread(vp, ap->in_lbn,
1112 fs->lfs_bsize, NOCRED, &ibp))
1113 panic("lfs_updatemeta: bread bno %d",
1114 ap->in_lbn);
1115 ((ufs_daddr_t *)ibp->b_data)[ap->in_off] = UNWRITTEN;
1116 VOP_BWRITE(ibp);
1117 }
1118 }
1119 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1120 if(vp != fs->lfs_ivnode && ooff == 0) {
1121 #ifdef DEBUG_LFS
1122 printf("lfs_updatemeta[3]: warning: writing "
1123 "ino %d lbn %d at 0x%x, was 0x%x\n",
1124 ip->i_number, lbn, off, ooff);
1125 #endif
1126 brelse(bp);
1127 } else {
1128 if (ooff == UNWRITTEN)
1129 ip->i_ffs_blocks += bb;
1130 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1131 VOP_BWRITE(bp);
1132 }
1133 }
1134 /* Update segment usage information. */
1135 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1136 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1137 "in same pseg\n", VTOI(sp->vp)->i_number,
1138 (*sp->start_bpp)->b_lblkno, daddr);
1139 }
1140 if (daddr > 0) {
1141 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1142 #ifdef DIAGNOSTIC
1143 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1144 /* XXX -- Change to a panic. */
1145 printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
1146 datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
1147 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
1148 VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
1149 panic("lfs_updatemeta: negative bytes");
1150 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1151 }
1152 #endif
1153 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1154 error = VOP_BWRITE(bp);
1155 }
1156 }
1157 }
1158
1159 /*
1160 * Start a new segment.
1161 */
1162 int
1163 lfs_initseg(fs)
1164 struct lfs *fs;
1165 {
1166 struct segment *sp;
1167 SEGUSE *sup;
1168 SEGSUM *ssp;
1169 struct buf *bp;
1170 int repeat;
1171
1172 sp = fs->lfs_sp;
1173
1174 repeat = 0;
1175 /* Advance to the next segment. */
1176 if (!LFS_PARTIAL_FITS(fs)) {
1177 /* Wake up any cleaning procs waiting on this file system. */
1178 wakeup(&lfs_allclean_wakeup);
1179 wakeup(&fs->lfs_nextseg);
1180 lfs_newseg(fs);
1181 repeat = 1;
1182 fs->lfs_offset = fs->lfs_curseg;
1183 sp->seg_number = datosn(fs, fs->lfs_curseg);
1184 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
1185 /*
1186 * If the segment contains a superblock, update the offset
1187 * and summary address to skip over it.
1188 */
1189 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1190 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1191 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
1192 sp->seg_bytes_left -= LFS_SBPAD;
1193 }
1194 brelse(bp);
1195 } else {
1196 sp->seg_number = datosn(fs, fs->lfs_curseg);
1197 sp->seg_bytes_left = (fs->lfs_dbpseg -
1198 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
1199 }
1200 fs->lfs_lastpseg = fs->lfs_offset;
1201
1202 sp->fs = fs;
1203 sp->ibp = NULL;
1204 sp->idp = NULL;
1205 sp->ninodes = 0;
1206
1207 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1208 sp->cbpp = sp->bpp;
1209 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1210 fs->lfs_offset, LFS_SUMMARY_SIZE);
1211 sp->segsum = (*sp->cbpp)->b_data;
1212 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1213 sp->start_bpp = ++sp->cbpp;
1214 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
1215
1216 /* Set point to SEGSUM, initialize it. */
1217 ssp = sp->segsum;
1218 ssp->ss_next = fs->lfs_nextseg;
1219 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1220 ssp->ss_magic = SS_MAGIC;
1221
1222 /* Set pointer to first FINFO, initialize it. */
1223 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1224 sp->fip->fi_nblocks = 0;
1225 sp->start_lbp = &sp->fip->fi_blocks[0];
1226 sp->fip->fi_lastlength = 0;
1227
1228 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1229 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1230
1231 return(repeat);
1232 }
1233
1234 /*
1235 * Return the next segment to write.
1236 */
1237 void
1238 lfs_newseg(fs)
1239 struct lfs *fs;
1240 {
1241 CLEANERINFO *cip;
1242 SEGUSE *sup;
1243 struct buf *bp;
1244 int curseg, isdirty, sn;
1245
1246 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1247 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1248 sup->su_nbytes = 0;
1249 sup->su_nsums = 0;
1250 sup->su_ninos = 0;
1251 (void) VOP_BWRITE(bp);
1252
1253 LFS_CLEANERINFO(cip, fs, bp);
1254 --cip->clean;
1255 ++cip->dirty;
1256 fs->lfs_nclean = cip->clean;
1257 (void) VOP_BWRITE(bp);
1258
1259 fs->lfs_lastseg = fs->lfs_curseg;
1260 fs->lfs_curseg = fs->lfs_nextseg;
1261 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1262 sn = (sn + 1) % fs->lfs_nseg;
1263 if (sn == curseg)
1264 panic("lfs_nextseg: no clean segments");
1265 LFS_SEGENTRY(sup, fs, sn, bp);
1266 isdirty = sup->su_flags & SEGUSE_DIRTY;
1267 brelse(bp);
1268 if (!isdirty)
1269 break;
1270 }
1271
1272 ++fs->lfs_nactive;
1273 fs->lfs_nextseg = sntoda(fs, sn);
1274 if(lfs_dostats) {
1275 ++lfs_stats.segsused;
1276 }
1277 }
1278
1279 int
1280 lfs_writeseg(fs, sp)
1281 struct lfs *fs;
1282 struct segment *sp;
1283 {
1284 extern int locked_queue_count;
1285 extern long locked_queue_bytes;
1286 struct buf **bpp, *bp, *cbp, *newbp;
1287 SEGUSE *sup;
1288 SEGSUM *ssp;
1289 dev_t i_dev;
1290 u_long *datap, *dp;
1291 int do_again, i, nblocks, s;
1292 #ifdef LFS_TRACK_IOS
1293 int j;
1294 #endif
1295 int (*strategy)__P((void *));
1296 struct vop_strategy_args vop_strategy_a;
1297 u_short ninos;
1298 struct vnode *devvp;
1299 char *p;
1300 struct vnode *vn;
1301 struct inode *ip;
1302 daddr_t *daddrp;
1303 #if defined(DEBUG) && defined(LFS_PROPELLER)
1304 static int propeller;
1305 char propstring[4] = "-\\|/";
1306
1307 printf("%c\b",propstring[propeller++]);
1308 if(propeller==4)
1309 propeller = 0;
1310 #endif
1311
1312 /*
1313 * If there are no buffers other than the segment summary to write
1314 * and it is not a checkpoint, don't do anything. On a checkpoint,
1315 * even if there aren't any buffers, you need to write the superblock.
1316 */
1317 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1318 return (0);
1319
1320 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1321 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1322
1323 /* Update the segment usage information. */
1324 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1325
1326 /* Loop through all blocks, except the segment summary. */
1327 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1328 if((*bpp)->b_vp != devvp)
1329 sup->su_nbytes += (*bpp)->b_bcount;
1330 }
1331
1332 ssp = (SEGSUM *)sp->segsum;
1333
1334 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1335 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1336 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1337 sup->su_lastmod = time.tv_sec;
1338 sup->su_ninos += ninos;
1339 ++sup->su_nsums;
1340 fs->lfs_dmeta += (LFS_SUMMARY_SIZE / DEV_BSIZE + fsbtodb(fs, ninos));
1341
1342 do_again = !(bp->b_flags & B_GATHERED);
1343 (void)VOP_BWRITE(bp);
1344 /*
1345 * Mark blocks B_BUSY, to prevent then from being changed between
1346 * the checksum computation and the actual write.
1347 *
1348 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1349 * there are any, replace them with copies that have UNASSIGNED
1350 * instead.
1351 */
1352 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1353 ++bpp;
1354 if((*bpp)->b_flags & B_CALL)
1355 continue;
1356 bp = *bpp;
1357 again:
1358 s = splbio();
1359 if(bp->b_flags & B_BUSY) {
1360 #ifdef DEBUG
1361 printf("lfs_writeseg: avoiding potential data "
1362 "summary corruption for ino %d, lbn %d\n",
1363 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1364 #endif
1365 bp->b_flags |= B_WANTED;
1366 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1367 splx(s);
1368 goto again;
1369 }
1370 bp->b_flags |= B_BUSY;
1371 splx(s);
1372 /* Check and replace indirect block UNWRITTEN bogosity */
1373 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1374 VTOI(bp->b_vp)->i_ffs_blocks !=
1375 VTOI(bp->b_vp)->i_lfs_effnblks) {
1376 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1377 VTOI(bp->b_vp)->i_number,
1378 VTOI(bp->b_vp)->i_lfs_effnblks,
1379 VTOI(bp->b_vp)->i_ffs_blocks);
1380 /* Make a copy we'll make changes to */
1381 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1382 bp->b_bcount);
1383 newbp->b_blkno = bp->b_blkno;
1384 memcpy(newbp->b_data, bp->b_data,
1385 newbp->b_bcount);
1386 *bpp = newbp;
1387
1388 /* Get rid of the old buffer */
1389 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1390 B_LOCKED | B_GATHERED);
1391 if (bp->b_flags & B_CALL)
1392 lfs_freebuf(bp);
1393 else {
1394 bremfree(bp);
1395 bp->b_flags |= B_DONE;
1396 if(bp->b_vp)
1397 reassignbuf(bp, bp->b_vp);
1398 brelse(bp);
1399 }
1400
1401 for (daddrp = (daddr_t *)(newbp->b_data);
1402 daddrp < (daddr_t *)(newbp->b_data +
1403 newbp->b_bcount); daddrp++) {
1404 if (*daddrp == UNWRITTEN) {
1405 #ifdef DEBUG
1406 printf("lfs_segwrite: replacing UNWRITTEN\n");
1407 #endif
1408 *daddrp = 0;
1409 }
1410 }
1411 }
1412 }
1413 /*
1414 * Compute checksum across data and then across summary; the first
1415 * block (the summary block) is skipped. Set the create time here
1416 * so that it's guaranteed to be later than the inode mod times.
1417 *
1418 * XXX
1419 * Fix this to do it inline, instead of malloc/copy.
1420 */
1421 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1422 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1423 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1424 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1425 panic("lfs_writeseg: copyin failed [1]: "
1426 "ino %d blk %d",
1427 VTOI((*bpp)->b_vp)->i_number,
1428 (*bpp)->b_lblkno);
1429 } else
1430 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1431 }
1432 ssp->ss_create = time.tv_sec;
1433 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1434 ssp->ss_sumsum =
1435 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1436 free(datap, M_SEGMENT);
1437
1438 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
1439
1440 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1441
1442 /*
1443 * When we simply write the blocks we lose a rotation for every block
1444 * written. To avoid this problem, we allocate memory in chunks, copy
1445 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1446 * largest size I/O devices can handle.
1447 * When the data is copied to the chunk, turn off the B_LOCKED bit
1448 * and brelse the buffer (which will move them to the LRU list). Add
1449 * the B_CALL flag to the buffer header so we can count I/O's for the
1450 * checkpoints and so we can release the allocated memory.
1451 *
1452 * XXX
1453 * This should be removed if the new virtual memory system allows us to
1454 * easily make the buffers contiguous in kernel memory and if that's
1455 * fast enough.
1456 */
1457
1458 #define CHUNKSIZE MAXPHYS
1459
1460 if(devvp==NULL)
1461 panic("devvp is NULL");
1462 for (bpp = sp->bpp,i = nblocks; i;) {
1463 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1464 cbp->b_dev = i_dev;
1465 cbp->b_flags |= B_ASYNC | B_BUSY;
1466 cbp->b_bcount = 0;
1467
1468 #ifdef DIAGNOSTIC
1469 if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
1470 panic("lfs_writeseg: Segment overwrite");
1471 }
1472 #endif
1473
1474 s = splbio();
1475 if(fs->lfs_iocount >= LFS_THROTTLE) {
1476 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1477 }
1478 ++fs->lfs_iocount;
1479 #ifdef LFS_TRACK_IOS
1480 for(j=0;j<LFS_THROTTLE;j++) {
1481 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1482 fs->lfs_pending[j] = cbp->b_blkno;
1483 break;
1484 }
1485 }
1486 #endif /* LFS_TRACK_IOS */
1487 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1488 bp = *bpp;
1489
1490 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1491 break;
1492
1493 /*
1494 * Fake buffers from the cleaner are marked as B_INVAL.
1495 * We need to copy the data from user space rather than
1496 * from the buffer indicated.
1497 * XXX == what do I do on an error?
1498 */
1499 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1500 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1501 panic("lfs_writeseg: copyin failed [2]");
1502 } else
1503 bcopy(bp->b_data, p, bp->b_bcount);
1504 p += bp->b_bcount;
1505 cbp->b_bcount += bp->b_bcount;
1506 if (bp->b_flags & B_LOCKED) {
1507 --locked_queue_count;
1508 locked_queue_bytes -= bp->b_bufsize;
1509 }
1510 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1511 B_LOCKED | B_GATHERED);
1512 vn = bp->b_vp;
1513 if (bp->b_flags & B_CALL) {
1514 /* if B_CALL, it was created with newbuf */
1515 lfs_freebuf(bp);
1516 } else {
1517 bremfree(bp);
1518 bp->b_flags |= B_DONE;
1519 if(vn)
1520 reassignbuf(bp, vn);
1521 brelse(bp);
1522 }
1523 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1524 bp->b_flags &= ~B_NEEDCOMMIT;
1525 wakeup(bp);
1526 }
1527
1528 bpp++;
1529
1530 /*
1531 * If this is the last block for this vnode, but
1532 * there are other blocks on its dirty list,
1533 * set IN_MODIFIED/IN_CLEANING depending on what
1534 * sort of block. Only do this for our mount point,
1535 * not for, e.g., inode blocks that are attached to
1536 * the devvp.
1537 */
1538 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1539 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1540 vn->v_mount == fs->lfs_ivnode->v_mount)
1541 {
1542 ip = VTOI(vn);
1543 #ifdef DEBUG_LFS
1544 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1545 #endif
1546 if(!(ip->i_flag & (IN_CLEANING | IN_MODIFIED |
1547 IN_ACCESSED))) {
1548 fs->lfs_uinodes++;
1549 if(bp->b_flags & B_CALL)
1550 ip->i_flag |= IN_CLEANING;
1551 else
1552 ip->i_flag |= IN_MODIFIED;
1553 }
1554 }
1555 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1556 wakeup(vn);
1557 }
1558 ++cbp->b_vp->v_numoutput;
1559 splx(s);
1560 /*
1561 * XXXX This is a gross and disgusting hack. Since these
1562 * buffers are physically addressed, they hang off the
1563 * device vnode (devvp). As a result, they have no way
1564 * of getting to the LFS superblock or lfs structure to
1565 * keep track of the number of I/O's pending. So, I am
1566 * going to stuff the fs into the saveaddr field of
1567 * the buffer (yuk).
1568 */
1569 cbp->b_saveaddr = (caddr_t)fs;
1570 vop_strategy_a.a_desc = VDESC(vop_strategy);
1571 vop_strategy_a.a_bp = cbp;
1572 (strategy)(&vop_strategy_a);
1573 }
1574 /*
1575 * XXX
1576 * Vinvalbuf can move locked buffers off the locked queue
1577 * and we have no way of knowing about this. So, after
1578 * doing a big write, we recalculate how many buffers are
1579 * really still left on the locked queue.
1580 */
1581 lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
1582 wakeup(&locked_queue_count);
1583 if(lfs_dostats) {
1584 ++lfs_stats.psegwrites;
1585 lfs_stats.blocktot += nblocks - 1;
1586 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1587 ++lfs_stats.psyncwrites;
1588 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1589 ++lfs_stats.pcleanwrites;
1590 lfs_stats.cleanblocks += nblocks - 1;
1591 }
1592 }
1593 return (lfs_initseg(fs) || do_again);
1594 }
1595
1596 void
1597 lfs_writesuper(fs, daddr)
1598 struct lfs *fs;
1599 daddr_t daddr;
1600 {
1601 struct buf *bp;
1602 dev_t i_dev;
1603 int (*strategy) __P((void *));
1604 int s;
1605 struct vop_strategy_args vop_strategy_a;
1606
1607 #ifdef LFS_CANNOT_ROLLFW
1608 /*
1609 * If we can write one superblock while another is in
1610 * progress, we risk not having a complete checkpoint if we crash.
1611 * So, block here if a superblock write is in progress.
1612 */
1613 s = splbio();
1614 while(fs->lfs_sbactive) {
1615 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1616 }
1617 fs->lfs_sbactive = daddr;
1618 splx(s);
1619 #endif
1620 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1621 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1622
1623 /* Set timestamp of this version of the superblock */
1624 fs->lfs_tstamp = time.tv_sec;
1625
1626 /* Checksum the superblock and copy it into a buffer. */
1627 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1628 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1629 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1630
1631 bp->b_dev = i_dev;
1632 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1633 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1634 bp->b_iodone = lfs_supercallback;
1635 /* XXX KS - same nasty hack as above */
1636 bp->b_saveaddr = (caddr_t)fs;
1637
1638 vop_strategy_a.a_desc = VDESC(vop_strategy);
1639 vop_strategy_a.a_bp = bp;
1640 s = splbio();
1641 ++bp->b_vp->v_numoutput;
1642 ++fs->lfs_iocount;
1643 splx(s);
1644 (strategy)(&vop_strategy_a);
1645 }
1646
1647 /*
1648 * Logical block number match routines used when traversing the dirty block
1649 * chain.
1650 */
1651 int
1652 lfs_match_fake(fs, bp)
1653 struct lfs *fs;
1654 struct buf *bp;
1655 {
1656 return (bp->b_flags & B_CALL);
1657 }
1658
1659 int
1660 lfs_match_data(fs, bp)
1661 struct lfs *fs;
1662 struct buf *bp;
1663 {
1664 return (bp->b_lblkno >= 0);
1665 }
1666
1667 int
1668 lfs_match_indir(fs, bp)
1669 struct lfs *fs;
1670 struct buf *bp;
1671 {
1672 int lbn;
1673
1674 lbn = bp->b_lblkno;
1675 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1676 }
1677
1678 int
1679 lfs_match_dindir(fs, bp)
1680 struct lfs *fs;
1681 struct buf *bp;
1682 {
1683 int lbn;
1684
1685 lbn = bp->b_lblkno;
1686 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1687 }
1688
1689 int
1690 lfs_match_tindir(fs, bp)
1691 struct lfs *fs;
1692 struct buf *bp;
1693 {
1694 int lbn;
1695
1696 lbn = bp->b_lblkno;
1697 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1698 }
1699
1700 /*
1701 * XXX - The only buffers that are going to hit these functions are the
1702 * segment write blocks, or the segment summaries, or the superblocks.
1703 *
1704 * All of the above are created by lfs_newbuf, and so do not need to be
1705 * released via brelse.
1706 */
1707 void
1708 lfs_callback(bp)
1709 struct buf *bp;
1710 {
1711 struct lfs *fs;
1712 #ifdef LFS_TRACK_IOS
1713 int j;
1714 #endif
1715
1716 fs = (struct lfs *)bp->b_saveaddr;
1717 #ifdef DIAGNOSTIC
1718 if (fs->lfs_iocount == 0)
1719 panic("lfs_callback: zero iocount\n");
1720 #endif
1721 if (--fs->lfs_iocount < LFS_THROTTLE)
1722 wakeup(&fs->lfs_iocount);
1723 #ifdef LFS_TRACK_IOS
1724 for(j=0;j<LFS_THROTTLE;j++) {
1725 if(fs->lfs_pending[j]==bp->b_blkno) {
1726 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1727 wakeup(&(fs->lfs_pending[j]));
1728 break;
1729 }
1730 }
1731 #endif /* LFS_TRACK_IOS */
1732
1733 lfs_freebuf(bp);
1734 }
1735
1736 void
1737 lfs_supercallback(bp)
1738 struct buf *bp;
1739 {
1740 struct lfs *fs;
1741
1742 fs = (struct lfs *)bp->b_saveaddr;
1743 #ifdef LFS_CANNOT_ROLLFW
1744 fs->lfs_sbactive = 0;
1745 wakeup(&fs->lfs_sbactive);
1746 #endif
1747 if (--fs->lfs_iocount < LFS_THROTTLE)
1748 wakeup(&fs->lfs_iocount);
1749 lfs_freebuf(bp);
1750 }
1751
1752 /*
1753 * Shellsort (diminishing increment sort) from Data Structures and
1754 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1755 * see also Knuth Vol. 3, page 84. The increments are selected from
1756 * formula (8), page 95. Roughly O(N^3/2).
1757 */
1758 /*
1759 * This is our own private copy of shellsort because we want to sort
1760 * two parallel arrays (the array of buffer pointers and the array of
1761 * logical block numbers) simultaneously. Note that we cast the array
1762 * of logical block numbers to a unsigned in this routine so that the
1763 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1764 */
1765
1766 void
1767 lfs_shellsort(bp_array, lb_array, nmemb)
1768 struct buf **bp_array;
1769 ufs_daddr_t *lb_array;
1770 int nmemb;
1771 {
1772 static int __rsshell_increments[] = { 4, 1, 0 };
1773 int incr, *incrp, t1, t2;
1774 struct buf *bp_temp;
1775 u_long lb_temp;
1776
1777 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1778 for (t1 = incr; t1 < nmemb; ++t1)
1779 for (t2 = t1 - incr; t2 >= 0;)
1780 if (lb_array[t2] > lb_array[t2 + incr]) {
1781 lb_temp = lb_array[t2];
1782 lb_array[t2] = lb_array[t2 + incr];
1783 lb_array[t2 + incr] = lb_temp;
1784 bp_temp = bp_array[t2];
1785 bp_array[t2] = bp_array[t2 + incr];
1786 bp_array[t2 + incr] = bp_temp;
1787 t2 -= incr;
1788 } else
1789 break;
1790 }
1791
1792 /*
1793 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1794 */
1795 int
1796 lfs_vref(vp)
1797 struct vnode *vp;
1798 {
1799 /*
1800 * If we return 1 here during a flush, we risk vinvalbuf() not
1801 * being able to flush all of the pages from this vnode, which
1802 * will cause it to panic. So, return 0 if a flush is in progress.
1803 */
1804 if (vp->v_flag & VXLOCK) {
1805 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1806 return 0;
1807 }
1808 return(1);
1809 }
1810 return (vget(vp, 0));
1811 }
1812
1813 /*
1814 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1815 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1816 */
1817 void
1818 lfs_vunref(vp)
1819 struct vnode *vp;
1820 {
1821 /*
1822 * Analogous to lfs_vref, if the node is flushing, fake it.
1823 */
1824 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1825 return;
1826 }
1827
1828 simple_lock(&vp->v_interlock);
1829 #ifdef DIAGNOSTIC
1830 if(vp->v_usecount<=0) {
1831 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1832 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1833 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1834 panic("lfs_vunref: v_usecount<0");
1835 }
1836 #endif
1837 vp->v_usecount--;
1838 if (vp->v_usecount > 0) {
1839 simple_unlock(&vp->v_interlock);
1840 return;
1841 }
1842 /*
1843 * insert at tail of LRU list
1844 */
1845 simple_lock(&vnode_free_list_slock);
1846 if (vp->v_holdcnt > 0)
1847 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1848 else
1849 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1850 simple_unlock(&vnode_free_list_slock);
1851 simple_unlock(&vp->v_interlock);
1852 }
1853
1854 /*
1855 * We use this when we have vnodes that were loaded in solely for cleaning.
1856 * There is no reason to believe that these vnodes will be referenced again
1857 * soon, since the cleaning process is unrelated to normal filesystem
1858 * activity. Putting cleaned vnodes at the tail of the list has the effect
1859 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1860 * cleaning at the head of the list, instead.
1861 */
1862 void
1863 lfs_vunref_head(vp)
1864 struct vnode *vp;
1865 {
1866 simple_lock(&vp->v_interlock);
1867 #ifdef DIAGNOSTIC
1868 if(vp->v_usecount==0) {
1869 panic("lfs_vunref: v_usecount<0");
1870 }
1871 #endif
1872 vp->v_usecount--;
1873 if (vp->v_usecount > 0) {
1874 simple_unlock(&vp->v_interlock);
1875 return;
1876 }
1877 #ifdef DIAGNOSTIC
1878 if(VOP_ISLOCKED(vp))
1879 panic("lfs_vunref_head: vnode locked");
1880 #endif
1881 /*
1882 * insert at head of LRU list
1883 */
1884 simple_lock(&vnode_free_list_slock);
1885 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1886 simple_unlock(&vnode_free_list_slock);
1887 simple_unlock(&vp->v_interlock);
1888 }
1889
1890