lfs_segment.c revision 1.58 1 /* $NetBSD: lfs_segment.c,v 1.58 2000/09/09 04:49:55 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 LFS_CLR_UINO(ip, IN_CLEANING);
201 LFS_SET_UINO(ip, IN_MODIFIED);
202
203 /*
204 * Toss any cleaning buffers that have real counterparts
205 * to avoid losing new data
206 */
207 s = splbio();
208 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
209 nbp = bp->b_vnbufs.le_next;
210 if(bp->b_flags & B_CALL) {
211 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
212 tbp=tnbp)
213 {
214 tnbp = tbp->b_vnbufs.le_next;
215 if(tbp->b_vp == bp->b_vp
216 && tbp->b_lblkno == bp->b_lblkno
217 && tbp != bp)
218 {
219 lfs_freebuf(bp);
220 }
221 }
222 }
223 }
224 splx(s);
225 }
226
227 /* If the node is being written, wait until that is done */
228 if(WRITEINPROG(vp)) {
229 #ifdef DEBUG_LFS
230 ivndebug(vp,"vflush/writeinprog");
231 #endif
232 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
233 }
234
235 /* Protect against VXLOCK deadlock in vinvalbuf() */
236 lfs_seglock(fs, SEGM_SYNC);
237
238 /* If we're supposed to flush a freed inode, just toss it */
239 /* XXX - seglock, so these buffers can't be gathered, right? */
240 if(ip->i_ffs_mode == 0) {
241 printf("lfs_vflush: ino %d is freed, not flushing\n",
242 ip->i_number);
243 s = splbio();
244 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
245 nbp = bp->b_vnbufs.le_next;
246 /* Copied from lfs_writeseg */
247 if (bp->b_flags & B_CALL) {
248 /* if B_CALL, it was created with newbuf */
249 lfs_freebuf(bp);
250 } else {
251 bremfree(bp);
252 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
253 B_LOCKED | B_GATHERED);
254 bp->b_flags |= B_DONE;
255 reassignbuf(bp, vp);
256 brelse(bp);
257 }
258 }
259 splx(s);
260 LFS_CLR_UINO(ip, IN_CLEANING);
261 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
262 ip->i_flag &= ~IN_ALLMOD;
263 printf("lfs_vflush: done not flushing ino %d\n",
264 ip->i_number);
265 lfs_segunlock(fs);
266 return 0;
267 }
268
269 SET_FLUSHING(fs,vp);
270 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
271 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
272 CLR_FLUSHING(fs,vp);
273 lfs_segunlock(fs);
274 return error;
275 }
276 sp = fs->lfs_sp;
277
278 if (vp->v_dirtyblkhd.lh_first == NULL) {
279 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
280 } else if((ip->i_flag & IN_CLEANING) &&
281 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
282 #ifdef DEBUG_LFS
283 ivndebug(vp,"vflush/clean");
284 #endif
285 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
286 }
287 else if(lfs_dostats) {
288 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
289 ++lfs_stats.vflush_invoked;
290 #ifdef DEBUG_LFS
291 ivndebug(vp,"vflush");
292 #endif
293 }
294
295 #ifdef DIAGNOSTIC
296 /* XXX KS This actually can happen right now, though it shouldn't(?) */
297 if(vp->v_flag & VDIROP) {
298 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
299 /* panic("VDIROP being flushed...this can\'t happen"); */
300 }
301 if(vp->v_usecount<0) {
302 printf("usecount=%ld\n",vp->v_usecount);
303 panic("lfs_vflush: usecount<0");
304 }
305 #endif
306
307 do {
308 do {
309 if (vp->v_dirtyblkhd.lh_first != NULL)
310 lfs_writefile(fs, sp, vp);
311 } while (lfs_writeinode(fs, sp, ip));
312 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
313
314 if(lfs_dostats) {
315 ++lfs_stats.nwrites;
316 if (sp->seg_flags & SEGM_SYNC)
317 ++lfs_stats.nsync_writes;
318 if (sp->seg_flags & SEGM_CKP)
319 ++lfs_stats.ncheckpoints;
320 }
321 lfs_segunlock(fs);
322
323 CLR_FLUSHING(fs,vp);
324 return (0);
325 }
326
327 #ifdef DEBUG_LFS_VERBOSE
328 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
329 #else
330 # define vndebug(vp,str)
331 #endif
332
333 int
334 lfs_writevnodes(fs, mp, sp, op)
335 struct lfs *fs;
336 struct mount *mp;
337 struct segment *sp;
338 int op;
339 {
340 struct inode *ip;
341 struct vnode *vp;
342 int inodes_written=0, only_cleaning;
343 int needs_unlock;
344
345 #ifndef LFS_NO_BACKVP_HACK
346 /* BEGIN HACK */
347 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
348 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
349 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
350
351 /* Find last vnode. */
352 loop: for (vp = mp->mnt_vnodelist.lh_first;
353 vp && vp->v_mntvnodes.le_next != NULL;
354 vp = vp->v_mntvnodes.le_next);
355 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
356 #else
357 loop:
358 for (vp = mp->mnt_vnodelist.lh_first;
359 vp != NULL;
360 vp = vp->v_mntvnodes.le_next) {
361 #endif
362 /*
363 * If the vnode that we are about to sync is no longer
364 * associated with this mount point, start over.
365 */
366 if (vp->v_mount != mp) {
367 printf("lfs_writevnodes: starting over\n");
368 goto loop;
369 }
370
371 ip = VTOI(vp);
372 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
373 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
374 vndebug(vp,"dirop");
375 continue;
376 }
377
378 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
379 vndebug(vp,"empty");
380 continue;
381 }
382
383 if (vp->v_type == VNON) {
384 continue;
385 }
386
387 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
388 && vp != fs->lfs_flushvp
389 && !(ip->i_flag & IN_CLEANING)) {
390 vndebug(vp,"cleaning");
391 continue;
392 }
393
394 if (lfs_vref(vp)) {
395 vndebug(vp,"vref");
396 continue;
397 }
398
399 needs_unlock = 0;
400 if (VOP_ISLOCKED(vp)) {
401 if (vp != fs->lfs_ivnode &&
402 vp->v_lock.lk_lockholder != curproc->p_pid) {
403 #ifdef DEBUG_LFS
404 printf("lfs_writevnodes: not writing ino %d,"
405 " locked by pid %d\n",
406 VTOI(vp)->i_number,
407 vp->v_lock.lk_lockholder);
408 #endif
409 lfs_vunref(vp);
410 continue;
411 }
412 } else if (vp != fs->lfs_ivnode) {
413 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
414 needs_unlock = 1;
415 }
416
417 only_cleaning = 0;
418 /*
419 * Write the inode/file if dirty and it's not the IFILE.
420 */
421 if ((ip->i_flag & IN_ALLMOD) ||
422 (vp->v_dirtyblkhd.lh_first != NULL))
423 {
424 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
425
426 if(ip->i_number != LFS_IFILE_INUM
427 && vp->v_dirtyblkhd.lh_first != NULL)
428 {
429 lfs_writefile(fs, sp, vp);
430 }
431 if(vp->v_dirtyblkhd.lh_first != NULL) {
432 if(WRITEINPROG(vp)) {
433 #ifdef DEBUG_LFS
434 ivndebug(vp,"writevnodes/write2");
435 #endif
436 } else if(!(ip->i_flag & IN_ALLMOD)) {
437 #ifdef DEBUG_LFS
438 printf("<%d>",ip->i_number);
439 #endif
440 LFS_SET_UINO(ip, IN_MODIFIED);
441 }
442 }
443 (void) lfs_writeinode(fs, sp, ip);
444 inodes_written++;
445 }
446
447 if (needs_unlock)
448 VOP_UNLOCK(vp, 0);
449
450 if (lfs_clean_vnhead && only_cleaning)
451 lfs_vunref_head(vp);
452 else
453 lfs_vunref(vp);
454 }
455 return inodes_written;
456 }
457
458 int
459 lfs_segwrite(mp, flags)
460 struct mount *mp;
461 int flags; /* Do a checkpoint. */
462 {
463 struct buf *bp;
464 struct inode *ip;
465 struct lfs *fs;
466 struct segment *sp;
467 struct vnode *vp;
468 SEGUSE *segusep;
469 CLEANERINFO *cip;
470 ufs_daddr_t ibno;
471 int do_ckp, error, i;
472 int writer_set = 0;
473
474 fs = VFSTOUFS(mp)->um_lfs;
475
476 if (fs->lfs_ronly)
477 return EROFS;
478
479 lfs_imtime(fs);
480
481 #if 0
482 /*
483 * If we are not the cleaner, and there is no space available,
484 * wait until cleaner writes.
485 */
486 if(!(flags & SEGM_CLEAN)
487 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
488 {
489 while (fs->lfs_avail <= 0) {
490 wakeup(&lfs_allclean_wakeup);
491 wakeup(&fs->lfs_nextseg);
492 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
493 0);
494 if (error) {
495 return (error);
496 }
497 }
498 }
499 #endif
500 /*
501 * Synchronize cleaner information
502 */
503 LFS_CLEANERINFO(cip, fs, bp);
504 cip->bfree = fs->lfs_bfree;
505 cip->avail = fs->lfs_avail - fs->lfs_ravail;
506 (void) VOP_BWRITE(bp); /* Ifile */
507
508 /*
509 * Allocate a segment structure and enough space to hold pointers to
510 * the maximum possible number of buffers which can be described in a
511 * single summary block.
512 */
513 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
514 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
515 sp = fs->lfs_sp;
516
517 /*
518 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
519 * in which case we have to flush *all* buffers off of this vnode.
520 * We don't care about other nodes, but write any non-dirop nodes
521 * anyway in anticipation of another getnewvnode().
522 *
523 * If we're cleaning we only write cleaning and ifile blocks, and
524 * no dirops, since otherwise we'd risk corruption in a crash.
525 */
526 if(sp->seg_flags & SEGM_CLEAN)
527 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
528 else {
529 lfs_writevnodes(fs, mp, sp, VN_REG);
530 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
531 while(fs->lfs_dirops)
532 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
533 "lfs writer", 0)))
534 {
535 free(sp->bpp, M_SEGMENT);
536 free(sp, M_SEGMENT);
537 return (error);
538 }
539 fs->lfs_writer++;
540 writer_set=1;
541 lfs_writevnodes(fs, mp, sp, VN_DIROP);
542 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
543 }
544 }
545
546 /*
547 * If we are doing a checkpoint, mark everything since the
548 * last checkpoint as no longer ACTIVE.
549 */
550 if (do_ckp) {
551 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
552 --ibno >= fs->lfs_cleansz; ) {
553 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
554
555 panic("lfs_segwrite: ifile read");
556 segusep = (SEGUSE *)bp->b_data;
557 for (i = fs->lfs_sepb; i--; segusep++)
558 segusep->su_flags &= ~SEGUSE_ACTIVE;
559
560 /* But the current segment is still ACTIVE */
561 segusep = (SEGUSE *)bp->b_data;
562 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
563 (ibno-fs->lfs_cleansz))
564 segusep[datosn(fs, fs->lfs_curseg) %
565 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
566 error = VOP_BWRITE(bp); /* Ifile */
567 }
568 }
569
570 if (do_ckp || fs->lfs_doifile) {
571 redo:
572 vp = fs->lfs_ivnode;
573
574 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
575
576 ip = VTOI(vp);
577 if (vp->v_dirtyblkhd.lh_first != NULL)
578 lfs_writefile(fs, sp, vp);
579 (void)lfs_writeinode(fs, sp, ip);
580
581 vput(vp);
582
583 if (lfs_writeseg(fs, sp) && do_ckp)
584 goto redo;
585 } else {
586 (void) lfs_writeseg(fs, sp);
587 }
588
589 /*
590 * If the I/O count is non-zero, sleep until it reaches zero.
591 * At the moment, the user's process hangs around so we can
592 * sleep.
593 */
594 fs->lfs_doifile = 0;
595 if(writer_set && --fs->lfs_writer==0)
596 wakeup(&fs->lfs_dirops);
597
598 if(lfs_dostats) {
599 ++lfs_stats.nwrites;
600 if (sp->seg_flags & SEGM_SYNC)
601 ++lfs_stats.nsync_writes;
602 if (sp->seg_flags & SEGM_CKP)
603 ++lfs_stats.ncheckpoints;
604 }
605 lfs_segunlock(fs);
606 return (0);
607 }
608
609 /*
610 * Write the dirty blocks associated with a vnode.
611 */
612 void
613 lfs_writefile(fs, sp, vp)
614 struct lfs *fs;
615 struct segment *sp;
616 struct vnode *vp;
617 {
618 struct buf *bp;
619 struct finfo *fip;
620 IFILE *ifp;
621
622
623 if (sp->seg_bytes_left < fs->lfs_bsize ||
624 sp->sum_bytes_left < sizeof(struct finfo))
625 (void) lfs_writeseg(fs, sp);
626
627 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
628 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
629
630 if(vp->v_flag & VDIROP)
631 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
632
633 fip = sp->fip;
634 fip->fi_nblocks = 0;
635 fip->fi_ino = VTOI(vp)->i_number;
636 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
637 fip->fi_version = ifp->if_version;
638 brelse(bp);
639
640 if(sp->seg_flags & SEGM_CLEAN)
641 {
642 lfs_gather(fs, sp, vp, lfs_match_fake);
643 /*
644 * For a file being flushed, we need to write *all* blocks.
645 * This means writing the cleaning blocks first, and then
646 * immediately following with any non-cleaning blocks.
647 * The same is true of the Ifile since checkpoints assume
648 * that all valid Ifile blocks are written.
649 */
650 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
651 lfs_gather(fs, sp, vp, lfs_match_data);
652 } else
653 lfs_gather(fs, sp, vp, lfs_match_data);
654
655 /*
656 * It may not be necessary to write the meta-data blocks at this point,
657 * as the roll-forward recovery code should be able to reconstruct the
658 * list.
659 *
660 * We have to write them anyway, though, under two conditions: (1) the
661 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
662 * checkpointing.
663 */
664 if(lfs_writeindir
665 || IS_FLUSHING(fs,vp)
666 || (sp->seg_flags & SEGM_CKP))
667 {
668 lfs_gather(fs, sp, vp, lfs_match_indir);
669 lfs_gather(fs, sp, vp, lfs_match_dindir);
670 lfs_gather(fs, sp, vp, lfs_match_tindir);
671 }
672 fip = sp->fip;
673 if (fip->fi_nblocks != 0) {
674 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
675 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
676 sp->start_lbp = &sp->fip->fi_blocks[0];
677 } else {
678 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
679 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
680 }
681 }
682
683 int
684 lfs_writeinode(fs, sp, ip)
685 struct lfs *fs;
686 struct segment *sp;
687 struct inode *ip;
688 {
689 struct buf *bp, *ibp;
690 struct dinode *cdp;
691 IFILE *ifp;
692 SEGUSE *sup;
693 ufs_daddr_t daddr;
694 daddr_t *daddrp;
695 ino_t ino;
696 int error, i, ndx;
697 int redo_ifile = 0;
698 struct timespec ts;
699 int gotblk=0;
700
701 if (!(ip->i_flag & IN_ALLMOD))
702 return(0);
703
704 /* Allocate a new inode block if necessary. */
705 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
706 /* Allocate a new segment if necessary. */
707 if (sp->seg_bytes_left < fs->lfs_bsize ||
708 sp->sum_bytes_left < sizeof(ufs_daddr_t))
709 (void) lfs_writeseg(fs, sp);
710
711 /* Get next inode block. */
712 daddr = fs->lfs_offset;
713 fs->lfs_offset += fsbtodb(fs, 1);
714 sp->ibp = *sp->cbpp++ =
715 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
716 gotblk++;
717
718 /* Zero out inode numbers */
719 for (i = 0; i < INOPB(fs); ++i)
720 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
721
722 ++sp->start_bpp;
723 fs->lfs_avail -= fsbtodb(fs, 1);
724 /* Set remaining space counters. */
725 sp->seg_bytes_left -= fs->lfs_bsize;
726 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
727 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
728 sp->ninodes / INOPB(fs) - 1;
729 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
730 }
731
732 /* Update the inode times and copy the inode onto the inode page. */
733 TIMEVAL_TO_TIMESPEC(&time, &ts);
734 LFS_ITIMES(ip, &ts, &ts, &ts);
735
736 /*
737 * If this is the Ifile, and we've already written the Ifile in this
738 * partial segment, just overwrite it (it's not on disk yet) and
739 * continue.
740 *
741 * XXX we know that the bp that we get the second time around has
742 * already been gathered.
743 */
744 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
745 *(sp->idp) = ip->i_din.ffs_din;
746 return 0;
747 }
748
749 bp = sp->ibp;
750 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
751 *cdp = ip->i_din.ffs_din;
752
753 /*
754 * If we are cleaning, ensure that we don't write UNWRITTEN disk
755 * addresses to disk.
756 */
757 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
758 #ifdef DEBUG_LFS
759 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
760 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
761 #endif
762 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
763 daddrp++) {
764 if (*daddrp == UNWRITTEN) {
765 #ifdef DEBUG_LFS
766 printf("lfs_writeinode: wiping UNWRITTEN\n");
767 #endif
768 *daddrp = 0;
769 }
770 }
771 }
772
773 if(ip->i_flag & IN_CLEANING)
774 LFS_CLR_UINO(ip, IN_CLEANING);
775 else {
776 /* XXX IN_ALLMOD */
777 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
778 IN_UPDATE);
779 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
780 LFS_CLR_UINO(ip, IN_MODIFIED);
781 }
782
783 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
784 sp->idp = ((struct dinode *)bp->b_data) +
785 (sp->ninodes % INOPB(fs));
786 if(gotblk) {
787 bp->b_flags |= B_LOCKED;
788 brelse(bp);
789 }
790
791 /* Increment inode count in segment summary block. */
792 ++((SEGSUM *)(sp->segsum))->ss_ninos;
793
794 /* If this page is full, set flag to allocate a new page. */
795 if (++sp->ninodes % INOPB(fs) == 0)
796 sp->ibp = NULL;
797
798 /*
799 * If updating the ifile, update the super-block. Update the disk
800 * address and access times for this inode in the ifile.
801 */
802 ino = ip->i_number;
803 if (ino == LFS_IFILE_INUM) {
804 daddr = fs->lfs_idaddr;
805 fs->lfs_idaddr = bp->b_blkno;
806 } else {
807 LFS_IENTRY(ifp, fs, ino, ibp);
808 daddr = ifp->if_daddr;
809 ifp->if_daddr = bp->b_blkno;
810 #ifdef LFS_DEBUG_NEXTFREE
811 if(ino > 3 && ifp->if_nextfree) {
812 vprint("lfs_writeinode",ITOV(ip));
813 printf("lfs_writeinode: updating free ino %d\n",
814 ip->i_number);
815 }
816 #endif
817 error = VOP_BWRITE(ibp); /* Ifile */
818 }
819
820 /*
821 * No need to update segment usage if there was no former inode
822 * address or if the last inode address is in the current
823 * partial segment.
824 */
825 #ifdef DEBUG
826 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
827 printf("lfs_writeinode: last inode addr in current pseg "
828 "(ino %d daddr 0x%x)\n", ino, daddr);
829 #endif
830 if (daddr != LFS_UNUSED_DADDR) {
831 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
832 #ifdef DIAGNOSTIC
833 if (sup->su_nbytes < DINODE_SIZE) {
834 printf("lfs_writeinode: negative bytes "
835 "(segment %d short by %d)\n",
836 datosn(fs, daddr),
837 (int)DINODE_SIZE - sup->su_nbytes);
838 panic("lfs_writeinode: negative bytes");
839 sup->su_nbytes = DINODE_SIZE;
840 }
841 #endif
842 sup->su_nbytes -= DINODE_SIZE;
843 redo_ifile =
844 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
845 error = VOP_BWRITE(bp); /* Ifile */
846 }
847 return (redo_ifile);
848 }
849
850 int
851 lfs_gatherblock(sp, bp, sptr)
852 struct segment *sp;
853 struct buf *bp;
854 int *sptr;
855 {
856 struct lfs *fs;
857 int version;
858
859 /*
860 * If full, finish this segment. We may be doing I/O, so
861 * release and reacquire the splbio().
862 */
863 #ifdef DIAGNOSTIC
864 if (sp->vp == NULL)
865 panic ("lfs_gatherblock: Null vp in segment");
866 #endif
867 fs = sp->fs;
868 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
869 sp->seg_bytes_left < bp->b_bcount) {
870 if (sptr)
871 splx(*sptr);
872 lfs_updatemeta(sp);
873
874 version = sp->fip->fi_version;
875 (void) lfs_writeseg(fs, sp);
876
877 sp->fip->fi_version = version;
878 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
879 /* Add the current file to the segment summary. */
880 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
881 sp->sum_bytes_left -=
882 sizeof(struct finfo) - sizeof(ufs_daddr_t);
883
884 if (sptr)
885 *sptr = splbio();
886 return(1);
887 }
888
889 #ifdef DEBUG
890 if(bp->b_flags & B_GATHERED) {
891 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
892 sp->fip->fi_ino, bp->b_lblkno);
893 return(0);
894 }
895 #endif
896 /* Insert into the buffer list, update the FINFO block. */
897 bp->b_flags |= B_GATHERED;
898 *sp->cbpp++ = bp;
899 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
900
901 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
902 sp->seg_bytes_left -= bp->b_bcount;
903 return(0);
904 }
905
906 int
907 lfs_gather(fs, sp, vp, match)
908 struct lfs *fs;
909 struct segment *sp;
910 struct vnode *vp;
911 int (*match) __P((struct lfs *, struct buf *));
912 {
913 struct buf *bp;
914 int s, count=0;
915
916 sp->vp = vp;
917 s = splbio();
918
919 #ifndef LFS_NO_BACKBUF_HACK
920 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
921 #else /* LFS_NO_BACKBUF_HACK */
922 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
923 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
924 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
925 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
926 /* Find last buffer. */
927 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
928 bp = bp->b_vnbufs.le_next);
929 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
930 #endif /* LFS_NO_BACKBUF_HACK */
931 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
932 continue;
933 if(vp->v_type == VBLK) {
934 /* For block devices, just write the blocks. */
935 /* XXX Do we really need to even do this? */
936 #ifdef DEBUG_LFS
937 if(count==0)
938 printf("BLK(");
939 printf(".");
940 #endif
941 /* Get the block before bwrite, so we don't corrupt the free list */
942 bp->b_flags |= B_BUSY;
943 bremfree(bp);
944 bwrite(bp);
945 } else {
946 #ifdef DIAGNOSTIC
947 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
948 printf("lfs_gather: lbn %d is B_INVAL\n",
949 bp->b_lblkno);
950 VOP_PRINT(bp->b_vp);
951 }
952 if (!(bp->b_flags & B_DELWRI))
953 panic("lfs_gather: bp not B_DELWRI");
954 if (!(bp->b_flags & B_LOCKED)) {
955 printf("lfs_gather: lbn %d blk %d"
956 " not B_LOCKED\n", bp->b_lblkno,
957 bp->b_blkno);
958 VOP_PRINT(bp->b_vp);
959 panic("lfs_gather: bp not B_LOCKED");
960 }
961 #endif
962 if (lfs_gatherblock(sp, bp, &s)) {
963 goto loop;
964 }
965 }
966 count++;
967 }
968 splx(s);
969 #ifdef DEBUG_LFS
970 if(vp->v_type == VBLK && count)
971 printf(")\n");
972 #endif
973 lfs_updatemeta(sp);
974 sp->vp = NULL;
975 return count;
976 }
977
978 /*
979 * Update the metadata that points to the blocks listed in the FINFO
980 * array.
981 */
982 void
983 lfs_updatemeta(sp)
984 struct segment *sp;
985 {
986 SEGUSE *sup;
987 struct buf *bp;
988 struct lfs *fs;
989 struct vnode *vp;
990 struct indir a[NIADDR + 2], *ap;
991 struct inode *ip;
992 ufs_daddr_t daddr, lbn, off;
993 daddr_t ooff;
994 int error, i, nblocks, num;
995 int bb;
996
997 vp = sp->vp;
998 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
999 if (nblocks < 0)
1000 panic("This is a bad thing\n");
1001 if (vp == NULL || nblocks == 0)
1002 return;
1003
1004 /* Sort the blocks. */
1005 /*
1006 * XXX KS - We have to sort even if the blocks come from the
1007 * cleaner, because there might be other pending blocks on the
1008 * same inode...and if we don't sort, and there are fragments
1009 * present, blocks may be written in the wrong place.
1010 */
1011 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1012 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1013
1014 /*
1015 * Record the length of the last block in case it's a fragment.
1016 * If there are indirect blocks present, they sort last. An
1017 * indirect block will be lfs_bsize and its presence indicates
1018 * that you cannot have fragments.
1019 */
1020 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1021
1022 /*
1023 * Assign disk addresses, and update references to the logical
1024 * block and the segment usage information.
1025 */
1026 fs = sp->fs;
1027 for (i = nblocks; i--; ++sp->start_bpp) {
1028 lbn = *sp->start_lbp++;
1029
1030 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1031 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1032 printf("lfs_updatemeta: ino %d blk %d"
1033 " has same lbn and daddr\n",
1034 VTOI(vp)->i_number, off);
1035 }
1036 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1037 fs->lfs_offset += bb;
1038 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1039 if (error)
1040 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1041 ip = VTOI(vp);
1042 switch (num) {
1043 case 0:
1044 ooff = ip->i_ffs_db[lbn];
1045 #ifdef DEBUG
1046 if (ooff == 0) {
1047 printf("lfs_updatemeta[1]: warning: writing "
1048 "ino %d lbn %d at 0x%x, was 0x0\n",
1049 ip->i_number, lbn, off);
1050 }
1051 #endif
1052 if (ooff == UNWRITTEN)
1053 ip->i_ffs_blocks += bb;
1054 ip->i_ffs_db[lbn] = off;
1055 break;
1056 case 1:
1057 ooff = ip->i_ffs_ib[a[0].in_off];
1058 #ifdef DEBUG
1059 if (ooff == 0) {
1060 printf("lfs_updatemeta[2]: warning: writing "
1061 "ino %d lbn %d at 0x%x, was 0x0\n",
1062 ip->i_number, lbn, off);
1063 }
1064 #endif
1065 if (ooff == UNWRITTEN)
1066 ip->i_ffs_blocks += bb;
1067 ip->i_ffs_ib[a[0].in_off] = off;
1068 break;
1069 default:
1070 ap = &a[num - 1];
1071 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1072 panic("lfs_updatemeta: bread bno %d",
1073 ap->in_lbn);
1074
1075 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1076 #if DEBUG
1077 if (ooff == 0) {
1078 printf("lfs_updatemeta[3]: warning: writing "
1079 "ino %d lbn %d at 0x%x, was 0x0\n",
1080 ip->i_number, lbn, off);
1081 }
1082 #endif
1083 if (ooff == UNWRITTEN)
1084 ip->i_ffs_blocks += bb;
1085 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1086 (void) VOP_BWRITE(bp);
1087 }
1088 #ifdef DEBUG
1089 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1090 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1091 "in same pseg\n", VTOI(sp->vp)->i_number,
1092 (*sp->start_bpp)->b_lblkno, daddr);
1093 }
1094 #endif
1095 /* Update segment usage information. */
1096 if (daddr > 0) {
1097 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1098 #ifdef DIAGNOSTIC
1099 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1100 /* XXX -- Change to a panic. */
1101 printf("lfs_updatemeta: negative bytes "
1102 "(segment %d short by %ld)\n",
1103 datosn(fs, daddr),
1104 (*sp->start_bpp)->b_bcount -
1105 sup->su_nbytes);
1106 printf("lfs_updatemeta: ino %d, lbn %d, "
1107 "addr = %x\n", VTOI(sp->vp)->i_number,
1108 (*sp->start_bpp)->b_lblkno, daddr);
1109 panic("lfs_updatemeta: negative bytes");
1110 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1111 }
1112 #endif
1113 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1114 error = VOP_BWRITE(bp); /* Ifile */
1115 }
1116 }
1117 }
1118
1119 /*
1120 * Start a new segment.
1121 */
1122 int
1123 lfs_initseg(fs)
1124 struct lfs *fs;
1125 {
1126 struct segment *sp;
1127 SEGUSE *sup;
1128 SEGSUM *ssp;
1129 struct buf *bp;
1130 int repeat;
1131
1132 sp = fs->lfs_sp;
1133
1134 repeat = 0;
1135 /* Advance to the next segment. */
1136 if (!LFS_PARTIAL_FITS(fs)) {
1137 /* lfs_avail eats the remaining space */
1138 fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
1139 fs->lfs_curseg);
1140 /* Wake up any cleaning procs waiting on this file system. */
1141 wakeup(&lfs_allclean_wakeup);
1142 wakeup(&fs->lfs_nextseg);
1143 lfs_newseg(fs);
1144 repeat = 1;
1145 fs->lfs_offset = fs->lfs_curseg;
1146 sp->seg_number = datosn(fs, fs->lfs_curseg);
1147 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
1148 /*
1149 * If the segment contains a superblock, update the offset
1150 * and summary address to skip over it.
1151 */
1152 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1153 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1154 fs->lfs_offset += btodb(LFS_SBPAD);
1155 sp->seg_bytes_left -= LFS_SBPAD;
1156 }
1157 brelse(bp);
1158 } else {
1159 sp->seg_number = datosn(fs, fs->lfs_curseg);
1160 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
1161 (fs->lfs_offset - fs->lfs_curseg));
1162 }
1163 fs->lfs_lastpseg = fs->lfs_offset;
1164
1165 sp->fs = fs;
1166 sp->ibp = NULL;
1167 sp->idp = NULL;
1168 sp->ninodes = 0;
1169
1170 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1171 sp->cbpp = sp->bpp;
1172 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1173 fs->lfs_offset, LFS_SUMMARY_SIZE);
1174 sp->segsum = (*sp->cbpp)->b_data;
1175 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1176 sp->start_bpp = ++sp->cbpp;
1177 fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
1178
1179 /* Set point to SEGSUM, initialize it. */
1180 ssp = sp->segsum;
1181 ssp->ss_next = fs->lfs_nextseg;
1182 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1183 ssp->ss_magic = SS_MAGIC;
1184
1185 /* Set pointer to first FINFO, initialize it. */
1186 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1187 sp->fip->fi_nblocks = 0;
1188 sp->start_lbp = &sp->fip->fi_blocks[0];
1189 sp->fip->fi_lastlength = 0;
1190
1191 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1192 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1193
1194 return(repeat);
1195 }
1196
1197 /*
1198 * Return the next segment to write.
1199 */
1200 void
1201 lfs_newseg(fs)
1202 struct lfs *fs;
1203 {
1204 CLEANERINFO *cip;
1205 SEGUSE *sup;
1206 struct buf *bp;
1207 int curseg, isdirty, sn;
1208
1209 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1210 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1211 sup->su_nbytes = 0;
1212 sup->su_nsums = 0;
1213 sup->su_ninos = 0;
1214 (void) VOP_BWRITE(bp); /* Ifile */
1215
1216 LFS_CLEANERINFO(cip, fs, bp);
1217 --cip->clean;
1218 ++cip->dirty;
1219 fs->lfs_nclean = cip->clean;
1220 (void) VOP_BWRITE(bp); /* Ifile */
1221
1222 fs->lfs_lastseg = fs->lfs_curseg;
1223 fs->lfs_curseg = fs->lfs_nextseg;
1224 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1225 sn = (sn + 1) % fs->lfs_nseg;
1226 if (sn == curseg)
1227 panic("lfs_nextseg: no clean segments");
1228 LFS_SEGENTRY(sup, fs, sn, bp);
1229 isdirty = sup->su_flags & SEGUSE_DIRTY;
1230 brelse(bp);
1231 if (!isdirty)
1232 break;
1233 }
1234
1235 ++fs->lfs_nactive;
1236 fs->lfs_nextseg = sntoda(fs, sn);
1237 if(lfs_dostats) {
1238 ++lfs_stats.segsused;
1239 }
1240 }
1241
1242 int
1243 lfs_writeseg(fs, sp)
1244 struct lfs *fs;
1245 struct segment *sp;
1246 {
1247 extern int locked_queue_count;
1248 extern long locked_queue_bytes;
1249 struct buf **bpp, *bp, *cbp, *newbp;
1250 SEGUSE *sup;
1251 SEGSUM *ssp;
1252 dev_t i_dev;
1253 u_long *datap, *dp;
1254 int do_again, i, nblocks, s;
1255 #ifdef LFS_TRACK_IOS
1256 int j;
1257 #endif
1258 int (*strategy)__P((void *));
1259 struct vop_strategy_args vop_strategy_a;
1260 u_short ninos;
1261 struct vnode *devvp;
1262 char *p;
1263 struct vnode *vn;
1264 struct inode *ip;
1265 daddr_t *daddrp;
1266 int changed;
1267 #if defined(DEBUG) && defined(LFS_PROPELLER)
1268 static int propeller;
1269 char propstring[4] = "-\\|/";
1270
1271 printf("%c\b",propstring[propeller++]);
1272 if(propeller==4)
1273 propeller = 0;
1274 #endif
1275
1276 /*
1277 * If there are no buffers other than the segment summary to write
1278 * and it is not a checkpoint, don't do anything. On a checkpoint,
1279 * even if there aren't any buffers, you need to write the superblock.
1280 */
1281 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1282 return (0);
1283
1284 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1285 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1286
1287 /* Update the segment usage information. */
1288 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1289
1290 /* Loop through all blocks, except the segment summary. */
1291 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1292 if((*bpp)->b_vp != devvp)
1293 sup->su_nbytes += (*bpp)->b_bcount;
1294 }
1295
1296 ssp = (SEGSUM *)sp->segsum;
1297
1298 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1299 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1300 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1301 sup->su_lastmod = time.tv_sec;
1302 sup->su_ninos += ninos;
1303 ++sup->su_nsums;
1304 fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
1305 fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
1306
1307 do_again = !(bp->b_flags & B_GATHERED);
1308 (void)VOP_BWRITE(bp); /* Ifile */
1309 /*
1310 * Mark blocks B_BUSY, to prevent then from being changed between
1311 * the checksum computation and the actual write.
1312 *
1313 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1314 * there are any, replace them with copies that have UNASSIGNED
1315 * instead.
1316 */
1317 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1318 ++bpp;
1319 if((*bpp)->b_flags & B_CALL)
1320 continue;
1321 bp = *bpp;
1322 again:
1323 s = splbio();
1324 if(bp->b_flags & B_BUSY) {
1325 #ifdef DEBUG
1326 printf("lfs_writeseg: avoiding potential data "
1327 "summary corruption for ino %d, lbn %d\n",
1328 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1329 #endif
1330 bp->b_flags |= B_WANTED;
1331 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1332 splx(s);
1333 goto again;
1334 }
1335 bp->b_flags |= B_BUSY;
1336 splx(s);
1337 /* Check and replace indirect block UNWRITTEN bogosity */
1338 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1339 VTOI(bp->b_vp)->i_ffs_blocks !=
1340 VTOI(bp->b_vp)->i_lfs_effnblks) {
1341 #ifdef DEBUG_LFS
1342 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1343 VTOI(bp->b_vp)->i_number,
1344 VTOI(bp->b_vp)->i_lfs_effnblks,
1345 VTOI(bp->b_vp)->i_ffs_blocks);
1346 #endif
1347 /* Make a copy we'll make changes to */
1348 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1349 bp->b_bcount);
1350 newbp->b_blkno = bp->b_blkno;
1351 memcpy(newbp->b_data, bp->b_data,
1352 newbp->b_bcount);
1353 *bpp = newbp;
1354
1355 changed = 0;
1356 for (daddrp = (daddr_t *)(newbp->b_data);
1357 daddrp < (daddr_t *)(newbp->b_data +
1358 newbp->b_bcount); daddrp++) {
1359 if (*daddrp == UNWRITTEN) {
1360 ++changed;
1361 #ifdef DEBUG_LFS
1362 printf("lfs_writeseg: replacing UNWRITTEN\n");
1363 #endif
1364 *daddrp = 0;
1365 }
1366 }
1367 /*
1368 * Get rid of the old buffer. Don't mark it clean,
1369 * though, if it still has dirty data on it.
1370 */
1371 if (changed) {
1372 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1373 if (bp->b_flags & B_CALL)
1374 lfs_freebuf(bp);
1375 else {
1376 /* Still on free list, leave it there */
1377 s = splbio();
1378 bp->b_flags &= ~B_BUSY;
1379 if (bp->b_flags & B_WANTED)
1380 wakeup(bp);
1381 splx(s);
1382 }
1383 } else {
1384 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1385 B_LOCKED | B_GATHERED);
1386 if (bp->b_flags & B_CALL)
1387 lfs_freebuf(bp);
1388 else {
1389 bremfree(bp);
1390 bp->b_flags |= B_DONE;
1391 reassignbuf(bp, bp->b_vp);
1392 brelse(bp);
1393 }
1394 }
1395
1396 }
1397 }
1398 /*
1399 * Compute checksum across data and then across summary; the first
1400 * block (the summary block) is skipped. Set the create time here
1401 * so that it's guaranteed to be later than the inode mod times.
1402 *
1403 * XXX
1404 * Fix this to do it inline, instead of malloc/copy.
1405 */
1406 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1407 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1408 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1409 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1410 panic("lfs_writeseg: copyin failed [1]: "
1411 "ino %d blk %d",
1412 VTOI((*bpp)->b_vp)->i_number,
1413 (*bpp)->b_lblkno);
1414 } else
1415 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1416 }
1417 ssp->ss_create = time.tv_sec;
1418 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1419 ssp->ss_sumsum =
1420 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1421 free(datap, M_SEGMENT);
1422
1423 fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
1424
1425 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1426
1427 /*
1428 * When we simply write the blocks we lose a rotation for every block
1429 * written. To avoid this problem, we allocate memory in chunks, copy
1430 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1431 * largest size I/O devices can handle.
1432 * When the data is copied to the chunk, turn off the B_LOCKED bit
1433 * and brelse the buffer (which will move them to the LRU list). Add
1434 * the B_CALL flag to the buffer header so we can count I/O's for the
1435 * checkpoints and so we can release the allocated memory.
1436 *
1437 * XXX
1438 * This should be removed if the new virtual memory system allows us to
1439 * easily make the buffers contiguous in kernel memory and if that's
1440 * fast enough.
1441 */
1442
1443 #define CHUNKSIZE MAXPHYS
1444
1445 if(devvp==NULL)
1446 panic("devvp is NULL");
1447 for (bpp = sp->bpp,i = nblocks; i;) {
1448 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1449 cbp->b_dev = i_dev;
1450 cbp->b_flags |= B_ASYNC | B_BUSY;
1451 cbp->b_bcount = 0;
1452
1453 #ifdef DIAGNOSTIC
1454 if(datosn(fs, (*bpp)->b_blkno + btodb(*bpp)->b_bcount - 1) !=
1455 datosn(fs, cbp->b_blkno)) {
1456 panic("lfs_writeseg: Segment overwrite");
1457 }
1458 #endif
1459
1460 s = splbio();
1461 if(fs->lfs_iocount >= LFS_THROTTLE) {
1462 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1463 }
1464 ++fs->lfs_iocount;
1465 #ifdef LFS_TRACK_IOS
1466 for(j=0;j<LFS_THROTTLE;j++) {
1467 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1468 fs->lfs_pending[j] = cbp->b_blkno;
1469 break;
1470 }
1471 }
1472 #endif /* LFS_TRACK_IOS */
1473 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1474 bp = *bpp;
1475
1476 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1477 break;
1478
1479 /*
1480 * Fake buffers from the cleaner are marked as B_INVAL.
1481 * We need to copy the data from user space rather than
1482 * from the buffer indicated.
1483 * XXX == what do I do on an error?
1484 */
1485 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1486 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1487 panic("lfs_writeseg: copyin failed [2]");
1488 } else
1489 bcopy(bp->b_data, p, bp->b_bcount);
1490 p += bp->b_bcount;
1491 cbp->b_bcount += bp->b_bcount;
1492 if (bp->b_flags & B_LOCKED) {
1493 --locked_queue_count;
1494 locked_queue_bytes -= bp->b_bufsize;
1495 }
1496 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1497 B_LOCKED | B_GATHERED);
1498 vn = bp->b_vp;
1499 if (bp->b_flags & B_CALL) {
1500 /* if B_CALL, it was created with newbuf */
1501 lfs_freebuf(bp);
1502 } else {
1503 bremfree(bp);
1504 bp->b_flags |= B_DONE;
1505 if(vn)
1506 reassignbuf(bp, vn);
1507 brelse(bp);
1508 }
1509 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1510 bp->b_flags &= ~B_NEEDCOMMIT;
1511 wakeup(bp);
1512 }
1513
1514 bpp++;
1515
1516 /*
1517 * If this is the last block for this vnode, but
1518 * there are other blocks on its dirty list,
1519 * set IN_MODIFIED/IN_CLEANING depending on what
1520 * sort of block. Only do this for our mount point,
1521 * not for, e.g., inode blocks that are attached to
1522 * the devvp.
1523 */
1524 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1525 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1526 vn->v_mount == fs->lfs_ivnode->v_mount)
1527 {
1528 ip = VTOI(vn);
1529 #ifdef DEBUG_LFS
1530 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1531 #endif
1532 if(bp->b_flags & B_CALL)
1533 LFS_SET_UINO(ip, IN_CLEANING);
1534 else
1535 LFS_SET_UINO(ip, IN_MODIFIED);
1536 }
1537 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1538 wakeup(vn);
1539 }
1540 ++cbp->b_vp->v_numoutput;
1541 splx(s);
1542 /*
1543 * XXXX This is a gross and disgusting hack. Since these
1544 * buffers are physically addressed, they hang off the
1545 * device vnode (devvp). As a result, they have no way
1546 * of getting to the LFS superblock or lfs structure to
1547 * keep track of the number of I/O's pending. So, I am
1548 * going to stuff the fs into the saveaddr field of
1549 * the buffer (yuk).
1550 */
1551 cbp->b_saveaddr = (caddr_t)fs;
1552 vop_strategy_a.a_desc = VDESC(vop_strategy);
1553 vop_strategy_a.a_bp = cbp;
1554 (strategy)(&vop_strategy_a);
1555 }
1556 /*
1557 * XXX
1558 * Vinvalbuf can move locked buffers off the locked queue
1559 * and we have no way of knowing about this. So, after
1560 * doing a big write, we recalculate how many buffers are
1561 * really still left on the locked queue.
1562 */
1563 s = splbio();
1564 lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
1565 splx(s);
1566 wakeup(&locked_queue_count);
1567 if(lfs_dostats) {
1568 ++lfs_stats.psegwrites;
1569 lfs_stats.blocktot += nblocks - 1;
1570 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1571 ++lfs_stats.psyncwrites;
1572 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1573 ++lfs_stats.pcleanwrites;
1574 lfs_stats.cleanblocks += nblocks - 1;
1575 }
1576 }
1577 return (lfs_initseg(fs) || do_again);
1578 }
1579
1580 void
1581 lfs_writesuper(fs, daddr)
1582 struct lfs *fs;
1583 daddr_t daddr;
1584 {
1585 struct buf *bp;
1586 dev_t i_dev;
1587 int (*strategy) __P((void *));
1588 int s;
1589 struct vop_strategy_args vop_strategy_a;
1590
1591 #ifdef LFS_CANNOT_ROLLFW
1592 /*
1593 * If we can write one superblock while another is in
1594 * progress, we risk not having a complete checkpoint if we crash.
1595 * So, block here if a superblock write is in progress.
1596 */
1597 s = splbio();
1598 while(fs->lfs_sbactive) {
1599 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1600 }
1601 fs->lfs_sbactive = daddr;
1602 splx(s);
1603 #endif
1604 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1605 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1606
1607 /* Set timestamp of this version of the superblock */
1608 fs->lfs_tstamp = time.tv_sec;
1609
1610 /* Checksum the superblock and copy it into a buffer. */
1611 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1612 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1613 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1614
1615 bp->b_dev = i_dev;
1616 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1617 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1618 bp->b_iodone = lfs_supercallback;
1619 /* XXX KS - same nasty hack as above */
1620 bp->b_saveaddr = (caddr_t)fs;
1621
1622 vop_strategy_a.a_desc = VDESC(vop_strategy);
1623 vop_strategy_a.a_bp = bp;
1624 s = splbio();
1625 ++bp->b_vp->v_numoutput;
1626 ++fs->lfs_iocount;
1627 splx(s);
1628 (strategy)(&vop_strategy_a);
1629 }
1630
1631 /*
1632 * Logical block number match routines used when traversing the dirty block
1633 * chain.
1634 */
1635 int
1636 lfs_match_fake(fs, bp)
1637 struct lfs *fs;
1638 struct buf *bp;
1639 {
1640 return (bp->b_flags & B_CALL);
1641 }
1642
1643 int
1644 lfs_match_data(fs, bp)
1645 struct lfs *fs;
1646 struct buf *bp;
1647 {
1648 return (bp->b_lblkno >= 0);
1649 }
1650
1651 int
1652 lfs_match_indir(fs, bp)
1653 struct lfs *fs;
1654 struct buf *bp;
1655 {
1656 int lbn;
1657
1658 lbn = bp->b_lblkno;
1659 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1660 }
1661
1662 int
1663 lfs_match_dindir(fs, bp)
1664 struct lfs *fs;
1665 struct buf *bp;
1666 {
1667 int lbn;
1668
1669 lbn = bp->b_lblkno;
1670 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1671 }
1672
1673 int
1674 lfs_match_tindir(fs, bp)
1675 struct lfs *fs;
1676 struct buf *bp;
1677 {
1678 int lbn;
1679
1680 lbn = bp->b_lblkno;
1681 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1682 }
1683
1684 /*
1685 * XXX - The only buffers that are going to hit these functions are the
1686 * segment write blocks, or the segment summaries, or the superblocks.
1687 *
1688 * All of the above are created by lfs_newbuf, and so do not need to be
1689 * released via brelse.
1690 */
1691 void
1692 lfs_callback(bp)
1693 struct buf *bp;
1694 {
1695 struct lfs *fs;
1696 #ifdef LFS_TRACK_IOS
1697 int j;
1698 #endif
1699
1700 fs = (struct lfs *)bp->b_saveaddr;
1701 #ifdef DIAGNOSTIC
1702 if (fs->lfs_iocount == 0)
1703 panic("lfs_callback: zero iocount\n");
1704 #endif
1705 if (--fs->lfs_iocount < LFS_THROTTLE)
1706 wakeup(&fs->lfs_iocount);
1707 #ifdef LFS_TRACK_IOS
1708 for(j=0;j<LFS_THROTTLE;j++) {
1709 if(fs->lfs_pending[j]==bp->b_blkno) {
1710 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1711 wakeup(&(fs->lfs_pending[j]));
1712 break;
1713 }
1714 }
1715 #endif /* LFS_TRACK_IOS */
1716
1717 lfs_freebuf(bp);
1718 }
1719
1720 void
1721 lfs_supercallback(bp)
1722 struct buf *bp;
1723 {
1724 struct lfs *fs;
1725
1726 fs = (struct lfs *)bp->b_saveaddr;
1727 #ifdef LFS_CANNOT_ROLLFW
1728 fs->lfs_sbactive = 0;
1729 wakeup(&fs->lfs_sbactive);
1730 #endif
1731 if (--fs->lfs_iocount < LFS_THROTTLE)
1732 wakeup(&fs->lfs_iocount);
1733 lfs_freebuf(bp);
1734 }
1735
1736 /*
1737 * Shellsort (diminishing increment sort) from Data Structures and
1738 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1739 * see also Knuth Vol. 3, page 84. The increments are selected from
1740 * formula (8), page 95. Roughly O(N^3/2).
1741 */
1742 /*
1743 * This is our own private copy of shellsort because we want to sort
1744 * two parallel arrays (the array of buffer pointers and the array of
1745 * logical block numbers) simultaneously. Note that we cast the array
1746 * of logical block numbers to a unsigned in this routine so that the
1747 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1748 */
1749
1750 void
1751 lfs_shellsort(bp_array, lb_array, nmemb)
1752 struct buf **bp_array;
1753 ufs_daddr_t *lb_array;
1754 int nmemb;
1755 {
1756 static int __rsshell_increments[] = { 4, 1, 0 };
1757 int incr, *incrp, t1, t2;
1758 struct buf *bp_temp;
1759 u_long lb_temp;
1760
1761 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1762 for (t1 = incr; t1 < nmemb; ++t1)
1763 for (t2 = t1 - incr; t2 >= 0;)
1764 if (lb_array[t2] > lb_array[t2 + incr]) {
1765 lb_temp = lb_array[t2];
1766 lb_array[t2] = lb_array[t2 + incr];
1767 lb_array[t2 + incr] = lb_temp;
1768 bp_temp = bp_array[t2];
1769 bp_array[t2] = bp_array[t2 + incr];
1770 bp_array[t2 + incr] = bp_temp;
1771 t2 -= incr;
1772 } else
1773 break;
1774 }
1775
1776 /*
1777 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1778 */
1779 int
1780 lfs_vref(vp)
1781 struct vnode *vp;
1782 {
1783 /*
1784 * If we return 1 here during a flush, we risk vinvalbuf() not
1785 * being able to flush all of the pages from this vnode, which
1786 * will cause it to panic. So, return 0 if a flush is in progress.
1787 */
1788 if (vp->v_flag & VXLOCK) {
1789 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1790 return 0;
1791 }
1792 return(1);
1793 }
1794 return (vget(vp, 0));
1795 }
1796
1797 /*
1798 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1799 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1800 */
1801 void
1802 lfs_vunref(vp)
1803 struct vnode *vp;
1804 {
1805 /*
1806 * Analogous to lfs_vref, if the node is flushing, fake it.
1807 */
1808 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1809 return;
1810 }
1811
1812 simple_lock(&vp->v_interlock);
1813 #ifdef DIAGNOSTIC
1814 if(vp->v_usecount<=0) {
1815 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1816 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1817 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1818 panic("lfs_vunref: v_usecount<0");
1819 }
1820 #endif
1821 vp->v_usecount--;
1822 if (vp->v_usecount > 0) {
1823 simple_unlock(&vp->v_interlock);
1824 return;
1825 }
1826 /*
1827 * insert at tail of LRU list
1828 */
1829 simple_lock(&vnode_free_list_slock);
1830 if (vp->v_holdcnt > 0)
1831 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1832 else
1833 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1834 simple_unlock(&vnode_free_list_slock);
1835 simple_unlock(&vp->v_interlock);
1836 }
1837
1838 /*
1839 * We use this when we have vnodes that were loaded in solely for cleaning.
1840 * There is no reason to believe that these vnodes will be referenced again
1841 * soon, since the cleaning process is unrelated to normal filesystem
1842 * activity. Putting cleaned vnodes at the tail of the list has the effect
1843 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1844 * cleaning at the head of the list, instead.
1845 */
1846 void
1847 lfs_vunref_head(vp)
1848 struct vnode *vp;
1849 {
1850 simple_lock(&vp->v_interlock);
1851 #ifdef DIAGNOSTIC
1852 if(vp->v_usecount==0) {
1853 panic("lfs_vunref: v_usecount<0");
1854 }
1855 #endif
1856 vp->v_usecount--;
1857 if (vp->v_usecount > 0) {
1858 simple_unlock(&vp->v_interlock);
1859 return;
1860 }
1861 /*
1862 * insert at head of LRU list
1863 */
1864 simple_lock(&vnode_free_list_slock);
1865 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1866 simple_unlock(&vnode_free_list_slock);
1867 simple_unlock(&vp->v_interlock);
1868 }
1869
1870