lfs_segment.c revision 1.60 1 /* $NetBSD: lfs_segment.c,v 1.60 2000/11/12 02:13:51 toshii Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 /* op values to lfs_writevnodes */
146 #define VN_REG 0
147 #define VN_DIROP 1
148 #define VN_EMPTY 2
149 #define VN_CLEAN 3
150
151 #define LFS_MAX_ACTIVE 10
152
153 /*
154 * XXX KS - Set modification time on the Ifile, so the cleaner can
155 * read the fs mod time off of it. We don't set IN_UPDATE here,
156 * since we don't really need this to be flushed to disk (and in any
157 * case that wouldn't happen to the Ifile until we checkpoint).
158 */
159 void
160 lfs_imtime(fs)
161 struct lfs *fs;
162 {
163 struct timespec ts;
164 struct inode *ip;
165
166 TIMEVAL_TO_TIMESPEC(&time, &ts);
167 ip = VTOI(fs->lfs_ivnode);
168 ip->i_ffs_mtime = ts.tv_sec;
169 ip->i_ffs_mtimensec = ts.tv_nsec;
170 }
171
172 /*
173 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
174 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
175 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
176 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
177 */
178
179 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
180 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
181 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
182
183 int
184 lfs_vflush(vp)
185 struct vnode *vp;
186 {
187 struct inode *ip;
188 struct lfs *fs;
189 struct segment *sp;
190 struct buf *bp, *nbp, *tbp, *tnbp;
191 int error, s;
192
193 ip = VTOI(vp);
194 fs = VFSTOUFS(vp->v_mount)->um_lfs;
195
196 if(ip->i_flag & IN_CLEANING) {
197 #ifdef DEBUG_LFS
198 ivndebug(vp,"vflush/in_cleaning");
199 #endif
200 LFS_CLR_UINO(ip, IN_CLEANING);
201 LFS_SET_UINO(ip, IN_MODIFIED);
202
203 /*
204 * Toss any cleaning buffers that have real counterparts
205 * to avoid losing new data
206 */
207 s = splbio();
208 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
209 nbp = bp->b_vnbufs.le_next;
210 if(bp->b_flags & B_CALL) {
211 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
212 tbp=tnbp)
213 {
214 tnbp = tbp->b_vnbufs.le_next;
215 if(tbp->b_vp == bp->b_vp
216 && tbp->b_lblkno == bp->b_lblkno
217 && tbp != bp)
218 {
219 lfs_freebuf(bp);
220 }
221 }
222 }
223 }
224 splx(s);
225 }
226
227 /* If the node is being written, wait until that is done */
228 if(WRITEINPROG(vp)) {
229 #ifdef DEBUG_LFS
230 ivndebug(vp,"vflush/writeinprog");
231 #endif
232 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
233 }
234
235 /* Protect against VXLOCK deadlock in vinvalbuf() */
236 lfs_seglock(fs, SEGM_SYNC);
237
238 /* If we're supposed to flush a freed inode, just toss it */
239 /* XXX - seglock, so these buffers can't be gathered, right? */
240 if(ip->i_ffs_mode == 0) {
241 printf("lfs_vflush: ino %d is freed, not flushing\n",
242 ip->i_number);
243 s = splbio();
244 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
245 nbp = bp->b_vnbufs.le_next;
246 /* Copied from lfs_writeseg */
247 if (bp->b_flags & B_CALL) {
248 /* if B_CALL, it was created with newbuf */
249 lfs_freebuf(bp);
250 } else {
251 bremfree(bp);
252 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
253 B_LOCKED | B_GATHERED);
254 bp->b_flags |= B_DONE;
255 reassignbuf(bp, vp);
256 brelse(bp);
257 }
258 }
259 splx(s);
260 LFS_CLR_UINO(ip, IN_CLEANING);
261 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
262 ip->i_flag &= ~IN_ALLMOD;
263 printf("lfs_vflush: done not flushing ino %d\n",
264 ip->i_number);
265 lfs_segunlock(fs);
266 return 0;
267 }
268
269 SET_FLUSHING(fs,vp);
270 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
271 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
272 CLR_FLUSHING(fs,vp);
273 lfs_segunlock(fs);
274 return error;
275 }
276 sp = fs->lfs_sp;
277
278 if (vp->v_dirtyblkhd.lh_first == NULL) {
279 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
280 } else if((ip->i_flag & IN_CLEANING) &&
281 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
282 #ifdef DEBUG_LFS
283 ivndebug(vp,"vflush/clean");
284 #endif
285 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
286 }
287 else if(lfs_dostats) {
288 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
289 ++lfs_stats.vflush_invoked;
290 #ifdef DEBUG_LFS
291 ivndebug(vp,"vflush");
292 #endif
293 }
294
295 #ifdef DIAGNOSTIC
296 /* XXX KS This actually can happen right now, though it shouldn't(?) */
297 if(vp->v_flag & VDIROP) {
298 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
299 /* panic("VDIROP being flushed...this can\'t happen"); */
300 }
301 if(vp->v_usecount<0) {
302 printf("usecount=%ld\n",vp->v_usecount);
303 panic("lfs_vflush: usecount<0");
304 }
305 #endif
306
307 do {
308 do {
309 if (vp->v_dirtyblkhd.lh_first != NULL)
310 lfs_writefile(fs, sp, vp);
311 } while (lfs_writeinode(fs, sp, ip));
312 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
313
314 if(lfs_dostats) {
315 ++lfs_stats.nwrites;
316 if (sp->seg_flags & SEGM_SYNC)
317 ++lfs_stats.nsync_writes;
318 if (sp->seg_flags & SEGM_CKP)
319 ++lfs_stats.ncheckpoints;
320 }
321 lfs_segunlock(fs);
322
323 CLR_FLUSHING(fs,vp);
324 return (0);
325 }
326
327 #ifdef DEBUG_LFS_VERBOSE
328 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
329 #else
330 # define vndebug(vp,str)
331 #endif
332
333 int
334 lfs_writevnodes(fs, mp, sp, op)
335 struct lfs *fs;
336 struct mount *mp;
337 struct segment *sp;
338 int op;
339 {
340 struct inode *ip;
341 struct vnode *vp;
342 int inodes_written=0, only_cleaning;
343 int needs_unlock;
344
345 #ifndef LFS_NO_BACKVP_HACK
346 /* BEGIN HACK */
347 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
348 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
349 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
350
351 /* Find last vnode. */
352 loop: for (vp = mp->mnt_vnodelist.lh_first;
353 vp && vp->v_mntvnodes.le_next != NULL;
354 vp = vp->v_mntvnodes.le_next);
355 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
356 #else
357 loop:
358 for (vp = mp->mnt_vnodelist.lh_first;
359 vp != NULL;
360 vp = vp->v_mntvnodes.le_next) {
361 #endif
362 /*
363 * If the vnode that we are about to sync is no longer
364 * associated with this mount point, start over.
365 */
366 if (vp->v_mount != mp) {
367 printf("lfs_writevnodes: starting over\n");
368 goto loop;
369 }
370
371 ip = VTOI(vp);
372 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
373 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
374 vndebug(vp,"dirop");
375 continue;
376 }
377
378 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
379 vndebug(vp,"empty");
380 continue;
381 }
382
383 if (vp->v_type == VNON) {
384 continue;
385 }
386
387 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
388 && vp != fs->lfs_flushvp
389 && !(ip->i_flag & IN_CLEANING)) {
390 vndebug(vp,"cleaning");
391 continue;
392 }
393
394 if (lfs_vref(vp)) {
395 vndebug(vp,"vref");
396 continue;
397 }
398
399 needs_unlock = 0;
400 if (VOP_ISLOCKED(vp)) {
401 if (vp != fs->lfs_ivnode &&
402 vp->v_lock.lk_lockholder != curproc->p_pid) {
403 #ifdef DEBUG_LFS
404 printf("lfs_writevnodes: not writing ino %d,"
405 " locked by pid %d\n",
406 VTOI(vp)->i_number,
407 vp->v_lock.lk_lockholder);
408 #endif
409 lfs_vunref(vp);
410 continue;
411 }
412 } else if (vp != fs->lfs_ivnode) {
413 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
414 needs_unlock = 1;
415 }
416
417 only_cleaning = 0;
418 /*
419 * Write the inode/file if dirty and it's not the IFILE.
420 */
421 if ((ip->i_flag & IN_ALLMOD) ||
422 (vp->v_dirtyblkhd.lh_first != NULL))
423 {
424 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
425
426 if(ip->i_number != LFS_IFILE_INUM
427 && vp->v_dirtyblkhd.lh_first != NULL)
428 {
429 lfs_writefile(fs, sp, vp);
430 }
431 if(vp->v_dirtyblkhd.lh_first != NULL) {
432 if(WRITEINPROG(vp)) {
433 #ifdef DEBUG_LFS
434 ivndebug(vp,"writevnodes/write2");
435 #endif
436 } else if(!(ip->i_flag & IN_ALLMOD)) {
437 #ifdef DEBUG_LFS
438 printf("<%d>",ip->i_number);
439 #endif
440 LFS_SET_UINO(ip, IN_MODIFIED);
441 }
442 }
443 (void) lfs_writeinode(fs, sp, ip);
444 inodes_written++;
445 }
446
447 if (needs_unlock)
448 VOP_UNLOCK(vp, 0);
449
450 if (lfs_clean_vnhead && only_cleaning)
451 lfs_vunref_head(vp);
452 else
453 lfs_vunref(vp);
454 }
455 return inodes_written;
456 }
457
458 int
459 lfs_segwrite(mp, flags)
460 struct mount *mp;
461 int flags; /* Do a checkpoint. */
462 {
463 struct buf *bp;
464 struct inode *ip;
465 struct lfs *fs;
466 struct segment *sp;
467 struct vnode *vp;
468 SEGUSE *segusep;
469 CLEANERINFO *cip;
470 ufs_daddr_t ibno;
471 int do_ckp, error, i;
472 int writer_set = 0;
473
474 fs = VFSTOUFS(mp)->um_lfs;
475
476 if (fs->lfs_ronly)
477 return EROFS;
478
479 lfs_imtime(fs);
480
481 #if 0
482 /*
483 * If we are not the cleaner, and there is no space available,
484 * wait until cleaner writes.
485 */
486 if(!(flags & SEGM_CLEAN)
487 && (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
488 {
489 while (fs->lfs_avail <= 0) {
490 wakeup(&lfs_allclean_wakeup);
491 wakeup(&fs->lfs_nextseg);
492 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
493 0);
494 if (error) {
495 return (error);
496 }
497 }
498 }
499 #endif
500 /*
501 * Synchronize cleaner information
502 */
503 LFS_CLEANERINFO(cip, fs, bp);
504 cip->bfree = fs->lfs_bfree;
505 cip->avail = fs->lfs_avail - fs->lfs_ravail;
506 (void) VOP_BWRITE(bp); /* Ifile */
507
508 /*
509 * Allocate a segment structure and enough space to hold pointers to
510 * the maximum possible number of buffers which can be described in a
511 * single summary block.
512 */
513 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
514 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
515 sp = fs->lfs_sp;
516
517 /*
518 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
519 * in which case we have to flush *all* buffers off of this vnode.
520 * We don't care about other nodes, but write any non-dirop nodes
521 * anyway in anticipation of another getnewvnode().
522 *
523 * If we're cleaning we only write cleaning and ifile blocks, and
524 * no dirops, since otherwise we'd risk corruption in a crash.
525 */
526 if(sp->seg_flags & SEGM_CLEAN)
527 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
528 else {
529 lfs_writevnodes(fs, mp, sp, VN_REG);
530 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
531 while(fs->lfs_dirops)
532 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
533 "lfs writer", 0)))
534 {
535 free(sp->bpp, M_SEGMENT);
536 free(sp, M_SEGMENT);
537 return (error);
538 }
539 fs->lfs_writer++;
540 writer_set=1;
541 lfs_writevnodes(fs, mp, sp, VN_DIROP);
542 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
543 }
544 }
545
546 /*
547 * If we are doing a checkpoint, mark everything since the
548 * last checkpoint as no longer ACTIVE.
549 */
550 if (do_ckp) {
551 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
552 --ibno >= fs->lfs_cleansz; ) {
553 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
554
555 panic("lfs_segwrite: ifile read");
556 segusep = (SEGUSE *)bp->b_data;
557 for (i = fs->lfs_sepb; i--; segusep++)
558 segusep->su_flags &= ~SEGUSE_ACTIVE;
559
560 /* But the current segment is still ACTIVE */
561 segusep = (SEGUSE *)bp->b_data;
562 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
563 (ibno-fs->lfs_cleansz))
564 segusep[datosn(fs, fs->lfs_curseg) %
565 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
566 error = VOP_BWRITE(bp); /* Ifile */
567 }
568 }
569
570 if (do_ckp || fs->lfs_doifile) {
571 redo:
572 vp = fs->lfs_ivnode;
573
574 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
575
576 ip = VTOI(vp);
577 if (vp->v_dirtyblkhd.lh_first != NULL)
578 lfs_writefile(fs, sp, vp);
579 (void)lfs_writeinode(fs, sp, ip);
580
581 vput(vp);
582
583 if (lfs_writeseg(fs, sp) && do_ckp)
584 goto redo;
585 } else {
586 (void) lfs_writeseg(fs, sp);
587 }
588
589 /*
590 * If the I/O count is non-zero, sleep until it reaches zero.
591 * At the moment, the user's process hangs around so we can
592 * sleep.
593 */
594 fs->lfs_doifile = 0;
595 if(writer_set && --fs->lfs_writer==0)
596 wakeup(&fs->lfs_dirops);
597
598 if(lfs_dostats) {
599 ++lfs_stats.nwrites;
600 if (sp->seg_flags & SEGM_SYNC)
601 ++lfs_stats.nsync_writes;
602 if (sp->seg_flags & SEGM_CKP)
603 ++lfs_stats.ncheckpoints;
604 }
605 lfs_segunlock(fs);
606 return (0);
607 }
608
609 /*
610 * Write the dirty blocks associated with a vnode.
611 */
612 void
613 lfs_writefile(fs, sp, vp)
614 struct lfs *fs;
615 struct segment *sp;
616 struct vnode *vp;
617 {
618 struct buf *bp;
619 struct finfo *fip;
620 IFILE *ifp;
621
622
623 if (sp->seg_bytes_left < fs->lfs_bsize ||
624 sp->sum_bytes_left < sizeof(struct finfo))
625 (void) lfs_writeseg(fs, sp);
626
627 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
628 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
629
630 if(vp->v_flag & VDIROP)
631 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
632
633 fip = sp->fip;
634 fip->fi_nblocks = 0;
635 fip->fi_ino = VTOI(vp)->i_number;
636 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
637 fip->fi_version = ifp->if_version;
638 brelse(bp);
639
640 if(sp->seg_flags & SEGM_CLEAN)
641 {
642 lfs_gather(fs, sp, vp, lfs_match_fake);
643 /*
644 * For a file being flushed, we need to write *all* blocks.
645 * This means writing the cleaning blocks first, and then
646 * immediately following with any non-cleaning blocks.
647 * The same is true of the Ifile since checkpoints assume
648 * that all valid Ifile blocks are written.
649 */
650 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
651 lfs_gather(fs, sp, vp, lfs_match_data);
652 } else
653 lfs_gather(fs, sp, vp, lfs_match_data);
654
655 /*
656 * It may not be necessary to write the meta-data blocks at this point,
657 * as the roll-forward recovery code should be able to reconstruct the
658 * list.
659 *
660 * We have to write them anyway, though, under two conditions: (1) the
661 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
662 * checkpointing.
663 */
664 if(lfs_writeindir
665 || IS_FLUSHING(fs,vp)
666 || (sp->seg_flags & SEGM_CKP))
667 {
668 lfs_gather(fs, sp, vp, lfs_match_indir);
669 lfs_gather(fs, sp, vp, lfs_match_dindir);
670 lfs_gather(fs, sp, vp, lfs_match_tindir);
671 }
672 fip = sp->fip;
673 if (fip->fi_nblocks != 0) {
674 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
675 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
676 sp->start_lbp = &sp->fip->fi_blocks[0];
677 } else {
678 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
679 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
680 }
681 }
682
683 int
684 lfs_writeinode(fs, sp, ip)
685 struct lfs *fs;
686 struct segment *sp;
687 struct inode *ip;
688 {
689 struct buf *bp, *ibp;
690 struct dinode *cdp;
691 IFILE *ifp;
692 SEGUSE *sup;
693 ufs_daddr_t daddr;
694 daddr_t *daddrp;
695 ino_t ino;
696 int error, i, ndx;
697 int redo_ifile = 0;
698 struct timespec ts;
699 int gotblk=0;
700
701 if (!(ip->i_flag & IN_ALLMOD))
702 return(0);
703
704 /* Allocate a new inode block if necessary. */
705 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
706 /* Allocate a new segment if necessary. */
707 if (sp->seg_bytes_left < fs->lfs_bsize ||
708 sp->sum_bytes_left < sizeof(ufs_daddr_t))
709 (void) lfs_writeseg(fs, sp);
710
711 /* Get next inode block. */
712 daddr = fs->lfs_offset;
713 fs->lfs_offset += fsbtodb(fs, 1);
714 sp->ibp = *sp->cbpp++ =
715 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
716 gotblk++;
717
718 /* Zero out inode numbers */
719 for (i = 0; i < INOPB(fs); ++i)
720 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
721
722 ++sp->start_bpp;
723 fs->lfs_avail -= fsbtodb(fs, 1);
724 /* Set remaining space counters. */
725 sp->seg_bytes_left -= fs->lfs_bsize;
726 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
727 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
728 sp->ninodes / INOPB(fs) - 1;
729 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
730 }
731
732 /* Update the inode times and copy the inode onto the inode page. */
733 TIMEVAL_TO_TIMESPEC(&time, &ts);
734 LFS_ITIMES(ip, &ts, &ts, &ts);
735
736 /*
737 * If this is the Ifile, and we've already written the Ifile in this
738 * partial segment, just overwrite it (it's not on disk yet) and
739 * continue.
740 *
741 * XXX we know that the bp that we get the second time around has
742 * already been gathered.
743 */
744 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
745 *(sp->idp) = ip->i_din.ffs_din;
746 return 0;
747 }
748
749 bp = sp->ibp;
750 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
751 *cdp = ip->i_din.ffs_din;
752
753 /*
754 * If we are cleaning, ensure that we don't write UNWRITTEN disk
755 * addresses to disk.
756 */
757 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
758 #ifdef DEBUG_LFS
759 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
760 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
761 #endif
762 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
763 daddrp++) {
764 if (*daddrp == UNWRITTEN) {
765 #ifdef DEBUG_LFS
766 printf("lfs_writeinode: wiping UNWRITTEN\n");
767 #endif
768 *daddrp = 0;
769 }
770 }
771 }
772
773 if(ip->i_flag & IN_CLEANING)
774 LFS_CLR_UINO(ip, IN_CLEANING);
775 else {
776 /* XXX IN_ALLMOD */
777 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
778 IN_UPDATE);
779 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
780 LFS_CLR_UINO(ip, IN_MODIFIED);
781 }
782
783 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
784 sp->idp = ((struct dinode *)bp->b_data) +
785 (sp->ninodes % INOPB(fs));
786 if(gotblk) {
787 bp->b_flags |= B_LOCKED;
788 brelse(bp);
789 }
790
791 /* Increment inode count in segment summary block. */
792 ++((SEGSUM *)(sp->segsum))->ss_ninos;
793
794 /* If this page is full, set flag to allocate a new page. */
795 if (++sp->ninodes % INOPB(fs) == 0)
796 sp->ibp = NULL;
797
798 /*
799 * If updating the ifile, update the super-block. Update the disk
800 * address and access times for this inode in the ifile.
801 */
802 ino = ip->i_number;
803 if (ino == LFS_IFILE_INUM) {
804 daddr = fs->lfs_idaddr;
805 fs->lfs_idaddr = bp->b_blkno;
806 } else {
807 LFS_IENTRY(ifp, fs, ino, ibp);
808 daddr = ifp->if_daddr;
809 ifp->if_daddr = bp->b_blkno;
810 #ifdef LFS_DEBUG_NEXTFREE
811 if(ino > 3 && ifp->if_nextfree) {
812 vprint("lfs_writeinode",ITOV(ip));
813 printf("lfs_writeinode: updating free ino %d\n",
814 ip->i_number);
815 }
816 #endif
817 error = VOP_BWRITE(ibp); /* Ifile */
818 }
819
820 /*
821 * Account the inode: it no longer belongs to its former segment,
822 * though it will not belong to the new segment until that segment
823 * is actually written.
824 */
825 #ifdef DEBUG
826 /*
827 * The inode's last address should not be in the current partial
828 * segment, except under exceptional circumstances (lfs_writevnodes
829 * had to start over, and in the meantime more blocks were written
830 * to a vnode). Although the previous inode won't be accounted in
831 * su_nbytes until lfs_writeseg, this shouldn't be a problem as we
832 * have more data blocks in the current partial segment.
833 */
834 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
835 printf("lfs_writeinode: last inode addr in current pseg "
836 "(ino %d daddr 0x%x)\n", ino, daddr);
837 #endif
838 if (daddr != LFS_UNUSED_DADDR) {
839 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
840 #ifdef DIAGNOSTIC
841 if (sup->su_nbytes < DINODE_SIZE) {
842 printf("lfs_writeinode: negative bytes "
843 "(segment %d short by %d)\n",
844 datosn(fs, daddr),
845 (int)DINODE_SIZE - sup->su_nbytes);
846 panic("lfs_writeinode: negative bytes");
847 sup->su_nbytes = DINODE_SIZE;
848 }
849 #endif
850 sup->su_nbytes -= DINODE_SIZE;
851 redo_ifile =
852 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
853 error = VOP_BWRITE(bp); /* Ifile */
854 }
855 return (redo_ifile);
856 }
857
858 int
859 lfs_gatherblock(sp, bp, sptr)
860 struct segment *sp;
861 struct buf *bp;
862 int *sptr;
863 {
864 struct lfs *fs;
865 int version;
866
867 /*
868 * If full, finish this segment. We may be doing I/O, so
869 * release and reacquire the splbio().
870 */
871 #ifdef DIAGNOSTIC
872 if (sp->vp == NULL)
873 panic ("lfs_gatherblock: Null vp in segment");
874 #endif
875 fs = sp->fs;
876 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
877 sp->seg_bytes_left < bp->b_bcount) {
878 if (sptr)
879 splx(*sptr);
880 lfs_updatemeta(sp);
881
882 version = sp->fip->fi_version;
883 (void) lfs_writeseg(fs, sp);
884
885 sp->fip->fi_version = version;
886 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
887 /* Add the current file to the segment summary. */
888 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
889 sp->sum_bytes_left -=
890 sizeof(struct finfo) - sizeof(ufs_daddr_t);
891
892 if (sptr)
893 *sptr = splbio();
894 return(1);
895 }
896
897 #ifdef DEBUG
898 if(bp->b_flags & B_GATHERED) {
899 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
900 sp->fip->fi_ino, bp->b_lblkno);
901 return(0);
902 }
903 #endif
904 /* Insert into the buffer list, update the FINFO block. */
905 bp->b_flags |= B_GATHERED;
906 *sp->cbpp++ = bp;
907 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
908
909 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
910 sp->seg_bytes_left -= bp->b_bcount;
911 return(0);
912 }
913
914 int
915 lfs_gather(fs, sp, vp, match)
916 struct lfs *fs;
917 struct segment *sp;
918 struct vnode *vp;
919 int (*match) __P((struct lfs *, struct buf *));
920 {
921 struct buf *bp;
922 int s, count=0;
923
924 sp->vp = vp;
925 s = splbio();
926
927 #ifndef LFS_NO_BACKBUF_HACK
928 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
929 #else /* LFS_NO_BACKBUF_HACK */
930 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
931 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
932 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
933 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
934 /* Find last buffer. */
935 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
936 bp = bp->b_vnbufs.le_next);
937 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
938 #endif /* LFS_NO_BACKBUF_HACK */
939 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
940 continue;
941 if(vp->v_type == VBLK) {
942 /* For block devices, just write the blocks. */
943 /* XXX Do we really need to even do this? */
944 #ifdef DEBUG_LFS
945 if(count==0)
946 printf("BLK(");
947 printf(".");
948 #endif
949 /* Get the block before bwrite, so we don't corrupt the free list */
950 bp->b_flags |= B_BUSY;
951 bremfree(bp);
952 bwrite(bp);
953 } else {
954 #ifdef DIAGNOSTIC
955 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
956 printf("lfs_gather: lbn %d is B_INVAL\n",
957 bp->b_lblkno);
958 VOP_PRINT(bp->b_vp);
959 }
960 if (!(bp->b_flags & B_DELWRI))
961 panic("lfs_gather: bp not B_DELWRI");
962 if (!(bp->b_flags & B_LOCKED)) {
963 printf("lfs_gather: lbn %d blk %d"
964 " not B_LOCKED\n", bp->b_lblkno,
965 bp->b_blkno);
966 VOP_PRINT(bp->b_vp);
967 panic("lfs_gather: bp not B_LOCKED");
968 }
969 #endif
970 if (lfs_gatherblock(sp, bp, &s)) {
971 goto loop;
972 }
973 }
974 count++;
975 }
976 splx(s);
977 #ifdef DEBUG_LFS
978 if(vp->v_type == VBLK && count)
979 printf(")\n");
980 #endif
981 lfs_updatemeta(sp);
982 sp->vp = NULL;
983 return count;
984 }
985
986 /*
987 * Update the metadata that points to the blocks listed in the FINFO
988 * array.
989 */
990 void
991 lfs_updatemeta(sp)
992 struct segment *sp;
993 {
994 SEGUSE *sup;
995 struct buf *bp;
996 struct lfs *fs;
997 struct vnode *vp;
998 struct indir a[NIADDR + 2], *ap;
999 struct inode *ip;
1000 ufs_daddr_t daddr, lbn, off;
1001 daddr_t ooff;
1002 int error, i, nblocks, num;
1003 int bb;
1004
1005 vp = sp->vp;
1006 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1007 if (nblocks < 0)
1008 panic("This is a bad thing\n");
1009 if (vp == NULL || nblocks == 0)
1010 return;
1011
1012 /* Sort the blocks. */
1013 /*
1014 * XXX KS - We have to sort even if the blocks come from the
1015 * cleaner, because there might be other pending blocks on the
1016 * same inode...and if we don't sort, and there are fragments
1017 * present, blocks may be written in the wrong place.
1018 */
1019 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1020 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1021
1022 /*
1023 * Record the length of the last block in case it's a fragment.
1024 * If there are indirect blocks present, they sort last. An
1025 * indirect block will be lfs_bsize and its presence indicates
1026 * that you cannot have fragments.
1027 */
1028 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1029
1030 /*
1031 * Assign disk addresses, and update references to the logical
1032 * block and the segment usage information.
1033 */
1034 fs = sp->fs;
1035 for (i = nblocks; i--; ++sp->start_bpp) {
1036 lbn = *sp->start_lbp++;
1037
1038 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1039 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1040 printf("lfs_updatemeta: ino %d blk %d"
1041 " has same lbn and daddr\n",
1042 VTOI(vp)->i_number, off);
1043 }
1044 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1045 fs->lfs_offset += bb;
1046 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1047 if (error)
1048 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1049 ip = VTOI(vp);
1050 switch (num) {
1051 case 0:
1052 ooff = ip->i_ffs_db[lbn];
1053 #ifdef DEBUG
1054 if (ooff == 0) {
1055 printf("lfs_updatemeta[1]: warning: writing "
1056 "ino %d lbn %d at 0x%x, was 0x0\n",
1057 ip->i_number, lbn, off);
1058 }
1059 #endif
1060 if (ooff == UNWRITTEN)
1061 ip->i_ffs_blocks += bb;
1062 ip->i_ffs_db[lbn] = off;
1063 break;
1064 case 1:
1065 ooff = ip->i_ffs_ib[a[0].in_off];
1066 #ifdef DEBUG
1067 if (ooff == 0) {
1068 printf("lfs_updatemeta[2]: warning: writing "
1069 "ino %d lbn %d at 0x%x, was 0x0\n",
1070 ip->i_number, lbn, off);
1071 }
1072 #endif
1073 if (ooff == UNWRITTEN)
1074 ip->i_ffs_blocks += bb;
1075 ip->i_ffs_ib[a[0].in_off] = off;
1076 break;
1077 default:
1078 ap = &a[num - 1];
1079 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1080 panic("lfs_updatemeta: bread bno %d",
1081 ap->in_lbn);
1082
1083 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1084 #if DEBUG
1085 if (ooff == 0) {
1086 printf("lfs_updatemeta[3]: warning: writing "
1087 "ino %d lbn %d at 0x%x, was 0x0\n",
1088 ip->i_number, lbn, off);
1089 }
1090 #endif
1091 if (ooff == UNWRITTEN)
1092 ip->i_ffs_blocks += bb;
1093 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1094 (void) VOP_BWRITE(bp);
1095 }
1096 #ifdef DEBUG
1097 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1098 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1099 "in same pseg\n", VTOI(sp->vp)->i_number,
1100 (*sp->start_bpp)->b_lblkno, daddr);
1101 }
1102 #endif
1103 /* Update segment usage information. */
1104 if (daddr > 0) {
1105 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1106 #ifdef DIAGNOSTIC
1107 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1108 /* XXX -- Change to a panic. */
1109 printf("lfs_updatemeta: negative bytes "
1110 "(segment %d short by %ld)\n",
1111 datosn(fs, daddr),
1112 (*sp->start_bpp)->b_bcount -
1113 sup->su_nbytes);
1114 printf("lfs_updatemeta: ino %d, lbn %d, "
1115 "addr = %x\n", VTOI(sp->vp)->i_number,
1116 (*sp->start_bpp)->b_lblkno, daddr);
1117 panic("lfs_updatemeta: negative bytes");
1118 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1119 }
1120 #endif
1121 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1122 error = VOP_BWRITE(bp); /* Ifile */
1123 }
1124 }
1125 }
1126
1127 /*
1128 * Start a new segment.
1129 */
1130 int
1131 lfs_initseg(fs)
1132 struct lfs *fs;
1133 {
1134 struct segment *sp;
1135 SEGUSE *sup;
1136 SEGSUM *ssp;
1137 struct buf *bp;
1138 int repeat;
1139
1140 sp = fs->lfs_sp;
1141
1142 repeat = 0;
1143 /* Advance to the next segment. */
1144 if (!LFS_PARTIAL_FITS(fs)) {
1145 /* lfs_avail eats the remaining space */
1146 fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
1147 fs->lfs_curseg);
1148 /* Wake up any cleaning procs waiting on this file system. */
1149 wakeup(&lfs_allclean_wakeup);
1150 wakeup(&fs->lfs_nextseg);
1151 lfs_newseg(fs);
1152 repeat = 1;
1153 fs->lfs_offset = fs->lfs_curseg;
1154 sp->seg_number = datosn(fs, fs->lfs_curseg);
1155 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
1156 /*
1157 * If the segment contains a superblock, update the offset
1158 * and summary address to skip over it.
1159 */
1160 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1161 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1162 fs->lfs_offset += btodb(LFS_SBPAD);
1163 sp->seg_bytes_left -= LFS_SBPAD;
1164 }
1165 brelse(bp);
1166 } else {
1167 sp->seg_number = datosn(fs, fs->lfs_curseg);
1168 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
1169 (fs->lfs_offset - fs->lfs_curseg));
1170 }
1171 fs->lfs_lastpseg = fs->lfs_offset;
1172
1173 sp->fs = fs;
1174 sp->ibp = NULL;
1175 sp->idp = NULL;
1176 sp->ninodes = 0;
1177
1178 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1179 sp->cbpp = sp->bpp;
1180 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1181 fs->lfs_offset, LFS_SUMMARY_SIZE);
1182 sp->segsum = (*sp->cbpp)->b_data;
1183 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1184 sp->start_bpp = ++sp->cbpp;
1185 fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
1186
1187 /* Set point to SEGSUM, initialize it. */
1188 ssp = sp->segsum;
1189 ssp->ss_next = fs->lfs_nextseg;
1190 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1191 ssp->ss_magic = SS_MAGIC;
1192
1193 /* Set pointer to first FINFO, initialize it. */
1194 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1195 sp->fip->fi_nblocks = 0;
1196 sp->start_lbp = &sp->fip->fi_blocks[0];
1197 sp->fip->fi_lastlength = 0;
1198
1199 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1200 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1201
1202 return(repeat);
1203 }
1204
1205 /*
1206 * Return the next segment to write.
1207 */
1208 void
1209 lfs_newseg(fs)
1210 struct lfs *fs;
1211 {
1212 CLEANERINFO *cip;
1213 SEGUSE *sup;
1214 struct buf *bp;
1215 int curseg, isdirty, sn;
1216
1217 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1218 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1219 sup->su_nbytes = 0;
1220 sup->su_nsums = 0;
1221 sup->su_ninos = 0;
1222 (void) VOP_BWRITE(bp); /* Ifile */
1223
1224 LFS_CLEANERINFO(cip, fs, bp);
1225 --cip->clean;
1226 ++cip->dirty;
1227 fs->lfs_nclean = cip->clean;
1228 (void) VOP_BWRITE(bp); /* Ifile */
1229
1230 fs->lfs_lastseg = fs->lfs_curseg;
1231 fs->lfs_curseg = fs->lfs_nextseg;
1232 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1233 sn = (sn + 1) % fs->lfs_nseg;
1234 if (sn == curseg)
1235 panic("lfs_nextseg: no clean segments");
1236 LFS_SEGENTRY(sup, fs, sn, bp);
1237 isdirty = sup->su_flags & SEGUSE_DIRTY;
1238 brelse(bp);
1239 if (!isdirty)
1240 break;
1241 }
1242
1243 ++fs->lfs_nactive;
1244 fs->lfs_nextseg = sntoda(fs, sn);
1245 if(lfs_dostats) {
1246 ++lfs_stats.segsused;
1247 }
1248 }
1249
1250 int
1251 lfs_writeseg(fs, sp)
1252 struct lfs *fs;
1253 struct segment *sp;
1254 {
1255 extern int locked_queue_count;
1256 extern long locked_queue_bytes;
1257 struct buf **bpp, *bp, *cbp, *newbp;
1258 SEGUSE *sup;
1259 SEGSUM *ssp;
1260 dev_t i_dev;
1261 u_long *datap, *dp;
1262 int do_again, i, nblocks, s;
1263 #ifdef LFS_TRACK_IOS
1264 int j;
1265 #endif
1266 int (*strategy)__P((void *));
1267 struct vop_strategy_args vop_strategy_a;
1268 u_short ninos;
1269 struct vnode *devvp;
1270 char *p;
1271 struct vnode *vn;
1272 struct inode *ip;
1273 daddr_t *daddrp;
1274 int changed;
1275 #if defined(DEBUG) && defined(LFS_PROPELLER)
1276 static int propeller;
1277 char propstring[4] = "-\\|/";
1278
1279 printf("%c\b",propstring[propeller++]);
1280 if(propeller==4)
1281 propeller = 0;
1282 #endif
1283
1284 /*
1285 * If there are no buffers other than the segment summary to write
1286 * and it is not a checkpoint, don't do anything. On a checkpoint,
1287 * even if there aren't any buffers, you need to write the superblock.
1288 */
1289 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1290 return (0);
1291
1292 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1293 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1294
1295 /* Update the segment usage information. */
1296 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1297
1298 /* Loop through all blocks, except the segment summary. */
1299 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1300 if((*bpp)->b_vp != devvp)
1301 sup->su_nbytes += (*bpp)->b_bcount;
1302 }
1303
1304 ssp = (SEGSUM *)sp->segsum;
1305
1306 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1307 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1308 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1309 sup->su_lastmod = time.tv_sec;
1310 sup->su_ninos += ninos;
1311 ++sup->su_nsums;
1312 fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
1313 fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
1314
1315 do_again = !(bp->b_flags & B_GATHERED);
1316 (void)VOP_BWRITE(bp); /* Ifile */
1317 /*
1318 * Mark blocks B_BUSY, to prevent then from being changed between
1319 * the checksum computation and the actual write.
1320 *
1321 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1322 * there are any, replace them with copies that have UNASSIGNED
1323 * instead.
1324 */
1325 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1326 ++bpp;
1327 if((*bpp)->b_flags & B_CALL)
1328 continue;
1329 bp = *bpp;
1330 again:
1331 s = splbio();
1332 if(bp->b_flags & B_BUSY) {
1333 #ifdef DEBUG
1334 printf("lfs_writeseg: avoiding potential data "
1335 "summary corruption for ino %d, lbn %d\n",
1336 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1337 #endif
1338 bp->b_flags |= B_WANTED;
1339 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1340 splx(s);
1341 goto again;
1342 }
1343 bp->b_flags |= B_BUSY;
1344 splx(s);
1345 /* Check and replace indirect block UNWRITTEN bogosity */
1346 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1347 VTOI(bp->b_vp)->i_ffs_blocks !=
1348 VTOI(bp->b_vp)->i_lfs_effnblks) {
1349 #ifdef DEBUG_LFS
1350 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1351 VTOI(bp->b_vp)->i_number,
1352 VTOI(bp->b_vp)->i_lfs_effnblks,
1353 VTOI(bp->b_vp)->i_ffs_blocks);
1354 #endif
1355 /* Make a copy we'll make changes to */
1356 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1357 bp->b_bcount);
1358 newbp->b_blkno = bp->b_blkno;
1359 memcpy(newbp->b_data, bp->b_data,
1360 newbp->b_bcount);
1361 *bpp = newbp;
1362
1363 changed = 0;
1364 for (daddrp = (daddr_t *)(newbp->b_data);
1365 daddrp < (daddr_t *)(newbp->b_data +
1366 newbp->b_bcount); daddrp++) {
1367 if (*daddrp == UNWRITTEN) {
1368 ++changed;
1369 #ifdef DEBUG_LFS
1370 printf("lfs_writeseg: replacing UNWRITTEN\n");
1371 #endif
1372 *daddrp = 0;
1373 }
1374 }
1375 /*
1376 * Get rid of the old buffer. Don't mark it clean,
1377 * though, if it still has dirty data on it.
1378 */
1379 if (changed) {
1380 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1381 if (bp->b_flags & B_CALL)
1382 lfs_freebuf(bp);
1383 else {
1384 /* Still on free list, leave it there */
1385 s = splbio();
1386 bp->b_flags &= ~B_BUSY;
1387 if (bp->b_flags & B_WANTED)
1388 wakeup(bp);
1389 splx(s);
1390 }
1391 } else {
1392 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1393 B_LOCKED | B_GATHERED);
1394 if (bp->b_flags & B_CALL)
1395 lfs_freebuf(bp);
1396 else {
1397 bremfree(bp);
1398 bp->b_flags |= B_DONE;
1399 reassignbuf(bp, bp->b_vp);
1400 brelse(bp);
1401 }
1402 }
1403
1404 }
1405 }
1406 /*
1407 * Compute checksum across data and then across summary; the first
1408 * block (the summary block) is skipped. Set the create time here
1409 * so that it's guaranteed to be later than the inode mod times.
1410 *
1411 * XXX
1412 * Fix this to do it inline, instead of malloc/copy.
1413 */
1414 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1415 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1416 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1417 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1418 panic("lfs_writeseg: copyin failed [1]: "
1419 "ino %d blk %d",
1420 VTOI((*bpp)->b_vp)->i_number,
1421 (*bpp)->b_lblkno);
1422 } else
1423 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1424 }
1425 ssp->ss_create = time.tv_sec;
1426 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1427 ssp->ss_sumsum =
1428 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1429 free(datap, M_SEGMENT);
1430
1431 fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
1432
1433 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1434
1435 /*
1436 * When we simply write the blocks we lose a rotation for every block
1437 * written. To avoid this problem, we allocate memory in chunks, copy
1438 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1439 * largest size I/O devices can handle.
1440 * When the data is copied to the chunk, turn off the B_LOCKED bit
1441 * and brelse the buffer (which will move them to the LRU list). Add
1442 * the B_CALL flag to the buffer header so we can count I/O's for the
1443 * checkpoints and so we can release the allocated memory.
1444 *
1445 * XXX
1446 * This should be removed if the new virtual memory system allows us to
1447 * easily make the buffers contiguous in kernel memory and if that's
1448 * fast enough.
1449 */
1450
1451 #define CHUNKSIZE MAXPHYS
1452
1453 if(devvp==NULL)
1454 panic("devvp is NULL");
1455 for (bpp = sp->bpp,i = nblocks; i;) {
1456 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1457 cbp->b_dev = i_dev;
1458 cbp->b_flags |= B_ASYNC | B_BUSY;
1459 cbp->b_bcount = 0;
1460
1461 #ifdef DIAGNOSTIC
1462 if(datosn(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount) - 1) !=
1463 datosn(fs, cbp->b_blkno)) {
1464 panic("lfs_writeseg: Segment overwrite");
1465 }
1466 #endif
1467
1468 s = splbio();
1469 if(fs->lfs_iocount >= LFS_THROTTLE) {
1470 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1471 }
1472 ++fs->lfs_iocount;
1473 #ifdef LFS_TRACK_IOS
1474 for(j=0;j<LFS_THROTTLE;j++) {
1475 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1476 fs->lfs_pending[j] = cbp->b_blkno;
1477 break;
1478 }
1479 }
1480 #endif /* LFS_TRACK_IOS */
1481 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1482 bp = *bpp;
1483
1484 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1485 break;
1486
1487 /*
1488 * Fake buffers from the cleaner are marked as B_INVAL.
1489 * We need to copy the data from user space rather than
1490 * from the buffer indicated.
1491 * XXX == what do I do on an error?
1492 */
1493 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1494 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1495 panic("lfs_writeseg: copyin failed [2]");
1496 } else
1497 bcopy(bp->b_data, p, bp->b_bcount);
1498 p += bp->b_bcount;
1499 cbp->b_bcount += bp->b_bcount;
1500 if (bp->b_flags & B_LOCKED) {
1501 --locked_queue_count;
1502 locked_queue_bytes -= bp->b_bufsize;
1503 }
1504 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1505 B_LOCKED | B_GATHERED);
1506 vn = bp->b_vp;
1507 if (bp->b_flags & B_CALL) {
1508 /* if B_CALL, it was created with newbuf */
1509 lfs_freebuf(bp);
1510 } else {
1511 bremfree(bp);
1512 bp->b_flags |= B_DONE;
1513 if(vn)
1514 reassignbuf(bp, vn);
1515 brelse(bp);
1516 }
1517 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1518 bp->b_flags &= ~B_NEEDCOMMIT;
1519 wakeup(bp);
1520 }
1521
1522 bpp++;
1523
1524 /*
1525 * If this is the last block for this vnode, but
1526 * there are other blocks on its dirty list,
1527 * set IN_MODIFIED/IN_CLEANING depending on what
1528 * sort of block. Only do this for our mount point,
1529 * not for, e.g., inode blocks that are attached to
1530 * the devvp.
1531 */
1532 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1533 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1534 vn->v_mount == fs->lfs_ivnode->v_mount)
1535 {
1536 ip = VTOI(vn);
1537 #ifdef DEBUG_LFS
1538 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1539 #endif
1540 if(bp->b_flags & B_CALL)
1541 LFS_SET_UINO(ip, IN_CLEANING);
1542 else
1543 LFS_SET_UINO(ip, IN_MODIFIED);
1544 }
1545 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1546 wakeup(vn);
1547 }
1548 ++cbp->b_vp->v_numoutput;
1549 splx(s);
1550 /*
1551 * XXXX This is a gross and disgusting hack. Since these
1552 * buffers are physically addressed, they hang off the
1553 * device vnode (devvp). As a result, they have no way
1554 * of getting to the LFS superblock or lfs structure to
1555 * keep track of the number of I/O's pending. So, I am
1556 * going to stuff the fs into the saveaddr field of
1557 * the buffer (yuk).
1558 */
1559 cbp->b_saveaddr = (caddr_t)fs;
1560 vop_strategy_a.a_desc = VDESC(vop_strategy);
1561 vop_strategy_a.a_bp = cbp;
1562 (strategy)(&vop_strategy_a);
1563 }
1564 /*
1565 * XXX
1566 * Vinvalbuf can move locked buffers off the locked queue
1567 * and we have no way of knowing about this. So, after
1568 * doing a big write, we recalculate how many buffers are
1569 * really still left on the locked queue.
1570 */
1571 s = splbio();
1572 lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
1573 splx(s);
1574 wakeup(&locked_queue_count);
1575 if(lfs_dostats) {
1576 ++lfs_stats.psegwrites;
1577 lfs_stats.blocktot += nblocks - 1;
1578 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1579 ++lfs_stats.psyncwrites;
1580 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1581 ++lfs_stats.pcleanwrites;
1582 lfs_stats.cleanblocks += nblocks - 1;
1583 }
1584 }
1585 return (lfs_initseg(fs) || do_again);
1586 }
1587
1588 void
1589 lfs_writesuper(fs, daddr)
1590 struct lfs *fs;
1591 daddr_t daddr;
1592 {
1593 struct buf *bp;
1594 dev_t i_dev;
1595 int (*strategy) __P((void *));
1596 int s;
1597 struct vop_strategy_args vop_strategy_a;
1598
1599 #ifdef LFS_CANNOT_ROLLFW
1600 /*
1601 * If we can write one superblock while another is in
1602 * progress, we risk not having a complete checkpoint if we crash.
1603 * So, block here if a superblock write is in progress.
1604 */
1605 s = splbio();
1606 while(fs->lfs_sbactive) {
1607 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1608 }
1609 fs->lfs_sbactive = daddr;
1610 splx(s);
1611 #endif
1612 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1613 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1614
1615 /* Set timestamp of this version of the superblock */
1616 fs->lfs_tstamp = time.tv_sec;
1617
1618 /* Checksum the superblock and copy it into a buffer. */
1619 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1620 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1621 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1622
1623 bp->b_dev = i_dev;
1624 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1625 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1626 bp->b_iodone = lfs_supercallback;
1627 /* XXX KS - same nasty hack as above */
1628 bp->b_saveaddr = (caddr_t)fs;
1629
1630 vop_strategy_a.a_desc = VDESC(vop_strategy);
1631 vop_strategy_a.a_bp = bp;
1632 s = splbio();
1633 ++bp->b_vp->v_numoutput;
1634 ++fs->lfs_iocount;
1635 splx(s);
1636 (strategy)(&vop_strategy_a);
1637 }
1638
1639 /*
1640 * Logical block number match routines used when traversing the dirty block
1641 * chain.
1642 */
1643 int
1644 lfs_match_fake(fs, bp)
1645 struct lfs *fs;
1646 struct buf *bp;
1647 {
1648 return (bp->b_flags & B_CALL);
1649 }
1650
1651 int
1652 lfs_match_data(fs, bp)
1653 struct lfs *fs;
1654 struct buf *bp;
1655 {
1656 return (bp->b_lblkno >= 0);
1657 }
1658
1659 int
1660 lfs_match_indir(fs, bp)
1661 struct lfs *fs;
1662 struct buf *bp;
1663 {
1664 int lbn;
1665
1666 lbn = bp->b_lblkno;
1667 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1668 }
1669
1670 int
1671 lfs_match_dindir(fs, bp)
1672 struct lfs *fs;
1673 struct buf *bp;
1674 {
1675 int lbn;
1676
1677 lbn = bp->b_lblkno;
1678 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1679 }
1680
1681 int
1682 lfs_match_tindir(fs, bp)
1683 struct lfs *fs;
1684 struct buf *bp;
1685 {
1686 int lbn;
1687
1688 lbn = bp->b_lblkno;
1689 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1690 }
1691
1692 /*
1693 * XXX - The only buffers that are going to hit these functions are the
1694 * segment write blocks, or the segment summaries, or the superblocks.
1695 *
1696 * All of the above are created by lfs_newbuf, and so do not need to be
1697 * released via brelse.
1698 */
1699 void
1700 lfs_callback(bp)
1701 struct buf *bp;
1702 {
1703 struct lfs *fs;
1704 #ifdef LFS_TRACK_IOS
1705 int j;
1706 #endif
1707
1708 fs = (struct lfs *)bp->b_saveaddr;
1709 #ifdef DIAGNOSTIC
1710 if (fs->lfs_iocount == 0)
1711 panic("lfs_callback: zero iocount\n");
1712 #endif
1713 if (--fs->lfs_iocount < LFS_THROTTLE)
1714 wakeup(&fs->lfs_iocount);
1715 #ifdef LFS_TRACK_IOS
1716 for(j=0;j<LFS_THROTTLE;j++) {
1717 if(fs->lfs_pending[j]==bp->b_blkno) {
1718 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1719 wakeup(&(fs->lfs_pending[j]));
1720 break;
1721 }
1722 }
1723 #endif /* LFS_TRACK_IOS */
1724
1725 lfs_freebuf(bp);
1726 }
1727
1728 void
1729 lfs_supercallback(bp)
1730 struct buf *bp;
1731 {
1732 struct lfs *fs;
1733
1734 fs = (struct lfs *)bp->b_saveaddr;
1735 #ifdef LFS_CANNOT_ROLLFW
1736 fs->lfs_sbactive = 0;
1737 wakeup(&fs->lfs_sbactive);
1738 #endif
1739 if (--fs->lfs_iocount < LFS_THROTTLE)
1740 wakeup(&fs->lfs_iocount);
1741 lfs_freebuf(bp);
1742 }
1743
1744 /*
1745 * Shellsort (diminishing increment sort) from Data Structures and
1746 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1747 * see also Knuth Vol. 3, page 84. The increments are selected from
1748 * formula (8), page 95. Roughly O(N^3/2).
1749 */
1750 /*
1751 * This is our own private copy of shellsort because we want to sort
1752 * two parallel arrays (the array of buffer pointers and the array of
1753 * logical block numbers) simultaneously. Note that we cast the array
1754 * of logical block numbers to a unsigned in this routine so that the
1755 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1756 */
1757
1758 void
1759 lfs_shellsort(bp_array, lb_array, nmemb)
1760 struct buf **bp_array;
1761 ufs_daddr_t *lb_array;
1762 int nmemb;
1763 {
1764 static int __rsshell_increments[] = { 4, 1, 0 };
1765 int incr, *incrp, t1, t2;
1766 struct buf *bp_temp;
1767 u_long lb_temp;
1768
1769 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1770 for (t1 = incr; t1 < nmemb; ++t1)
1771 for (t2 = t1 - incr; t2 >= 0;)
1772 if (lb_array[t2] > lb_array[t2 + incr]) {
1773 lb_temp = lb_array[t2];
1774 lb_array[t2] = lb_array[t2 + incr];
1775 lb_array[t2 + incr] = lb_temp;
1776 bp_temp = bp_array[t2];
1777 bp_array[t2] = bp_array[t2 + incr];
1778 bp_array[t2 + incr] = bp_temp;
1779 t2 -= incr;
1780 } else
1781 break;
1782 }
1783
1784 /*
1785 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1786 */
1787 int
1788 lfs_vref(vp)
1789 struct vnode *vp;
1790 {
1791 /*
1792 * If we return 1 here during a flush, we risk vinvalbuf() not
1793 * being able to flush all of the pages from this vnode, which
1794 * will cause it to panic. So, return 0 if a flush is in progress.
1795 */
1796 if (vp->v_flag & VXLOCK) {
1797 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1798 return 0;
1799 }
1800 return(1);
1801 }
1802 return (vget(vp, 0));
1803 }
1804
1805 /*
1806 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1807 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1808 */
1809 void
1810 lfs_vunref(vp)
1811 struct vnode *vp;
1812 {
1813 /*
1814 * Analogous to lfs_vref, if the node is flushing, fake it.
1815 */
1816 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1817 return;
1818 }
1819
1820 simple_lock(&vp->v_interlock);
1821 #ifdef DIAGNOSTIC
1822 if(vp->v_usecount<=0) {
1823 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1824 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1825 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1826 panic("lfs_vunref: v_usecount<0");
1827 }
1828 #endif
1829 vp->v_usecount--;
1830 if (vp->v_usecount > 0) {
1831 simple_unlock(&vp->v_interlock);
1832 return;
1833 }
1834 /*
1835 * insert at tail of LRU list
1836 */
1837 simple_lock(&vnode_free_list_slock);
1838 if (vp->v_holdcnt > 0)
1839 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1840 else
1841 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1842 simple_unlock(&vnode_free_list_slock);
1843 simple_unlock(&vp->v_interlock);
1844 }
1845
1846 /*
1847 * We use this when we have vnodes that were loaded in solely for cleaning.
1848 * There is no reason to believe that these vnodes will be referenced again
1849 * soon, since the cleaning process is unrelated to normal filesystem
1850 * activity. Putting cleaned vnodes at the tail of the list has the effect
1851 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1852 * cleaning at the head of the list, instead.
1853 */
1854 void
1855 lfs_vunref_head(vp)
1856 struct vnode *vp;
1857 {
1858 simple_lock(&vp->v_interlock);
1859 #ifdef DIAGNOSTIC
1860 if(vp->v_usecount==0) {
1861 panic("lfs_vunref: v_usecount<0");
1862 }
1863 #endif
1864 vp->v_usecount--;
1865 if (vp->v_usecount > 0) {
1866 simple_unlock(&vp->v_interlock);
1867 return;
1868 }
1869 /*
1870 * insert at head of LRU list
1871 */
1872 simple_lock(&vnode_free_list_slock);
1873 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1874 simple_unlock(&vnode_free_list_slock);
1875 simple_unlock(&vp->v_interlock);
1876 }
1877
1878