lfs_segment.c revision 1.62 1 /* $NetBSD: lfs_segment.c,v 1.62 2000/11/17 19:14:41 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 extern int locked_queue_count;
146 extern long locked_queue_bytes;
147
148 /* op values to lfs_writevnodes */
149 #define VN_REG 0
150 #define VN_DIROP 1
151 #define VN_EMPTY 2
152 #define VN_CLEAN 3
153
154 #define LFS_MAX_ACTIVE 10
155
156 /*
157 * XXX KS - Set modification time on the Ifile, so the cleaner can
158 * read the fs mod time off of it. We don't set IN_UPDATE here,
159 * since we don't really need this to be flushed to disk (and in any
160 * case that wouldn't happen to the Ifile until we checkpoint).
161 */
162 void
163 lfs_imtime(fs)
164 struct lfs *fs;
165 {
166 struct timespec ts;
167 struct inode *ip;
168
169 TIMEVAL_TO_TIMESPEC(&time, &ts);
170 ip = VTOI(fs->lfs_ivnode);
171 ip->i_ffs_mtime = ts.tv_sec;
172 ip->i_ffs_mtimensec = ts.tv_nsec;
173 }
174
175 /*
176 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
177 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
178 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
179 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
180 */
181
182 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
183 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
184 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
185
186 int
187 lfs_vflush(vp)
188 struct vnode *vp;
189 {
190 struct inode *ip;
191 struct lfs *fs;
192 struct segment *sp;
193 struct buf *bp, *nbp, *tbp, *tnbp;
194 int error, s;
195
196 ip = VTOI(vp);
197 fs = VFSTOUFS(vp->v_mount)->um_lfs;
198
199 if(ip->i_flag & IN_CLEANING) {
200 #ifdef DEBUG_LFS
201 ivndebug(vp,"vflush/in_cleaning");
202 #endif
203 LFS_CLR_UINO(ip, IN_CLEANING);
204 LFS_SET_UINO(ip, IN_MODIFIED);
205
206 /*
207 * Toss any cleaning buffers that have real counterparts
208 * to avoid losing new data
209 */
210 s = splbio();
211 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
212 nbp = bp->b_vnbufs.le_next;
213 if(bp->b_flags & B_CALL) {
214 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
215 tbp=tnbp)
216 {
217 tnbp = tbp->b_vnbufs.le_next;
218 if(tbp->b_vp == bp->b_vp
219 && tbp->b_lblkno == bp->b_lblkno
220 && tbp != bp)
221 {
222 fs->lfs_avail += btodb(bp->b_bcount);
223 wakeup(&fs->lfs_avail);
224 lfs_freebuf(bp);
225 }
226 }
227 }
228 }
229 splx(s);
230 }
231
232 /* If the node is being written, wait until that is done */
233 if(WRITEINPROG(vp)) {
234 #ifdef DEBUG_LFS
235 ivndebug(vp,"vflush/writeinprog");
236 #endif
237 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
238 }
239
240 /* Protect against VXLOCK deadlock in vinvalbuf() */
241 lfs_seglock(fs, SEGM_SYNC);
242
243 /* If we're supposed to flush a freed inode, just toss it */
244 /* XXX - seglock, so these buffers can't be gathered, right? */
245 if(ip->i_ffs_mode == 0) {
246 printf("lfs_vflush: ino %d is freed, not flushing\n",
247 ip->i_number);
248 s = splbio();
249 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
250 nbp = bp->b_vnbufs.le_next;
251 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
252 fs->lfs_avail += btodb(bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 }
255 /* Copied from lfs_writeseg */
256 if (bp->b_flags & B_CALL) {
257 /* if B_CALL, it was created with newbuf */
258 lfs_freebuf(bp);
259 } else {
260 bremfree(bp);
261 LFS_UNLOCK_BUF(bp);
262 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
263 B_GATHERED);
264 bp->b_flags |= B_DONE;
265 reassignbuf(bp, vp);
266 brelse(bp);
267 }
268 }
269 splx(s);
270 LFS_CLR_UINO(ip, IN_CLEANING);
271 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
272 ip->i_flag &= ~IN_ALLMOD;
273 printf("lfs_vflush: done not flushing ino %d\n",
274 ip->i_number);
275 lfs_segunlock(fs);
276 return 0;
277 }
278
279 SET_FLUSHING(fs,vp);
280 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
281 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
282 CLR_FLUSHING(fs,vp);
283 lfs_segunlock(fs);
284 return error;
285 }
286 sp = fs->lfs_sp;
287
288 if (vp->v_dirtyblkhd.lh_first == NULL) {
289 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
290 } else if((ip->i_flag & IN_CLEANING) &&
291 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
292 #ifdef DEBUG_LFS
293 ivndebug(vp,"vflush/clean");
294 #endif
295 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
296 }
297 else if(lfs_dostats) {
298 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
299 ++lfs_stats.vflush_invoked;
300 #ifdef DEBUG_LFS
301 ivndebug(vp,"vflush");
302 #endif
303 }
304
305 #ifdef DIAGNOSTIC
306 /* XXX KS This actually can happen right now, though it shouldn't(?) */
307 if(vp->v_flag & VDIROP) {
308 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
309 /* panic("VDIROP being flushed...this can\'t happen"); */
310 }
311 if(vp->v_usecount<0) {
312 printf("usecount=%ld\n",vp->v_usecount);
313 panic("lfs_vflush: usecount<0");
314 }
315 #endif
316
317 do {
318 do {
319 if (vp->v_dirtyblkhd.lh_first != NULL)
320 lfs_writefile(fs, sp, vp);
321 } while (lfs_writeinode(fs, sp, ip));
322 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
323
324 if(lfs_dostats) {
325 ++lfs_stats.nwrites;
326 if (sp->seg_flags & SEGM_SYNC)
327 ++lfs_stats.nsync_writes;
328 if (sp->seg_flags & SEGM_CKP)
329 ++lfs_stats.ncheckpoints;
330 }
331 lfs_segunlock(fs);
332
333 CLR_FLUSHING(fs,vp);
334 return (0);
335 }
336
337 #ifdef DEBUG_LFS_VERBOSE
338 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
339 #else
340 # define vndebug(vp,str)
341 #endif
342
343 int
344 lfs_writevnodes(fs, mp, sp, op)
345 struct lfs *fs;
346 struct mount *mp;
347 struct segment *sp;
348 int op;
349 {
350 struct inode *ip;
351 struct vnode *vp;
352 int inodes_written=0, only_cleaning;
353 int needs_unlock;
354
355 #ifndef LFS_NO_BACKVP_HACK
356 /* BEGIN HACK */
357 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
358 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
359 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
360
361 /* Find last vnode. */
362 loop: for (vp = mp->mnt_vnodelist.lh_first;
363 vp && vp->v_mntvnodes.le_next != NULL;
364 vp = vp->v_mntvnodes.le_next);
365 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
366 #else
367 loop:
368 for (vp = mp->mnt_vnodelist.lh_first;
369 vp != NULL;
370 vp = vp->v_mntvnodes.le_next) {
371 #endif
372 /*
373 * If the vnode that we are about to sync is no longer
374 * associated with this mount point, start over.
375 */
376 if (vp->v_mount != mp) {
377 printf("lfs_writevnodes: starting over\n");
378 goto loop;
379 }
380
381 ip = VTOI(vp);
382 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
383 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
384 vndebug(vp,"dirop");
385 continue;
386 }
387
388 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
389 vndebug(vp,"empty");
390 continue;
391 }
392
393 if (vp->v_type == VNON) {
394 continue;
395 }
396
397 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
398 && vp != fs->lfs_flushvp
399 && !(ip->i_flag & IN_CLEANING)) {
400 vndebug(vp,"cleaning");
401 continue;
402 }
403
404 if (lfs_vref(vp)) {
405 vndebug(vp,"vref");
406 continue;
407 }
408
409 needs_unlock = 0;
410 if (VOP_ISLOCKED(vp)) {
411 if (vp != fs->lfs_ivnode &&
412 vp->v_lock.lk_lockholder != curproc->p_pid) {
413 #ifdef DEBUG_LFS
414 printf("lfs_writevnodes: not writing ino %d,"
415 " locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 lfs_vunref(vp);
420 continue;
421 }
422 } else if (vp != fs->lfs_ivnode) {
423 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
424 needs_unlock = 1;
425 }
426
427 only_cleaning = 0;
428 /*
429 * Write the inode/file if dirty and it's not the IFILE.
430 */
431 if ((ip->i_flag & IN_ALLMOD) ||
432 (vp->v_dirtyblkhd.lh_first != NULL))
433 {
434 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
435
436 if(ip->i_number != LFS_IFILE_INUM
437 && vp->v_dirtyblkhd.lh_first != NULL)
438 {
439 lfs_writefile(fs, sp, vp);
440 }
441 if(vp->v_dirtyblkhd.lh_first != NULL) {
442 if(WRITEINPROG(vp)) {
443 #ifdef DEBUG_LFS
444 ivndebug(vp,"writevnodes/write2");
445 #endif
446 } else if(!(ip->i_flag & IN_ALLMOD)) {
447 #ifdef DEBUG_LFS
448 printf("<%d>",ip->i_number);
449 #endif
450 LFS_SET_UINO(ip, IN_MODIFIED);
451 }
452 }
453 (void) lfs_writeinode(fs, sp, ip);
454 inodes_written++;
455 }
456
457 if (needs_unlock)
458 VOP_UNLOCK(vp, 0);
459
460 if (lfs_clean_vnhead && only_cleaning)
461 lfs_vunref_head(vp);
462 else
463 lfs_vunref(vp);
464 }
465 return inodes_written;
466 }
467
468 int
469 lfs_segwrite(mp, flags)
470 struct mount *mp;
471 int flags; /* Do a checkpoint. */
472 {
473 struct buf *bp;
474 struct inode *ip;
475 struct lfs *fs;
476 struct segment *sp;
477 struct vnode *vp;
478 SEGUSE *segusep;
479 ufs_daddr_t ibno;
480 int do_ckp, did_ckp, error, i;
481 int writer_set = 0;
482 int dirty;
483
484 fs = VFSTOUFS(mp)->um_lfs;
485
486 if (fs->lfs_ronly)
487 return EROFS;
488
489 lfs_imtime(fs);
490
491 /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
492 (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
493
494 #if 0
495 /*
496 * If we are not the cleaner, and there is no space available,
497 * wait until cleaner writes.
498 */
499 if(!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
500 (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
501 {
502 while (fs->lfs_avail <= 0) {
503 LFS_CLEANERINFO(cip, fs, bp);
504 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
505
506 wakeup(&lfs_allclean_wakeup);
507 wakeup(&fs->lfs_nextseg);
508 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
509 0);
510 if (error) {
511 return (error);
512 }
513 }
514 }
515 #endif
516 /*
517 * Allocate a segment structure and enough space to hold pointers to
518 * the maximum possible number of buffers which can be described in a
519 * single summary block.
520 */
521 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
522 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
523 sp = fs->lfs_sp;
524
525 /*
526 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
527 * in which case we have to flush *all* buffers off of this vnode.
528 * We don't care about other nodes, but write any non-dirop nodes
529 * anyway in anticipation of another getnewvnode().
530 *
531 * If we're cleaning we only write cleaning and ifile blocks, and
532 * no dirops, since otherwise we'd risk corruption in a crash.
533 */
534 if(sp->seg_flags & SEGM_CLEAN)
535 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
536 else {
537 lfs_writevnodes(fs, mp, sp, VN_REG);
538 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
539 while(fs->lfs_dirops)
540 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
541 "lfs writer", 0)))
542 {
543 free(sp->bpp, M_SEGMENT);
544 free(sp, M_SEGMENT);
545 return (error);
546 }
547 fs->lfs_writer++;
548 writer_set=1;
549 lfs_writevnodes(fs, mp, sp, VN_DIROP);
550 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
551 }
552 }
553
554 /*
555 * If we are doing a checkpoint, mark everything since the
556 * last checkpoint as no longer ACTIVE.
557 */
558 if (do_ckp) {
559 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
560 --ibno >= fs->lfs_cleansz; ) {
561 dirty = 0;
562 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
563
564 panic("lfs_segwrite: ifile read");
565 segusep = (SEGUSE *)bp->b_data;
566 for (i = fs->lfs_sepb; i--; segusep++) {
567 if (segusep->su_flags & SEGUSE_ACTIVE) {
568 segusep->su_flags &= ~SEGUSE_ACTIVE;
569 ++dirty;
570 }
571 }
572
573 /* But the current segment is still ACTIVE */
574 segusep = (SEGUSE *)bp->b_data;
575 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
576 (ibno-fs->lfs_cleansz)) {
577 segusep[datosn(fs, fs->lfs_curseg) %
578 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
579 --dirty;
580 }
581 if (dirty)
582 error = VOP_BWRITE(bp); /* Ifile */
583 else
584 brelse(bp);
585 }
586 }
587
588 did_ckp = 0;
589 if (do_ckp || fs->lfs_doifile) {
590 redo:
591 vp = fs->lfs_ivnode;
592
593 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
594
595 ip = VTOI(vp);
596 if (vp->v_dirtyblkhd.lh_first != NULL)
597 lfs_writefile(fs, sp, vp);
598 if (ip->i_flag & IN_ALLMOD)
599 ++did_ckp;
600 (void) lfs_writeinode(fs, sp, ip);
601
602 vput(vp);
603
604 if (lfs_writeseg(fs, sp) && do_ckp)
605 goto redo;
606 /* The ifile should now be all clear */
607 LFS_CLR_UINO(ip, IN_ALLMOD);
608 } else {
609 (void) lfs_writeseg(fs, sp);
610 }
611
612 /*
613 * If the I/O count is non-zero, sleep until it reaches zero.
614 * At the moment, the user's process hangs around so we can
615 * sleep.
616 */
617 fs->lfs_doifile = 0;
618 if(writer_set && --fs->lfs_writer==0)
619 wakeup(&fs->lfs_dirops);
620
621 /*
622 * If we didn't write the Ifile, we didn't really do anything.
623 * That means that (1) there is a checkpoint on disk and (2)
624 * nothing has changed since it was written.
625 *
626 * Take the flags off of the segment so that lfs_segunlock
627 * doesn't have to write the superblock either.
628 */
629 if (did_ckp == 0) {
630 sp->seg_flags &= ~(SEGM_SYNC|SEGM_CKP);
631 /* if(do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
632 }
633
634 if(lfs_dostats) {
635 ++lfs_stats.nwrites;
636 if (sp->seg_flags & SEGM_SYNC)
637 ++lfs_stats.nsync_writes;
638 if (sp->seg_flags & SEGM_CKP)
639 ++lfs_stats.ncheckpoints;
640 }
641 lfs_segunlock(fs);
642 return (0);
643 }
644
645 /*
646 * Write the dirty blocks associated with a vnode.
647 */
648 void
649 lfs_writefile(fs, sp, vp)
650 struct lfs *fs;
651 struct segment *sp;
652 struct vnode *vp;
653 {
654 struct buf *bp;
655 struct finfo *fip;
656 IFILE *ifp;
657
658
659 if (sp->seg_bytes_left < fs->lfs_bsize ||
660 sp->sum_bytes_left < sizeof(struct finfo))
661 (void) lfs_writeseg(fs, sp);
662
663 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
664 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
665
666 if(vp->v_flag & VDIROP)
667 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
668
669 fip = sp->fip;
670 fip->fi_nblocks = 0;
671 fip->fi_ino = VTOI(vp)->i_number;
672 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
673 fip->fi_version = ifp->if_version;
674 brelse(bp);
675
676 if(sp->seg_flags & SEGM_CLEAN)
677 {
678 lfs_gather(fs, sp, vp, lfs_match_fake);
679 /*
680 * For a file being flushed, we need to write *all* blocks.
681 * This means writing the cleaning blocks first, and then
682 * immediately following with any non-cleaning blocks.
683 * The same is true of the Ifile since checkpoints assume
684 * that all valid Ifile blocks are written.
685 */
686 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
687 lfs_gather(fs, sp, vp, lfs_match_data);
688 } else
689 lfs_gather(fs, sp, vp, lfs_match_data);
690
691 /*
692 * It may not be necessary to write the meta-data blocks at this point,
693 * as the roll-forward recovery code should be able to reconstruct the
694 * list.
695 *
696 * We have to write them anyway, though, under two conditions: (1) the
697 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
698 * checkpointing.
699 */
700 if(lfs_writeindir
701 || IS_FLUSHING(fs,vp)
702 || (sp->seg_flags & SEGM_CKP))
703 {
704 lfs_gather(fs, sp, vp, lfs_match_indir);
705 lfs_gather(fs, sp, vp, lfs_match_dindir);
706 lfs_gather(fs, sp, vp, lfs_match_tindir);
707 }
708 fip = sp->fip;
709 if (fip->fi_nblocks != 0) {
710 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
711 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
712 sp->start_lbp = &sp->fip->fi_blocks[0];
713 } else {
714 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
715 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
716 }
717 }
718
719 int
720 lfs_writeinode(fs, sp, ip)
721 struct lfs *fs;
722 struct segment *sp;
723 struct inode *ip;
724 {
725 struct buf *bp, *ibp;
726 struct dinode *cdp;
727 IFILE *ifp;
728 SEGUSE *sup;
729 ufs_daddr_t daddr;
730 daddr_t *daddrp;
731 ino_t ino;
732 int error, i, ndx;
733 int redo_ifile = 0;
734 struct timespec ts;
735 int gotblk=0;
736
737 if (!(ip->i_flag & IN_ALLMOD))
738 return(0);
739
740 /* Allocate a new inode block if necessary. */
741 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
742 /* Allocate a new segment if necessary. */
743 if (sp->seg_bytes_left < fs->lfs_bsize ||
744 sp->sum_bytes_left < sizeof(ufs_daddr_t))
745 (void) lfs_writeseg(fs, sp);
746
747 /* Get next inode block. */
748 daddr = fs->lfs_offset;
749 fs->lfs_offset += fsbtodb(fs, 1);
750 sp->ibp = *sp->cbpp++ =
751 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
752 gotblk++;
753
754 /* Zero out inode numbers */
755 for (i = 0; i < INOPB(fs); ++i)
756 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
757
758 ++sp->start_bpp;
759 fs->lfs_avail -= fsbtodb(fs, 1);
760 /* Set remaining space counters. */
761 sp->seg_bytes_left -= fs->lfs_bsize;
762 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
763 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
764 sp->ninodes / INOPB(fs) - 1;
765 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
766 }
767
768 /* Update the inode times and copy the inode onto the inode page. */
769 TIMEVAL_TO_TIMESPEC(&time, &ts);
770 LFS_ITIMES(ip, &ts, &ts, &ts);
771
772 /*
773 * If this is the Ifile, and we've already written the Ifile in this
774 * partial segment, just overwrite it (it's not on disk yet) and
775 * continue.
776 *
777 * XXX we know that the bp that we get the second time around has
778 * already been gathered.
779 */
780 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
781 *(sp->idp) = ip->i_din.ffs_din;
782 return 0;
783 }
784
785 bp = sp->ibp;
786 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
787 *cdp = ip->i_din.ffs_din;
788
789 /*
790 * If we are cleaning, ensure that we don't write UNWRITTEN disk
791 * addresses to disk.
792 */
793 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
794 #ifdef DEBUG_LFS
795 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
796 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
797 #endif
798 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
799 daddrp++) {
800 if (*daddrp == UNWRITTEN) {
801 #ifdef DEBUG_LFS
802 printf("lfs_writeinode: wiping UNWRITTEN\n");
803 #endif
804 *daddrp = 0;
805 }
806 }
807 }
808
809 if(ip->i_flag & IN_CLEANING)
810 LFS_CLR_UINO(ip, IN_CLEANING);
811 else {
812 /* XXX IN_ALLMOD */
813 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
814 IN_UPDATE);
815 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
816 LFS_CLR_UINO(ip, IN_MODIFIED);
817 }
818
819 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
820 sp->idp = ((struct dinode *)bp->b_data) +
821 (sp->ninodes % INOPB(fs));
822 if(gotblk) {
823 LFS_LOCK_BUF(bp);
824 brelse(bp);
825 }
826
827 /* Increment inode count in segment summary block. */
828 ++((SEGSUM *)(sp->segsum))->ss_ninos;
829
830 /* If this page is full, set flag to allocate a new page. */
831 if (++sp->ninodes % INOPB(fs) == 0)
832 sp->ibp = NULL;
833
834 /*
835 * If updating the ifile, update the super-block. Update the disk
836 * address and access times for this inode in the ifile.
837 */
838 ino = ip->i_number;
839 if (ino == LFS_IFILE_INUM) {
840 daddr = fs->lfs_idaddr;
841 fs->lfs_idaddr = bp->b_blkno;
842 } else {
843 LFS_IENTRY(ifp, fs, ino, ibp);
844 daddr = ifp->if_daddr;
845 ifp->if_daddr = bp->b_blkno;
846 #ifdef LFS_DEBUG_NEXTFREE
847 if(ino > 3 && ifp->if_nextfree) {
848 vprint("lfs_writeinode",ITOV(ip));
849 printf("lfs_writeinode: updating free ino %d\n",
850 ip->i_number);
851 }
852 #endif
853 error = VOP_BWRITE(ibp); /* Ifile */
854 }
855
856 /*
857 * Account the inode: it no longer belongs to its former segment,
858 * though it will not belong to the new segment until that segment
859 * is actually written.
860 */
861 #ifdef DEBUG
862 /*
863 * The inode's last address should not be in the current partial
864 * segment, except under exceptional circumstances (lfs_writevnodes
865 * had to start over, and in the meantime more blocks were written
866 * to a vnode). Although the previous inode won't be accounted in
867 * su_nbytes until lfs_writeseg, this shouldn't be a problem as we
868 * have more data blocks in the current partial segment.
869 */
870 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
871 printf("lfs_writeinode: last inode addr in current pseg "
872 "(ino %d daddr 0x%x)\n", ino, daddr);
873 #endif
874 if (daddr != LFS_UNUSED_DADDR) {
875 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
876 #ifdef DIAGNOSTIC
877 if (sup->su_nbytes < DINODE_SIZE) {
878 printf("lfs_writeinode: negative bytes "
879 "(segment %d short by %d)\n",
880 datosn(fs, daddr),
881 (int)DINODE_SIZE - sup->su_nbytes);
882 panic("lfs_writeinode: negative bytes");
883 sup->su_nbytes = DINODE_SIZE;
884 }
885 #endif
886 sup->su_nbytes -= DINODE_SIZE;
887 redo_ifile =
888 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
889 error = VOP_BWRITE(bp); /* Ifile */
890 }
891 return (redo_ifile);
892 }
893
894 int
895 lfs_gatherblock(sp, bp, sptr)
896 struct segment *sp;
897 struct buf *bp;
898 int *sptr;
899 {
900 struct lfs *fs;
901 int version;
902
903 /*
904 * If full, finish this segment. We may be doing I/O, so
905 * release and reacquire the splbio().
906 */
907 #ifdef DIAGNOSTIC
908 if (sp->vp == NULL)
909 panic ("lfs_gatherblock: Null vp in segment");
910 #endif
911 fs = sp->fs;
912 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
913 sp->seg_bytes_left < bp->b_bcount) {
914 if (sptr)
915 splx(*sptr);
916 lfs_updatemeta(sp);
917
918 version = sp->fip->fi_version;
919 (void) lfs_writeseg(fs, sp);
920
921 sp->fip->fi_version = version;
922 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
923 /* Add the current file to the segment summary. */
924 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
925 sp->sum_bytes_left -=
926 sizeof(struct finfo) - sizeof(ufs_daddr_t);
927
928 if (sptr)
929 *sptr = splbio();
930 return(1);
931 }
932
933 #ifdef DEBUG
934 if(bp->b_flags & B_GATHERED) {
935 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
936 sp->fip->fi_ino, bp->b_lblkno);
937 return(0);
938 }
939 #endif
940 /* Insert into the buffer list, update the FINFO block. */
941 bp->b_flags |= B_GATHERED;
942 *sp->cbpp++ = bp;
943 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
944
945 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
946 sp->seg_bytes_left -= bp->b_bcount;
947 return(0);
948 }
949
950 int
951 lfs_gather(fs, sp, vp, match)
952 struct lfs *fs;
953 struct segment *sp;
954 struct vnode *vp;
955 int (*match) __P((struct lfs *, struct buf *));
956 {
957 struct buf *bp;
958 int s, count=0;
959
960 sp->vp = vp;
961 s = splbio();
962
963 #ifndef LFS_NO_BACKBUF_HACK
964 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
965 #else /* LFS_NO_BACKBUF_HACK */
966 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
967 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
968 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
969 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
970 /* Find last buffer. */
971 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
972 bp = bp->b_vnbufs.le_next);
973 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
974 #endif /* LFS_NO_BACKBUF_HACK */
975 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
976 continue;
977 if(vp->v_type == VBLK) {
978 /* For block devices, just write the blocks. */
979 /* XXX Do we really need to even do this? */
980 #ifdef DEBUG_LFS
981 if(count==0)
982 printf("BLK(");
983 printf(".");
984 #endif
985 /* Get the block before bwrite, so we don't corrupt the free list */
986 bp->b_flags |= B_BUSY;
987 bremfree(bp);
988 bwrite(bp);
989 } else {
990 #ifdef DIAGNOSTIC
991 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
992 printf("lfs_gather: lbn %d is B_INVAL\n",
993 bp->b_lblkno);
994 VOP_PRINT(bp->b_vp);
995 }
996 if (!(bp->b_flags & B_DELWRI))
997 panic("lfs_gather: bp not B_DELWRI");
998 if (!(bp->b_flags & B_LOCKED)) {
999 printf("lfs_gather: lbn %d blk %d"
1000 " not B_LOCKED\n", bp->b_lblkno,
1001 bp->b_blkno);
1002 VOP_PRINT(bp->b_vp);
1003 panic("lfs_gather: bp not B_LOCKED");
1004 }
1005 #endif
1006 if (lfs_gatherblock(sp, bp, &s)) {
1007 goto loop;
1008 }
1009 }
1010 count++;
1011 }
1012 splx(s);
1013 #ifdef DEBUG_LFS
1014 if(vp->v_type == VBLK && count)
1015 printf(")\n");
1016 #endif
1017 lfs_updatemeta(sp);
1018 sp->vp = NULL;
1019 return count;
1020 }
1021
1022 /*
1023 * Update the metadata that points to the blocks listed in the FINFO
1024 * array.
1025 */
1026 void
1027 lfs_updatemeta(sp)
1028 struct segment *sp;
1029 {
1030 SEGUSE *sup;
1031 struct buf *bp;
1032 struct lfs *fs;
1033 struct vnode *vp;
1034 struct indir a[NIADDR + 2], *ap;
1035 struct inode *ip;
1036 ufs_daddr_t daddr, lbn, off;
1037 daddr_t ooff;
1038 int error, i, nblocks, num;
1039 int bb;
1040
1041 vp = sp->vp;
1042 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1043 if (nblocks < 0)
1044 panic("This is a bad thing\n");
1045 if (vp == NULL || nblocks == 0)
1046 return;
1047
1048 /* Sort the blocks. */
1049 /*
1050 * XXX KS - We have to sort even if the blocks come from the
1051 * cleaner, because there might be other pending blocks on the
1052 * same inode...and if we don't sort, and there are fragments
1053 * present, blocks may be written in the wrong place.
1054 */
1055 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1056 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1057
1058 /*
1059 * Record the length of the last block in case it's a fragment.
1060 * If there are indirect blocks present, they sort last. An
1061 * indirect block will be lfs_bsize and its presence indicates
1062 * that you cannot have fragments.
1063 */
1064 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1065
1066 /*
1067 * Assign disk addresses, and update references to the logical
1068 * block and the segment usage information.
1069 */
1070 fs = sp->fs;
1071 for (i = nblocks; i--; ++sp->start_bpp) {
1072 lbn = *sp->start_lbp++;
1073
1074 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1075 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1076 printf("lfs_updatemeta: ino %d blk %d"
1077 " has same lbn and daddr\n",
1078 VTOI(vp)->i_number, off);
1079 }
1080 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1081 fs->lfs_offset += bb;
1082 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1083 if (error)
1084 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1085 ip = VTOI(vp);
1086 switch (num) {
1087 case 0:
1088 ooff = ip->i_ffs_db[lbn];
1089 #ifdef DEBUG
1090 if (ooff == 0) {
1091 printf("lfs_updatemeta[1]: warning: writing "
1092 "ino %d lbn %d at 0x%x, was 0x0\n",
1093 ip->i_number, lbn, off);
1094 }
1095 #endif
1096 if (ooff == UNWRITTEN)
1097 ip->i_ffs_blocks += bb;
1098 ip->i_ffs_db[lbn] = off;
1099 break;
1100 case 1:
1101 ooff = ip->i_ffs_ib[a[0].in_off];
1102 #ifdef DEBUG
1103 if (ooff == 0) {
1104 printf("lfs_updatemeta[2]: warning: writing "
1105 "ino %d lbn %d at 0x%x, was 0x0\n",
1106 ip->i_number, lbn, off);
1107 }
1108 #endif
1109 if (ooff == UNWRITTEN)
1110 ip->i_ffs_blocks += bb;
1111 ip->i_ffs_ib[a[0].in_off] = off;
1112 break;
1113 default:
1114 ap = &a[num - 1];
1115 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1116 panic("lfs_updatemeta: bread bno %d",
1117 ap->in_lbn);
1118
1119 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1120 #if DEBUG
1121 if (ooff == 0) {
1122 printf("lfs_updatemeta[3]: warning: writing "
1123 "ino %d lbn %d at 0x%x, was 0x0\n",
1124 ip->i_number, lbn, off);
1125 }
1126 #endif
1127 if (ooff == UNWRITTEN)
1128 ip->i_ffs_blocks += bb;
1129 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1130 (void) VOP_BWRITE(bp);
1131 }
1132 #ifdef DEBUG
1133 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1134 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1135 "in same pseg\n", VTOI(sp->vp)->i_number,
1136 (*sp->start_bpp)->b_lblkno, daddr);
1137 }
1138 #endif
1139 /* Update segment usage information. */
1140 if (daddr > 0) {
1141 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1142 #ifdef DIAGNOSTIC
1143 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1144 /* XXX -- Change to a panic. */
1145 printf("lfs_updatemeta: negative bytes "
1146 "(segment %d short by %ld)\n",
1147 datosn(fs, daddr),
1148 (*sp->start_bpp)->b_bcount -
1149 sup->su_nbytes);
1150 printf("lfs_updatemeta: ino %d, lbn %d, "
1151 "addr = %x\n", VTOI(sp->vp)->i_number,
1152 (*sp->start_bpp)->b_lblkno, daddr);
1153 panic("lfs_updatemeta: negative bytes");
1154 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1155 }
1156 #endif
1157 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1158 error = VOP_BWRITE(bp); /* Ifile */
1159 }
1160 }
1161 }
1162
1163 /*
1164 * Start a new segment.
1165 */
1166 int
1167 lfs_initseg(fs)
1168 struct lfs *fs;
1169 {
1170 struct segment *sp;
1171 SEGUSE *sup;
1172 SEGSUM *ssp;
1173 struct buf *bp;
1174 int repeat;
1175
1176 sp = fs->lfs_sp;
1177
1178 repeat = 0;
1179 /* Advance to the next segment. */
1180 if (!LFS_PARTIAL_FITS(fs)) {
1181 /* lfs_avail eats the remaining space */
1182 fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
1183 fs->lfs_curseg);
1184 /* Wake up any cleaning procs waiting on this file system. */
1185 wakeup(&lfs_allclean_wakeup);
1186 wakeup(&fs->lfs_nextseg);
1187 lfs_newseg(fs);
1188 repeat = 1;
1189 fs->lfs_offset = fs->lfs_curseg;
1190 sp->seg_number = datosn(fs, fs->lfs_curseg);
1191 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
1192 /*
1193 * If the segment contains a superblock, update the offset
1194 * and summary address to skip over it.
1195 */
1196 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1197 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1198 fs->lfs_offset += btodb(LFS_SBPAD);
1199 sp->seg_bytes_left -= LFS_SBPAD;
1200 }
1201 brelse(bp);
1202 } else {
1203 sp->seg_number = datosn(fs, fs->lfs_curseg);
1204 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
1205 (fs->lfs_offset - fs->lfs_curseg));
1206 }
1207 fs->lfs_lastpseg = fs->lfs_offset;
1208
1209 sp->fs = fs;
1210 sp->ibp = NULL;
1211 sp->idp = NULL;
1212 sp->ninodes = 0;
1213
1214 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1215 sp->cbpp = sp->bpp;
1216 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1217 fs->lfs_offset, LFS_SUMMARY_SIZE);
1218 sp->segsum = (*sp->cbpp)->b_data;
1219 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1220 sp->start_bpp = ++sp->cbpp;
1221 fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
1222
1223 /* Set point to SEGSUM, initialize it. */
1224 ssp = sp->segsum;
1225 ssp->ss_next = fs->lfs_nextseg;
1226 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1227 ssp->ss_magic = SS_MAGIC;
1228
1229 /* Set pointer to first FINFO, initialize it. */
1230 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1231 sp->fip->fi_nblocks = 0;
1232 sp->start_lbp = &sp->fip->fi_blocks[0];
1233 sp->fip->fi_lastlength = 0;
1234
1235 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1236 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1237
1238 return(repeat);
1239 }
1240
1241 /*
1242 * Return the next segment to write.
1243 */
1244 void
1245 lfs_newseg(fs)
1246 struct lfs *fs;
1247 {
1248 CLEANERINFO *cip;
1249 SEGUSE *sup;
1250 struct buf *bp;
1251 int curseg, isdirty, sn;
1252
1253 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1254 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1255 sup->su_nbytes = 0;
1256 sup->su_nsums = 0;
1257 sup->su_ninos = 0;
1258 (void) VOP_BWRITE(bp); /* Ifile */
1259
1260 LFS_CLEANERINFO(cip, fs, bp);
1261 --cip->clean;
1262 ++cip->dirty;
1263 fs->lfs_nclean = cip->clean;
1264 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1265
1266 fs->lfs_lastseg = fs->lfs_curseg;
1267 fs->lfs_curseg = fs->lfs_nextseg;
1268 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1269 sn = (sn + 1) % fs->lfs_nseg;
1270 if (sn == curseg)
1271 panic("lfs_nextseg: no clean segments");
1272 LFS_SEGENTRY(sup, fs, sn, bp);
1273 isdirty = sup->su_flags & SEGUSE_DIRTY;
1274 brelse(bp);
1275 if (!isdirty)
1276 break;
1277 }
1278
1279 ++fs->lfs_nactive;
1280 fs->lfs_nextseg = sntoda(fs, sn);
1281 if(lfs_dostats) {
1282 ++lfs_stats.segsused;
1283 }
1284 }
1285
1286 int
1287 lfs_writeseg(fs, sp)
1288 struct lfs *fs;
1289 struct segment *sp;
1290 {
1291 struct buf **bpp, *bp, *cbp, *newbp;
1292 SEGUSE *sup;
1293 SEGSUM *ssp;
1294 dev_t i_dev;
1295 u_long *datap, *dp;
1296 int do_again, i, nblocks, s;
1297 #ifdef LFS_TRACK_IOS
1298 int j;
1299 #endif
1300 int (*strategy)__P((void *));
1301 struct vop_strategy_args vop_strategy_a;
1302 u_short ninos;
1303 struct vnode *devvp;
1304 char *p;
1305 struct vnode *vn;
1306 struct inode *ip;
1307 daddr_t *daddrp;
1308 int changed;
1309 #if defined(DEBUG) && defined(LFS_PROPELLER)
1310 static int propeller;
1311 char propstring[4] = "-\\|/";
1312
1313 printf("%c\b",propstring[propeller++]);
1314 if(propeller==4)
1315 propeller = 0;
1316 #endif
1317
1318 /*
1319 * If there are no buffers other than the segment summary to write
1320 * and it is not a checkpoint, don't do anything. On a checkpoint,
1321 * even if there aren't any buffers, you need to write the superblock.
1322 */
1323 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1324 return (0);
1325
1326 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1327 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1328
1329 /* Update the segment usage information. */
1330 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1331
1332 /* Loop through all blocks, except the segment summary. */
1333 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1334 if((*bpp)->b_vp != devvp)
1335 sup->su_nbytes += (*bpp)->b_bcount;
1336 }
1337
1338 ssp = (SEGSUM *)sp->segsum;
1339
1340 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1341 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1342 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1343 sup->su_lastmod = time.tv_sec;
1344 sup->su_ninos += ninos;
1345 ++sup->su_nsums;
1346 fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
1347 fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
1348
1349 do_again = !(bp->b_flags & B_GATHERED);
1350 (void)VOP_BWRITE(bp); /* Ifile */
1351 /*
1352 * Mark blocks B_BUSY, to prevent then from being changed between
1353 * the checksum computation and the actual write.
1354 *
1355 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1356 * there are any, replace them with copies that have UNASSIGNED
1357 * instead.
1358 */
1359 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1360 ++bpp;
1361 if((*bpp)->b_flags & B_CALL)
1362 continue;
1363 bp = *bpp;
1364 again:
1365 s = splbio();
1366 if(bp->b_flags & B_BUSY) {
1367 #ifdef DEBUG
1368 printf("lfs_writeseg: avoiding potential data "
1369 "summary corruption for ino %d, lbn %d\n",
1370 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1371 #endif
1372 bp->b_flags |= B_WANTED;
1373 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1374 splx(s);
1375 goto again;
1376 }
1377 bp->b_flags |= B_BUSY;
1378 splx(s);
1379 /* Check and replace indirect block UNWRITTEN bogosity */
1380 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1381 VTOI(bp->b_vp)->i_ffs_blocks !=
1382 VTOI(bp->b_vp)->i_lfs_effnblks) {
1383 #ifdef DEBUG_LFS
1384 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1385 VTOI(bp->b_vp)->i_number,
1386 VTOI(bp->b_vp)->i_lfs_effnblks,
1387 VTOI(bp->b_vp)->i_ffs_blocks);
1388 #endif
1389 /* Make a copy we'll make changes to */
1390 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1391 bp->b_bcount);
1392 newbp->b_blkno = bp->b_blkno;
1393 memcpy(newbp->b_data, bp->b_data,
1394 newbp->b_bcount);
1395 *bpp = newbp;
1396
1397 changed = 0;
1398 for (daddrp = (daddr_t *)(newbp->b_data);
1399 daddrp < (daddr_t *)(newbp->b_data +
1400 newbp->b_bcount); daddrp++) {
1401 if (*daddrp == UNWRITTEN) {
1402 ++changed;
1403 #ifdef DEBUG_LFS
1404 printf("lfs_writeseg: replacing UNWRITTEN\n");
1405 #endif
1406 *daddrp = 0;
1407 }
1408 }
1409 /*
1410 * Get rid of the old buffer. Don't mark it clean,
1411 * though, if it still has dirty data on it.
1412 */
1413 if (changed) {
1414 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1415 if (bp->b_flags & B_CALL)
1416 lfs_freebuf(bp);
1417 else {
1418 /* Still on free list, leave it there */
1419 s = splbio();
1420 bp->b_flags &= ~B_BUSY;
1421 if (bp->b_flags & B_WANTED)
1422 wakeup(bp);
1423 splx(s);
1424 /*
1425 * We have to re-decrement lfs_avail
1426 * since this block is going to come
1427 * back around to us in the next
1428 * segment.
1429 */
1430 fs->lfs_avail -= btodb(bp->b_bcount);
1431 }
1432 } else {
1433 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1434 B_GATHERED);
1435 LFS_UNLOCK_BUF(bp);
1436 if (bp->b_flags & B_CALL)
1437 lfs_freebuf(bp);
1438 else {
1439 bremfree(bp);
1440 bp->b_flags |= B_DONE;
1441 reassignbuf(bp, bp->b_vp);
1442 brelse(bp);
1443 }
1444 }
1445
1446 }
1447 }
1448 /*
1449 * Compute checksum across data and then across summary; the first
1450 * block (the summary block) is skipped. Set the create time here
1451 * so that it's guaranteed to be later than the inode mod times.
1452 *
1453 * XXX
1454 * Fix this to do it inline, instead of malloc/copy.
1455 */
1456 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1457 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1458 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1459 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1460 panic("lfs_writeseg: copyin failed [1]: "
1461 "ino %d blk %d",
1462 VTOI((*bpp)->b_vp)->i_number,
1463 (*bpp)->b_lblkno);
1464 } else
1465 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1466 }
1467 ssp->ss_create = time.tv_sec;
1468 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1469 ssp->ss_sumsum =
1470 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1471 free(datap, M_SEGMENT);
1472
1473 fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
1474
1475 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1476
1477 /*
1478 * When we simply write the blocks we lose a rotation for every block
1479 * written. To avoid this problem, we allocate memory in chunks, copy
1480 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1481 * largest size I/O devices can handle.
1482 * When the data is copied to the chunk, turn off the B_LOCKED bit
1483 * and brelse the buffer (which will move them to the LRU list). Add
1484 * the B_CALL flag to the buffer header so we can count I/O's for the
1485 * checkpoints and so we can release the allocated memory.
1486 *
1487 * XXX
1488 * This should be removed if the new virtual memory system allows us to
1489 * easily make the buffers contiguous in kernel memory and if that's
1490 * fast enough.
1491 */
1492
1493 #define CHUNKSIZE MAXPHYS
1494
1495 if(devvp==NULL)
1496 panic("devvp is NULL");
1497 for (bpp = sp->bpp,i = nblocks; i;) {
1498 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1499 cbp->b_dev = i_dev;
1500 cbp->b_flags |= B_ASYNC | B_BUSY;
1501 cbp->b_bcount = 0;
1502
1503 #ifdef DIAGNOSTIC
1504 if(datosn(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount) - 1) !=
1505 datosn(fs, cbp->b_blkno)) {
1506 panic("lfs_writeseg: Segment overwrite");
1507 }
1508 #endif
1509
1510 s = splbio();
1511 if(fs->lfs_iocount >= LFS_THROTTLE) {
1512 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1513 }
1514 ++fs->lfs_iocount;
1515 #ifdef LFS_TRACK_IOS
1516 for(j=0;j<LFS_THROTTLE;j++) {
1517 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1518 fs->lfs_pending[j] = cbp->b_blkno;
1519 break;
1520 }
1521 }
1522 #endif /* LFS_TRACK_IOS */
1523 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1524 bp = *bpp;
1525
1526 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1527 break;
1528
1529 /*
1530 * Fake buffers from the cleaner are marked as B_INVAL.
1531 * We need to copy the data from user space rather than
1532 * from the buffer indicated.
1533 * XXX == what do I do on an error?
1534 */
1535 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1536 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1537 panic("lfs_writeseg: copyin failed [2]");
1538 } else
1539 bcopy(bp->b_data, p, bp->b_bcount);
1540 p += bp->b_bcount;
1541 cbp->b_bcount += bp->b_bcount;
1542 LFS_UNLOCK_BUF(bp);
1543 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1544 B_GATHERED);
1545 vn = bp->b_vp;
1546 if (bp->b_flags & B_CALL) {
1547 /* if B_CALL, it was created with newbuf */
1548 lfs_freebuf(bp);
1549 } else {
1550 bremfree(bp);
1551 bp->b_flags |= B_DONE;
1552 if(vn)
1553 reassignbuf(bp, vn);
1554 brelse(bp);
1555 }
1556 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1557 bp->b_flags &= ~B_NEEDCOMMIT;
1558 wakeup(bp);
1559 }
1560
1561 bpp++;
1562
1563 /*
1564 * If this is the last block for this vnode, but
1565 * there are other blocks on its dirty list,
1566 * set IN_MODIFIED/IN_CLEANING depending on what
1567 * sort of block. Only do this for our mount point,
1568 * not for, e.g., inode blocks that are attached to
1569 * the devvp.
1570 */
1571 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1572 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1573 vn->v_mount == fs->lfs_ivnode->v_mount)
1574 {
1575 ip = VTOI(vn);
1576 #ifdef DEBUG_LFS
1577 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1578 #endif
1579 if(bp->b_flags & B_CALL)
1580 LFS_SET_UINO(ip, IN_CLEANING);
1581 else
1582 LFS_SET_UINO(ip, IN_MODIFIED);
1583 }
1584 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1585 wakeup(vn);
1586 }
1587 ++cbp->b_vp->v_numoutput;
1588 splx(s);
1589 /*
1590 * XXXX This is a gross and disgusting hack. Since these
1591 * buffers are physically addressed, they hang off the
1592 * device vnode (devvp). As a result, they have no way
1593 * of getting to the LFS superblock or lfs structure to
1594 * keep track of the number of I/O's pending. So, I am
1595 * going to stuff the fs into the saveaddr field of
1596 * the buffer (yuk).
1597 */
1598 cbp->b_saveaddr = (caddr_t)fs;
1599 vop_strategy_a.a_desc = VDESC(vop_strategy);
1600 vop_strategy_a.a_bp = cbp;
1601 (strategy)(&vop_strategy_a);
1602 }
1603 #if 1 || defined(DEBUG)
1604 /*
1605 * After doing a big write, we recalculate how many buffers are
1606 * really still left on the locked queue.
1607 */
1608 s = splbio();
1609 lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
1610 splx(s);
1611 wakeup(&locked_queue_count);
1612 #endif /* 1 || DEBUG */
1613 if(lfs_dostats) {
1614 ++lfs_stats.psegwrites;
1615 lfs_stats.blocktot += nblocks - 1;
1616 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1617 ++lfs_stats.psyncwrites;
1618 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1619 ++lfs_stats.pcleanwrites;
1620 lfs_stats.cleanblocks += nblocks - 1;
1621 }
1622 }
1623 return (lfs_initseg(fs) || do_again);
1624 }
1625
1626 void
1627 lfs_writesuper(fs, daddr)
1628 struct lfs *fs;
1629 daddr_t daddr;
1630 {
1631 struct buf *bp;
1632 dev_t i_dev;
1633 int (*strategy) __P((void *));
1634 int s;
1635 struct vop_strategy_args vop_strategy_a;
1636
1637 #ifdef LFS_CANNOT_ROLLFW
1638 /*
1639 * If we can write one superblock while another is in
1640 * progress, we risk not having a complete checkpoint if we crash.
1641 * So, block here if a superblock write is in progress.
1642 */
1643 s = splbio();
1644 while(fs->lfs_sbactive) {
1645 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1646 }
1647 fs->lfs_sbactive = daddr;
1648 splx(s);
1649 #endif
1650 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1651 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1652
1653 /* Set timestamp of this version of the superblock */
1654 fs->lfs_tstamp = time.tv_sec;
1655
1656 /* Checksum the superblock and copy it into a buffer. */
1657 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1658 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1659 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1660
1661 bp->b_dev = i_dev;
1662 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1663 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1664 bp->b_iodone = lfs_supercallback;
1665 /* XXX KS - same nasty hack as above */
1666 bp->b_saveaddr = (caddr_t)fs;
1667
1668 vop_strategy_a.a_desc = VDESC(vop_strategy);
1669 vop_strategy_a.a_bp = bp;
1670 s = splbio();
1671 ++bp->b_vp->v_numoutput;
1672 ++fs->lfs_iocount;
1673 splx(s);
1674 (strategy)(&vop_strategy_a);
1675 }
1676
1677 /*
1678 * Logical block number match routines used when traversing the dirty block
1679 * chain.
1680 */
1681 int
1682 lfs_match_fake(fs, bp)
1683 struct lfs *fs;
1684 struct buf *bp;
1685 {
1686 return (bp->b_flags & B_CALL);
1687 }
1688
1689 int
1690 lfs_match_data(fs, bp)
1691 struct lfs *fs;
1692 struct buf *bp;
1693 {
1694 return (bp->b_lblkno >= 0);
1695 }
1696
1697 int
1698 lfs_match_indir(fs, bp)
1699 struct lfs *fs;
1700 struct buf *bp;
1701 {
1702 int lbn;
1703
1704 lbn = bp->b_lblkno;
1705 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1706 }
1707
1708 int
1709 lfs_match_dindir(fs, bp)
1710 struct lfs *fs;
1711 struct buf *bp;
1712 {
1713 int lbn;
1714
1715 lbn = bp->b_lblkno;
1716 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1717 }
1718
1719 int
1720 lfs_match_tindir(fs, bp)
1721 struct lfs *fs;
1722 struct buf *bp;
1723 {
1724 int lbn;
1725
1726 lbn = bp->b_lblkno;
1727 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1728 }
1729
1730 /*
1731 * XXX - The only buffers that are going to hit these functions are the
1732 * segment write blocks, or the segment summaries, or the superblocks.
1733 *
1734 * All of the above are created by lfs_newbuf, and so do not need to be
1735 * released via brelse.
1736 */
1737 void
1738 lfs_callback(bp)
1739 struct buf *bp;
1740 {
1741 struct lfs *fs;
1742 #ifdef LFS_TRACK_IOS
1743 int j;
1744 #endif
1745
1746 fs = (struct lfs *)bp->b_saveaddr;
1747 #ifdef DIAGNOSTIC
1748 if (fs->lfs_iocount == 0)
1749 panic("lfs_callback: zero iocount\n");
1750 #endif
1751 if (--fs->lfs_iocount < LFS_THROTTLE)
1752 wakeup(&fs->lfs_iocount);
1753 #ifdef LFS_TRACK_IOS
1754 for(j=0;j<LFS_THROTTLE;j++) {
1755 if(fs->lfs_pending[j]==bp->b_blkno) {
1756 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1757 wakeup(&(fs->lfs_pending[j]));
1758 break;
1759 }
1760 }
1761 #endif /* LFS_TRACK_IOS */
1762
1763 lfs_freebuf(bp);
1764 }
1765
1766 void
1767 lfs_supercallback(bp)
1768 struct buf *bp;
1769 {
1770 struct lfs *fs;
1771
1772 fs = (struct lfs *)bp->b_saveaddr;
1773 #ifdef LFS_CANNOT_ROLLFW
1774 fs->lfs_sbactive = 0;
1775 wakeup(&fs->lfs_sbactive);
1776 #endif
1777 if (--fs->lfs_iocount < LFS_THROTTLE)
1778 wakeup(&fs->lfs_iocount);
1779 lfs_freebuf(bp);
1780 }
1781
1782 /*
1783 * Shellsort (diminishing increment sort) from Data Structures and
1784 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1785 * see also Knuth Vol. 3, page 84. The increments are selected from
1786 * formula (8), page 95. Roughly O(N^3/2).
1787 */
1788 /*
1789 * This is our own private copy of shellsort because we want to sort
1790 * two parallel arrays (the array of buffer pointers and the array of
1791 * logical block numbers) simultaneously. Note that we cast the array
1792 * of logical block numbers to a unsigned in this routine so that the
1793 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1794 */
1795
1796 void
1797 lfs_shellsort(bp_array, lb_array, nmemb)
1798 struct buf **bp_array;
1799 ufs_daddr_t *lb_array;
1800 int nmemb;
1801 {
1802 static int __rsshell_increments[] = { 4, 1, 0 };
1803 int incr, *incrp, t1, t2;
1804 struct buf *bp_temp;
1805 u_long lb_temp;
1806
1807 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1808 for (t1 = incr; t1 < nmemb; ++t1)
1809 for (t2 = t1 - incr; t2 >= 0;)
1810 if (lb_array[t2] > lb_array[t2 + incr]) {
1811 lb_temp = lb_array[t2];
1812 lb_array[t2] = lb_array[t2 + incr];
1813 lb_array[t2 + incr] = lb_temp;
1814 bp_temp = bp_array[t2];
1815 bp_array[t2] = bp_array[t2 + incr];
1816 bp_array[t2 + incr] = bp_temp;
1817 t2 -= incr;
1818 } else
1819 break;
1820 }
1821
1822 /*
1823 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1824 */
1825 int
1826 lfs_vref(vp)
1827 struct vnode *vp;
1828 {
1829 /*
1830 * If we return 1 here during a flush, we risk vinvalbuf() not
1831 * being able to flush all of the pages from this vnode, which
1832 * will cause it to panic. So, return 0 if a flush is in progress.
1833 */
1834 if (vp->v_flag & VXLOCK) {
1835 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1836 return 0;
1837 }
1838 return(1);
1839 }
1840 return (vget(vp, 0));
1841 }
1842
1843 /*
1844 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1845 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1846 */
1847 void
1848 lfs_vunref(vp)
1849 struct vnode *vp;
1850 {
1851 /*
1852 * Analogous to lfs_vref, if the node is flushing, fake it.
1853 */
1854 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1855 return;
1856 }
1857
1858 simple_lock(&vp->v_interlock);
1859 #ifdef DIAGNOSTIC
1860 if(vp->v_usecount<=0) {
1861 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1862 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1863 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1864 panic("lfs_vunref: v_usecount<0");
1865 }
1866 #endif
1867 vp->v_usecount--;
1868 if (vp->v_usecount > 0) {
1869 simple_unlock(&vp->v_interlock);
1870 return;
1871 }
1872 /*
1873 * insert at tail of LRU list
1874 */
1875 simple_lock(&vnode_free_list_slock);
1876 if (vp->v_holdcnt > 0)
1877 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1878 else
1879 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1880 simple_unlock(&vnode_free_list_slock);
1881 simple_unlock(&vp->v_interlock);
1882 }
1883
1884 /*
1885 * We use this when we have vnodes that were loaded in solely for cleaning.
1886 * There is no reason to believe that these vnodes will be referenced again
1887 * soon, since the cleaning process is unrelated to normal filesystem
1888 * activity. Putting cleaned vnodes at the tail of the list has the effect
1889 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1890 * cleaning at the head of the list, instead.
1891 */
1892 void
1893 lfs_vunref_head(vp)
1894 struct vnode *vp;
1895 {
1896 simple_lock(&vp->v_interlock);
1897 #ifdef DIAGNOSTIC
1898 if(vp->v_usecount==0) {
1899 panic("lfs_vunref: v_usecount<0");
1900 }
1901 #endif
1902 vp->v_usecount--;
1903 if (vp->v_usecount > 0) {
1904 simple_unlock(&vp->v_interlock);
1905 return;
1906 }
1907 /*
1908 * insert at head of LRU list
1909 */
1910 simple_lock(&vnode_free_list_slock);
1911 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1912 simple_unlock(&vnode_free_list_slock);
1913 simple_unlock(&vp->v_interlock);
1914 }
1915
1916