lfs_segment.c revision 1.63 1 /* $NetBSD: lfs_segment.c,v 1.63 2000/11/27 03:33:57 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #include "opt_ddb.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/kernel.h>
80 #include <sys/resourcevar.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/conf.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/mount.h>
89
90 #include <miscfs/specfs/specdev.h>
91 #include <miscfs/fifofs/fifo.h>
92
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/inode.h>
95 #include <ufs/ufs/dir.h>
96 #include <ufs/ufs/ufsmount.h>
97 #include <ufs/ufs/ufs_extern.h>
98
99 #include <ufs/lfs/lfs.h>
100 #include <ufs/lfs/lfs_extern.h>
101
102 extern int count_lock_queue __P((void));
103 extern struct simplelock vnode_free_list_slock; /* XXX */
104
105 /*
106 * Determine if it's OK to start a partial in this segment, or if we need
107 * to go on to a new segment.
108 */
109 #define LFS_PARTIAL_FITS(fs) \
110 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
111 1 << (fs)->lfs_fsbtodb)
112
113 void lfs_callback __P((struct buf *));
114 int lfs_gather __P((struct lfs *, struct segment *,
115 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
116 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
117 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
118 int lfs_match_fake __P((struct lfs *, struct buf *));
119 int lfs_match_data __P((struct lfs *, struct buf *));
120 int lfs_match_dindir __P((struct lfs *, struct buf *));
121 int lfs_match_indir __P((struct lfs *, struct buf *));
122 int lfs_match_tindir __P((struct lfs *, struct buf *));
123 void lfs_newseg __P((struct lfs *));
124 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
125 void lfs_supercallback __P((struct buf *));
126 void lfs_updatemeta __P((struct segment *));
127 int lfs_vref __P((struct vnode *));
128 void lfs_vunref __P((struct vnode *));
129 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
130 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
131 int lfs_writeseg __P((struct lfs *, struct segment *));
132 void lfs_writesuper __P((struct lfs *, daddr_t));
133 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
134 struct segment *sp, int dirops));
135
136 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
137 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
138 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
139 int lfs_dirvcount = 0; /* # active dirops */
140
141 /* Statistics Counters */
142 int lfs_dostats = 1;
143 struct lfs_stats lfs_stats;
144
145 extern int locked_queue_count;
146 extern long locked_queue_bytes;
147
148 /* op values to lfs_writevnodes */
149 #define VN_REG 0
150 #define VN_DIROP 1
151 #define VN_EMPTY 2
152 #define VN_CLEAN 3
153
154 #define LFS_MAX_ACTIVE 10
155
156 /*
157 * XXX KS - Set modification time on the Ifile, so the cleaner can
158 * read the fs mod time off of it. We don't set IN_UPDATE here,
159 * since we don't really need this to be flushed to disk (and in any
160 * case that wouldn't happen to the Ifile until we checkpoint).
161 */
162 void
163 lfs_imtime(fs)
164 struct lfs *fs;
165 {
166 struct timespec ts;
167 struct inode *ip;
168
169 TIMEVAL_TO_TIMESPEC(&time, &ts);
170 ip = VTOI(fs->lfs_ivnode);
171 ip->i_ffs_mtime = ts.tv_sec;
172 ip->i_ffs_mtimensec = ts.tv_nsec;
173 }
174
175 /*
176 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
177 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
178 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
179 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
180 */
181
182 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
183 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
184 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
185
186 int
187 lfs_vflush(vp)
188 struct vnode *vp;
189 {
190 struct inode *ip;
191 struct lfs *fs;
192 struct segment *sp;
193 struct buf *bp, *nbp, *tbp, *tnbp;
194 int error, s;
195
196 ip = VTOI(vp);
197 fs = VFSTOUFS(vp->v_mount)->um_lfs;
198
199 if(ip->i_flag & IN_CLEANING) {
200 #ifdef DEBUG_LFS
201 ivndebug(vp,"vflush/in_cleaning");
202 #endif
203 LFS_CLR_UINO(ip, IN_CLEANING);
204 LFS_SET_UINO(ip, IN_MODIFIED);
205
206 /*
207 * Toss any cleaning buffers that have real counterparts
208 * to avoid losing new data
209 */
210 s = splbio();
211 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
212 nbp = bp->b_vnbufs.le_next;
213 if(bp->b_flags & B_CALL) {
214 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
215 tbp=tnbp)
216 {
217 tnbp = tbp->b_vnbufs.le_next;
218 if(tbp->b_vp == bp->b_vp
219 && tbp->b_lblkno == bp->b_lblkno
220 && tbp != bp)
221 {
222 fs->lfs_avail += btodb(bp->b_bcount);
223 wakeup(&fs->lfs_avail);
224 lfs_freebuf(bp);
225 }
226 }
227 }
228 }
229 splx(s);
230 }
231
232 /* If the node is being written, wait until that is done */
233 if(WRITEINPROG(vp)) {
234 #ifdef DEBUG_LFS
235 ivndebug(vp,"vflush/writeinprog");
236 #endif
237 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
238 }
239
240 /* Protect against VXLOCK deadlock in vinvalbuf() */
241 lfs_seglock(fs, SEGM_SYNC);
242
243 /* If we're supposed to flush a freed inode, just toss it */
244 /* XXX - seglock, so these buffers can't be gathered, right? */
245 if(ip->i_ffs_mode == 0) {
246 printf("lfs_vflush: ino %d is freed, not flushing\n",
247 ip->i_number);
248 s = splbio();
249 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
250 nbp = bp->b_vnbufs.le_next;
251 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
252 fs->lfs_avail += btodb(bp->b_bcount);
253 wakeup(&fs->lfs_avail);
254 }
255 /* Copied from lfs_writeseg */
256 if (bp->b_flags & B_CALL) {
257 /* if B_CALL, it was created with newbuf */
258 lfs_freebuf(bp);
259 } else {
260 bremfree(bp);
261 LFS_UNLOCK_BUF(bp);
262 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
263 B_GATHERED);
264 bp->b_flags |= B_DONE;
265 reassignbuf(bp, vp);
266 brelse(bp);
267 }
268 }
269 splx(s);
270 LFS_CLR_UINO(ip, IN_CLEANING);
271 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
272 ip->i_flag &= ~IN_ALLMOD;
273 printf("lfs_vflush: done not flushing ino %d\n",
274 ip->i_number);
275 lfs_segunlock(fs);
276 return 0;
277 }
278
279 SET_FLUSHING(fs,vp);
280 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
281 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
282 CLR_FLUSHING(fs,vp);
283 lfs_segunlock(fs);
284 return error;
285 }
286 sp = fs->lfs_sp;
287
288 if (vp->v_dirtyblkhd.lh_first == NULL) {
289 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
290 } else if((ip->i_flag & IN_CLEANING) &&
291 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
292 #ifdef DEBUG_LFS
293 ivndebug(vp,"vflush/clean");
294 #endif
295 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
296 }
297 else if(lfs_dostats) {
298 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
299 ++lfs_stats.vflush_invoked;
300 #ifdef DEBUG_LFS
301 ivndebug(vp,"vflush");
302 #endif
303 }
304
305 #ifdef DIAGNOSTIC
306 /* XXX KS This actually can happen right now, though it shouldn't(?) */
307 if(vp->v_flag & VDIROP) {
308 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
309 /* panic("VDIROP being flushed...this can\'t happen"); */
310 }
311 if(vp->v_usecount<0) {
312 printf("usecount=%ld\n",vp->v_usecount);
313 panic("lfs_vflush: usecount<0");
314 }
315 #endif
316
317 do {
318 do {
319 if (vp->v_dirtyblkhd.lh_first != NULL)
320 lfs_writefile(fs, sp, vp);
321 } while (lfs_writeinode(fs, sp, ip));
322 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
323
324 if(lfs_dostats) {
325 ++lfs_stats.nwrites;
326 if (sp->seg_flags & SEGM_SYNC)
327 ++lfs_stats.nsync_writes;
328 if (sp->seg_flags & SEGM_CKP)
329 ++lfs_stats.ncheckpoints;
330 }
331 lfs_segunlock(fs);
332
333 CLR_FLUSHING(fs,vp);
334 return (0);
335 }
336
337 #ifdef DEBUG_LFS_VERBOSE
338 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
339 #else
340 # define vndebug(vp,str)
341 #endif
342
343 int
344 lfs_writevnodes(fs, mp, sp, op)
345 struct lfs *fs;
346 struct mount *mp;
347 struct segment *sp;
348 int op;
349 {
350 struct inode *ip;
351 struct vnode *vp;
352 int inodes_written=0, only_cleaning;
353 int needs_unlock;
354
355 #ifndef LFS_NO_BACKVP_HACK
356 /* BEGIN HACK */
357 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
358 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
359 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
360
361 /* Find last vnode. */
362 loop: for (vp = mp->mnt_vnodelist.lh_first;
363 vp && vp->v_mntvnodes.le_next != NULL;
364 vp = vp->v_mntvnodes.le_next);
365 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
366 #else
367 loop:
368 for (vp = mp->mnt_vnodelist.lh_first;
369 vp != NULL;
370 vp = vp->v_mntvnodes.le_next) {
371 #endif
372 /*
373 * If the vnode that we are about to sync is no longer
374 * associated with this mount point, start over.
375 */
376 if (vp->v_mount != mp) {
377 printf("lfs_writevnodes: starting over\n");
378 goto loop;
379 }
380
381 ip = VTOI(vp);
382 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
383 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
384 vndebug(vp,"dirop");
385 continue;
386 }
387
388 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
389 vndebug(vp,"empty");
390 continue;
391 }
392
393 if (vp->v_type == VNON) {
394 continue;
395 }
396
397 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
398 && vp != fs->lfs_flushvp
399 && !(ip->i_flag & IN_CLEANING)) {
400 vndebug(vp,"cleaning");
401 continue;
402 }
403
404 if (lfs_vref(vp)) {
405 vndebug(vp,"vref");
406 continue;
407 }
408
409 needs_unlock = 0;
410 if (VOP_ISLOCKED(vp)) {
411 if (vp != fs->lfs_ivnode &&
412 vp->v_lock.lk_lockholder != curproc->p_pid) {
413 #ifdef DEBUG_LFS
414 printf("lfs_writevnodes: not writing ino %d,"
415 " locked by pid %d\n",
416 VTOI(vp)->i_number,
417 vp->v_lock.lk_lockholder);
418 #endif
419 lfs_vunref(vp);
420 continue;
421 }
422 } else if (vp != fs->lfs_ivnode) {
423 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
424 needs_unlock = 1;
425 }
426
427 only_cleaning = 0;
428 /*
429 * Write the inode/file if dirty and it's not the IFILE.
430 */
431 if ((ip->i_flag & IN_ALLMOD) ||
432 (vp->v_dirtyblkhd.lh_first != NULL))
433 {
434 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
435
436 if(ip->i_number != LFS_IFILE_INUM
437 && vp->v_dirtyblkhd.lh_first != NULL)
438 {
439 lfs_writefile(fs, sp, vp);
440 }
441 if(vp->v_dirtyblkhd.lh_first != NULL) {
442 if(WRITEINPROG(vp)) {
443 #ifdef DEBUG_LFS
444 ivndebug(vp,"writevnodes/write2");
445 #endif
446 } else if(!(ip->i_flag & IN_ALLMOD)) {
447 #ifdef DEBUG_LFS
448 printf("<%d>",ip->i_number);
449 #endif
450 LFS_SET_UINO(ip, IN_MODIFIED);
451 }
452 }
453 (void) lfs_writeinode(fs, sp, ip);
454 inodes_written++;
455 }
456
457 if (needs_unlock)
458 VOP_UNLOCK(vp, 0);
459
460 if (lfs_clean_vnhead && only_cleaning)
461 lfs_vunref_head(vp);
462 else
463 lfs_vunref(vp);
464 }
465 return inodes_written;
466 }
467
468 int
469 lfs_segwrite(mp, flags)
470 struct mount *mp;
471 int flags; /* Do a checkpoint. */
472 {
473 struct buf *bp;
474 struct inode *ip;
475 struct lfs *fs;
476 struct segment *sp;
477 struct vnode *vp;
478 SEGUSE *segusep;
479 ufs_daddr_t ibno;
480 int do_ckp, did_ckp, error, i;
481 int writer_set = 0;
482 int dirty;
483
484 fs = VFSTOUFS(mp)->um_lfs;
485
486 if (fs->lfs_ronly)
487 return EROFS;
488
489 lfs_imtime(fs);
490
491 /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
492 (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
493
494 #if 0
495 /*
496 * If we are not the cleaner, and there is no space available,
497 * wait until cleaner writes.
498 */
499 if(!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
500 (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
501 {
502 while (fs->lfs_avail <= 0) {
503 LFS_CLEANERINFO(cip, fs, bp);
504 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
505
506 wakeup(&lfs_allclean_wakeup);
507 wakeup(&fs->lfs_nextseg);
508 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
509 0);
510 if (error) {
511 return (error);
512 }
513 }
514 }
515 #endif
516 /*
517 * Allocate a segment structure and enough space to hold pointers to
518 * the maximum possible number of buffers which can be described in a
519 * single summary block.
520 */
521 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
522 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
523 sp = fs->lfs_sp;
524
525 /*
526 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
527 * in which case we have to flush *all* buffers off of this vnode.
528 * We don't care about other nodes, but write any non-dirop nodes
529 * anyway in anticipation of another getnewvnode().
530 *
531 * If we're cleaning we only write cleaning and ifile blocks, and
532 * no dirops, since otherwise we'd risk corruption in a crash.
533 */
534 if(sp->seg_flags & SEGM_CLEAN)
535 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
536 else {
537 lfs_writevnodes(fs, mp, sp, VN_REG);
538 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
539 while(fs->lfs_dirops)
540 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
541 "lfs writer", 0)))
542 {
543 free(sp->bpp, M_SEGMENT);
544 free(sp, M_SEGMENT);
545 return (error);
546 }
547 fs->lfs_writer++;
548 writer_set=1;
549 lfs_writevnodes(fs, mp, sp, VN_DIROP);
550 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
551 }
552 }
553
554 /*
555 * If we are doing a checkpoint, mark everything since the
556 * last checkpoint as no longer ACTIVE.
557 */
558 if (do_ckp) {
559 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
560 --ibno >= fs->lfs_cleansz; ) {
561 dirty = 0;
562 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
563
564 panic("lfs_segwrite: ifile read");
565 segusep = (SEGUSE *)bp->b_data;
566 for (i = fs->lfs_sepb; i--; segusep++) {
567 if (segusep->su_flags & SEGUSE_ACTIVE) {
568 segusep->su_flags &= ~SEGUSE_ACTIVE;
569 ++dirty;
570 }
571 }
572
573 /* But the current segment is still ACTIVE */
574 segusep = (SEGUSE *)bp->b_data;
575 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
576 (ibno-fs->lfs_cleansz)) {
577 segusep[datosn(fs, fs->lfs_curseg) %
578 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
579 --dirty;
580 }
581 if (dirty)
582 error = VOP_BWRITE(bp); /* Ifile */
583 else
584 brelse(bp);
585 }
586 }
587
588 did_ckp = 0;
589 if (do_ckp || fs->lfs_doifile) {
590 do {
591 vp = fs->lfs_ivnode;
592
593 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
594
595 ip = VTOI(vp);
596 if (vp->v_dirtyblkhd.lh_first != NULL)
597 lfs_writefile(fs, sp, vp);
598 if (ip->i_flag & IN_ALLMOD)
599 ++did_ckp;
600 (void) lfs_writeinode(fs, sp, ip);
601
602 vput(vp);
603 } while (lfs_writeseg(fs, sp) && do_ckp);
604
605 /* The ifile should now be all clear */
606 LFS_CLR_UINO(ip, IN_ALLMOD);
607 } else {
608 (void) lfs_writeseg(fs, sp);
609 }
610
611 /*
612 * If the I/O count is non-zero, sleep until it reaches zero.
613 * At the moment, the user's process hangs around so we can
614 * sleep.
615 */
616 fs->lfs_doifile = 0;
617 if(writer_set && --fs->lfs_writer==0)
618 wakeup(&fs->lfs_dirops);
619
620 /*
621 * If we didn't write the Ifile, we didn't really do anything.
622 * That means that (1) there is a checkpoint on disk and (2)
623 * nothing has changed since it was written.
624 *
625 * Take the flags off of the segment so that lfs_segunlock
626 * doesn't have to write the superblock either.
627 */
628 if (did_ckp == 0) {
629 sp->seg_flags &= ~(SEGM_SYNC|SEGM_CKP);
630 /* if(do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
631 }
632
633 if(lfs_dostats) {
634 ++lfs_stats.nwrites;
635 if (sp->seg_flags & SEGM_SYNC)
636 ++lfs_stats.nsync_writes;
637 if (sp->seg_flags & SEGM_CKP)
638 ++lfs_stats.ncheckpoints;
639 }
640 lfs_segunlock(fs);
641 return (0);
642 }
643
644 /*
645 * Write the dirty blocks associated with a vnode.
646 */
647 void
648 lfs_writefile(fs, sp, vp)
649 struct lfs *fs;
650 struct segment *sp;
651 struct vnode *vp;
652 {
653 struct buf *bp;
654 struct finfo *fip;
655 IFILE *ifp;
656
657
658 if (sp->seg_bytes_left < fs->lfs_bsize ||
659 sp->sum_bytes_left < sizeof(struct finfo))
660 (void) lfs_writeseg(fs, sp);
661
662 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
663 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
664
665 if(vp->v_flag & VDIROP)
666 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
667
668 fip = sp->fip;
669 fip->fi_nblocks = 0;
670 fip->fi_ino = VTOI(vp)->i_number;
671 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
672 fip->fi_version = ifp->if_version;
673 brelse(bp);
674
675 if(sp->seg_flags & SEGM_CLEAN)
676 {
677 lfs_gather(fs, sp, vp, lfs_match_fake);
678 /*
679 * For a file being flushed, we need to write *all* blocks.
680 * This means writing the cleaning blocks first, and then
681 * immediately following with any non-cleaning blocks.
682 * The same is true of the Ifile since checkpoints assume
683 * that all valid Ifile blocks are written.
684 */
685 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
686 lfs_gather(fs, sp, vp, lfs_match_data);
687 } else
688 lfs_gather(fs, sp, vp, lfs_match_data);
689
690 /*
691 * It may not be necessary to write the meta-data blocks at this point,
692 * as the roll-forward recovery code should be able to reconstruct the
693 * list.
694 *
695 * We have to write them anyway, though, under two conditions: (1) the
696 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
697 * checkpointing.
698 */
699 if(lfs_writeindir
700 || IS_FLUSHING(fs,vp)
701 || (sp->seg_flags & SEGM_CKP))
702 {
703 lfs_gather(fs, sp, vp, lfs_match_indir);
704 lfs_gather(fs, sp, vp, lfs_match_dindir);
705 lfs_gather(fs, sp, vp, lfs_match_tindir);
706 }
707 fip = sp->fip;
708 if (fip->fi_nblocks != 0) {
709 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
710 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
711 sp->start_lbp = &sp->fip->fi_blocks[0];
712 } else {
713 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
714 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
715 }
716 }
717
718 int
719 lfs_writeinode(fs, sp, ip)
720 struct lfs *fs;
721 struct segment *sp;
722 struct inode *ip;
723 {
724 struct buf *bp, *ibp;
725 struct dinode *cdp;
726 IFILE *ifp;
727 SEGUSE *sup;
728 ufs_daddr_t daddr;
729 daddr_t *daddrp;
730 ino_t ino;
731 int error, i, ndx;
732 int redo_ifile = 0;
733 struct timespec ts;
734 int gotblk=0;
735
736 if (!(ip->i_flag & IN_ALLMOD))
737 return(0);
738
739 /* Allocate a new inode block if necessary. */
740 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
741 /* Allocate a new segment if necessary. */
742 if (sp->seg_bytes_left < fs->lfs_bsize ||
743 sp->sum_bytes_left < sizeof(ufs_daddr_t))
744 (void) lfs_writeseg(fs, sp);
745
746 /* Get next inode block. */
747 daddr = fs->lfs_offset;
748 fs->lfs_offset += fsbtodb(fs, 1);
749 sp->ibp = *sp->cbpp++ =
750 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
751 gotblk++;
752
753 /* Zero out inode numbers */
754 for (i = 0; i < INOPB(fs); ++i)
755 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
756
757 ++sp->start_bpp;
758 fs->lfs_avail -= fsbtodb(fs, 1);
759 /* Set remaining space counters. */
760 sp->seg_bytes_left -= fs->lfs_bsize;
761 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
762 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
763 sp->ninodes / INOPB(fs) - 1;
764 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
765 }
766
767 /* Update the inode times and copy the inode onto the inode page. */
768 TIMEVAL_TO_TIMESPEC(&time, &ts);
769 LFS_ITIMES(ip, &ts, &ts, &ts);
770
771 /*
772 * If this is the Ifile, and we've already written the Ifile in this
773 * partial segment, just overwrite it (it's not on disk yet) and
774 * continue.
775 *
776 * XXX we know that the bp that we get the second time around has
777 * already been gathered.
778 */
779 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
780 *(sp->idp) = ip->i_din.ffs_din;
781 return 0;
782 }
783
784 bp = sp->ibp;
785 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
786 *cdp = ip->i_din.ffs_din;
787
788 /*
789 * If we are cleaning, ensure that we don't write UNWRITTEN disk
790 * addresses to disk.
791 */
792 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
793 #ifdef DEBUG_LFS
794 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
795 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
796 #endif
797 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
798 daddrp++) {
799 if (*daddrp == UNWRITTEN) {
800 #ifdef DEBUG_LFS
801 printf("lfs_writeinode: wiping UNWRITTEN\n");
802 #endif
803 *daddrp = 0;
804 }
805 }
806 }
807
808 if(ip->i_flag & IN_CLEANING)
809 LFS_CLR_UINO(ip, IN_CLEANING);
810 else {
811 /* XXX IN_ALLMOD */
812 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
813 IN_UPDATE);
814 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
815 LFS_CLR_UINO(ip, IN_MODIFIED);
816 #ifdef DEBUG_LFS
817 else
818 printf("lfs_writeinode: ino %d: real blks=%d, "
819 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
820 ip->i_lfs_effnblks);
821 #endif
822 }
823
824 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
825 sp->idp = ((struct dinode *)bp->b_data) +
826 (sp->ninodes % INOPB(fs));
827 if(gotblk) {
828 LFS_LOCK_BUF(bp);
829 brelse(bp);
830 }
831
832 /* Increment inode count in segment summary block. */
833 ++((SEGSUM *)(sp->segsum))->ss_ninos;
834
835 /* If this page is full, set flag to allocate a new page. */
836 if (++sp->ninodes % INOPB(fs) == 0)
837 sp->ibp = NULL;
838
839 /*
840 * If updating the ifile, update the super-block. Update the disk
841 * address and access times for this inode in the ifile.
842 */
843 ino = ip->i_number;
844 if (ino == LFS_IFILE_INUM) {
845 daddr = fs->lfs_idaddr;
846 fs->lfs_idaddr = bp->b_blkno;
847 } else {
848 LFS_IENTRY(ifp, fs, ino, ibp);
849 daddr = ifp->if_daddr;
850 ifp->if_daddr = bp->b_blkno;
851 #ifdef LFS_DEBUG_NEXTFREE
852 if(ino > 3 && ifp->if_nextfree) {
853 vprint("lfs_writeinode",ITOV(ip));
854 printf("lfs_writeinode: updating free ino %d\n",
855 ip->i_number);
856 }
857 #endif
858 error = VOP_BWRITE(ibp); /* Ifile */
859 }
860
861 /*
862 * Account the inode: it no longer belongs to its former segment,
863 * though it will not belong to the new segment until that segment
864 * is actually written.
865 */
866 #ifdef DEBUG
867 /*
868 * The inode's last address should not be in the current partial
869 * segment, except under exceptional circumstances (lfs_writevnodes
870 * had to start over, and in the meantime more blocks were written
871 * to a vnode). Although the previous inode won't be accounted in
872 * su_nbytes until lfs_writeseg, this shouldn't be a problem as we
873 * have more data blocks in the current partial segment.
874 */
875 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
876 printf("lfs_writeinode: last inode addr in current pseg "
877 "(ino %d daddr 0x%x)\n", ino, daddr);
878 #endif
879 if (daddr != LFS_UNUSED_DADDR) {
880 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
881 #ifdef DIAGNOSTIC
882 if (sup->su_nbytes < DINODE_SIZE) {
883 printf("lfs_writeinode: negative bytes "
884 "(segment %d short by %d)\n",
885 datosn(fs, daddr),
886 (int)DINODE_SIZE - sup->su_nbytes);
887 panic("lfs_writeinode: negative bytes");
888 sup->su_nbytes = DINODE_SIZE;
889 }
890 #endif
891 sup->su_nbytes -= DINODE_SIZE;
892 redo_ifile =
893 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
894 error = VOP_BWRITE(bp); /* Ifile */
895 }
896 return (redo_ifile);
897 }
898
899 int
900 lfs_gatherblock(sp, bp, sptr)
901 struct segment *sp;
902 struct buf *bp;
903 int *sptr;
904 {
905 struct lfs *fs;
906 int version;
907
908 /*
909 * If full, finish this segment. We may be doing I/O, so
910 * release and reacquire the splbio().
911 */
912 #ifdef DIAGNOSTIC
913 if (sp->vp == NULL)
914 panic ("lfs_gatherblock: Null vp in segment");
915 #endif
916 fs = sp->fs;
917 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
918 sp->seg_bytes_left < bp->b_bcount) {
919 if (sptr)
920 splx(*sptr);
921 lfs_updatemeta(sp);
922
923 version = sp->fip->fi_version;
924 (void) lfs_writeseg(fs, sp);
925
926 sp->fip->fi_version = version;
927 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
928 /* Add the current file to the segment summary. */
929 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
930 sp->sum_bytes_left -=
931 sizeof(struct finfo) - sizeof(ufs_daddr_t);
932
933 if (sptr)
934 *sptr = splbio();
935 return(1);
936 }
937
938 #ifdef DEBUG
939 if(bp->b_flags & B_GATHERED) {
940 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
941 sp->fip->fi_ino, bp->b_lblkno);
942 return(0);
943 }
944 #endif
945 /* Insert into the buffer list, update the FINFO block. */
946 bp->b_flags |= B_GATHERED;
947 *sp->cbpp++ = bp;
948 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
949
950 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
951 sp->seg_bytes_left -= bp->b_bcount;
952 return(0);
953 }
954
955 int
956 lfs_gather(fs, sp, vp, match)
957 struct lfs *fs;
958 struct segment *sp;
959 struct vnode *vp;
960 int (*match) __P((struct lfs *, struct buf *));
961 {
962 struct buf *bp;
963 int s, count=0;
964
965 sp->vp = vp;
966 s = splbio();
967
968 #ifndef LFS_NO_BACKBUF_HACK
969 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
970 #else /* LFS_NO_BACKBUF_HACK */
971 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
972 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
973 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
974 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
975 /* Find last buffer. */
976 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
977 bp = bp->b_vnbufs.le_next);
978 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
979 #endif /* LFS_NO_BACKBUF_HACK */
980 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
981 continue;
982 if(vp->v_type == VBLK) {
983 /* For block devices, just write the blocks. */
984 /* XXX Do we really need to even do this? */
985 #ifdef DEBUG_LFS
986 if(count==0)
987 printf("BLK(");
988 printf(".");
989 #endif
990 /* Get the block before bwrite, so we don't corrupt the free list */
991 bp->b_flags |= B_BUSY;
992 bremfree(bp);
993 bwrite(bp);
994 } else {
995 #ifdef DIAGNOSTIC
996 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
997 printf("lfs_gather: lbn %d is B_INVAL\n",
998 bp->b_lblkno);
999 VOP_PRINT(bp->b_vp);
1000 }
1001 if (!(bp->b_flags & B_DELWRI))
1002 panic("lfs_gather: bp not B_DELWRI");
1003 if (!(bp->b_flags & B_LOCKED)) {
1004 printf("lfs_gather: lbn %d blk %d"
1005 " not B_LOCKED\n", bp->b_lblkno,
1006 bp->b_blkno);
1007 VOP_PRINT(bp->b_vp);
1008 panic("lfs_gather: bp not B_LOCKED");
1009 }
1010 #endif
1011 if (lfs_gatherblock(sp, bp, &s)) {
1012 goto loop;
1013 }
1014 }
1015 count++;
1016 }
1017 splx(s);
1018 #ifdef DEBUG_LFS
1019 if(vp->v_type == VBLK && count)
1020 printf(")\n");
1021 #endif
1022 lfs_updatemeta(sp);
1023 sp->vp = NULL;
1024 return count;
1025 }
1026
1027 /*
1028 * Update the metadata that points to the blocks listed in the FINFO
1029 * array.
1030 */
1031 void
1032 lfs_updatemeta(sp)
1033 struct segment *sp;
1034 {
1035 SEGUSE *sup;
1036 struct buf *bp;
1037 struct lfs *fs;
1038 struct vnode *vp;
1039 struct indir a[NIADDR + 2], *ap;
1040 struct inode *ip;
1041 ufs_daddr_t daddr, lbn, off;
1042 daddr_t ooff;
1043 int error, i, nblocks, num;
1044 int bb;
1045
1046 vp = sp->vp;
1047 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1048 if (nblocks < 0)
1049 panic("This is a bad thing\n");
1050 if (vp == NULL || nblocks == 0)
1051 return;
1052
1053 /* Sort the blocks. */
1054 /*
1055 * XXX KS - We have to sort even if the blocks come from the
1056 * cleaner, because there might be other pending blocks on the
1057 * same inode...and if we don't sort, and there are fragments
1058 * present, blocks may be written in the wrong place.
1059 */
1060 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1061 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1062
1063 /*
1064 * Record the length of the last block in case it's a fragment.
1065 * If there are indirect blocks present, they sort last. An
1066 * indirect block will be lfs_bsize and its presence indicates
1067 * that you cannot have fragments.
1068 */
1069 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1070
1071 /*
1072 * Assign disk addresses, and update references to the logical
1073 * block and the segment usage information.
1074 */
1075 fs = sp->fs;
1076 for (i = nblocks; i--; ++sp->start_bpp) {
1077 lbn = *sp->start_lbp++;
1078
1079 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1080 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1081 printf("lfs_updatemeta: ino %d blk %d"
1082 " has same lbn and daddr\n",
1083 VTOI(vp)->i_number, off);
1084 }
1085 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1086 fs->lfs_offset += bb;
1087 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1088 if (error)
1089 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1090 ip = VTOI(vp);
1091 switch (num) {
1092 case 0:
1093 ooff = ip->i_ffs_db[lbn];
1094 #ifdef DEBUG
1095 if (ooff == 0) {
1096 printf("lfs_updatemeta[1]: warning: writing "
1097 "ino %d lbn %d at 0x%x, was 0x0\n",
1098 ip->i_number, lbn, off);
1099 }
1100 #endif
1101 if (ooff == UNWRITTEN)
1102 ip->i_ffs_blocks += bb;
1103 ip->i_ffs_db[lbn] = off;
1104 break;
1105 case 1:
1106 ooff = ip->i_ffs_ib[a[0].in_off];
1107 #ifdef DEBUG
1108 if (ooff == 0) {
1109 printf("lfs_updatemeta[2]: warning: writing "
1110 "ino %d lbn %d at 0x%x, was 0x0\n",
1111 ip->i_number, lbn, off);
1112 }
1113 #endif
1114 if (ooff == UNWRITTEN)
1115 ip->i_ffs_blocks += bb;
1116 ip->i_ffs_ib[a[0].in_off] = off;
1117 break;
1118 default:
1119 ap = &a[num - 1];
1120 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1121 panic("lfs_updatemeta: bread bno %d",
1122 ap->in_lbn);
1123
1124 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1125 #if DEBUG
1126 if (ooff == 0) {
1127 printf("lfs_updatemeta[3]: warning: writing "
1128 "ino %d lbn %d at 0x%x, was 0x0\n",
1129 ip->i_number, lbn, off);
1130 }
1131 #endif
1132 if (ooff == UNWRITTEN)
1133 ip->i_ffs_blocks += bb;
1134 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1135 (void) VOP_BWRITE(bp);
1136 }
1137 #ifdef DEBUG
1138 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1139 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1140 "in same pseg\n", VTOI(sp->vp)->i_number,
1141 (*sp->start_bpp)->b_lblkno, daddr);
1142 }
1143 #endif
1144 /* Update segment usage information. */
1145 if (daddr > 0) {
1146 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1147 #ifdef DIAGNOSTIC
1148 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1149 /* XXX -- Change to a panic. */
1150 printf("lfs_updatemeta: negative bytes "
1151 "(segment %d short by %ld)\n",
1152 datosn(fs, daddr),
1153 (*sp->start_bpp)->b_bcount -
1154 sup->su_nbytes);
1155 printf("lfs_updatemeta: ino %d, lbn %d, "
1156 "addr = %x\n", VTOI(sp->vp)->i_number,
1157 (*sp->start_bpp)->b_lblkno, daddr);
1158 panic("lfs_updatemeta: negative bytes");
1159 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1160 }
1161 #endif
1162 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1163 error = VOP_BWRITE(bp); /* Ifile */
1164 }
1165 }
1166 }
1167
1168 /*
1169 * Start a new segment.
1170 */
1171 int
1172 lfs_initseg(fs)
1173 struct lfs *fs;
1174 {
1175 struct segment *sp;
1176 SEGUSE *sup;
1177 SEGSUM *ssp;
1178 struct buf *bp;
1179 int repeat;
1180
1181 sp = fs->lfs_sp;
1182
1183 repeat = 0;
1184 /* Advance to the next segment. */
1185 if (!LFS_PARTIAL_FITS(fs)) {
1186 /* lfs_avail eats the remaining space */
1187 fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
1188 fs->lfs_curseg);
1189 /* Wake up any cleaning procs waiting on this file system. */
1190 wakeup(&lfs_allclean_wakeup);
1191 wakeup(&fs->lfs_nextseg);
1192 lfs_newseg(fs);
1193 repeat = 1;
1194 fs->lfs_offset = fs->lfs_curseg;
1195 sp->seg_number = datosn(fs, fs->lfs_curseg);
1196 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
1197 /*
1198 * If the segment contains a superblock, update the offset
1199 * and summary address to skip over it.
1200 */
1201 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1202 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1203 fs->lfs_offset += btodb(LFS_SBPAD);
1204 sp->seg_bytes_left -= LFS_SBPAD;
1205 }
1206 brelse(bp);
1207 } else {
1208 sp->seg_number = datosn(fs, fs->lfs_curseg);
1209 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
1210 (fs->lfs_offset - fs->lfs_curseg));
1211 }
1212 fs->lfs_lastpseg = fs->lfs_offset;
1213
1214 sp->fs = fs;
1215 sp->ibp = NULL;
1216 sp->idp = NULL;
1217 sp->ninodes = 0;
1218
1219 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1220 sp->cbpp = sp->bpp;
1221 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1222 fs->lfs_offset, LFS_SUMMARY_SIZE);
1223 sp->segsum = (*sp->cbpp)->b_data;
1224 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1225 sp->start_bpp = ++sp->cbpp;
1226 fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
1227
1228 /* Set point to SEGSUM, initialize it. */
1229 ssp = sp->segsum;
1230 ssp->ss_next = fs->lfs_nextseg;
1231 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1232 ssp->ss_magic = SS_MAGIC;
1233
1234 /* Set pointer to first FINFO, initialize it. */
1235 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1236 sp->fip->fi_nblocks = 0;
1237 sp->start_lbp = &sp->fip->fi_blocks[0];
1238 sp->fip->fi_lastlength = 0;
1239
1240 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1241 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1242
1243 return(repeat);
1244 }
1245
1246 /*
1247 * Return the next segment to write.
1248 */
1249 void
1250 lfs_newseg(fs)
1251 struct lfs *fs;
1252 {
1253 CLEANERINFO *cip;
1254 SEGUSE *sup;
1255 struct buf *bp;
1256 int curseg, isdirty, sn;
1257
1258 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1259 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1260 sup->su_nbytes = 0;
1261 sup->su_nsums = 0;
1262 sup->su_ninos = 0;
1263 (void) VOP_BWRITE(bp); /* Ifile */
1264
1265 LFS_CLEANERINFO(cip, fs, bp);
1266 --cip->clean;
1267 ++cip->dirty;
1268 fs->lfs_nclean = cip->clean;
1269 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1270
1271 fs->lfs_lastseg = fs->lfs_curseg;
1272 fs->lfs_curseg = fs->lfs_nextseg;
1273 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1274 sn = (sn + 1) % fs->lfs_nseg;
1275 if (sn == curseg)
1276 panic("lfs_nextseg: no clean segments");
1277 LFS_SEGENTRY(sup, fs, sn, bp);
1278 isdirty = sup->su_flags & SEGUSE_DIRTY;
1279 brelse(bp);
1280 if (!isdirty)
1281 break;
1282 }
1283
1284 ++fs->lfs_nactive;
1285 fs->lfs_nextseg = sntoda(fs, sn);
1286 if(lfs_dostats) {
1287 ++lfs_stats.segsused;
1288 }
1289 }
1290
1291 int
1292 lfs_writeseg(fs, sp)
1293 struct lfs *fs;
1294 struct segment *sp;
1295 {
1296 struct buf **bpp, *bp, *cbp, *newbp;
1297 SEGUSE *sup;
1298 SEGSUM *ssp;
1299 dev_t i_dev;
1300 u_long *datap, *dp;
1301 int do_again, i, nblocks, s;
1302 #ifdef LFS_TRACK_IOS
1303 int j;
1304 #endif
1305 int (*strategy)__P((void *));
1306 struct vop_strategy_args vop_strategy_a;
1307 u_short ninos;
1308 struct vnode *devvp;
1309 char *p;
1310 struct vnode *vn;
1311 struct inode *ip;
1312 daddr_t *daddrp;
1313 int changed;
1314 #if defined(DEBUG) && defined(LFS_PROPELLER)
1315 static int propeller;
1316 char propstring[4] = "-\\|/";
1317
1318 printf("%c\b",propstring[propeller++]);
1319 if(propeller==4)
1320 propeller = 0;
1321 #endif
1322
1323 /*
1324 * If there are no buffers other than the segment summary to write
1325 * and it is not a checkpoint, don't do anything. On a checkpoint,
1326 * even if there aren't any buffers, you need to write the superblock.
1327 */
1328 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1329 return (0);
1330
1331 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1332 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1333
1334 /* Update the segment usage information. */
1335 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1336
1337 /* Loop through all blocks, except the segment summary. */
1338 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1339 if((*bpp)->b_vp != devvp)
1340 sup->su_nbytes += (*bpp)->b_bcount;
1341 }
1342
1343 ssp = (SEGSUM *)sp->segsum;
1344
1345 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1346 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1347 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1348 sup->su_lastmod = time.tv_sec;
1349 sup->su_ninos += ninos;
1350 ++sup->su_nsums;
1351 fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
1352 fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
1353
1354 do_again = !(bp->b_flags & B_GATHERED);
1355 (void)VOP_BWRITE(bp); /* Ifile */
1356 /*
1357 * Mark blocks B_BUSY, to prevent then from being changed between
1358 * the checksum computation and the actual write.
1359 *
1360 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1361 * there are any, replace them with copies that have UNASSIGNED
1362 * instead.
1363 */
1364 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1365 ++bpp;
1366 if((*bpp)->b_flags & B_CALL)
1367 continue;
1368 bp = *bpp;
1369 again:
1370 s = splbio();
1371 if(bp->b_flags & B_BUSY) {
1372 #ifdef DEBUG
1373 printf("lfs_writeseg: avoiding potential data "
1374 "summary corruption for ino %d, lbn %d\n",
1375 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1376 #endif
1377 bp->b_flags |= B_WANTED;
1378 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1379 splx(s);
1380 goto again;
1381 }
1382 bp->b_flags |= B_BUSY;
1383 splx(s);
1384 /* Check and replace indirect block UNWRITTEN bogosity */
1385 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1386 VTOI(bp->b_vp)->i_ffs_blocks !=
1387 VTOI(bp->b_vp)->i_lfs_effnblks) {
1388 #ifdef DEBUG_LFS
1389 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1390 VTOI(bp->b_vp)->i_number,
1391 VTOI(bp->b_vp)->i_lfs_effnblks,
1392 VTOI(bp->b_vp)->i_ffs_blocks);
1393 #endif
1394 /* Make a copy we'll make changes to */
1395 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1396 bp->b_bcount);
1397 newbp->b_blkno = bp->b_blkno;
1398 memcpy(newbp->b_data, bp->b_data,
1399 newbp->b_bcount);
1400 *bpp = newbp;
1401
1402 changed = 0;
1403 for (daddrp = (daddr_t *)(newbp->b_data);
1404 daddrp < (daddr_t *)(newbp->b_data +
1405 newbp->b_bcount); daddrp++) {
1406 if (*daddrp == UNWRITTEN) {
1407 ++changed;
1408 #ifdef DEBUG_LFS
1409 printf("lfs_writeseg: replacing UNWRITTEN\n");
1410 #endif
1411 *daddrp = 0;
1412 }
1413 }
1414 /*
1415 * Get rid of the old buffer. Don't mark it clean,
1416 * though, if it still has dirty data on it.
1417 */
1418 if (changed) {
1419 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1420 if (bp->b_flags & B_CALL)
1421 lfs_freebuf(bp);
1422 else {
1423 /* Still on free list, leave it there */
1424 s = splbio();
1425 bp->b_flags &= ~B_BUSY;
1426 if (bp->b_flags & B_WANTED)
1427 wakeup(bp);
1428 splx(s);
1429 /*
1430 * We have to re-decrement lfs_avail
1431 * since this block is going to come
1432 * back around to us in the next
1433 * segment.
1434 */
1435 fs->lfs_avail -= btodb(bp->b_bcount);
1436 }
1437 } else {
1438 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1439 B_GATHERED);
1440 LFS_UNLOCK_BUF(bp);
1441 if (bp->b_flags & B_CALL)
1442 lfs_freebuf(bp);
1443 else {
1444 bremfree(bp);
1445 bp->b_flags |= B_DONE;
1446 reassignbuf(bp, bp->b_vp);
1447 brelse(bp);
1448 }
1449 }
1450
1451 }
1452 }
1453 /*
1454 * Compute checksum across data and then across summary; the first
1455 * block (the summary block) is skipped. Set the create time here
1456 * so that it's guaranteed to be later than the inode mod times.
1457 *
1458 * XXX
1459 * Fix this to do it inline, instead of malloc/copy.
1460 */
1461 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1462 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1463 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1464 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1465 panic("lfs_writeseg: copyin failed [1]: "
1466 "ino %d blk %d",
1467 VTOI((*bpp)->b_vp)->i_number,
1468 (*bpp)->b_lblkno);
1469 } else
1470 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1471 }
1472 ssp->ss_create = time.tv_sec;
1473 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1474 ssp->ss_sumsum =
1475 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1476 free(datap, M_SEGMENT);
1477
1478 fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
1479
1480 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1481
1482 /*
1483 * When we simply write the blocks we lose a rotation for every block
1484 * written. To avoid this problem, we allocate memory in chunks, copy
1485 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1486 * largest size I/O devices can handle.
1487 * When the data is copied to the chunk, turn off the B_LOCKED bit
1488 * and brelse the buffer (which will move them to the LRU list). Add
1489 * the B_CALL flag to the buffer header so we can count I/O's for the
1490 * checkpoints and so we can release the allocated memory.
1491 *
1492 * XXX
1493 * This should be removed if the new virtual memory system allows us to
1494 * easily make the buffers contiguous in kernel memory and if that's
1495 * fast enough.
1496 */
1497
1498 #define CHUNKSIZE MAXPHYS
1499
1500 if(devvp==NULL)
1501 panic("devvp is NULL");
1502 for (bpp = sp->bpp,i = nblocks; i;) {
1503 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1504 cbp->b_dev = i_dev;
1505 cbp->b_flags |= B_ASYNC | B_BUSY;
1506 cbp->b_bcount = 0;
1507
1508 #ifdef DIAGNOSTIC
1509 if(datosn(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount) - 1) !=
1510 datosn(fs, cbp->b_blkno)) {
1511 panic("lfs_writeseg: Segment overwrite");
1512 }
1513 #endif
1514
1515 s = splbio();
1516 if(fs->lfs_iocount >= LFS_THROTTLE) {
1517 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1518 }
1519 ++fs->lfs_iocount;
1520 #ifdef LFS_TRACK_IOS
1521 for(j=0;j<LFS_THROTTLE;j++) {
1522 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1523 fs->lfs_pending[j] = cbp->b_blkno;
1524 break;
1525 }
1526 }
1527 #endif /* LFS_TRACK_IOS */
1528 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1529 bp = *bpp;
1530
1531 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1532 break;
1533
1534 /*
1535 * Fake buffers from the cleaner are marked as B_INVAL.
1536 * We need to copy the data from user space rather than
1537 * from the buffer indicated.
1538 * XXX == what do I do on an error?
1539 */
1540 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1541 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1542 panic("lfs_writeseg: copyin failed [2]");
1543 } else
1544 bcopy(bp->b_data, p, bp->b_bcount);
1545 p += bp->b_bcount;
1546 cbp->b_bcount += bp->b_bcount;
1547 LFS_UNLOCK_BUF(bp);
1548 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1549 B_GATHERED);
1550 vn = bp->b_vp;
1551 if (bp->b_flags & B_CALL) {
1552 /* if B_CALL, it was created with newbuf */
1553 lfs_freebuf(bp);
1554 } else {
1555 bremfree(bp);
1556 bp->b_flags |= B_DONE;
1557 if(vn)
1558 reassignbuf(bp, vn);
1559 brelse(bp);
1560 }
1561 if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
1562 bp->b_flags &= ~B_NEEDCOMMIT;
1563 wakeup(bp);
1564 }
1565
1566 bpp++;
1567
1568 /*
1569 * If this is the last block for this vnode, but
1570 * there are other blocks on its dirty list,
1571 * set IN_MODIFIED/IN_CLEANING depending on what
1572 * sort of block. Only do this for our mount point,
1573 * not for, e.g., inode blocks that are attached to
1574 * the devvp.
1575 */
1576 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1577 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1578 vn->v_mount == fs->lfs_ivnode->v_mount)
1579 {
1580 ip = VTOI(vn);
1581 #ifdef DEBUG_LFS
1582 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1583 #endif
1584 if(bp->b_flags & B_CALL)
1585 LFS_SET_UINO(ip, IN_CLEANING);
1586 else
1587 LFS_SET_UINO(ip, IN_MODIFIED);
1588 }
1589 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1590 wakeup(vn);
1591 }
1592 ++cbp->b_vp->v_numoutput;
1593 splx(s);
1594 /*
1595 * XXXX This is a gross and disgusting hack. Since these
1596 * buffers are physically addressed, they hang off the
1597 * device vnode (devvp). As a result, they have no way
1598 * of getting to the LFS superblock or lfs structure to
1599 * keep track of the number of I/O's pending. So, I am
1600 * going to stuff the fs into the saveaddr field of
1601 * the buffer (yuk).
1602 */
1603 cbp->b_saveaddr = (caddr_t)fs;
1604 vop_strategy_a.a_desc = VDESC(vop_strategy);
1605 vop_strategy_a.a_bp = cbp;
1606 (strategy)(&vop_strategy_a);
1607 }
1608 #if 1 || defined(DEBUG)
1609 /*
1610 * After doing a big write, we recalculate how many buffers are
1611 * really still left on the locked queue.
1612 */
1613 s = splbio();
1614 lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
1615 splx(s);
1616 wakeup(&locked_queue_count);
1617 #endif /* 1 || DEBUG */
1618 if(lfs_dostats) {
1619 ++lfs_stats.psegwrites;
1620 lfs_stats.blocktot += nblocks - 1;
1621 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1622 ++lfs_stats.psyncwrites;
1623 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1624 ++lfs_stats.pcleanwrites;
1625 lfs_stats.cleanblocks += nblocks - 1;
1626 }
1627 }
1628 return (lfs_initseg(fs) || do_again);
1629 }
1630
1631 void
1632 lfs_writesuper(fs, daddr)
1633 struct lfs *fs;
1634 daddr_t daddr;
1635 {
1636 struct buf *bp;
1637 dev_t i_dev;
1638 int (*strategy) __P((void *));
1639 int s;
1640 struct vop_strategy_args vop_strategy_a;
1641
1642 #ifdef LFS_CANNOT_ROLLFW
1643 /*
1644 * If we can write one superblock while another is in
1645 * progress, we risk not having a complete checkpoint if we crash.
1646 * So, block here if a superblock write is in progress.
1647 */
1648 s = splbio();
1649 while(fs->lfs_sbactive) {
1650 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1651 }
1652 fs->lfs_sbactive = daddr;
1653 splx(s);
1654 #endif
1655 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1656 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1657
1658 /* Set timestamp of this version of the superblock */
1659 fs->lfs_tstamp = time.tv_sec;
1660
1661 /* Checksum the superblock and copy it into a buffer. */
1662 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1663 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1664 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1665
1666 bp->b_dev = i_dev;
1667 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1668 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1669 bp->b_iodone = lfs_supercallback;
1670 /* XXX KS - same nasty hack as above */
1671 bp->b_saveaddr = (caddr_t)fs;
1672
1673 vop_strategy_a.a_desc = VDESC(vop_strategy);
1674 vop_strategy_a.a_bp = bp;
1675 s = splbio();
1676 ++bp->b_vp->v_numoutput;
1677 ++fs->lfs_iocount;
1678 splx(s);
1679 (strategy)(&vop_strategy_a);
1680 }
1681
1682 /*
1683 * Logical block number match routines used when traversing the dirty block
1684 * chain.
1685 */
1686 int
1687 lfs_match_fake(fs, bp)
1688 struct lfs *fs;
1689 struct buf *bp;
1690 {
1691 return (bp->b_flags & B_CALL);
1692 }
1693
1694 int
1695 lfs_match_data(fs, bp)
1696 struct lfs *fs;
1697 struct buf *bp;
1698 {
1699 return (bp->b_lblkno >= 0);
1700 }
1701
1702 int
1703 lfs_match_indir(fs, bp)
1704 struct lfs *fs;
1705 struct buf *bp;
1706 {
1707 int lbn;
1708
1709 lbn = bp->b_lblkno;
1710 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1711 }
1712
1713 int
1714 lfs_match_dindir(fs, bp)
1715 struct lfs *fs;
1716 struct buf *bp;
1717 {
1718 int lbn;
1719
1720 lbn = bp->b_lblkno;
1721 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1722 }
1723
1724 int
1725 lfs_match_tindir(fs, bp)
1726 struct lfs *fs;
1727 struct buf *bp;
1728 {
1729 int lbn;
1730
1731 lbn = bp->b_lblkno;
1732 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1733 }
1734
1735 /*
1736 * XXX - The only buffers that are going to hit these functions are the
1737 * segment write blocks, or the segment summaries, or the superblocks.
1738 *
1739 * All of the above are created by lfs_newbuf, and so do not need to be
1740 * released via brelse.
1741 */
1742 void
1743 lfs_callback(bp)
1744 struct buf *bp;
1745 {
1746 struct lfs *fs;
1747 #ifdef LFS_TRACK_IOS
1748 int j;
1749 #endif
1750
1751 fs = (struct lfs *)bp->b_saveaddr;
1752 #ifdef DIAGNOSTIC
1753 if (fs->lfs_iocount == 0)
1754 panic("lfs_callback: zero iocount\n");
1755 #endif
1756 if (--fs->lfs_iocount < LFS_THROTTLE)
1757 wakeup(&fs->lfs_iocount);
1758 #ifdef LFS_TRACK_IOS
1759 for(j=0;j<LFS_THROTTLE;j++) {
1760 if(fs->lfs_pending[j]==bp->b_blkno) {
1761 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1762 wakeup(&(fs->lfs_pending[j]));
1763 break;
1764 }
1765 }
1766 #endif /* LFS_TRACK_IOS */
1767
1768 lfs_freebuf(bp);
1769 }
1770
1771 void
1772 lfs_supercallback(bp)
1773 struct buf *bp;
1774 {
1775 struct lfs *fs;
1776
1777 fs = (struct lfs *)bp->b_saveaddr;
1778 #ifdef LFS_CANNOT_ROLLFW
1779 fs->lfs_sbactive = 0;
1780 wakeup(&fs->lfs_sbactive);
1781 #endif
1782 if (--fs->lfs_iocount < LFS_THROTTLE)
1783 wakeup(&fs->lfs_iocount);
1784 lfs_freebuf(bp);
1785 }
1786
1787 /*
1788 * Shellsort (diminishing increment sort) from Data Structures and
1789 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1790 * see also Knuth Vol. 3, page 84. The increments are selected from
1791 * formula (8), page 95. Roughly O(N^3/2).
1792 */
1793 /*
1794 * This is our own private copy of shellsort because we want to sort
1795 * two parallel arrays (the array of buffer pointers and the array of
1796 * logical block numbers) simultaneously. Note that we cast the array
1797 * of logical block numbers to a unsigned in this routine so that the
1798 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1799 */
1800
1801 void
1802 lfs_shellsort(bp_array, lb_array, nmemb)
1803 struct buf **bp_array;
1804 ufs_daddr_t *lb_array;
1805 int nmemb;
1806 {
1807 static int __rsshell_increments[] = { 4, 1, 0 };
1808 int incr, *incrp, t1, t2;
1809 struct buf *bp_temp;
1810 u_long lb_temp;
1811
1812 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1813 for (t1 = incr; t1 < nmemb; ++t1)
1814 for (t2 = t1 - incr; t2 >= 0;)
1815 if (lb_array[t2] > lb_array[t2 + incr]) {
1816 lb_temp = lb_array[t2];
1817 lb_array[t2] = lb_array[t2 + incr];
1818 lb_array[t2 + incr] = lb_temp;
1819 bp_temp = bp_array[t2];
1820 bp_array[t2] = bp_array[t2 + incr];
1821 bp_array[t2 + incr] = bp_temp;
1822 t2 -= incr;
1823 } else
1824 break;
1825 }
1826
1827 /*
1828 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1829 */
1830 int
1831 lfs_vref(vp)
1832 struct vnode *vp;
1833 {
1834 /*
1835 * If we return 1 here during a flush, we risk vinvalbuf() not
1836 * being able to flush all of the pages from this vnode, which
1837 * will cause it to panic. So, return 0 if a flush is in progress.
1838 */
1839 if (vp->v_flag & VXLOCK) {
1840 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1841 return 0;
1842 }
1843 return(1);
1844 }
1845 return (vget(vp, 0));
1846 }
1847
1848 /*
1849 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1850 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1851 */
1852 void
1853 lfs_vunref(vp)
1854 struct vnode *vp;
1855 {
1856 /*
1857 * Analogous to lfs_vref, if the node is flushing, fake it.
1858 */
1859 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1860 return;
1861 }
1862
1863 simple_lock(&vp->v_interlock);
1864 #ifdef DIAGNOSTIC
1865 if(vp->v_usecount<=0) {
1866 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1867 printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
1868 printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
1869 panic("lfs_vunref: v_usecount<0");
1870 }
1871 #endif
1872 vp->v_usecount--;
1873 if (vp->v_usecount > 0) {
1874 simple_unlock(&vp->v_interlock);
1875 return;
1876 }
1877 /*
1878 * insert at tail of LRU list
1879 */
1880 simple_lock(&vnode_free_list_slock);
1881 if (vp->v_holdcnt > 0)
1882 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1883 else
1884 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1885 simple_unlock(&vnode_free_list_slock);
1886 simple_unlock(&vp->v_interlock);
1887 }
1888
1889 /*
1890 * We use this when we have vnodes that were loaded in solely for cleaning.
1891 * There is no reason to believe that these vnodes will be referenced again
1892 * soon, since the cleaning process is unrelated to normal filesystem
1893 * activity. Putting cleaned vnodes at the tail of the list has the effect
1894 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1895 * cleaning at the head of the list, instead.
1896 */
1897 void
1898 lfs_vunref_head(vp)
1899 struct vnode *vp;
1900 {
1901 simple_lock(&vp->v_interlock);
1902 #ifdef DIAGNOSTIC
1903 if(vp->v_usecount==0) {
1904 panic("lfs_vunref: v_usecount<0");
1905 }
1906 #endif
1907 vp->v_usecount--;
1908 if (vp->v_usecount > 0) {
1909 simple_unlock(&vp->v_interlock);
1910 return;
1911 }
1912 /*
1913 * insert at head of LRU list
1914 */
1915 simple_lock(&vnode_free_list_slock);
1916 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1917 simple_unlock(&vnode_free_list_slock);
1918 simple_unlock(&vp->v_interlock);
1919 }
1920
1921