lfs_segment.c revision 1.67 1 /* $NetBSD: lfs_segment.c,v 1.67 2001/01/09 05:05:35 joff Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
74
75 #if defined(_KERNEL) && !defined(_LKM)
76 #include "opt_ddb.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/namei.h>
82 #include <sys/kernel.h>
83 #include <sys/resourcevar.h>
84 #include <sys/file.h>
85 #include <sys/stat.h>
86 #include <sys/buf.h>
87 #include <sys/proc.h>
88 #include <sys/conf.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/mount.h>
92
93 #include <miscfs/specfs/specdev.h>
94 #include <miscfs/fifofs/fifo.h>
95
96 #include <ufs/ufs/quota.h>
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 extern int count_lock_queue __P((void));
106 extern struct simplelock vnode_free_list_slock; /* XXX */
107
108 /*
109 * Determine if it's OK to start a partial in this segment, or if we need
110 * to go on to a new segment.
111 */
112 #define LFS_PARTIAL_FITS(fs) \
113 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
114 1 << (fs)->lfs_fsbtodb)
115
116 void lfs_callback __P((struct buf *));
117 int lfs_gather __P((struct lfs *, struct segment *,
118 struct vnode *, int (*) __P((struct lfs *, struct buf *))));
119 int lfs_gatherblock __P((struct segment *, struct buf *, int *));
120 void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
121 int lfs_match_fake __P((struct lfs *, struct buf *));
122 int lfs_match_data __P((struct lfs *, struct buf *));
123 int lfs_match_dindir __P((struct lfs *, struct buf *));
124 int lfs_match_indir __P((struct lfs *, struct buf *));
125 int lfs_match_tindir __P((struct lfs *, struct buf *));
126 void lfs_newseg __P((struct lfs *));
127 void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
128 void lfs_supercallback __P((struct buf *));
129 void lfs_updatemeta __P((struct segment *));
130 int lfs_vref __P((struct vnode *));
131 void lfs_vunref __P((struct vnode *));
132 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
133 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
134 int lfs_writeseg __P((struct lfs *, struct segment *));
135 void lfs_writesuper __P((struct lfs *, daddr_t));
136 int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
137 struct segment *sp, int dirops));
138
139 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
140 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
141 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
142 int lfs_dirvcount = 0; /* # active dirops */
143
144 /* Statistics Counters */
145 int lfs_dostats = 1;
146 struct lfs_stats lfs_stats;
147
148 extern int locked_queue_count;
149 extern long locked_queue_bytes;
150
151 /* op values to lfs_writevnodes */
152 #define VN_REG 0
153 #define VN_DIROP 1
154 #define VN_EMPTY 2
155 #define VN_CLEAN 3
156
157 #define LFS_MAX_ACTIVE 10
158
159 /*
160 * XXX KS - Set modification time on the Ifile, so the cleaner can
161 * read the fs mod time off of it. We don't set IN_UPDATE here,
162 * since we don't really need this to be flushed to disk (and in any
163 * case that wouldn't happen to the Ifile until we checkpoint).
164 */
165 void
166 lfs_imtime(fs)
167 struct lfs *fs;
168 {
169 struct timespec ts;
170 struct inode *ip;
171
172 TIMEVAL_TO_TIMESPEC(&time, &ts);
173 ip = VTOI(fs->lfs_ivnode);
174 ip->i_ffs_mtime = ts.tv_sec;
175 ip->i_ffs_mtimensec = ts.tv_nsec;
176 }
177
178 /*
179 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
180 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
181 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
182 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
183 */
184
185 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
187 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
188
189 int
190 lfs_vflush(vp)
191 struct vnode *vp;
192 {
193 struct inode *ip;
194 struct lfs *fs;
195 struct segment *sp;
196 struct buf *bp, *nbp, *tbp, *tnbp;
197 int error, s;
198
199 ip = VTOI(vp);
200 fs = VFSTOUFS(vp->v_mount)->um_lfs;
201
202 if(ip->i_flag & IN_CLEANING) {
203 #ifdef DEBUG_LFS
204 ivndebug(vp,"vflush/in_cleaning");
205 #endif
206 LFS_CLR_UINO(ip, IN_CLEANING);
207 LFS_SET_UINO(ip, IN_MODIFIED);
208
209 /*
210 * Toss any cleaning buffers that have real counterparts
211 * to avoid losing new data
212 */
213 s = splbio();
214 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
215 nbp = bp->b_vnbufs.le_next;
216 if(bp->b_flags & B_CALL) {
217 for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
218 tbp=tnbp)
219 {
220 tnbp = tbp->b_vnbufs.le_next;
221 if(tbp->b_vp == bp->b_vp
222 && tbp->b_lblkno == bp->b_lblkno
223 && tbp != bp)
224 {
225 fs->lfs_avail += btodb(bp->b_bcount);
226 wakeup(&fs->lfs_avail);
227 lfs_freebuf(bp);
228 }
229 }
230 }
231 }
232 splx(s);
233 }
234
235 /* If the node is being written, wait until that is done */
236 if(WRITEINPROG(vp)) {
237 #ifdef DEBUG_LFS
238 ivndebug(vp,"vflush/writeinprog");
239 #endif
240 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
241 }
242
243 /* Protect against VXLOCK deadlock in vinvalbuf() */
244 lfs_seglock(fs, SEGM_SYNC);
245
246 /* If we're supposed to flush a freed inode, just toss it */
247 /* XXX - seglock, so these buffers can't be gathered, right? */
248 if(ip->i_ffs_mode == 0) {
249 printf("lfs_vflush: ino %d is freed, not flushing\n",
250 ip->i_number);
251 s = splbio();
252 for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
253 nbp = bp->b_vnbufs.le_next;
254 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
255 fs->lfs_avail += btodb(bp->b_bcount);
256 wakeup(&fs->lfs_avail);
257 }
258 /* Copied from lfs_writeseg */
259 if (bp->b_flags & B_CALL) {
260 /* if B_CALL, it was created with newbuf */
261 lfs_freebuf(bp);
262 } else {
263 bremfree(bp);
264 LFS_UNLOCK_BUF(bp);
265 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
266 B_GATHERED);
267 bp->b_flags |= B_DONE;
268 reassignbuf(bp, vp);
269 brelse(bp);
270 }
271 }
272 splx(s);
273 LFS_CLR_UINO(ip, IN_CLEANING);
274 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
275 ip->i_flag &= ~IN_ALLMOD;
276 printf("lfs_vflush: done not flushing ino %d\n",
277 ip->i_number);
278 lfs_segunlock(fs);
279 return 0;
280 }
281
282 SET_FLUSHING(fs,vp);
283 if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
284 error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
285 CLR_FLUSHING(fs,vp);
286 lfs_segunlock(fs);
287 return error;
288 }
289 sp = fs->lfs_sp;
290
291 if (vp->v_dirtyblkhd.lh_first == NULL) {
292 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
293 } else if((ip->i_flag & IN_CLEANING) &&
294 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
295 #ifdef DEBUG_LFS
296 ivndebug(vp,"vflush/clean");
297 #endif
298 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
299 }
300 else if(lfs_dostats) {
301 if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
302 ++lfs_stats.vflush_invoked;
303 #ifdef DEBUG_LFS
304 ivndebug(vp,"vflush");
305 #endif
306 }
307
308 #ifdef DIAGNOSTIC
309 /* XXX KS This actually can happen right now, though it shouldn't(?) */
310 if(vp->v_flag & VDIROP) {
311 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
312 /* panic("VDIROP being flushed...this can\'t happen"); */
313 }
314 if(vp->v_usecount<0) {
315 printf("usecount=%d\n",vp->v_usecount);
316 panic("lfs_vflush: usecount<0");
317 }
318 #endif
319
320 do {
321 do {
322 if (vp->v_dirtyblkhd.lh_first != NULL)
323 lfs_writefile(fs, sp, vp);
324 } while (lfs_writeinode(fs, sp, ip));
325 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
326
327 if(lfs_dostats) {
328 ++lfs_stats.nwrites;
329 if (sp->seg_flags & SEGM_SYNC)
330 ++lfs_stats.nsync_writes;
331 if (sp->seg_flags & SEGM_CKP)
332 ++lfs_stats.ncheckpoints;
333 }
334 lfs_segunlock(fs);
335
336 CLR_FLUSHING(fs,vp);
337 return (0);
338 }
339
340 #ifdef DEBUG_LFS_VERBOSE
341 # define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
342 #else
343 # define vndebug(vp,str)
344 #endif
345
346 int
347 lfs_writevnodes(fs, mp, sp, op)
348 struct lfs *fs;
349 struct mount *mp;
350 struct segment *sp;
351 int op;
352 {
353 struct inode *ip;
354 struct vnode *vp;
355 int inodes_written=0, only_cleaning;
356 int needs_unlock;
357
358 #ifndef LFS_NO_BACKVP_HACK
359 /* BEGIN HACK */
360 #define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
361 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
362 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
363
364 /* Find last vnode. */
365 loop: for (vp = mp->mnt_vnodelist.lh_first;
366 vp && vp->v_mntvnodes.le_next != NULL;
367 vp = vp->v_mntvnodes.le_next);
368 for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
369 #else
370 loop:
371 for (vp = mp->mnt_vnodelist.lh_first;
372 vp != NULL;
373 vp = vp->v_mntvnodes.le_next) {
374 #endif
375 /*
376 * If the vnode that we are about to sync is no longer
377 * associated with this mount point, start over.
378 */
379 if (vp->v_mount != mp) {
380 printf("lfs_writevnodes: starting over\n");
381 goto loop;
382 }
383
384 ip = VTOI(vp);
385 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
386 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
387 vndebug(vp,"dirop");
388 continue;
389 }
390
391 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
392 vndebug(vp,"empty");
393 continue;
394 }
395
396 if (vp->v_type == VNON) {
397 continue;
398 }
399
400 if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
401 && vp != fs->lfs_flushvp
402 && !(ip->i_flag & IN_CLEANING)) {
403 vndebug(vp,"cleaning");
404 continue;
405 }
406
407 if (lfs_vref(vp)) {
408 vndebug(vp,"vref");
409 continue;
410 }
411
412 needs_unlock = 0;
413 if (VOP_ISLOCKED(vp)) {
414 if (vp != fs->lfs_ivnode &&
415 vp->v_lock.lk_lockholder != curproc->p_pid) {
416 #ifdef DEBUG_LFS
417 printf("lfs_writevnodes: not writing ino %d,"
418 " locked by pid %d\n",
419 VTOI(vp)->i_number,
420 vp->v_lock.lk_lockholder);
421 #endif
422 lfs_vunref(vp);
423 continue;
424 }
425 } else if (vp != fs->lfs_ivnode) {
426 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
427 needs_unlock = 1;
428 }
429
430 only_cleaning = 0;
431 /*
432 * Write the inode/file if dirty and it's not the IFILE.
433 */
434 if ((ip->i_flag & IN_ALLMOD) ||
435 (vp->v_dirtyblkhd.lh_first != NULL))
436 {
437 only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
438
439 if(ip->i_number != LFS_IFILE_INUM
440 && vp->v_dirtyblkhd.lh_first != NULL)
441 {
442 lfs_writefile(fs, sp, vp);
443 }
444 if(vp->v_dirtyblkhd.lh_first != NULL) {
445 if(WRITEINPROG(vp)) {
446 #ifdef DEBUG_LFS
447 ivndebug(vp,"writevnodes/write2");
448 #endif
449 } else if(!(ip->i_flag & IN_ALLMOD)) {
450 #ifdef DEBUG_LFS
451 printf("<%d>",ip->i_number);
452 #endif
453 LFS_SET_UINO(ip, IN_MODIFIED);
454 }
455 }
456 (void) lfs_writeinode(fs, sp, ip);
457 inodes_written++;
458 }
459
460 if (needs_unlock)
461 VOP_UNLOCK(vp, 0);
462
463 if (lfs_clean_vnhead && only_cleaning)
464 lfs_vunref_head(vp);
465 else
466 lfs_vunref(vp);
467 }
468 return inodes_written;
469 }
470
471 int
472 lfs_segwrite(mp, flags)
473 struct mount *mp;
474 int flags; /* Do a checkpoint. */
475 {
476 struct buf *bp;
477 struct inode *ip;
478 struct lfs *fs;
479 struct segment *sp;
480 struct vnode *vp;
481 SEGUSE *segusep;
482 ufs_daddr_t ibno;
483 int do_ckp, did_ckp, error, i;
484 int writer_set = 0;
485 int dirty;
486
487 fs = VFSTOUFS(mp)->um_lfs;
488
489 if (fs->lfs_ronly)
490 return EROFS;
491
492 lfs_imtime(fs);
493
494 /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
495 (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
496
497 #if 0
498 /*
499 * If we are not the cleaner, and there is no space available,
500 * wait until cleaner writes.
501 */
502 if(!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
503 (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
504 {
505 while (fs->lfs_avail <= 0) {
506 LFS_CLEANERINFO(cip, fs, bp);
507 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
508
509 wakeup(&lfs_allclean_wakeup);
510 wakeup(&fs->lfs_nextseg);
511 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
512 0);
513 if (error) {
514 return (error);
515 }
516 }
517 }
518 #endif
519 /*
520 * Allocate a segment structure and enough space to hold pointers to
521 * the maximum possible number of buffers which can be described in a
522 * single summary block.
523 */
524 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
525 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
526 sp = fs->lfs_sp;
527
528 /*
529 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
530 * in which case we have to flush *all* buffers off of this vnode.
531 * We don't care about other nodes, but write any non-dirop nodes
532 * anyway in anticipation of another getnewvnode().
533 *
534 * If we're cleaning we only write cleaning and ifile blocks, and
535 * no dirops, since otherwise we'd risk corruption in a crash.
536 */
537 if(sp->seg_flags & SEGM_CLEAN)
538 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
539 else {
540 lfs_writevnodes(fs, mp, sp, VN_REG);
541 if(!fs->lfs_dirops || !fs->lfs_flushvp) {
542 while(fs->lfs_dirops)
543 if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
544 "lfs writer", 0)))
545 {
546 free(sp->bpp, M_SEGMENT);
547 free(sp, M_SEGMENT);
548 return (error);
549 }
550 fs->lfs_writer++;
551 writer_set=1;
552 lfs_writevnodes(fs, mp, sp, VN_DIROP);
553 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
554 }
555 }
556
557 /*
558 * If we are doing a checkpoint, mark everything since the
559 * last checkpoint as no longer ACTIVE.
560 */
561 if (do_ckp) {
562 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
563 --ibno >= fs->lfs_cleansz; ) {
564 dirty = 0;
565 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
566
567 panic("lfs_segwrite: ifile read");
568 segusep = (SEGUSE *)bp->b_data;
569 for (i = fs->lfs_sepb; i--; segusep++) {
570 if (segusep->su_flags & SEGUSE_ACTIVE) {
571 segusep->su_flags &= ~SEGUSE_ACTIVE;
572 ++dirty;
573 }
574 }
575
576 /* But the current segment is still ACTIVE */
577 segusep = (SEGUSE *)bp->b_data;
578 if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
579 (ibno-fs->lfs_cleansz)) {
580 segusep[datosn(fs, fs->lfs_curseg) %
581 fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
582 --dirty;
583 }
584 if (dirty)
585 error = VOP_BWRITE(bp); /* Ifile */
586 else
587 brelse(bp);
588 }
589 }
590
591 did_ckp = 0;
592 if (do_ckp || fs->lfs_doifile) {
593 do {
594 vp = fs->lfs_ivnode;
595
596 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
597
598 ip = VTOI(vp);
599 if (vp->v_dirtyblkhd.lh_first != NULL)
600 lfs_writefile(fs, sp, vp);
601 if (ip->i_flag & IN_ALLMOD)
602 ++did_ckp;
603 (void) lfs_writeinode(fs, sp, ip);
604
605 vput(vp);
606 } while (lfs_writeseg(fs, sp) && do_ckp);
607
608 /* The ifile should now be all clear */
609 LFS_CLR_UINO(ip, IN_ALLMOD);
610 } else {
611 (void) lfs_writeseg(fs, sp);
612 }
613
614 /*
615 * If the I/O count is non-zero, sleep until it reaches zero.
616 * At the moment, the user's process hangs around so we can
617 * sleep.
618 */
619 fs->lfs_doifile = 0;
620 if(writer_set && --fs->lfs_writer==0)
621 wakeup(&fs->lfs_dirops);
622
623 /*
624 * If we didn't write the Ifile, we didn't really do anything.
625 * That means that (1) there is a checkpoint on disk and (2)
626 * nothing has changed since it was written.
627 *
628 * Take the flags off of the segment so that lfs_segunlock
629 * doesn't have to write the superblock either.
630 */
631 if (did_ckp == 0) {
632 sp->seg_flags &= ~(SEGM_SYNC|SEGM_CKP);
633 /* if(do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
634 }
635
636 if(lfs_dostats) {
637 ++lfs_stats.nwrites;
638 if (sp->seg_flags & SEGM_SYNC)
639 ++lfs_stats.nsync_writes;
640 if (sp->seg_flags & SEGM_CKP)
641 ++lfs_stats.ncheckpoints;
642 }
643 lfs_segunlock(fs);
644 return (0);
645 }
646
647 /*
648 * Write the dirty blocks associated with a vnode.
649 */
650 void
651 lfs_writefile(fs, sp, vp)
652 struct lfs *fs;
653 struct segment *sp;
654 struct vnode *vp;
655 {
656 struct buf *bp;
657 struct finfo *fip;
658 IFILE *ifp;
659
660
661 if (sp->seg_bytes_left < fs->lfs_bsize ||
662 sp->sum_bytes_left < sizeof(struct finfo))
663 (void) lfs_writeseg(fs, sp);
664
665 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
666 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
667
668 if(vp->v_flag & VDIROP)
669 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
670
671 fip = sp->fip;
672 fip->fi_nblocks = 0;
673 fip->fi_ino = VTOI(vp)->i_number;
674 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
675 fip->fi_version = ifp->if_version;
676 brelse(bp);
677
678 if(sp->seg_flags & SEGM_CLEAN)
679 {
680 lfs_gather(fs, sp, vp, lfs_match_fake);
681 /*
682 * For a file being flushed, we need to write *all* blocks.
683 * This means writing the cleaning blocks first, and then
684 * immediately following with any non-cleaning blocks.
685 * The same is true of the Ifile since checkpoints assume
686 * that all valid Ifile blocks are written.
687 */
688 if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
689 lfs_gather(fs, sp, vp, lfs_match_data);
690 } else
691 lfs_gather(fs, sp, vp, lfs_match_data);
692
693 /*
694 * It may not be necessary to write the meta-data blocks at this point,
695 * as the roll-forward recovery code should be able to reconstruct the
696 * list.
697 *
698 * We have to write them anyway, though, under two conditions: (1) the
699 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
700 * checkpointing.
701 */
702 if(lfs_writeindir
703 || IS_FLUSHING(fs,vp)
704 || (sp->seg_flags & SEGM_CKP))
705 {
706 lfs_gather(fs, sp, vp, lfs_match_indir);
707 lfs_gather(fs, sp, vp, lfs_match_dindir);
708 lfs_gather(fs, sp, vp, lfs_match_tindir);
709 }
710 fip = sp->fip;
711 if (fip->fi_nblocks != 0) {
712 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
713 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
714 sp->start_lbp = &sp->fip->fi_blocks[0];
715 } else {
716 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
717 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
718 }
719 }
720
721 int
722 lfs_writeinode(fs, sp, ip)
723 struct lfs *fs;
724 struct segment *sp;
725 struct inode *ip;
726 {
727 struct buf *bp, *ibp;
728 struct dinode *cdp;
729 IFILE *ifp;
730 SEGUSE *sup;
731 ufs_daddr_t daddr;
732 daddr_t *daddrp;
733 ino_t ino;
734 int error, i, ndx;
735 int redo_ifile = 0;
736 struct timespec ts;
737 int gotblk=0;
738
739 if (!(ip->i_flag & IN_ALLMOD))
740 return(0);
741
742 /* Allocate a new inode block if necessary. */
743 if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
744 /* Allocate a new segment if necessary. */
745 if (sp->seg_bytes_left < fs->lfs_bsize ||
746 sp->sum_bytes_left < sizeof(ufs_daddr_t))
747 (void) lfs_writeseg(fs, sp);
748
749 /* Get next inode block. */
750 daddr = fs->lfs_offset;
751 fs->lfs_offset += fsbtodb(fs, 1);
752 sp->ibp = *sp->cbpp++ =
753 getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
754 gotblk++;
755
756 /* Zero out inode numbers */
757 for (i = 0; i < INOPB(fs); ++i)
758 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
759
760 ++sp->start_bpp;
761 fs->lfs_avail -= fsbtodb(fs, 1);
762 /* Set remaining space counters. */
763 sp->seg_bytes_left -= fs->lfs_bsize;
764 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
765 ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
766 sp->ninodes / INOPB(fs) - 1;
767 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
768 }
769
770 /* Update the inode times and copy the inode onto the inode page. */
771 TIMEVAL_TO_TIMESPEC(&time, &ts);
772 LFS_ITIMES(ip, &ts, &ts, &ts);
773
774 /*
775 * If this is the Ifile, and we've already written the Ifile in this
776 * partial segment, just overwrite it (it's not on disk yet) and
777 * continue.
778 *
779 * XXX we know that the bp that we get the second time around has
780 * already been gathered.
781 */
782 if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
783 *(sp->idp) = ip->i_din.ffs_din;
784 return 0;
785 }
786
787 bp = sp->ibp;
788 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
789 *cdp = ip->i_din.ffs_din;
790
791 /*
792 * If we are cleaning, ensure that we don't write UNWRITTEN disk
793 * addresses to disk.
794 */
795 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
796 #ifdef DEBUG_LFS
797 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
798 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
799 #endif
800 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
801 daddrp++) {
802 if (*daddrp == UNWRITTEN) {
803 #ifdef DEBUG_LFS
804 printf("lfs_writeinode: wiping UNWRITTEN\n");
805 #endif
806 *daddrp = 0;
807 }
808 }
809 }
810
811 if(ip->i_flag & IN_CLEANING)
812 LFS_CLR_UINO(ip, IN_CLEANING);
813 else {
814 /* XXX IN_ALLMOD */
815 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
816 IN_UPDATE);
817 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
818 LFS_CLR_UINO(ip, IN_MODIFIED);
819 #ifdef DEBUG_LFS
820 else
821 printf("lfs_writeinode: ino %d: real blks=%d, "
822 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
823 ip->i_lfs_effnblks);
824 #endif
825 }
826
827 if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
828 sp->idp = ((struct dinode *)bp->b_data) +
829 (sp->ninodes % INOPB(fs));
830 if(gotblk) {
831 LFS_LOCK_BUF(bp);
832 brelse(bp);
833 }
834
835 /* Increment inode count in segment summary block. */
836 ++((SEGSUM *)(sp->segsum))->ss_ninos;
837
838 /* If this page is full, set flag to allocate a new page. */
839 if (++sp->ninodes % INOPB(fs) == 0)
840 sp->ibp = NULL;
841
842 /*
843 * If updating the ifile, update the super-block. Update the disk
844 * address and access times for this inode in the ifile.
845 */
846 ino = ip->i_number;
847 if (ino == LFS_IFILE_INUM) {
848 daddr = fs->lfs_idaddr;
849 fs->lfs_idaddr = bp->b_blkno;
850 } else {
851 LFS_IENTRY(ifp, fs, ino, ibp);
852 daddr = ifp->if_daddr;
853 ifp->if_daddr = bp->b_blkno;
854 #ifdef LFS_DEBUG_NEXTFREE
855 if(ino > 3 && ifp->if_nextfree) {
856 vprint("lfs_writeinode",ITOV(ip));
857 printf("lfs_writeinode: updating free ino %d\n",
858 ip->i_number);
859 }
860 #endif
861 error = VOP_BWRITE(ibp); /* Ifile */
862 }
863
864 /*
865 * Account the inode: it no longer belongs to its former segment,
866 * though it will not belong to the new segment until that segment
867 * is actually written.
868 */
869 #ifdef DEBUG
870 /*
871 * The inode's last address should not be in the current partial
872 * segment, except under exceptional circumstances (lfs_writevnodes
873 * had to start over, and in the meantime more blocks were written
874 * to a vnode). Although the previous inode won't be accounted in
875 * su_nbytes until lfs_writeseg, this shouldn't be a problem as we
876 * have more data blocks in the current partial segment.
877 */
878 if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
879 printf("lfs_writeinode: last inode addr in current pseg "
880 "(ino %d daddr 0x%x)\n", ino, daddr);
881 #endif
882 if (daddr != LFS_UNUSED_DADDR) {
883 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
884 #ifdef DIAGNOSTIC
885 if (sup->su_nbytes < DINODE_SIZE) {
886 printf("lfs_writeinode: negative bytes "
887 "(segment %d short by %d)\n",
888 datosn(fs, daddr),
889 (int)DINODE_SIZE - sup->su_nbytes);
890 panic("lfs_writeinode: negative bytes");
891 sup->su_nbytes = DINODE_SIZE;
892 }
893 #endif
894 sup->su_nbytes -= DINODE_SIZE;
895 redo_ifile =
896 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
897 error = VOP_BWRITE(bp); /* Ifile */
898 }
899 return (redo_ifile);
900 }
901
902 int
903 lfs_gatherblock(sp, bp, sptr)
904 struct segment *sp;
905 struct buf *bp;
906 int *sptr;
907 {
908 struct lfs *fs;
909 int version;
910
911 /*
912 * If full, finish this segment. We may be doing I/O, so
913 * release and reacquire the splbio().
914 */
915 #ifdef DIAGNOSTIC
916 if (sp->vp == NULL)
917 panic ("lfs_gatherblock: Null vp in segment");
918 #endif
919 fs = sp->fs;
920 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
921 sp->seg_bytes_left < bp->b_bcount) {
922 if (sptr)
923 splx(*sptr);
924 lfs_updatemeta(sp);
925
926 version = sp->fip->fi_version;
927 (void) lfs_writeseg(fs, sp);
928
929 sp->fip->fi_version = version;
930 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
931 /* Add the current file to the segment summary. */
932 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
933 sp->sum_bytes_left -=
934 sizeof(struct finfo) - sizeof(ufs_daddr_t);
935
936 if (sptr)
937 *sptr = splbio();
938 return(1);
939 }
940
941 #ifdef DEBUG
942 if(bp->b_flags & B_GATHERED) {
943 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
944 sp->fip->fi_ino, bp->b_lblkno);
945 return(0);
946 }
947 #endif
948 /* Insert into the buffer list, update the FINFO block. */
949 bp->b_flags |= B_GATHERED;
950 *sp->cbpp++ = bp;
951 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
952
953 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
954 sp->seg_bytes_left -= bp->b_bcount;
955 return(0);
956 }
957
958 int
959 lfs_gather(fs, sp, vp, match)
960 struct lfs *fs;
961 struct segment *sp;
962 struct vnode *vp;
963 int (*match) __P((struct lfs *, struct buf *));
964 {
965 struct buf *bp;
966 int s, count=0;
967
968 sp->vp = vp;
969 s = splbio();
970
971 #ifndef LFS_NO_BACKBUF_HACK
972 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
973 #else /* LFS_NO_BACKBUF_HACK */
974 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
975 # define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
976 # define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
977 # define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
978 /* Find last buffer. */
979 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
980 bp = bp->b_vnbufs.le_next);
981 for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
982 #endif /* LFS_NO_BACKBUF_HACK */
983 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
984 continue;
985 if(vp->v_type == VBLK) {
986 /* For block devices, just write the blocks. */
987 /* XXX Do we really need to even do this? */
988 #ifdef DEBUG_LFS
989 if(count==0)
990 printf("BLK(");
991 printf(".");
992 #endif
993 /* Get the block before bwrite, so we don't corrupt the free list */
994 bp->b_flags |= B_BUSY;
995 bremfree(bp);
996 bwrite(bp);
997 } else {
998 #ifdef DIAGNOSTIC
999 if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
1000 printf("lfs_gather: lbn %d is B_INVAL\n",
1001 bp->b_lblkno);
1002 VOP_PRINT(bp->b_vp);
1003 }
1004 if (!(bp->b_flags & B_DELWRI))
1005 panic("lfs_gather: bp not B_DELWRI");
1006 if (!(bp->b_flags & B_LOCKED)) {
1007 printf("lfs_gather: lbn %d blk %d"
1008 " not B_LOCKED\n", bp->b_lblkno,
1009 bp->b_blkno);
1010 VOP_PRINT(bp->b_vp);
1011 panic("lfs_gather: bp not B_LOCKED");
1012 }
1013 #endif
1014 if (lfs_gatherblock(sp, bp, &s)) {
1015 goto loop;
1016 }
1017 }
1018 count++;
1019 }
1020 splx(s);
1021 #ifdef DEBUG_LFS
1022 if(vp->v_type == VBLK && count)
1023 printf(")\n");
1024 #endif
1025 lfs_updatemeta(sp);
1026 sp->vp = NULL;
1027 return count;
1028 }
1029
1030 /*
1031 * Update the metadata that points to the blocks listed in the FINFO
1032 * array.
1033 */
1034 void
1035 lfs_updatemeta(sp)
1036 struct segment *sp;
1037 {
1038 SEGUSE *sup;
1039 struct buf *bp;
1040 struct lfs *fs;
1041 struct vnode *vp;
1042 struct indir a[NIADDR + 2], *ap;
1043 struct inode *ip;
1044 ufs_daddr_t daddr, lbn, off;
1045 daddr_t ooff;
1046 int error, i, nblocks, num;
1047 int bb;
1048
1049 vp = sp->vp;
1050 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1051 if (nblocks < 0)
1052 panic("This is a bad thing\n");
1053 if (vp == NULL || nblocks == 0)
1054 return;
1055
1056 /* Sort the blocks. */
1057 /*
1058 * XXX KS - We have to sort even if the blocks come from the
1059 * cleaner, because there might be other pending blocks on the
1060 * same inode...and if we don't sort, and there are fragments
1061 * present, blocks may be written in the wrong place.
1062 */
1063 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1064 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1065
1066 /*
1067 * Record the length of the last block in case it's a fragment.
1068 * If there are indirect blocks present, they sort last. An
1069 * indirect block will be lfs_bsize and its presence indicates
1070 * that you cannot have fragments.
1071 */
1072 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1073
1074 /*
1075 * Assign disk addresses, and update references to the logical
1076 * block and the segment usage information.
1077 */
1078 fs = sp->fs;
1079 for (i = nblocks; i--; ++sp->start_bpp) {
1080 lbn = *sp->start_lbp++;
1081
1082 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
1083 if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
1084 printf("lfs_updatemeta: ino %d blk %d"
1085 " has same lbn and daddr\n",
1086 VTOI(vp)->i_number, off);
1087 }
1088 #ifdef DIAGNOSTIC
1089 if((*sp->start_bpp)->b_bcount < fs->lfs_bsize && i != 0)
1090 panic("lfs_updatemeta: fragment is not last block\n");
1091 #endif
1092 bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
1093 fs->lfs_offset += bb;
1094 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1095 if (error)
1096 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1097 ip = VTOI(vp);
1098 switch (num) {
1099 case 0:
1100 ooff = ip->i_ffs_db[lbn];
1101 #ifdef DEBUG
1102 if (ooff == 0) {
1103 printf("lfs_updatemeta[1]: warning: writing "
1104 "ino %d lbn %d at 0x%x, was 0x0\n",
1105 ip->i_number, lbn, off);
1106 }
1107 #endif
1108 if (ooff == UNWRITTEN)
1109 ip->i_ffs_blocks += bb;
1110 ip->i_ffs_db[lbn] = off;
1111 break;
1112 case 1:
1113 ooff = ip->i_ffs_ib[a[0].in_off];
1114 #ifdef DEBUG
1115 if (ooff == 0) {
1116 printf("lfs_updatemeta[2]: warning: writing "
1117 "ino %d lbn %d at 0x%x, was 0x0\n",
1118 ip->i_number, lbn, off);
1119 }
1120 #endif
1121 if (ooff == UNWRITTEN)
1122 ip->i_ffs_blocks += bb;
1123 ip->i_ffs_ib[a[0].in_off] = off;
1124 break;
1125 default:
1126 ap = &a[num - 1];
1127 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1128 panic("lfs_updatemeta: bread bno %d",
1129 ap->in_lbn);
1130
1131 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1132 #if DEBUG
1133 if (ooff == 0) {
1134 printf("lfs_updatemeta[3]: warning: writing "
1135 "ino %d lbn %d at 0x%x, was 0x0\n",
1136 ip->i_number, lbn, off);
1137 }
1138 #endif
1139 if (ooff == UNWRITTEN)
1140 ip->i_ffs_blocks += bb;
1141 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1142 (void) VOP_BWRITE(bp);
1143 }
1144 #ifdef DEBUG
1145 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1146 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1147 "in same pseg\n", VTOI(sp->vp)->i_number,
1148 (*sp->start_bpp)->b_lblkno, daddr);
1149 }
1150 #endif
1151 /* Update segment usage information. */
1152 if (daddr > 0) {
1153 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
1154 #ifdef DIAGNOSTIC
1155 if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
1156 /* XXX -- Change to a panic. */
1157 printf("lfs_updatemeta: negative bytes "
1158 "(segment %d short by %ld)\n",
1159 datosn(fs, daddr),
1160 (*sp->start_bpp)->b_bcount -
1161 sup->su_nbytes);
1162 printf("lfs_updatemeta: ino %d, lbn %d, "
1163 "addr = %x\n", VTOI(sp->vp)->i_number,
1164 (*sp->start_bpp)->b_lblkno, daddr);
1165 panic("lfs_updatemeta: negative bytes");
1166 sup->su_nbytes = (*sp->start_bpp)->b_bcount;
1167 }
1168 #endif
1169 sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
1170 error = VOP_BWRITE(bp); /* Ifile */
1171 }
1172 }
1173 }
1174
1175 /*
1176 * Start a new segment.
1177 */
1178 int
1179 lfs_initseg(fs)
1180 struct lfs *fs;
1181 {
1182 struct segment *sp;
1183 SEGUSE *sup;
1184 SEGSUM *ssp;
1185 struct buf *bp;
1186 int repeat;
1187
1188 sp = fs->lfs_sp;
1189
1190 repeat = 0;
1191 /* Advance to the next segment. */
1192 if (!LFS_PARTIAL_FITS(fs)) {
1193 /* lfs_avail eats the remaining space */
1194 fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
1195 fs->lfs_curseg);
1196 /* Wake up any cleaning procs waiting on this file system. */
1197 wakeup(&lfs_allclean_wakeup);
1198 wakeup(&fs->lfs_nextseg);
1199 lfs_newseg(fs);
1200 repeat = 1;
1201 fs->lfs_offset = fs->lfs_curseg;
1202 sp->seg_number = datosn(fs, fs->lfs_curseg);
1203 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
1204 /*
1205 * If the segment contains a superblock, update the offset
1206 * and summary address to skip over it.
1207 */
1208 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1209 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1210 fs->lfs_offset += btodb(LFS_SBPAD);
1211 sp->seg_bytes_left -= LFS_SBPAD;
1212 }
1213 brelse(bp);
1214 } else {
1215 sp->seg_number = datosn(fs, fs->lfs_curseg);
1216 sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
1217 (fs->lfs_offset - fs->lfs_curseg));
1218 }
1219 fs->lfs_lastpseg = fs->lfs_offset;
1220
1221 sp->fs = fs;
1222 sp->ibp = NULL;
1223 sp->idp = NULL;
1224 sp->ninodes = 0;
1225
1226 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1227 sp->cbpp = sp->bpp;
1228 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
1229 fs->lfs_offset, LFS_SUMMARY_SIZE);
1230 sp->segsum = (*sp->cbpp)->b_data;
1231 bzero(sp->segsum, LFS_SUMMARY_SIZE);
1232 sp->start_bpp = ++sp->cbpp;
1233 fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
1234
1235 /* Set point to SEGSUM, initialize it. */
1236 ssp = sp->segsum;
1237 ssp->ss_next = fs->lfs_nextseg;
1238 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1239 ssp->ss_magic = SS_MAGIC;
1240
1241 /* Set pointer to first FINFO, initialize it. */
1242 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
1243 sp->fip->fi_nblocks = 0;
1244 sp->start_lbp = &sp->fip->fi_blocks[0];
1245 sp->fip->fi_lastlength = 0;
1246
1247 sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
1248 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
1249
1250 return(repeat);
1251 }
1252
1253 /*
1254 * Return the next segment to write.
1255 */
1256 void
1257 lfs_newseg(fs)
1258 struct lfs *fs;
1259 {
1260 CLEANERINFO *cip;
1261 SEGUSE *sup;
1262 struct buf *bp;
1263 int curseg, isdirty, sn;
1264
1265 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
1266 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1267 sup->su_nbytes = 0;
1268 sup->su_nsums = 0;
1269 sup->su_ninos = 0;
1270 (void) VOP_BWRITE(bp); /* Ifile */
1271
1272 LFS_CLEANERINFO(cip, fs, bp);
1273 --cip->clean;
1274 ++cip->dirty;
1275 fs->lfs_nclean = cip->clean;
1276 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1277
1278 fs->lfs_lastseg = fs->lfs_curseg;
1279 fs->lfs_curseg = fs->lfs_nextseg;
1280 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
1281 sn = (sn + 1) % fs->lfs_nseg;
1282 if (sn == curseg)
1283 panic("lfs_nextseg: no clean segments");
1284 LFS_SEGENTRY(sup, fs, sn, bp);
1285 isdirty = sup->su_flags & SEGUSE_DIRTY;
1286 brelse(bp);
1287 if (!isdirty)
1288 break;
1289 }
1290
1291 ++fs->lfs_nactive;
1292 fs->lfs_nextseg = sntoda(fs, sn);
1293 if(lfs_dostats) {
1294 ++lfs_stats.segsused;
1295 }
1296 }
1297
1298 int
1299 lfs_writeseg(fs, sp)
1300 struct lfs *fs;
1301 struct segment *sp;
1302 {
1303 struct buf **bpp, *bp, *cbp, *newbp;
1304 SEGUSE *sup;
1305 SEGSUM *ssp;
1306 dev_t i_dev;
1307 u_long *datap, *dp;
1308 int do_again, i, nblocks, s;
1309 #ifdef LFS_TRACK_IOS
1310 int j;
1311 #endif
1312 int (*strategy)__P((void *));
1313 struct vop_strategy_args vop_strategy_a;
1314 u_short ninos;
1315 struct vnode *devvp;
1316 char *p;
1317 struct vnode *vn;
1318 struct inode *ip;
1319 daddr_t *daddrp;
1320 int changed;
1321 #if defined(DEBUG) && defined(LFS_PROPELLER)
1322 static int propeller;
1323 char propstring[4] = "-\\|/";
1324
1325 printf("%c\b",propstring[propeller++]);
1326 if(propeller==4)
1327 propeller = 0;
1328 #endif
1329
1330 /*
1331 * If there are no buffers other than the segment summary to write
1332 * and it is not a checkpoint, don't do anything. On a checkpoint,
1333 * even if there aren't any buffers, you need to write the superblock.
1334 */
1335 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1336 return (0);
1337
1338 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1339 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1340
1341 /* Update the segment usage information. */
1342 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1343
1344 /* Loop through all blocks, except the segment summary. */
1345 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1346 if((*bpp)->b_vp != devvp)
1347 sup->su_nbytes += (*bpp)->b_bcount;
1348 }
1349
1350 ssp = (SEGSUM *)sp->segsum;
1351
1352 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1353 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1354 /* sup->su_nbytes += LFS_SUMMARY_SIZE; */
1355 sup->su_lastmod = time.tv_sec;
1356 sup->su_ninos += ninos;
1357 ++sup->su_nsums;
1358 fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
1359 fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
1360
1361 do_again = !(bp->b_flags & B_GATHERED);
1362 (void)VOP_BWRITE(bp); /* Ifile */
1363 /*
1364 * Mark blocks B_BUSY, to prevent then from being changed between
1365 * the checksum computation and the actual write.
1366 *
1367 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1368 * there are any, replace them with copies that have UNASSIGNED
1369 * instead.
1370 */
1371 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1372 ++bpp;
1373 if((*bpp)->b_flags & B_CALL)
1374 continue;
1375 bp = *bpp;
1376 again:
1377 s = splbio();
1378 if(bp->b_flags & B_BUSY) {
1379 #ifdef DEBUG
1380 printf("lfs_writeseg: avoiding potential data "
1381 "summary corruption for ino %d, lbn %d\n",
1382 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1383 #endif
1384 bp->b_flags |= B_WANTED;
1385 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1386 splx(s);
1387 goto again;
1388 }
1389 bp->b_flags |= B_BUSY;
1390 splx(s);
1391 /* Check and replace indirect block UNWRITTEN bogosity */
1392 if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1393 VTOI(bp->b_vp)->i_ffs_blocks !=
1394 VTOI(bp->b_vp)->i_lfs_effnblks) {
1395 #ifdef DEBUG_LFS
1396 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1397 VTOI(bp->b_vp)->i_number,
1398 VTOI(bp->b_vp)->i_lfs_effnblks,
1399 VTOI(bp->b_vp)->i_ffs_blocks);
1400 #endif
1401 /* Make a copy we'll make changes to */
1402 newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
1403 bp->b_bcount);
1404 newbp->b_blkno = bp->b_blkno;
1405 memcpy(newbp->b_data, bp->b_data,
1406 newbp->b_bcount);
1407 *bpp = newbp;
1408
1409 changed = 0;
1410 for (daddrp = (daddr_t *)(newbp->b_data);
1411 daddrp < (daddr_t *)(newbp->b_data +
1412 newbp->b_bcount); daddrp++) {
1413 if (*daddrp == UNWRITTEN) {
1414 ++changed;
1415 #ifdef DEBUG_LFS
1416 printf("lfs_writeseg: replacing UNWRITTEN\n");
1417 #endif
1418 *daddrp = 0;
1419 }
1420 }
1421 /*
1422 * Get rid of the old buffer. Don't mark it clean,
1423 * though, if it still has dirty data on it.
1424 */
1425 if (changed) {
1426 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1427 if (bp->b_flags & B_CALL)
1428 lfs_freebuf(bp);
1429 else {
1430 /* Still on free list, leave it there */
1431 s = splbio();
1432 bp->b_flags &= ~B_BUSY;
1433 if (bp->b_flags & B_WANTED)
1434 wakeup(bp);
1435 splx(s);
1436 /*
1437 * We have to re-decrement lfs_avail
1438 * since this block is going to come
1439 * back around to us in the next
1440 * segment.
1441 */
1442 fs->lfs_avail -= btodb(bp->b_bcount);
1443 }
1444 } else {
1445 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1446 B_GATHERED);
1447 LFS_UNLOCK_BUF(bp);
1448 if (bp->b_flags & B_CALL)
1449 lfs_freebuf(bp);
1450 else {
1451 bremfree(bp);
1452 bp->b_flags |= B_DONE;
1453 reassignbuf(bp, bp->b_vp);
1454 brelse(bp);
1455 }
1456 }
1457
1458 }
1459 }
1460 /*
1461 * Compute checksum across data and then across summary; the first
1462 * block (the summary block) is skipped. Set the create time here
1463 * so that it's guaranteed to be later than the inode mod times.
1464 *
1465 * XXX
1466 * Fix this to do it inline, instead of malloc/copy.
1467 */
1468 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
1469 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1470 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1471 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
1472 panic("lfs_writeseg: copyin failed [1]: "
1473 "ino %d blk %d",
1474 VTOI((*bpp)->b_vp)->i_number,
1475 (*bpp)->b_lblkno);
1476 } else
1477 *dp++ = ((u_long *)(*bpp)->b_data)[0];
1478 }
1479 ssp->ss_create = time.tv_sec;
1480 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
1481 ssp->ss_sumsum =
1482 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
1483 free(datap, M_SEGMENT);
1484
1485 fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
1486
1487 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1488
1489 /*
1490 * When we simply write the blocks we lose a rotation for every block
1491 * written. To avoid this problem, we allocate memory in chunks, copy
1492 * the buffers into the chunk and write the chunk. CHUNKSIZE is the
1493 * largest size I/O devices can handle.
1494 * When the data is copied to the chunk, turn off the B_LOCKED bit
1495 * and brelse the buffer (which will move them to the LRU list). Add
1496 * the B_CALL flag to the buffer header so we can count I/O's for the
1497 * checkpoints and so we can release the allocated memory.
1498 *
1499 * XXX
1500 * This should be removed if the new virtual memory system allows us to
1501 * easily make the buffers contiguous in kernel memory and if that's
1502 * fast enough.
1503 */
1504
1505 #define CHUNKSIZE MAXPHYS
1506
1507 if(devvp==NULL)
1508 panic("devvp is NULL");
1509 for (bpp = sp->bpp,i = nblocks; i;) {
1510 cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
1511 cbp->b_dev = i_dev;
1512 cbp->b_flags |= B_ASYNC | B_BUSY;
1513 cbp->b_bcount = 0;
1514
1515 #ifdef DIAGNOSTIC
1516 if(datosn(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount) - 1) !=
1517 datosn(fs, cbp->b_blkno)) {
1518 panic("lfs_writeseg: Segment overwrite");
1519 }
1520 #endif
1521
1522 s = splbio();
1523 if(fs->lfs_iocount >= LFS_THROTTLE) {
1524 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
1525 }
1526 ++fs->lfs_iocount;
1527 #ifdef LFS_TRACK_IOS
1528 for(j=0;j<LFS_THROTTLE;j++) {
1529 if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
1530 fs->lfs_pending[j] = cbp->b_blkno;
1531 break;
1532 }
1533 }
1534 #endif /* LFS_TRACK_IOS */
1535 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1536 bp = *bpp;
1537
1538 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1539 break;
1540
1541 /*
1542 * Fake buffers from the cleaner are marked as B_INVAL.
1543 * We need to copy the data from user space rather than
1544 * from the buffer indicated.
1545 * XXX == what do I do on an error?
1546 */
1547 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1548 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1549 panic("lfs_writeseg: copyin failed [2]");
1550 } else
1551 bcopy(bp->b_data, p, bp->b_bcount);
1552 p += bp->b_bcount;
1553 cbp->b_bcount += bp->b_bcount;
1554 LFS_UNLOCK_BUF(bp);
1555 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1556 B_GATHERED);
1557 vn = bp->b_vp;
1558 if (bp->b_flags & B_CALL) {
1559 /* if B_CALL, it was created with newbuf */
1560 lfs_freebuf(bp);
1561 } else {
1562 bremfree(bp);
1563 bp->b_flags |= B_DONE;
1564 if(vn)
1565 reassignbuf(bp, vn);
1566 brelse(bp);
1567 }
1568
1569 bpp++;
1570
1571 /*
1572 * If this is the last block for this vnode, but
1573 * there are other blocks on its dirty list,
1574 * set IN_MODIFIED/IN_CLEANING depending on what
1575 * sort of block. Only do this for our mount point,
1576 * not for, e.g., inode blocks that are attached to
1577 * the devvp.
1578 */
1579 if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
1580 && (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
1581 vn->v_mount == fs->lfs_ivnode->v_mount)
1582 {
1583 ip = VTOI(vn);
1584 #ifdef DEBUG_LFS
1585 printf("lfs_writeseg: marking ino %d\n",ip->i_number);
1586 #endif
1587 if(bp->b_flags & B_CALL)
1588 LFS_SET_UINO(ip, IN_CLEANING);
1589 else
1590 LFS_SET_UINO(ip, IN_MODIFIED);
1591 }
1592 /* if(vn->v_dirtyblkhd.lh_first == NULL) */
1593 wakeup(vn);
1594 }
1595 ++cbp->b_vp->v_numoutput;
1596 splx(s);
1597 /*
1598 * XXXX This is a gross and disgusting hack. Since these
1599 * buffers are physically addressed, they hang off the
1600 * device vnode (devvp). As a result, they have no way
1601 * of getting to the LFS superblock or lfs structure to
1602 * keep track of the number of I/O's pending. So, I am
1603 * going to stuff the fs into the saveaddr field of
1604 * the buffer (yuk).
1605 */
1606 cbp->b_saveaddr = (caddr_t)fs;
1607 vop_strategy_a.a_desc = VDESC(vop_strategy);
1608 vop_strategy_a.a_bp = cbp;
1609 (strategy)(&vop_strategy_a);
1610 }
1611 #if 1 || defined(DEBUG)
1612 /*
1613 * After doing a big write, we recalculate how many buffers are
1614 * really still left on the locked queue.
1615 */
1616 s = splbio();
1617 lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
1618 splx(s);
1619 wakeup(&locked_queue_count);
1620 #endif /* 1 || DEBUG */
1621 if(lfs_dostats) {
1622 ++lfs_stats.psegwrites;
1623 lfs_stats.blocktot += nblocks - 1;
1624 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1625 ++lfs_stats.psyncwrites;
1626 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1627 ++lfs_stats.pcleanwrites;
1628 lfs_stats.cleanblocks += nblocks - 1;
1629 }
1630 }
1631 return (lfs_initseg(fs) || do_again);
1632 }
1633
1634 void
1635 lfs_writesuper(fs, daddr)
1636 struct lfs *fs;
1637 daddr_t daddr;
1638 {
1639 struct buf *bp;
1640 dev_t i_dev;
1641 int (*strategy) __P((void *));
1642 int s;
1643 struct vop_strategy_args vop_strategy_a;
1644
1645 #ifdef LFS_CANNOT_ROLLFW
1646 /*
1647 * If we can write one superblock while another is in
1648 * progress, we risk not having a complete checkpoint if we crash.
1649 * So, block here if a superblock write is in progress.
1650 */
1651 s = splbio();
1652 while(fs->lfs_sbactive) {
1653 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
1654 }
1655 fs->lfs_sbactive = daddr;
1656 splx(s);
1657 #endif
1658 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1659 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
1660
1661 /* Set timestamp of this version of the superblock */
1662 fs->lfs_tstamp = time.tv_sec;
1663
1664 /* Checksum the superblock and copy it into a buffer. */
1665 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1666 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
1667 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
1668
1669 bp->b_dev = i_dev;
1670 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
1671 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
1672 bp->b_iodone = lfs_supercallback;
1673 /* XXX KS - same nasty hack as above */
1674 bp->b_saveaddr = (caddr_t)fs;
1675
1676 vop_strategy_a.a_desc = VDESC(vop_strategy);
1677 vop_strategy_a.a_bp = bp;
1678 s = splbio();
1679 ++bp->b_vp->v_numoutput;
1680 ++fs->lfs_iocount;
1681 splx(s);
1682 (strategy)(&vop_strategy_a);
1683 }
1684
1685 /*
1686 * Logical block number match routines used when traversing the dirty block
1687 * chain.
1688 */
1689 int
1690 lfs_match_fake(fs, bp)
1691 struct lfs *fs;
1692 struct buf *bp;
1693 {
1694 return (bp->b_flags & B_CALL);
1695 }
1696
1697 int
1698 lfs_match_data(fs, bp)
1699 struct lfs *fs;
1700 struct buf *bp;
1701 {
1702 return (bp->b_lblkno >= 0);
1703 }
1704
1705 int
1706 lfs_match_indir(fs, bp)
1707 struct lfs *fs;
1708 struct buf *bp;
1709 {
1710 int lbn;
1711
1712 lbn = bp->b_lblkno;
1713 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1714 }
1715
1716 int
1717 lfs_match_dindir(fs, bp)
1718 struct lfs *fs;
1719 struct buf *bp;
1720 {
1721 int lbn;
1722
1723 lbn = bp->b_lblkno;
1724 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1725 }
1726
1727 int
1728 lfs_match_tindir(fs, bp)
1729 struct lfs *fs;
1730 struct buf *bp;
1731 {
1732 int lbn;
1733
1734 lbn = bp->b_lblkno;
1735 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1736 }
1737
1738 /*
1739 * XXX - The only buffers that are going to hit these functions are the
1740 * segment write blocks, or the segment summaries, or the superblocks.
1741 *
1742 * All of the above are created by lfs_newbuf, and so do not need to be
1743 * released via brelse.
1744 */
1745 void
1746 lfs_callback(bp)
1747 struct buf *bp;
1748 {
1749 struct lfs *fs;
1750 #ifdef LFS_TRACK_IOS
1751 int j;
1752 #endif
1753
1754 fs = (struct lfs *)bp->b_saveaddr;
1755 #ifdef DIAGNOSTIC
1756 if (fs->lfs_iocount == 0)
1757 panic("lfs_callback: zero iocount\n");
1758 #endif
1759 if (--fs->lfs_iocount < LFS_THROTTLE)
1760 wakeup(&fs->lfs_iocount);
1761 #ifdef LFS_TRACK_IOS
1762 for(j=0;j<LFS_THROTTLE;j++) {
1763 if(fs->lfs_pending[j]==bp->b_blkno) {
1764 fs->lfs_pending[j] = LFS_UNUSED_DADDR;
1765 wakeup(&(fs->lfs_pending[j]));
1766 break;
1767 }
1768 }
1769 #endif /* LFS_TRACK_IOS */
1770
1771 lfs_freebuf(bp);
1772 }
1773
1774 void
1775 lfs_supercallback(bp)
1776 struct buf *bp;
1777 {
1778 struct lfs *fs;
1779
1780 fs = (struct lfs *)bp->b_saveaddr;
1781 #ifdef LFS_CANNOT_ROLLFW
1782 fs->lfs_sbactive = 0;
1783 wakeup(&fs->lfs_sbactive);
1784 #endif
1785 if (--fs->lfs_iocount < LFS_THROTTLE)
1786 wakeup(&fs->lfs_iocount);
1787 lfs_freebuf(bp);
1788 }
1789
1790 /*
1791 * Shellsort (diminishing increment sort) from Data Structures and
1792 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1793 * see also Knuth Vol. 3, page 84. The increments are selected from
1794 * formula (8), page 95. Roughly O(N^3/2).
1795 */
1796 /*
1797 * This is our own private copy of shellsort because we want to sort
1798 * two parallel arrays (the array of buffer pointers and the array of
1799 * logical block numbers) simultaneously. Note that we cast the array
1800 * of logical block numbers to a unsigned in this routine so that the
1801 * negative block numbers (meta data blocks) sort AFTER the data blocks.
1802 */
1803
1804 void
1805 lfs_shellsort(bp_array, lb_array, nmemb)
1806 struct buf **bp_array;
1807 ufs_daddr_t *lb_array;
1808 int nmemb;
1809 {
1810 static int __rsshell_increments[] = { 4, 1, 0 };
1811 int incr, *incrp, t1, t2;
1812 struct buf *bp_temp;
1813 u_long lb_temp;
1814
1815 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1816 for (t1 = incr; t1 < nmemb; ++t1)
1817 for (t2 = t1 - incr; t2 >= 0;)
1818 if (lb_array[t2] > lb_array[t2 + incr]) {
1819 lb_temp = lb_array[t2];
1820 lb_array[t2] = lb_array[t2 + incr];
1821 lb_array[t2 + incr] = lb_temp;
1822 bp_temp = bp_array[t2];
1823 bp_array[t2] = bp_array[t2 + incr];
1824 bp_array[t2 + incr] = bp_temp;
1825 t2 -= incr;
1826 } else
1827 break;
1828 }
1829
1830 /*
1831 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
1832 */
1833 int
1834 lfs_vref(vp)
1835 struct vnode *vp;
1836 {
1837 /*
1838 * If we return 1 here during a flush, we risk vinvalbuf() not
1839 * being able to flush all of the pages from this vnode, which
1840 * will cause it to panic. So, return 0 if a flush is in progress.
1841 */
1842 if (vp->v_flag & VXLOCK) {
1843 if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1844 return 0;
1845 }
1846 return(1);
1847 }
1848 return (vget(vp, 0));
1849 }
1850
1851 /*
1852 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1853 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1854 */
1855 void
1856 lfs_vunref(vp)
1857 struct vnode *vp;
1858 {
1859 /*
1860 * Analogous to lfs_vref, if the node is flushing, fake it.
1861 */
1862 if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
1863 return;
1864 }
1865
1866 simple_lock(&vp->v_interlock);
1867 #ifdef DIAGNOSTIC
1868 if(vp->v_usecount<=0) {
1869 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
1870 printf("lfs_vunref: flags are 0x%x\n", vp->v_flag);
1871 printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
1872 panic("lfs_vunref: v_usecount<0");
1873 }
1874 #endif
1875 vp->v_usecount--;
1876 if (vp->v_usecount > 0) {
1877 simple_unlock(&vp->v_interlock);
1878 return;
1879 }
1880 /*
1881 * insert at tail of LRU list
1882 */
1883 simple_lock(&vnode_free_list_slock);
1884 if (vp->v_holdcnt > 0)
1885 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
1886 else
1887 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1888 simple_unlock(&vnode_free_list_slock);
1889 simple_unlock(&vp->v_interlock);
1890 }
1891
1892 /*
1893 * We use this when we have vnodes that were loaded in solely for cleaning.
1894 * There is no reason to believe that these vnodes will be referenced again
1895 * soon, since the cleaning process is unrelated to normal filesystem
1896 * activity. Putting cleaned vnodes at the tail of the list has the effect
1897 * of flushing the vnode LRU. So, put vnodes that were loaded only for
1898 * cleaning at the head of the list, instead.
1899 */
1900 void
1901 lfs_vunref_head(vp)
1902 struct vnode *vp;
1903 {
1904 simple_lock(&vp->v_interlock);
1905 #ifdef DIAGNOSTIC
1906 if(vp->v_usecount==0) {
1907 panic("lfs_vunref: v_usecount<0");
1908 }
1909 #endif
1910 vp->v_usecount--;
1911 if (vp->v_usecount > 0) {
1912 simple_unlock(&vp->v_interlock);
1913 return;
1914 }
1915 /*
1916 * insert at head of LRU list
1917 */
1918 simple_lock(&vnode_free_list_slock);
1919 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1920 simple_unlock(&vnode_free_list_slock);
1921 simple_unlock(&vp->v_interlock);
1922 }
1923
1924