Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.8
      1 /*	$NetBSD: lfs_segment.c,v 1.8 1997/06/11 10:09:59 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/namei.h>
     41 #include <sys/kernel.h>
     42 #include <sys/resourcevar.h>
     43 #include <sys/file.h>
     44 #include <sys/stat.h>
     45 #include <sys/buf.h>
     46 #include <sys/proc.h>
     47 #include <sys/conf.h>
     48 #include <sys/vnode.h>
     49 #include <sys/malloc.h>
     50 #include <sys/mount.h>
     51 
     52 #include <miscfs/specfs/specdev.h>
     53 #include <miscfs/fifofs/fifo.h>
     54 
     55 #include <ufs/ufs/quota.h>
     56 #include <ufs/ufs/inode.h>
     57 #include <ufs/ufs/dir.h>
     58 #include <ufs/ufs/ufsmount.h>
     59 #include <ufs/ufs/ufs_extern.h>
     60 
     61 #include <ufs/lfs/lfs.h>
     62 #include <ufs/lfs/lfs_extern.h>
     63 
     64 extern int count_lock_queue __P((void));
     65 
     66 #define MAX_ACTIVE	10
     67 /*
     68  * Determine if it's OK to start a partial in this segment, or if we need
     69  * to go on to a new segment.
     70  */
     71 #define	LFS_PARTIAL_FITS(fs) \
     72 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
     73 	1 << (fs)->lfs_fsbtodb)
     74 
     75 void	 lfs_callback __P((struct buf *));
     76 void	 lfs_gather __P((struct lfs *, struct segment *,
     77 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
     78 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
     79 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
     80 int	 lfs_match_data __P((struct lfs *, struct buf *));
     81 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
     82 int	 lfs_match_indir __P((struct lfs *, struct buf *));
     83 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
     84 void	 lfs_newseg __P((struct lfs *));
     85 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
     86 void	 lfs_supercallback __P((struct buf *));
     87 void	 lfs_updatemeta __P((struct segment *));
     88 int	 lfs_vref __P((struct vnode *));
     89 void	 lfs_vunref __P((struct vnode *));
     90 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
     91 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
     92 int	 lfs_writeseg __P((struct lfs *, struct segment *));
     93 void	 lfs_writesuper __P((struct lfs *));
     94 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
     95 	    struct segment *sp, int dirops));
     96 
     97 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
     98 
     99 /* Statistics Counters */
    100 #define DOSTATS
    101 struct lfs_stats lfs_stats;
    102 
    103 /* op values to lfs_writevnodes */
    104 #define	VN_REG	0
    105 #define	VN_DIROP	1
    106 #define	VN_EMPTY	2
    107 
    108 /*
    109  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    110  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    111  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    112  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    113  */
    114 
    115 int
    116 lfs_vflush(vp)
    117 	struct vnode *vp;
    118 {
    119 	struct inode *ip;
    120 	struct lfs *fs;
    121 	struct segment *sp;
    122 
    123 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    124 	if (fs->lfs_nactive > MAX_ACTIVE)
    125 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
    126 	lfs_seglock(fs, SEGM_SYNC);
    127 	sp = fs->lfs_sp;
    128 
    129 
    130 	ip = VTOI(vp);
    131 	if (vp->v_dirtyblkhd.lh_first == NULL)
    132 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    133 
    134 	do {
    135 		do {
    136 			if (vp->v_dirtyblkhd.lh_first != NULL)
    137 				lfs_writefile(fs, sp, vp);
    138 		} while (lfs_writeinode(fs, sp, ip));
    139 
    140 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    141 
    142 #ifdef DOSTATS
    143 	++lfs_stats.nwrites;
    144 	if (sp->seg_flags & SEGM_SYNC)
    145 		++lfs_stats.nsync_writes;
    146 	if (sp->seg_flags & SEGM_CKP)
    147 		++lfs_stats.ncheckpoints;
    148 #endif
    149 	lfs_segunlock(fs);
    150 	return (0);
    151 }
    152 
    153 void
    154 lfs_writevnodes(fs, mp, sp, op)
    155 	struct lfs *fs;
    156 	struct mount *mp;
    157 	struct segment *sp;
    158 	int op;
    159 {
    160 	struct inode *ip;
    161 	struct vnode *vp;
    162 
    163 loop:
    164 	for (vp = mp->mnt_vnodelist.lh_first;
    165 	     vp != NULL;
    166 	     vp = vp->v_mntvnodes.le_next) {
    167 		/*
    168 		 * If the vnode that we are about to sync is no longer
    169 		 * associated with this mount point, start over.
    170 		 */
    171 		if (vp->v_mount != mp)
    172 			goto loop;
    173 
    174 		/* XXX ignore dirops for now
    175 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
    176 		    op != VN_DIROP && (vp->v_flag & VDIROP))
    177 			continue;
    178 		*/
    179 
    180 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
    181 			continue;
    182 
    183 		if (vp->v_type == VNON)
    184 			continue;
    185 
    186 		if (lfs_vref(vp))
    187 			continue;
    188 
    189 		/*
    190 		 * Write the inode/file if dirty and it's not the
    191 		 * the IFILE.
    192 		 */
    193 		ip = VTOI(vp);
    194 		if ((ip->i_flag &
    195 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
    196 		    vp->v_dirtyblkhd.lh_first != NULL) &&
    197 		    ip->i_number != LFS_IFILE_INUM) {
    198 			if (vp->v_dirtyblkhd.lh_first != NULL)
    199 				lfs_writefile(fs, sp, vp);
    200 			(void) lfs_writeinode(fs, sp, ip);
    201 		}
    202 		vp->v_flag &= ~VDIROP;
    203 		lfs_vunref(vp);
    204 	}
    205 }
    206 
    207 int
    208 lfs_segwrite(mp, flags)
    209 	struct mount *mp;
    210 	int flags;			/* Do a checkpoint. */
    211 {
    212 	struct buf *bp;
    213 	struct inode *ip;
    214 	struct lfs *fs;
    215 	struct segment *sp;
    216 	struct vnode *vp;
    217 	SEGUSE *segusep;
    218 	daddr_t ibno;
    219 	CLEANERINFO *cip;
    220 	int clean, do_ckp, error, i;
    221 
    222 	fs = VFSTOUFS(mp)->um_lfs;
    223 
    224  	/*
    225  	 * If we have fewer than 2 clean segments, wait until cleaner
    226 	 * writes.
    227  	 */
    228 	do {
    229 		LFS_CLEANERINFO(cip, fs, bp);
    230 		clean = cip->clean;
    231 		brelse(bp);
    232 		if (clean <= 2) {
    233 			printf ("segs clean: %d\n", clean);
    234 			wakeup(&lfs_allclean_wakeup);
    235 			error = tsleep(&fs->lfs_avail, PRIBIO + 1,
    236 				       "lfs writer", 0);
    237 			if (error)
    238 				return (error);
    239 		}
    240 	} while (clean <= 2 );
    241 
    242 	/*
    243 	 * Allocate a segment structure and enough space to hold pointers to
    244 	 * the maximum possible number of buffers which can be described in a
    245 	 * single summary block.
    246 	 */
    247 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
    248 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    249 	sp = fs->lfs_sp;
    250 
    251 	lfs_writevnodes(fs, mp, sp, VN_REG);
    252 
    253 	/* XXX ignore ordering of dirops for now */
    254 	/* XXX
    255 	fs->lfs_writer = 1;
    256 	if (fs->lfs_dirops && (error =
    257 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
    258 		free(sp->bpp, M_SEGMENT);
    259 		free(sp, M_SEGMENT);
    260 		fs->lfs_writer = 0;
    261 		return (error);
    262 	}
    263 
    264 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
    265 	*/
    266 
    267 	/*
    268 	 * If we are doing a checkpoint, mark everything since the
    269 	 * last checkpoint as no longer ACTIVE.
    270 	 */
    271 	if (do_ckp)
    272 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    273 		     --ibno >= fs->lfs_cleansz; ) {
    274 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
    275 			    NOCRED, &bp))
    276 
    277 				panic("lfs: ifile read");
    278 			segusep = (SEGUSE *)bp->b_data;
    279 			for (i = fs->lfs_sepb; i--; segusep++)
    280 				segusep->su_flags &= ~SEGUSE_ACTIVE;
    281 
    282 			error = VOP_BWRITE(bp);
    283 		}
    284 
    285 	if (do_ckp || fs->lfs_doifile) {
    286 redo:
    287 		vp = fs->lfs_ivnode;
    288 		while (vget(vp, 1));
    289 		ip = VTOI(vp);
    290 		if (vp->v_dirtyblkhd.lh_first != NULL)
    291 			lfs_writefile(fs, sp, vp);
    292 		(void)lfs_writeinode(fs, sp, ip);
    293 		vput(vp);
    294 		if (lfs_writeseg(fs, sp) && do_ckp)
    295 			goto redo;
    296 	} else
    297 		(void) lfs_writeseg(fs, sp);
    298 
    299 	/*
    300 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
    301 	 * moment, the user's process hangs around so we can sleep.
    302 	 */
    303 	/* XXX ignore dirops for now
    304 	fs->lfs_writer = 0;
    305 	fs->lfs_doifile = 0;
    306 	wakeup(&fs->lfs_dirops);
    307 	*/
    308 
    309 #ifdef DOSTATS
    310 	++lfs_stats.nwrites;
    311 	if (sp->seg_flags & SEGM_SYNC)
    312 		++lfs_stats.nsync_writes;
    313 	if (sp->seg_flags & SEGM_CKP)
    314 		++lfs_stats.ncheckpoints;
    315 #endif
    316 	lfs_segunlock(fs);
    317 	return (0);
    318 }
    319 
    320 /*
    321  * Write the dirty blocks associated with a vnode.
    322  */
    323 void
    324 lfs_writefile(fs, sp, vp)
    325 	struct lfs *fs;
    326 	struct segment *sp;
    327 	struct vnode *vp;
    328 {
    329 	struct buf *bp;
    330 	struct finfo *fip;
    331 	IFILE *ifp;
    332 
    333 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    334 	    sp->sum_bytes_left < sizeof(struct finfo))
    335 		(void) lfs_writeseg(fs, sp);
    336 
    337 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
    338 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    339 
    340 	fip = sp->fip;
    341 	fip->fi_nblocks = 0;
    342 	fip->fi_ino = VTOI(vp)->i_number;
    343 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    344 	fip->fi_version = ifp->if_version;
    345 	brelse(bp);
    346 
    347 	/*
    348 	 * It may not be necessary to write the meta-data blocks at this point,
    349 	 * as the roll-forward recovery code should be able to reconstruct the
    350 	 * list.
    351 	 */
    352 	lfs_gather(fs, sp, vp, lfs_match_data);
    353 	lfs_gather(fs, sp, vp, lfs_match_indir);
    354 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    355 #ifdef TRIPLE
    356 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    357 #endif
    358 
    359 	fip = sp->fip;
    360 	if (fip->fi_nblocks != 0) {
    361 		sp->fip =
    362 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
    363 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
    364 		sp->start_lbp = &sp->fip->fi_blocks[0];
    365 	} else {
    366 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
    367 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    368 	}
    369 }
    370 
    371 int
    372 lfs_writeinode(fs, sp, ip)
    373 	struct lfs *fs;
    374 	struct segment *sp;
    375 	struct inode *ip;
    376 {
    377 	struct buf *bp, *ibp;
    378 	IFILE *ifp;
    379 	SEGUSE *sup;
    380 	daddr_t daddr;
    381 	ino_t ino;
    382 	int error, i, ndx;
    383 	int redo_ifile = 0;
    384 	struct timespec ts;
    385 
    386 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
    387 		return(0);
    388 
    389 	/* Allocate a new inode block if necessary. */
    390 	if (sp->ibp == NULL) {
    391 		/* Allocate a new segment if necessary. */
    392 		if (sp->seg_bytes_left < fs->lfs_bsize ||
    393 		    sp->sum_bytes_left < sizeof(daddr_t))
    394 			(void) lfs_writeseg(fs, sp);
    395 
    396 		/* Get next inode block. */
    397 		daddr = fs->lfs_offset;
    398 		fs->lfs_offset += fsbtodb(fs, 1);
    399 		sp->ibp = *sp->cbpp++ =
    400 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
    401 		    fs->lfs_bsize);
    402 		/* Zero out inode numbers */
    403 		for (i = 0; i < INOPB(fs); ++i)
    404 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    405 		++sp->start_bpp;
    406 		fs->lfs_avail -= fsbtodb(fs, 1);
    407 		/* Set remaining space counters. */
    408 		sp->seg_bytes_left -= fs->lfs_bsize;
    409 		sp->sum_bytes_left -= sizeof(daddr_t);
    410 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
    411 		    sp->ninodes / INOPB(fs) - 1;
    412 		((daddr_t *)(sp->segsum))[ndx] = daddr;
    413 	}
    414 
    415 	/* Update the inode times and copy the inode onto the inode page. */
    416 	if (ip->i_flag & IN_MODIFIED)
    417 		--fs->lfs_uinodes;
    418 	TIMESPEC_TO_TIMEVAL(&time, &ts);
    419 	FFS_ITIMES(ip, &ts, &ts, &ts);
    420 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
    421 	bp = sp->ibp;
    422 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din.ffs_din;
    423 	/* Increment inode count in segment summary block. */
    424 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    425 
    426 	/* If this page is full, set flag to allocate a new page. */
    427 	if (++sp->ninodes % INOPB(fs) == 0)
    428 		sp->ibp = NULL;
    429 
    430 	/*
    431 	 * If updating the ifile, update the super-block.  Update the disk
    432 	 * address and access times for this inode in the ifile.
    433 	 */
    434 	ino = ip->i_number;
    435 	if (ino == LFS_IFILE_INUM) {
    436 		daddr = fs->lfs_idaddr;
    437 		fs->lfs_idaddr = bp->b_blkno;
    438 	} else {
    439 		LFS_IENTRY(ifp, fs, ino, ibp);
    440 		daddr = ifp->if_daddr;
    441 		ifp->if_daddr = bp->b_blkno;
    442 		error = VOP_BWRITE(ibp);
    443 	}
    444 
    445 	/*
    446 	 * No need to update segment usage if there was no former inode address
    447 	 * or if the last inode address is in the current partial segment.
    448 	 */
    449 	if (daddr != LFS_UNUSED_DADDR &&
    450 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
    451 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    452 #ifdef DIAGNOSTIC
    453 		if (sup->su_nbytes < sizeof(struct dinode)) {
    454 			/* XXX -- Change to a panic. */
    455 			printf("lfs: negative bytes (segment %d)\n",
    456 			    datosn(fs, daddr));
    457 			panic("negative bytes");
    458 		}
    459 #endif
    460 		sup->su_nbytes -= sizeof(struct dinode);
    461 		redo_ifile =
    462 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    463 		error = VOP_BWRITE(bp);
    464 	}
    465 	return (redo_ifile);
    466 }
    467 
    468 int
    469 lfs_gatherblock(sp, bp, sptr)
    470 	struct segment *sp;
    471 	struct buf *bp;
    472 	int *sptr;
    473 {
    474 	struct lfs *fs;
    475 	int version;
    476 
    477 	/*
    478 	 * If full, finish this segment.  We may be doing I/O, so
    479 	 * release and reacquire the splbio().
    480 	 */
    481 #ifdef DIAGNOSTIC
    482 	if (sp->vp == NULL)
    483 		panic ("lfs_gatherblock: Null vp in segment");
    484 #endif
    485 	fs = sp->fs;
    486 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
    487 	    sp->seg_bytes_left < fs->lfs_bsize) {
    488 		if (sptr)
    489 			splx(*sptr);
    490 		lfs_updatemeta(sp);
    491 
    492 		version = sp->fip->fi_version;
    493 		(void) lfs_writeseg(fs, sp);
    494 
    495 		sp->fip->fi_version = version;
    496 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    497 		/* Add the current file to the segment summary. */
    498 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    499 		sp->sum_bytes_left -=
    500 		    sizeof(struct finfo) - sizeof(daddr_t);
    501 
    502 		if (sptr)
    503 			*sptr = splbio();
    504 		return(1);
    505 	}
    506 
    507 	/* Insert into the buffer list, update the FINFO block. */
    508 	bp->b_flags |= B_GATHERED;
    509 	*sp->cbpp++ = bp;
    510 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
    511 
    512 	sp->sum_bytes_left -= sizeof(daddr_t);
    513 	sp->seg_bytes_left -= fs->lfs_bsize;
    514 	return(0);
    515 }
    516 
    517 void
    518 lfs_gather(fs, sp, vp, match)
    519 	struct lfs *fs;
    520 	struct segment *sp;
    521 	struct vnode *vp;
    522 	int (*match) __P((struct lfs *, struct buf *));
    523 {
    524 	struct buf *bp;
    525 	int s;
    526 
    527 	sp->vp = vp;
    528 	s = splbio();
    529 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
    530 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
    531 		    bp->b_flags & B_GATHERED)
    532 			continue;
    533 #ifdef DIAGNOSTIC
    534 		if (!(bp->b_flags & B_DELWRI))
    535 			panic("lfs_gather: bp not B_DELWRI");
    536 		if (!(bp->b_flags & B_LOCKED))
    537 			panic("lfs_gather: bp not B_LOCKED");
    538 #endif
    539 		if (lfs_gatherblock(sp, bp, &s))
    540 			goto loop;
    541 	}
    542 	splx(s);
    543 	lfs_updatemeta(sp);
    544 	sp->vp = NULL;
    545 }
    546 
    547 
    548 /*
    549  * Update the metadata that points to the blocks listed in the FINFO
    550  * array.
    551  */
    552 void
    553 lfs_updatemeta(sp)
    554 	struct segment *sp;
    555 {
    556 	SEGUSE *sup;
    557 	struct buf *bp;
    558 	struct lfs *fs;
    559 	struct vnode *vp;
    560 	struct indir a[NIADDR + 2], *ap;
    561 	struct inode *ip;
    562 	daddr_t daddr, lbn, off;
    563 	int db_per_fsb, error, i, nblocks, num;
    564 
    565 	vp = sp->vp;
    566 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    567 	if (vp == NULL || nblocks == 0)
    568 		return;
    569 
    570 	/* Sort the blocks. */
    571 	if (!(sp->seg_flags & SEGM_CLEAN))
    572 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
    573 
    574 	/*
    575 	 * Assign disk addresses, and update references to the logical
    576 	 * block and the segment usage information.
    577 	 */
    578 	fs = sp->fs;
    579 	db_per_fsb = fsbtodb(fs, 1);
    580 	for (i = nblocks; i--; ++sp->start_bpp) {
    581 		lbn = *sp->start_lbp++;
    582 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
    583 		fs->lfs_offset += db_per_fsb;
    584 
    585 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
    586 		if (error)
    587 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
    588 		ip = VTOI(vp);
    589 		switch (num) {
    590 		case 0:
    591 			ip->i_ffs_db[lbn] = off;
    592 			break;
    593 		case 1:
    594 			ip->i_ffs_ib[a[0].in_off] = off;
    595 			break;
    596 		default:
    597 			ap = &a[num - 1];
    598 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
    599 				panic("lfs_updatemeta: bread bno %d",
    600 				    ap->in_lbn);
    601 			/*
    602 			 * Bread may create a new indirect block which needs
    603 			 * to get counted for the inode.
    604 			 */
    605 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
    606 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
    607 				ip->i_ffs_blocks += btodb(fs->lfs_bsize);
    608 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
    609 			}
    610 			((daddr_t *)bp->b_data)[ap->in_off] = off;
    611 			VOP_BWRITE(bp);
    612 		}
    613 
    614 		/* Update segment usage information. */
    615 		if (daddr != UNASSIGNED &&
    616 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
    617 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
    618 #ifdef DIAGNOSTIC
    619 			if (sup->su_nbytes < fs->lfs_bsize) {
    620 				/* XXX -- Change to a panic. */
    621 				printf("lfs: negative bytes (segment %d)\n",
    622 				    datosn(fs, daddr));
    623 				panic ("Negative Bytes");
    624 			}
    625 #endif
    626 			sup->su_nbytes -= fs->lfs_bsize;
    627 			error = VOP_BWRITE(bp);
    628 		}
    629 	}
    630 }
    631 
    632 /*
    633  * Start a new segment.
    634  */
    635 int
    636 lfs_initseg(fs)
    637 	struct lfs *fs;
    638 {
    639 	struct segment *sp;
    640 	SEGUSE *sup;
    641 	SEGSUM *ssp;
    642 	struct buf *bp;
    643 	int repeat;
    644 
    645 	sp = fs->lfs_sp;
    646 
    647 	repeat = 0;
    648 	/* Advance to the next segment. */
    649 	if (!LFS_PARTIAL_FITS(fs)) {
    650 		/* Wake up any cleaning procs waiting on this file system. */
    651 		wakeup(&lfs_allclean_wakeup);
    652 
    653 		lfs_newseg(fs);
    654 		repeat = 1;
    655 		fs->lfs_offset = fs->lfs_curseg;
    656 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    657 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
    658 
    659 		/*
    660 		 * If the segment contains a superblock, update the offset
    661 		 * and summary address to skip over it.
    662 		 */
    663 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    664 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    665 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
    666 			sp->seg_bytes_left -= LFS_SBPAD;
    667 		}
    668 		brelse(bp);
    669 	} else {
    670 		sp->seg_number = datosn(fs, fs->lfs_curseg);
    671 		sp->seg_bytes_left = (fs->lfs_dbpseg -
    672 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
    673 	}
    674 	fs->lfs_lastpseg = fs->lfs_offset;
    675 
    676 	sp->fs = fs;
    677 	sp->ibp = NULL;
    678 	sp->ninodes = 0;
    679 
    680 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    681 	sp->cbpp = sp->bpp;
    682 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
    683 	     LFS_SUMMARY_SIZE);
    684 	sp->segsum = (*sp->cbpp)->b_data;
    685 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
    686 	sp->start_bpp = ++sp->cbpp;
    687 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
    688 
    689 	/* Set point to SEGSUM, initialize it. */
    690 	ssp = sp->segsum;
    691 	ssp->ss_next = fs->lfs_nextseg;
    692 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    693 
    694 	/* Set pointer to first FINFO, initialize it. */
    695 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
    696 	sp->fip->fi_nblocks = 0;
    697 	sp->start_lbp = &sp->fip->fi_blocks[0];
    698 
    699 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
    700 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
    701 
    702 	return(repeat);
    703 }
    704 
    705 /*
    706  * Return the next segment to write.
    707  */
    708 void
    709 lfs_newseg(fs)
    710 	struct lfs *fs;
    711 {
    712 	CLEANERINFO *cip;
    713 	SEGUSE *sup;
    714 	struct buf *bp;
    715 	int curseg, isdirty, sn;
    716 
    717         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
    718         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    719 	sup->su_nbytes = 0;
    720 	sup->su_nsums = 0;
    721 	sup->su_ninos = 0;
    722         (void) VOP_BWRITE(bp);
    723 
    724 	LFS_CLEANERINFO(cip, fs, bp);
    725 	--cip->clean;
    726 	++cip->dirty;
    727 	(void) VOP_BWRITE(bp);
    728 
    729 	fs->lfs_lastseg = fs->lfs_curseg;
    730 	fs->lfs_curseg = fs->lfs_nextseg;
    731 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
    732 		sn = (sn + 1) % fs->lfs_nseg;
    733 		if (sn == curseg)
    734 			panic("lfs_nextseg: no clean segments");
    735 		LFS_SEGENTRY(sup, fs, sn, bp);
    736 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    737 		brelse(bp);
    738 		if (!isdirty)
    739 			break;
    740 	}
    741 
    742 	++fs->lfs_nactive;
    743 	fs->lfs_nextseg = sntoda(fs, sn);
    744 #ifdef DOSTATS
    745 	++lfs_stats.segsused;
    746 #endif
    747 }
    748 
    749 int
    750 lfs_writeseg(fs, sp)
    751 	struct lfs *fs;
    752 	struct segment *sp;
    753 {
    754 	extern int locked_queue_count;
    755 	struct buf **bpp, *bp, *cbp;
    756 	SEGUSE *sup;
    757 	SEGSUM *ssp;
    758 	dev_t i_dev;
    759 	size_t size;
    760 	u_long *datap, *dp;
    761 	int ch_per_blk, do_again, i, nblocks, num, s;
    762 	int (*strategy)__P((void *));
    763 	struct vop_strategy_args vop_strategy_a;
    764 	u_short ninos;
    765 	char *p;
    766 
    767 	/*
    768 	 * If there are no buffers other than the segment summary to write
    769 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    770 	 * even if there aren't any buffers, you need to write the superblock.
    771 	 */
    772 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    773 		return (0);
    774 
    775 	ssp = (SEGSUM *)sp->segsum;
    776 
    777 	/* Update the segment usage information. */
    778 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    779 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    780 	sup->su_nbytes += (nblocks - 1 - ninos) << fs->lfs_bshift;
    781 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
    782 	sup->su_nbytes += LFS_SUMMARY_SIZE;
    783 	sup->su_lastmod = time.tv_sec;
    784 	sup->su_ninos += ninos;
    785 	++sup->su_nsums;
    786 	do_again = !(bp->b_flags & B_GATHERED);
    787 	(void)VOP_BWRITE(bp);
    788 	/*
    789 	 * Compute checksum across data and then across summary; the first
    790 	 * block (the summary block) is skipped.  Set the create time here
    791 	 * so that it's guaranteed to be later than the inode mod times.
    792 	 *
    793 	 * XXX
    794 	 * Fix this to do it inline, instead of malloc/copy.
    795 	 */
    796 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
    797 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    798 		if ((*++bpp)->b_flags & B_INVAL) {
    799 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
    800 				panic("lfs_writeseg: copyin failed");
    801 		} else
    802 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
    803 	}
    804 	ssp->ss_create = time.tv_sec;
    805 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
    806 	ssp->ss_sumsum =
    807 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
    808 	free(datap, M_SEGMENT);
    809 #ifdef DIAGNOSTIC
    810 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
    811 		panic("lfs_writeseg: No diskspace for summary");
    812 #endif
    813 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
    814 
    815 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    816 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    817 
    818 	/*
    819 	 * When we simply write the blocks we lose a rotation for every block
    820 	 * written.  To avoid this problem, we allocate memory in chunks, copy
    821 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
    822 	 * largest size I/O devices can handle.
    823 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
    824 	 * and brelse the buffer (which will move them to the LRU list).  Add
    825 	 * the B_CALL flag to the buffer header so we can count I/O's for the
    826 	 * checkpoints and so we can release the allocated memory.
    827 	 *
    828 	 * XXX
    829 	 * This should be removed if the new virtual memory system allows us to
    830 	 * easily make the buffers contiguous in kernel memory and if that's
    831 	 * fast enough.
    832 	 */
    833 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
    834 	for (bpp = sp->bpp, i = nblocks; i;) {
    835 		num = ch_per_blk;
    836 		if (num > i)
    837 			num = i;
    838 		i -= num;
    839 		size = num * fs->lfs_bsize;
    840 
    841 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
    842 		    (*bpp)->b_blkno, size);
    843 		cbp->b_dev = i_dev;
    844 		cbp->b_flags |= B_ASYNC | B_BUSY;
    845 
    846 		s = splbio();
    847 		++fs->lfs_iocount;
    848 		for (p = cbp->b_data; num--;) {
    849 			bp = *bpp++;
    850 			/*
    851 			 * Fake buffers from the cleaner are marked as B_INVAL.
    852 			 * We need to copy the data from user space rather than
    853 			 * from the buffer indicated.
    854 			 * XXX == what do I do on an error?
    855 			 */
    856 			if (bp->b_flags & B_INVAL) {
    857 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
    858 					panic("lfs_writeseg: copyin failed");
    859 			} else
    860 				bcopy(bp->b_data, p, bp->b_bcount);
    861 			p += bp->b_bcount;
    862 			if (bp->b_flags & B_LOCKED)
    863 				--locked_queue_count;
    864 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    865 			     B_LOCKED | B_GATHERED);
    866 			if (bp->b_flags & B_CALL) {
    867 				/* if B_CALL, it was created with newbuf */
    868 				brelvp(bp);
    869 				if (!(bp->b_flags & B_INVAL))
    870 					free(bp->b_data, M_SEGMENT);
    871 				free(bp, M_SEGMENT);
    872 			} else {
    873 				bremfree(bp);
    874 				bp->b_flags |= B_DONE;
    875 				reassignbuf(bp, bp->b_vp);
    876 				brelse(bp);
    877 			}
    878 		}
    879 		++cbp->b_vp->v_numoutput;
    880 		splx(s);
    881 		cbp->b_bcount = p - (char *)cbp->b_data;
    882 		/*
    883 		 * XXXX This is a gross and disgusting hack.  Since these
    884 		 * buffers are physically addressed, they hang off the
    885 		 * device vnode (devvp).  As a result, they have no way
    886 		 * of getting to the LFS superblock or lfs structure to
    887 		 * keep track of the number of I/O's pending.  So, I am
    888 		 * going to stuff the fs into the saveaddr field of
    889 		 * the buffer (yuk).
    890 		 */
    891 		cbp->b_saveaddr = (caddr_t)fs;
    892 		vop_strategy_a.a_desc = VDESC(vop_strategy);
    893 		vop_strategy_a.a_bp = cbp;
    894 		(strategy)(&vop_strategy_a);
    895 	}
    896 	/*
    897 	 * XXX
    898 	 * Vinvalbuf can move locked buffers off the locked queue
    899 	 * and we have no way of knowing about this.  So, after
    900 	 * doing a big write, we recalculate how many bufers are
    901 	 * really still left on the locked queue.
    902 	 */
    903 	locked_queue_count = count_lock_queue();
    904 	wakeup(&locked_queue_count);
    905 #ifdef DOSTATS
    906 	++lfs_stats.psegwrites;
    907 	lfs_stats.blocktot += nblocks - 1;
    908 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
    909 		++lfs_stats.psyncwrites;
    910 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
    911 		++lfs_stats.pcleanwrites;
    912 		lfs_stats.cleanblocks += nblocks - 1;
    913 	}
    914 #endif
    915 	return (lfs_initseg(fs) || do_again);
    916 }
    917 
    918 void
    919 lfs_writesuper(fs)
    920 	struct lfs *fs;
    921 {
    922 	struct buf *bp;
    923 	dev_t i_dev;
    924 	int (*strategy) __P((void *));
    925 	int s;
    926 	struct vop_strategy_args vop_strategy_a;
    927 
    928 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
    929 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
    930 
    931 	/* Checksum the superblock and copy it into a buffer. */
    932 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
    933 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
    934 	    LFS_SBPAD);
    935 	*(struct lfs *)bp->b_data = *fs;
    936 
    937 	/* XXX Toggle between first two superblocks; for now just write first */
    938 	bp->b_dev = i_dev;
    939 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
    940 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
    941 	bp->b_iodone = lfs_supercallback;
    942 	vop_strategy_a.a_desc = VDESC(vop_strategy);
    943 	vop_strategy_a.a_bp = bp;
    944 	s = splbio();
    945 	++bp->b_vp->v_numoutput;
    946 	splx(s);
    947 	(strategy)(&vop_strategy_a);
    948 }
    949 
    950 /*
    951  * Logical block number match routines used when traversing the dirty block
    952  * chain.
    953  */
    954 int
    955 lfs_match_data(fs, bp)
    956 	struct lfs *fs;
    957 	struct buf *bp;
    958 {
    959 	return (bp->b_lblkno >= 0);
    960 }
    961 
    962 int
    963 lfs_match_indir(fs, bp)
    964 	struct lfs *fs;
    965 	struct buf *bp;
    966 {
    967 	int lbn;
    968 
    969 	lbn = bp->b_lblkno;
    970 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    971 }
    972 
    973 int
    974 lfs_match_dindir(fs, bp)
    975 	struct lfs *fs;
    976 	struct buf *bp;
    977 {
    978 	int lbn;
    979 
    980 	lbn = bp->b_lblkno;
    981 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    982 }
    983 
    984 int
    985 lfs_match_tindir(fs, bp)
    986 	struct lfs *fs;
    987 	struct buf *bp;
    988 {
    989 	int lbn;
    990 
    991 	lbn = bp->b_lblkno;
    992 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    993 }
    994 
    995 /*
    996  * Allocate a new buffer header.
    997  */
    998 struct buf *
    999 lfs_newbuf(vp, daddr, size)
   1000 	struct vnode *vp;
   1001 	daddr_t daddr;
   1002 	size_t size;
   1003 {
   1004 	struct buf *bp;
   1005 	size_t nbytes;
   1006 
   1007 	nbytes = roundup(size, DEV_BSIZE);
   1008 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
   1009 	bzero(bp, sizeof(struct buf));
   1010 	if (nbytes)
   1011 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
   1012 	bgetvp(vp, bp);
   1013 	bp->b_bufsize = size;
   1014 	bp->b_bcount = size;
   1015 	bp->b_lblkno = daddr;
   1016 	bp->b_blkno = daddr;
   1017 	bp->b_error = 0;
   1018 	bp->b_resid = 0;
   1019 	bp->b_iodone = lfs_callback;
   1020 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
   1021 	return (bp);
   1022 }
   1023 
   1024 void
   1025 lfs_callback(bp)
   1026 	struct buf *bp;
   1027 {
   1028 	struct lfs *fs;
   1029 
   1030 	fs = (struct lfs *)bp->b_saveaddr;
   1031 #ifdef DIAGNOSTIC
   1032 	if (fs->lfs_iocount == 0)
   1033 		panic("lfs_callback: zero iocount\n");
   1034 #endif
   1035 	if (--fs->lfs_iocount == 0)
   1036 		wakeup(&fs->lfs_iocount);
   1037 
   1038 	brelvp(bp);
   1039 	free(bp->b_data, M_SEGMENT);
   1040 	free(bp, M_SEGMENT);
   1041 }
   1042 
   1043 void
   1044 lfs_supercallback(bp)
   1045 	struct buf *bp;
   1046 {
   1047 	brelvp(bp);
   1048 	free(bp->b_data, M_SEGMENT);
   1049 	free(bp, M_SEGMENT);
   1050 }
   1051 
   1052 /*
   1053  * Shellsort (diminishing increment sort) from Data Structures and
   1054  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   1055  * see also Knuth Vol. 3, page 84.  The increments are selected from
   1056  * formula (8), page 95.  Roughly O(N^3/2).
   1057  */
   1058 /*
   1059  * This is our own private copy of shellsort because we want to sort
   1060  * two parallel arrays (the array of buffer pointers and the array of
   1061  * logical block numbers) simultaneously.  Note that we cast the array
   1062  * of logical block numbers to a unsigned in this routine so that the
   1063  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   1064  */
   1065 void
   1066 lfs_shellsort(bp_array, lb_array, nmemb)
   1067 	struct buf **bp_array;
   1068 	daddr_t *lb_array;
   1069 	register int nmemb;
   1070 {
   1071 	static int __rsshell_increments[] = { 4, 1, 0 };
   1072 	register int incr, *incrp, t1, t2;
   1073 	struct buf *bp_temp;
   1074 	u_long lb_temp;
   1075 
   1076 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   1077 		for (t1 = incr; t1 < nmemb; ++t1)
   1078 			for (t2 = t1 - incr; t2 >= 0;)
   1079 				if (lb_array[t2] > lb_array[t2 + incr]) {
   1080 					lb_temp = lb_array[t2];
   1081 					lb_array[t2] = lb_array[t2 + incr];
   1082 					lb_array[t2 + incr] = lb_temp;
   1083 					bp_temp = bp_array[t2];
   1084 					bp_array[t2] = bp_array[t2 + incr];
   1085 					bp_array[t2 + incr] = bp_temp;
   1086 					t2 -= incr;
   1087 				} else
   1088 					break;
   1089 }
   1090 
   1091 /*
   1092  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   1093  */
   1094 int
   1095 lfs_vref(vp)
   1096 	register struct vnode *vp;
   1097 {
   1098 
   1099 	if (vp->v_flag & VXLOCK)
   1100 		return(1);
   1101 	return (vget(vp, 0));
   1102 }
   1103 
   1104 void
   1105 lfs_vunref(vp)
   1106 	register struct vnode *vp;
   1107 {
   1108 	extern int lfs_no_inactive;
   1109 
   1110 	/*
   1111 	 * This is vrele except that we do not want to VOP_INACTIVE
   1112 	 * this vnode. Rather than inline vrele here, we use a global
   1113 	 * flag to tell lfs_inactive not to run. Yes, its gross.
   1114 	 */
   1115 	lfs_no_inactive = 1;
   1116 	vrele(vp);
   1117 	lfs_no_inactive = 0;
   1118 }
   1119