Home | History | Annotate | Line # | Download | only in lfs
lfs_segment.c revision 1.82
      1 /*	$NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by the NetBSD
     21  *      Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $");
     75 
     76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
     77 
     78 #if defined(_KERNEL_OPT)
     79 #include "opt_ddb.h"
     80 #endif
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/namei.h>
     85 #include <sys/kernel.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/file.h>
     88 #include <sys/stat.h>
     89 #include <sys/buf.h>
     90 #include <sys/proc.h>
     91 #include <sys/vnode.h>
     92 #include <sys/malloc.h>
     93 #include <sys/mount.h>
     94 
     95 #include <miscfs/specfs/specdev.h>
     96 #include <miscfs/fifofs/fifo.h>
     97 
     98 #include <ufs/ufs/inode.h>
     99 #include <ufs/ufs/dir.h>
    100 #include <ufs/ufs/ufsmount.h>
    101 #include <ufs/ufs/ufs_extern.h>
    102 
    103 #include <ufs/lfs/lfs.h>
    104 #include <ufs/lfs/lfs_extern.h>
    105 
    106 #include <uvm/uvm.h>
    107 #include <uvm/uvm_extern.h>
    108 
    109 extern int count_lock_queue(void);
    110 extern struct simplelock vnode_free_list_slock;		/* XXX */
    111 
    112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
    113 static void lfs_super_aiodone(struct buf *);
    114 static void lfs_cluster_aiodone(struct buf *);
    115 static void lfs_cluster_callback(struct buf *);
    116 static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
    117 
    118 /*
    119  * Determine if it's OK to start a partial in this segment, or if we need
    120  * to go on to a new segment.
    121  */
    122 #define	LFS_PARTIAL_FITS(fs) \
    123 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
    124 	fragstofsb((fs), (fs)->lfs_frag))
    125 
    126 void	 lfs_callback(struct buf *);
    127 int	 lfs_gather(struct lfs *, struct segment *,
    128 	     struct vnode *, int (*)(struct lfs *, struct buf *));
    129 int	 lfs_gatherblock(struct segment *, struct buf *, int *);
    130 void	 lfs_iset(struct inode *, ufs_daddr_t, time_t);
    131 int	 lfs_match_fake(struct lfs *, struct buf *);
    132 int	 lfs_match_data(struct lfs *, struct buf *);
    133 int	 lfs_match_dindir(struct lfs *, struct buf *);
    134 int	 lfs_match_indir(struct lfs *, struct buf *);
    135 int	 lfs_match_tindir(struct lfs *, struct buf *);
    136 void	 lfs_newseg(struct lfs *);
    137 void	 lfs_shellsort(struct buf **, ufs_daddr_t *, int);
    138 void	 lfs_supercallback(struct buf *);
    139 void	 lfs_updatemeta(struct segment *);
    140 int	 lfs_vref(struct vnode *);
    141 void	 lfs_vunref(struct vnode *);
    142 void	 lfs_writefile(struct lfs *, struct segment *, struct vnode *);
    143 int	 lfs_writeinode(struct lfs *, struct segment *, struct inode *);
    144 int	 lfs_writeseg(struct lfs *, struct segment *);
    145 void	 lfs_writesuper(struct lfs *, daddr_t);
    146 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
    147 	    struct segment *sp, int dirops);
    148 
    149 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
    150 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
    151 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
    152 int	lfs_dirvcount = 0;		/* # active dirops */
    153 
    154 /* Statistics Counters */
    155 int lfs_dostats = 1;
    156 struct lfs_stats lfs_stats;
    157 
    158 extern int locked_queue_count;
    159 extern long locked_queue_bytes;
    160 
    161 /* op values to lfs_writevnodes */
    162 #define	VN_REG	        0
    163 #define	VN_DIROP	1
    164 #define	VN_EMPTY	2
    165 #define VN_CLEAN        3
    166 
    167 #define LFS_MAX_ACTIVE          10
    168 
    169 /*
    170  * XXX KS - Set modification time on the Ifile, so the cleaner can
    171  * read the fs mod time off of it.  We don't set IN_UPDATE here,
    172  * since we don't really need this to be flushed to disk (and in any
    173  * case that wouldn't happen to the Ifile until we checkpoint).
    174  */
    175 void
    176 lfs_imtime(struct lfs *fs)
    177 {
    178 	struct timespec ts;
    179 	struct inode *ip;
    180 
    181 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    182 	ip = VTOI(fs->lfs_ivnode);
    183 	ip->i_ffs_mtime = ts.tv_sec;
    184 	ip->i_ffs_mtimensec = ts.tv_nsec;
    185 }
    186 
    187 /*
    188  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
    189  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
    190  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
    191  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
    192  */
    193 
    194 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
    195 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
    196 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
    197 
    198 int
    199 lfs_vflush(struct vnode *vp)
    200 {
    201 	struct inode *ip;
    202 	struct lfs *fs;
    203 	struct segment *sp;
    204 	struct buf *bp, *nbp, *tbp, *tnbp;
    205 	int error, s;
    206 
    207 	ip = VTOI(vp);
    208 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
    209 
    210 	if (ip->i_flag & IN_CLEANING) {
    211 #ifdef DEBUG_LFS
    212 		ivndebug(vp,"vflush/in_cleaning");
    213 #endif
    214 		LFS_CLR_UINO(ip, IN_CLEANING);
    215 		LFS_SET_UINO(ip, IN_MODIFIED);
    216 
    217 		/*
    218 		 * Toss any cleaning buffers that have real counterparts
    219 		 * to avoid losing new data
    220 		 */
    221 		s = splbio();
    222 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    223 			nbp = LIST_NEXT(bp, b_vnbufs);
    224 			if (bp->b_flags & B_CALL) {
    225 				for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
    226 				    tbp = tnbp)
    227 				{
    228 					tnbp = LIST_NEXT(tbp, b_vnbufs);
    229 					if (tbp->b_vp == bp->b_vp
    230 					   && tbp->b_lblkno == bp->b_lblkno
    231 					   && tbp != bp)
    232 					{
    233 						fs->lfs_avail += btofsb(fs, bp->b_bcount);
    234 						wakeup(&fs->lfs_avail);
    235 						lfs_freebuf(bp);
    236 						bp = NULL;
    237 						break;
    238 					}
    239 				}
    240 			}
    241 		}
    242 		splx(s);
    243 	}
    244 
    245 	/* If the node is being written, wait until that is done */
    246 	s = splbio();
    247 	if (WRITEINPROG(vp)) {
    248 #ifdef DEBUG_LFS
    249 		ivndebug(vp,"vflush/writeinprog");
    250 #endif
    251 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
    252 	}
    253 	splx(s);
    254 
    255 	/* Protect against VXLOCK deadlock in vinvalbuf() */
    256 	lfs_seglock(fs, SEGM_SYNC);
    257 
    258 	/* If we're supposed to flush a freed inode, just toss it */
    259 	/* XXX - seglock, so these buffers can't be gathered, right? */
    260 	if (ip->i_ffs_mode == 0) {
    261 		printf("lfs_vflush: ino %d is freed, not flushing\n",
    262 			ip->i_number);
    263 		s = splbio();
    264 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    265 			nbp = LIST_NEXT(bp, b_vnbufs);
    266 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
    267 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
    268 				wakeup(&fs->lfs_avail);
    269 			}
    270 			/* Copied from lfs_writeseg */
    271 			if (bp->b_flags & B_CALL) {
    272 				/* if B_CALL, it was created with newbuf */
    273 				lfs_freebuf(bp);
    274 				bp = NULL;
    275 			} else {
    276 				bremfree(bp);
    277 				LFS_UNLOCK_BUF(bp);
    278 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
    279                                          B_GATHERED);
    280 				bp->b_flags |= B_DONE;
    281 				reassignbuf(bp, vp);
    282 				brelse(bp);
    283 			}
    284 		}
    285 		splx(s);
    286 		LFS_CLR_UINO(ip, IN_CLEANING);
    287 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
    288 		ip->i_flag &= ~IN_ALLMOD;
    289 		printf("lfs_vflush: done not flushing ino %d\n",
    290 			ip->i_number);
    291 		lfs_segunlock(fs);
    292 		return 0;
    293 	}
    294 
    295 	SET_FLUSHING(fs,vp);
    296 	if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
    297 	    (fs->lfs_sp->seg_flags & SEGM_CKP)) {
    298 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
    299 		CLR_FLUSHING(fs,vp);
    300 		lfs_segunlock(fs);
    301 		return error;
    302 	}
    303 	sp = fs->lfs_sp;
    304 
    305 	if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
    306 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
    307 	} else if ((ip->i_flag & IN_CLEANING) &&
    308 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
    309 #ifdef DEBUG_LFS
    310 		ivndebug(vp,"vflush/clean");
    311 #endif
    312 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
    313 	} else if (lfs_dostats) {
    314 		if (LIST_FIRST(&vp->v_dirtyblkhd) || (VTOI(vp)->i_flag & IN_ALLMOD))
    315 			++lfs_stats.vflush_invoked;
    316 #ifdef DEBUG_LFS
    317 		ivndebug(vp,"vflush");
    318 #endif
    319 	}
    320 
    321 #ifdef DIAGNOSTIC
    322 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
    323 	if (vp->v_flag & VDIROP) {
    324 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
    325 		/* panic("VDIROP being flushed...this can\'t happen"); */
    326 	}
    327 	if (vp->v_usecount < 0) {
    328 		printf("usecount=%ld\n", (long)vp->v_usecount);
    329 		panic("lfs_vflush: usecount<0");
    330 	}
    331 #endif
    332 
    333 	do {
    334 		do {
    335 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    336 				lfs_writefile(fs, sp, vp);
    337 		} while (lfs_writeinode(fs, sp, ip));
    338 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
    339 
    340 	if (lfs_dostats) {
    341 		++lfs_stats.nwrites;
    342 		if (sp->seg_flags & SEGM_SYNC)
    343 			++lfs_stats.nsync_writes;
    344 		if (sp->seg_flags & SEGM_CKP)
    345 			++lfs_stats.ncheckpoints;
    346 	}
    347 	/*
    348 	 * If we were called from somewhere that has already held the seglock
    349 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
    350 	 * the write to complete because we are still locked.
    351 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
    352 	 * we must explicitly wait, if that is the case.
    353 	 *
    354 	 * We compare the iocount against 1, not 0, because it is
    355 	 * artificially incremented by lfs_seglock().
    356 	 */
    357 	if (fs->lfs_seglock > 1) {
    358 		while (fs->lfs_iocount > 1)
    359 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
    360 				     "lfs_vflush", 0);
    361 	}
    362 	lfs_segunlock(fs);
    363 
    364 	CLR_FLUSHING(fs,vp);
    365 	return (0);
    366 }
    367 
    368 #ifdef DEBUG_LFS_VERBOSE
    369 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
    370 #else
    371 # define vndebug(vp,str)
    372 #endif
    373 
    374 int
    375 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
    376 {
    377 	struct inode *ip;
    378 	struct vnode *vp, *nvp;
    379 	int inodes_written = 0, only_cleaning;
    380 	int needs_unlock;
    381 
    382 #ifndef LFS_NO_BACKVP_HACK
    383 	/* BEGIN HACK */
    384 #define	VN_OFFSET	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
    385 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
    386 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
    387 
    388 	/* Find last vnode. */
    389  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
    390 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
    391 	     vp = LIST_NEXT(vp, v_mntvnodes));
    392 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
    393 		nvp = BACK_VP(vp);
    394 #else
    395 	loop:
    396 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
    397 		nvp = LIST_NEXT(vp, v_mntvnodes);
    398 #endif
    399 		/*
    400 		 * If the vnode that we are about to sync is no longer
    401 		 * associated with this mount point, start over.
    402 		 */
    403 		if (vp->v_mount != mp) {
    404 			printf("lfs_writevnodes: starting over\n");
    405 			goto loop;
    406 		}
    407 
    408 		ip = VTOI(vp);
    409 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    410 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
    411 			vndebug(vp,"dirop");
    412 			continue;
    413 		}
    414 
    415 		if (op == VN_EMPTY && LIST_FIRST(&vp->v_dirtyblkhd)) {
    416 			vndebug(vp,"empty");
    417 			continue;
    418 		}
    419 
    420 		if (vp->v_type == VNON) {
    421 			continue;
    422 		}
    423 
    424 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
    425 		   && vp != fs->lfs_flushvp
    426 		   && !(ip->i_flag & IN_CLEANING)) {
    427 			vndebug(vp,"cleaning");
    428 			continue;
    429 		}
    430 
    431 		if (lfs_vref(vp)) {
    432 			vndebug(vp,"vref");
    433 			continue;
    434 		}
    435 
    436 		needs_unlock = 0;
    437 		if (VOP_ISLOCKED(vp)) {
    438 			if (vp != fs->lfs_ivnode &&
    439 			    vp->v_lock.lk_lockholder != curproc->p_pid) {
    440 #ifdef DEBUG_LFS
    441 				printf("lfs_writevnodes: not writing ino %d,"
    442 				       " locked by pid %d\n",
    443 				       VTOI(vp)->i_number,
    444 				       vp->v_lock.lk_lockholder);
    445 #endif
    446 				lfs_vunref(vp);
    447 				continue;
    448 			}
    449 		} else if (vp != fs->lfs_ivnode) {
    450 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    451 			needs_unlock = 1;
    452 		}
    453 
    454 		only_cleaning = 0;
    455 		/*
    456 		 * Write the inode/file if dirty and it's not the IFILE.
    457 		 */
    458 		if ((ip->i_flag & IN_ALLMOD) ||
    459 		     (LIST_FIRST(&vp->v_dirtyblkhd) != NULL))
    460 		{
    461 			only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
    462 
    463 			if (ip->i_number != LFS_IFILE_INUM
    464 			   && LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    465 			{
    466 				lfs_writefile(fs, sp, vp);
    467 			}
    468 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
    469 				if (WRITEINPROG(vp)) {
    470 #ifdef DEBUG_LFS
    471 					ivndebug(vp,"writevnodes/write2");
    472 #endif
    473 				} else if (!(ip->i_flag & IN_ALLMOD)) {
    474 #ifdef DEBUG_LFS
    475 					printf("<%d>",ip->i_number);
    476 #endif
    477 					LFS_SET_UINO(ip, IN_MODIFIED);
    478 				}
    479 			}
    480 			(void) lfs_writeinode(fs, sp, ip);
    481 			inodes_written++;
    482 		}
    483 
    484 		if (needs_unlock)
    485 			VOP_UNLOCK(vp, 0);
    486 
    487 		if (lfs_clean_vnhead && only_cleaning)
    488 			lfs_vunref_head(vp);
    489 		else
    490 			lfs_vunref(vp);
    491 	}
    492 	return inodes_written;
    493 }
    494 
    495 /*
    496  * Do a checkpoint.
    497  */
    498 int
    499 lfs_segwrite(struct mount *mp, int flags)
    500 {
    501 	struct buf *bp;
    502 	struct inode *ip;
    503 	struct lfs *fs;
    504 	struct segment *sp;
    505 	struct vnode *vp;
    506 	SEGUSE *segusep;
    507 	ufs_daddr_t ibno;
    508 	int do_ckp, did_ckp, error, i;
    509 	int writer_set = 0;
    510 	int dirty;
    511 	int redo;
    512 
    513 	fs = VFSTOUFS(mp)->um_lfs;
    514 
    515 	if (fs->lfs_ronly)
    516 		return EROFS;
    517 
    518 	lfs_imtime(fs);
    519 
    520 	/* printf("lfs_segwrite: ifile flags are 0x%lx\n",
    521 	       (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
    522 
    523 #if 0
    524 	/*
    525 	 * If we are not the cleaner, and there is no space available,
    526 	 * wait until cleaner writes.
    527 	 */
    528 	if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
    529 				      (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
    530 	{
    531 		while (fs->lfs_avail <= 0) {
    532 			LFS_CLEANERINFO(cip, fs, bp);
    533 			LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
    534 
    535 			wakeup(&lfs_allclean_wakeup);
    536 			wakeup(&fs->lfs_nextseg);
    537 			error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
    538 				       0);
    539 			if (error) {
    540 				return (error);
    541 			}
    542 		}
    543 	}
    544 #endif
    545 	/*
    546 	 * Allocate a segment structure and enough space to hold pointers to
    547 	 * the maximum possible number of buffers which can be described in a
    548 	 * single summary block.
    549 	 */
    550 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
    551 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
    552 	sp = fs->lfs_sp;
    553 
    554 	/*
    555 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
    556 	 * in which case we have to flush *all* buffers off of this vnode.
    557 	 * We don't care about other nodes, but write any non-dirop nodes
    558 	 * anyway in anticipation of another getnewvnode().
    559 	 *
    560 	 * If we're cleaning we only write cleaning and ifile blocks, and
    561 	 * no dirops, since otherwise we'd risk corruption in a crash.
    562 	 */
    563 	if (sp->seg_flags & SEGM_CLEAN)
    564 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
    565 	else {
    566 		lfs_writevnodes(fs, mp, sp, VN_REG);
    567 		if (!fs->lfs_dirops || !fs->lfs_flushvp) {
    568 			while (fs->lfs_dirops)
    569 				if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
    570 						"lfs writer", 0)))
    571 				{
    572 					/* XXX why not segunlock? */
    573 					free(sp->bpp, M_SEGMENT);
    574 					sp->bpp = NULL;
    575 					free(sp, M_SEGMENT);
    576 					fs->lfs_sp = NULL;
    577 					return (error);
    578 				}
    579 			fs->lfs_writer++;
    580 			writer_set = 1;
    581 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
    582 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
    583 		}
    584 	}
    585 
    586 	/*
    587 	 * If we are doing a checkpoint, mark everything since the
    588 	 * last checkpoint as no longer ACTIVE.
    589 	 */
    590 	if (do_ckp) {
    591 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
    592 		     --ibno >= fs->lfs_cleansz; ) {
    593 			dirty = 0;
    594 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
    595 
    596 				panic("lfs_segwrite: ifile read");
    597 			segusep = (SEGUSE *)bp->b_data;
    598 			for (i = fs->lfs_sepb; i--;) {
    599 				if (segusep->su_flags & SEGUSE_ACTIVE) {
    600 					segusep->su_flags &= ~SEGUSE_ACTIVE;
    601 					++dirty;
    602 				}
    603 				if (fs->lfs_version > 1)
    604 					++segusep;
    605 				else
    606 					segusep = (SEGUSE *)
    607 						((SEGUSE_V1 *)segusep + 1);
    608 			}
    609 
    610 			/* But the current segment is still ACTIVE */
    611 			segusep = (SEGUSE *)bp->b_data;
    612 			if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
    613 			    (ibno-fs->lfs_cleansz)) {
    614 				if (fs->lfs_version > 1)
    615 					segusep[dtosn(fs, fs->lfs_curseg) %
    616 					     fs->lfs_sepb].su_flags |=
    617 						     SEGUSE_ACTIVE;
    618 				else
    619 					((SEGUSE *)
    620 					 ((SEGUSE_V1 *)(bp->b_data) +
    621 					  (dtosn(fs, fs->lfs_curseg) %
    622 					   fs->lfs_sepb)))->su_flags
    623 						   |= SEGUSE_ACTIVE;
    624 				--dirty;
    625 			}
    626 			if (dirty)
    627 				error = LFS_BWRITE_LOG(bp); /* Ifile */
    628 			else
    629 				brelse(bp);
    630 		}
    631 	}
    632 
    633 	did_ckp = 0;
    634 	if (do_ckp || fs->lfs_doifile) {
    635 		do {
    636 			vp = fs->lfs_ivnode;
    637 
    638 			vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
    639 #ifdef DEBUG
    640 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
    641 #endif
    642 			fs->lfs_flags &= ~LFS_IFDIRTY;
    643 
    644 			ip = VTOI(vp);
    645 			/* if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) */
    646 				lfs_writefile(fs, sp, vp);
    647 			if (ip->i_flag & IN_ALLMOD)
    648 				++did_ckp;
    649 			redo = lfs_writeinode(fs, sp, ip);
    650 
    651 			vput(vp);
    652 			redo += lfs_writeseg(fs, sp);
    653 			redo += (fs->lfs_flags & LFS_IFDIRTY);
    654 		} while (redo && do_ckp);
    655 
    656 		/* The ifile should now be all clear */
    657 		if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
    658 			struct buf *bp;
    659 			int s, warned = 0, dopanic = 0;
    660 			s = splbio();
    661 			for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
    662 				if (!(bp->b_flags & B_GATHERED)) {
    663 					if (!warned)
    664 						printf("lfs_segwrite: ifile still has dirty blocks?!\n");
    665 					++dopanic;
    666 					++warned;
    667 					printf("bp=%p, lbn %d, flags 0x%lx\n",
    668 						bp, bp->b_lblkno, bp->b_flags);
    669 				}
    670 			}
    671 			if (dopanic)
    672 				panic("dirty blocks");
    673 			splx(s);
    674 		}
    675 		LFS_CLR_UINO(ip, IN_ALLMOD);
    676 	} else {
    677 		(void) lfs_writeseg(fs, sp);
    678 	}
    679 
    680 	/*
    681 	 * If the I/O count is non-zero, sleep until it reaches zero.
    682 	 * At the moment, the user's process hangs around so we can
    683 	 * sleep.
    684 	 */
    685 	fs->lfs_doifile = 0;
    686 	if (writer_set && --fs->lfs_writer == 0)
    687 		wakeup(&fs->lfs_dirops);
    688 
    689 	/*
    690 	 * If we didn't write the Ifile, we didn't really do anything.
    691 	 * That means that (1) there is a checkpoint on disk and (2)
    692 	 * nothing has changed since it was written.
    693 	 *
    694 	 * Take the flags off of the segment so that lfs_segunlock
    695 	 * doesn't have to write the superblock either.
    696 	 */
    697 	if (do_ckp && !did_ckp) {
    698 		sp->seg_flags &= ~SEGM_CKP;
    699 		/* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
    700 	}
    701 
    702 	if (lfs_dostats) {
    703 		++lfs_stats.nwrites;
    704 		if (sp->seg_flags & SEGM_SYNC)
    705 			++lfs_stats.nsync_writes;
    706 		if (sp->seg_flags & SEGM_CKP)
    707 			++lfs_stats.ncheckpoints;
    708 	}
    709 	lfs_segunlock(fs);
    710 	return (0);
    711 }
    712 
    713 /*
    714  * Write the dirty blocks associated with a vnode.
    715  */
    716 void
    717 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
    718 {
    719 	struct buf *bp;
    720 	struct finfo *fip;
    721 	struct inode *ip;
    722 	IFILE *ifp;
    723 	int i, frag;
    724 
    725 	ip = VTOI(vp);
    726 
    727 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    728 	    sp->sum_bytes_left < sizeof(struct finfo))
    729 		(void) lfs_writeseg(fs, sp);
    730 
    731 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
    732 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
    733 
    734 	if (vp->v_flag & VDIROP)
    735 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
    736 
    737 	fip = sp->fip;
    738 	fip->fi_nblocks = 0;
    739 	fip->fi_ino = ip->i_number;
    740 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    741 	fip->fi_version = ifp->if_version;
    742 	brelse(bp);
    743 
    744 	if (sp->seg_flags & SEGM_CLEAN) {
    745 		lfs_gather(fs, sp, vp, lfs_match_fake);
    746 		/*
    747 		 * For a file being flushed, we need to write *all* blocks.
    748 		 * This means writing the cleaning blocks first, and then
    749 		 * immediately following with any non-cleaning blocks.
    750 		 * The same is true of the Ifile since checkpoints assume
    751 		 * that all valid Ifile blocks are written.
    752 		 */
    753 	   	if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode)
    754 			lfs_gather(fs, sp, vp, lfs_match_data);
    755 	} else
    756 		lfs_gather(fs, sp, vp, lfs_match_data);
    757 
    758 	/*
    759 	 * It may not be necessary to write the meta-data blocks at this point,
    760 	 * as the roll-forward recovery code should be able to reconstruct the
    761 	 * list.
    762 	 *
    763 	 * We have to write them anyway, though, under two conditions: (1) the
    764 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
    765 	 * checkpointing.
    766 	 *
    767 	 * BUT if we are cleaning, we might have indirect blocks that refer to
    768 	 * new blocks not being written yet, in addition to fragments being
    769 	 * moved out of a cleaned segment.  If that is the case, don't
    770 	 * write the indirect blocks, or the finfo will have a small block
    771 	 * in the middle of it!
    772 	 * XXX in this case isn't the inode size wrong too?
    773 	 */
    774 	frag = 0;
    775 	if (sp->seg_flags & SEGM_CLEAN) {
    776 		for (i = 0; i < NDADDR; i++)
    777 			if (ip->i_lfs_fragsize[i] > 0 &&
    778 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
    779 				++frag;
    780 	}
    781 #ifdef DIAGNOSTIC
    782 	if (frag > 1)
    783 		panic("lfs_writefile: more than one fragment!");
    784 #endif
    785 	if (IS_FLUSHING(fs, vp) ||
    786 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
    787 		lfs_gather(fs, sp, vp, lfs_match_indir);
    788 		lfs_gather(fs, sp, vp, lfs_match_dindir);
    789 		lfs_gather(fs, sp, vp, lfs_match_tindir);
    790 	}
    791 	fip = sp->fip;
    792 	if (fip->fi_nblocks != 0) {
    793 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
    794 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
    795 		sp->start_lbp = &sp->fip->fi_blocks[0];
    796 	} else {
    797 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
    798 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
    799 	}
    800 }
    801 
    802 int
    803 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
    804 {
    805 	struct buf *bp, *ibp;
    806 	struct dinode *cdp;
    807 	IFILE *ifp;
    808 	SEGUSE *sup;
    809 	ufs_daddr_t daddr;
    810 	daddr_t *daddrp;
    811 	ino_t ino;
    812 	int error, i, ndx, fsb = 0;
    813 	int redo_ifile = 0;
    814 	struct timespec ts;
    815 	int gotblk = 0;
    816 
    817 	if (!(ip->i_flag & IN_ALLMOD))
    818 		return (0);
    819 
    820 	/* Allocate a new inode block if necessary. */
    821 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
    822 		/* Allocate a new segment if necessary. */
    823 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    824 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    825 			(void) lfs_writeseg(fs, sp);
    826 
    827 		/* Get next inode block. */
    828 		daddr = fs->lfs_offset;
    829 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    830 		sp->ibp = *sp->cbpp++ =
    831 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
    832 			       fs->lfs_ibsize, 0, 0);
    833 		gotblk++;
    834 
    835 		/* Zero out inode numbers */
    836 		for (i = 0; i < INOPB(fs); ++i)
    837 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
    838 
    839 		++sp->start_bpp;
    840 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    841 		/* Set remaining space counters. */
    842 		sp->seg_bytes_left -= fs->lfs_ibsize;
    843 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    844 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    845 			sp->ninodes / INOPB(fs) - 1;
    846 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
    847 	}
    848 
    849 	/* Update the inode times and copy the inode onto the inode page. */
    850 	TIMEVAL_TO_TIMESPEC(&time, &ts);
    851 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    852 	if (ip->i_number != LFS_IFILE_INUM)
    853 		LFS_ITIMES(ip, &ts, &ts, &ts);
    854 
    855 	/*
    856 	 * If this is the Ifile, and we've already written the Ifile in this
    857 	 * partial segment, just overwrite it (it's not on disk yet) and
    858 	 * continue.
    859 	 *
    860 	 * XXX we know that the bp that we get the second time around has
    861 	 * already been gathered.
    862 	 */
    863 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    864 		*(sp->idp) = ip->i_din.ffs_din;
    865 		ip->i_lfs_osize = ip->i_ffs_size;
    866 		return 0;
    867 	}
    868 
    869 	bp = sp->ibp;
    870 	cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
    871 	*cdp = ip->i_din.ffs_din;
    872 #ifdef LFS_IFILE_FRAG_ADDRESSING
    873 	if (fs->lfs_version > 1)
    874 		fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
    875 #endif
    876 
    877 	/*
    878 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
    879 	 * addresses to disk; possibly revert the inode size.
    880 	 */
    881 	if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
    882 		cdp->di_size = ip->i_lfs_osize;
    883 #ifdef DEBUG_LFS
    884 		printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
    885 		       ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
    886 #endif
    887 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
    888 		     daddrp++) {
    889 			if (*daddrp == UNWRITTEN) {
    890 #ifdef DEBUG_LFS
    891 				printf("lfs_writeinode: wiping UNWRITTEN\n");
    892 #endif
    893 				*daddrp = 0;
    894 			}
    895 		}
    896 	} else {
    897 		/* If all blocks are goig to disk, update the "size on disk" */
    898 		ip->i_lfs_osize = ip->i_ffs_size;
    899 	}
    900 
    901 	if (ip->i_flag & IN_CLEANING)
    902 		LFS_CLR_UINO(ip, IN_CLEANING);
    903 	else {
    904 		/* XXX IN_ALLMOD */
    905 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
    906 			     IN_UPDATE);
    907 		if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
    908 			LFS_CLR_UINO(ip, IN_MODIFIED);
    909 #ifdef DEBUG_LFS
    910 		else
    911 			printf("lfs_writeinode: ino %d: real blks=%d, "
    912 			       "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
    913 			       ip->i_lfs_effnblks);
    914 #endif
    915 	}
    916 
    917 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
    918 		sp->idp = ((struct dinode *)bp->b_data) +
    919 			(sp->ninodes % INOPB(fs));
    920 	if (gotblk) {
    921 		LFS_LOCK_BUF(bp);
    922 		brelse(bp);
    923 	}
    924 
    925 	/* Increment inode count in segment summary block. */
    926 	++((SEGSUM *)(sp->segsum))->ss_ninos;
    927 
    928 	/* If this page is full, set flag to allocate a new page. */
    929 	if (++sp->ninodes % INOPB(fs) == 0)
    930 		sp->ibp = NULL;
    931 
    932 	/*
    933 	 * If updating the ifile, update the super-block.  Update the disk
    934 	 * address and access times for this inode in the ifile.
    935 	 */
    936 	ino = ip->i_number;
    937 	if (ino == LFS_IFILE_INUM) {
    938 		daddr = fs->lfs_idaddr;
    939 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    940 	} else {
    941 		LFS_IENTRY(ifp, fs, ino, ibp);
    942 		daddr = ifp->if_daddr;
    943 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    944 #ifdef LFS_DEBUG_NEXTFREE
    945 		if (ino > 3 && ifp->if_nextfree) {
    946 			vprint("lfs_writeinode",ITOV(ip));
    947 			printf("lfs_writeinode: updating free ino %d\n",
    948 				ip->i_number);
    949 		}
    950 #endif
    951 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
    952 	}
    953 
    954 	/*
    955 	 * The inode's last address should not be in the current partial
    956 	 * segment, except under exceptional circumstances (lfs_writevnodes
    957 	 * had to start over, and in the meantime more blocks were written
    958 	 * to a vnode).  Both inodes will be accounted to this segment
    959 	 * in lfs_writeseg so we need to subtract the earlier version
    960 	 * here anyway.  The segment count can temporarily dip below
    961 	 * zero here; keep track of how many duplicates we have in
    962 	 * "dupino" so we don't panic below.
    963 	 */
    964 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
    965 		++sp->ndupino;
    966 		printf("lfs_writeinode: last inode addr in current pseg "
    967 		       "(ino %d daddr 0x%x) ndupino=%d\n", ino, daddr,
    968 			sp->ndupino);
    969 	}
    970 	/*
    971 	 * Account the inode: it no longer belongs to its former segment,
    972 	 * though it will not belong to the new segment until that segment
    973 	 * is actually written.
    974 	 */
    975 	if (daddr != LFS_UNUSED_DADDR) {
    976 		LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
    977 #ifdef DIAGNOSTIC
    978 		if (sup->su_nbytes < DINODE_SIZE * (1 + sp->ndupino)) {
    979 			printf("lfs_writeinode: negative bytes "
    980 			       "(segment %d short by %d)\n",
    981 			       dtosn(fs, daddr),
    982 			       (int)DINODE_SIZE - sup->su_nbytes);
    983 			panic("lfs_writeinode: negative bytes");
    984 			sup->su_nbytes = DINODE_SIZE;
    985 		}
    986 #endif
    987 #ifdef DEBUG_SU_NBYTES
    988 		printf("seg %d -= %d for ino %d inode\n",
    989 		       dtosn(fs, daddr), DINODE_SIZE, ino);
    990 #endif
    991 		sup->su_nbytes -= DINODE_SIZE;
    992 		redo_ifile =
    993 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    994 		if (redo_ifile)
    995 			fs->lfs_flags |= LFS_IFDIRTY;
    996 		error = LFS_BWRITE_LOG(bp); /* Ifile */
    997 	}
    998 	return (redo_ifile);
    999 }
   1000 
   1001 int
   1002 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
   1003 {
   1004 	struct lfs *fs;
   1005 	int version;
   1006 
   1007 	/*
   1008 	 * If full, finish this segment.  We may be doing I/O, so
   1009 	 * release and reacquire the splbio().
   1010 	 */
   1011 #ifdef DIAGNOSTIC
   1012 	if (sp->vp == NULL)
   1013 		panic ("lfs_gatherblock: Null vp in segment");
   1014 #endif
   1015 	fs = sp->fs;
   1016 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
   1017 	    sp->seg_bytes_left < bp->b_bcount) {
   1018 		if (sptr)
   1019 			splx(*sptr);
   1020 		lfs_updatemeta(sp);
   1021 
   1022 		version = sp->fip->fi_version;
   1023 		(void) lfs_writeseg(fs, sp);
   1024 
   1025 		sp->fip->fi_version = version;
   1026 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
   1027 		/* Add the current file to the segment summary. */
   1028 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1029 		sp->sum_bytes_left -=
   1030 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
   1031 
   1032 		if (sptr)
   1033 			*sptr = splbio();
   1034 		return (1);
   1035 	}
   1036 
   1037 #ifdef DEBUG
   1038 	if (bp->b_flags & B_GATHERED) {
   1039 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
   1040 		       sp->fip->fi_ino, bp->b_lblkno);
   1041 		return (0);
   1042 	}
   1043 #endif
   1044 	/* Insert into the buffer list, update the FINFO block. */
   1045 	bp->b_flags |= B_GATHERED;
   1046 	bp->b_flags &= ~B_DONE;
   1047 
   1048 	*sp->cbpp++ = bp;
   1049 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
   1050 
   1051 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
   1052 	sp->seg_bytes_left -= bp->b_bcount;
   1053 	return (0);
   1054 }
   1055 
   1056 int
   1057 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
   1058 {
   1059 	struct buf *bp, *nbp;
   1060 	int s, count = 0;
   1061 
   1062 	sp->vp = vp;
   1063 	s = splbio();
   1064 
   1065 #ifndef LFS_NO_BACKBUF_HACK
   1066 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
   1067 # define	BUF_OFFSET	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
   1068 # define	BACK_BUF(BP)	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
   1069 # define	BEG_OF_LIST	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
   1070 /* Find last buffer. */
   1071 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
   1072 	    bp = LIST_NEXT(bp, b_vnbufs));
   1073 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
   1074 		nbp = BACK_BUF(bp);
   1075 #else /* LFS_NO_BACKBUF_HACK */
   1076 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
   1077 		nbp = LIST_NEXT(bp, b_vnbufs);
   1078 #endif /* LFS_NO_BACKBUF_HACK */
   1079 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
   1080 #ifdef DEBUG_LFS
   1081 			if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
   1082 				printf("(%d:%lx)", bp->b_lblkno, bp->b_flags);
   1083 #endif
   1084 			continue;
   1085 		}
   1086 		if (vp->v_type == VBLK) {
   1087 			/* For block devices, just write the blocks. */
   1088 			/* XXX Do we really need to even do this? */
   1089 #ifdef DEBUG_LFS
   1090 			if (count == 0)
   1091 				printf("BLK(");
   1092 			printf(".");
   1093 #endif
   1094 			/* Get the block before bwrite, so we don't corrupt the free list */
   1095 			bp->b_flags |= B_BUSY;
   1096 			bremfree(bp);
   1097 			bwrite(bp);
   1098 		} else {
   1099 #ifdef DIAGNOSTIC
   1100 			if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
   1101 				printf("lfs_gather: lbn %d is B_INVAL\n",
   1102 					bp->b_lblkno);
   1103 				VOP_PRINT(bp->b_vp);
   1104 			}
   1105 			if (!(bp->b_flags & B_DELWRI))
   1106 				panic("lfs_gather: bp not B_DELWRI");
   1107 			if (!(bp->b_flags & B_LOCKED)) {
   1108 				printf("lfs_gather: lbn %d blk %d"
   1109 				       " not B_LOCKED\n", bp->b_lblkno,
   1110 				       dbtofsb(fs, bp->b_blkno));
   1111 				VOP_PRINT(bp->b_vp);
   1112 				panic("lfs_gather: bp not B_LOCKED");
   1113 			}
   1114 #endif
   1115 			if (lfs_gatherblock(sp, bp, &s)) {
   1116 				goto loop;
   1117 			}
   1118 		}
   1119 		count++;
   1120 	}
   1121 	splx(s);
   1122 #ifdef DEBUG_LFS
   1123 	if (vp->v_type == VBLK && count)
   1124 		printf(")\n");
   1125 #endif
   1126 	lfs_updatemeta(sp);
   1127 	sp->vp = NULL;
   1128 	return count;
   1129 }
   1130 
   1131 /*
   1132  * Update the metadata that points to the blocks listed in the FINFO
   1133  * array.
   1134  */
   1135 void
   1136 lfs_updatemeta(struct segment *sp)
   1137 {
   1138 	SEGUSE *sup;
   1139 	struct buf *bp, *sbp;
   1140 	struct lfs *fs;
   1141 	struct vnode *vp;
   1142 	struct indir a[NIADDR + 2], *ap;
   1143 	struct inode *ip;
   1144 	ufs_daddr_t daddr, lbn, off;
   1145 	daddr_t ooff;
   1146 	int error, i, nblocks, num;
   1147 	int bb, osize, obb;
   1148 
   1149 	vp = sp->vp;
   1150 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
   1151 	if (nblocks < 0)
   1152 		panic("This is a bad thing");
   1153 	if (vp == NULL || nblocks == 0)
   1154 		return;
   1155 
   1156 	/* Sort the blocks. */
   1157 	/*
   1158 	 * XXX KS - We have to sort even if the blocks come from the
   1159 	 * cleaner, because there might be other pending blocks on the
   1160 	 * same inode...and if we don't sort, and there are fragments
   1161 	 * present, blocks may be written in the wrong place.
   1162 	 */
   1163 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
   1164 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
   1165 
   1166 	/*
   1167 	 * Record the length of the last block in case it's a fragment.
   1168 	 * If there are indirect blocks present, they sort last.  An
   1169 	 * indirect block will be lfs_bsize and its presence indicates
   1170 	 * that you cannot have fragments.
   1171 	 *
   1172 	 * XXX This last is a lie.  A cleaned fragment can coexist with
   1173 	 * XXX a later indirect block.  This will continue to be
   1174 	 * XXX true until lfs_markv is fixed to do everything with
   1175 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
   1176 	 */
   1177 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
   1178 
   1179 	/*
   1180 	 * Assign disk addresses, and update references to the logical
   1181 	 * block and the segment usage information.
   1182 	 */
   1183 	fs = sp->fs;
   1184 	for (i = nblocks; i--; ++sp->start_bpp) {
   1185 		lbn = *sp->start_lbp++;
   1186 		sbp = *sp->start_bpp;
   1187 
   1188 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
   1189 		off = fs->lfs_offset;
   1190 		if (sbp->b_blkno == sbp->b_lblkno) {
   1191 			printf("lfs_updatemeta: ino %d blk %d"
   1192 			       " has same lbn and daddr\n",
   1193 			       VTOI(vp)->i_number, off);
   1194 		}
   1195 
   1196 		/*
   1197 		 * If we write a frag in the wrong place, the cleaner won't
   1198 		 * be able to correctly identify its size later, and the
   1199 		 * segment will be uncleanable.  (Even worse, it will assume
   1200 		 * that the indirect block that actually ends the list
   1201 		 * is of a smaller size!)
   1202 		 */
   1203 		if (sbp->b_bcount < fs->lfs_bsize && i != 0)
   1204 			panic("lfs_updatemeta: fragment is not last block");
   1205 
   1206 		bb = fragstofsb(fs, numfrags(fs, sbp->b_bcount));
   1207 		fs->lfs_offset += bb;
   1208 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
   1209 		if (daddr > 0)
   1210 			daddr = dbtofsb(fs, daddr);
   1211 		if (error)
   1212 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
   1213 		ip = VTOI(vp);
   1214 		switch (num) {
   1215 		case 0:
   1216 			ooff = ip->i_ffs_db[lbn];
   1217 #ifdef DEBUG
   1218 			if (ooff == 0) {
   1219 				printf("lfs_updatemeta[1]: warning: writing "
   1220 				       "ino %d lbn %d at 0x%x, was 0x0\n",
   1221 				       ip->i_number, lbn, off);
   1222 			}
   1223 #endif
   1224 			if (ooff == UNWRITTEN)
   1225 				ip->i_ffs_blocks += bb;
   1226 			else {
   1227 				/* possible fragment truncation or extension */
   1228 				obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
   1229 				ip->i_ffs_blocks += (bb - obb);
   1230 			}
   1231 			ip->i_ffs_db[lbn] = off;
   1232 			break;
   1233 		case 1:
   1234 			ooff = ip->i_ffs_ib[a[0].in_off];
   1235 #ifdef DEBUG
   1236 			if (ooff == 0) {
   1237 				printf("lfs_updatemeta[2]: warning: writing "
   1238 				       "ino %d lbn %d at 0x%x, was 0x0\n",
   1239 				       ip->i_number, lbn, off);
   1240 			}
   1241 #endif
   1242 			if (ooff == UNWRITTEN)
   1243 				ip->i_ffs_blocks += bb;
   1244 			ip->i_ffs_ib[a[0].in_off] = off;
   1245 			break;
   1246 		default:
   1247 			ap = &a[num - 1];
   1248 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
   1249 				panic("lfs_updatemeta: bread bno %d",
   1250 				      ap->in_lbn);
   1251 
   1252 			ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
   1253 #if DEBUG
   1254 			if (ooff == 0) {
   1255 				printf("lfs_updatemeta[3]: warning: writing "
   1256 				       "ino %d lbn %d at 0x%x, was 0x0\n",
   1257 				       ip->i_number, lbn, off);
   1258 			}
   1259 #endif
   1260 			if (ooff == UNWRITTEN)
   1261 				ip->i_ffs_blocks += bb;
   1262 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
   1263 			(void) VOP_BWRITE(bp);
   1264 		}
   1265 #ifdef DEBUG
   1266 		if (daddr >= fs->lfs_lastpseg && daddr <= off) {
   1267 			printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
   1268 			       "in same pseg\n", VTOI(sp->vp)->i_number,
   1269 			       sbp->b_lblkno, daddr);
   1270 		}
   1271 #endif
   1272 		/*
   1273 		 * Update segment usage information, based on old size
   1274 		 * and location.
   1275 		 */
   1276 		if (daddr > 0) {
   1277 			if (lbn >= 0 && lbn < NDADDR)
   1278 				osize = ip->i_lfs_fragsize[lbn];
   1279 			else
   1280 				osize = fs->lfs_bsize;
   1281 			LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
   1282 #ifdef DIAGNOSTIC
   1283 			if (sup->su_nbytes < osize + DINODE_SIZE * sp->ndupino) {
   1284 				printf("lfs_updatemeta: negative bytes "
   1285 				       "(segment %d short by %d)\n",
   1286 				       dtosn(fs, daddr),
   1287 				       osize - sup->su_nbytes);
   1288 				printf("lfs_updatemeta: ino %d, lbn %d, "
   1289 				       "addr = 0x%x\n", VTOI(sp->vp)->i_number,
   1290 				       lbn, daddr);
   1291 				panic("lfs_updatemeta: negative bytes");
   1292 				sup->su_nbytes = osize + DINODE_SIZE * sp->ndupino;
   1293 			}
   1294 #endif
   1295 #ifdef DEBUG_SU_NBYTES
   1296 			printf("seg %d -= %ld for ino %d lbn %d db 0x%x\n",
   1297 			       dtosn(fs, daddr), osize, VTOI(sp->vp)->i_number,
   1298 			       lbn, daddr);
   1299 #endif
   1300 			sup->su_nbytes -= osize;
   1301 			if (!(bp->b_flags & B_GATHERED))
   1302 				fs->lfs_flags |= LFS_IFDIRTY;
   1303 			error = LFS_BWRITE_LOG(bp); /* Ifile */
   1304 		}
   1305 		/*
   1306 		 * Now that this block has a new address, and its old
   1307 		 * segment no longer owns it, we can forget about its
   1308 		 * old size.
   1309 		 */
   1310 		if (lbn >= 0 && lbn < NDADDR)
   1311 			ip->i_lfs_fragsize[lbn] = sbp->b_bcount;
   1312 	}
   1313 }
   1314 
   1315 /*
   1316  * Start a new segment.
   1317  */
   1318 int
   1319 lfs_initseg(struct lfs *fs)
   1320 {
   1321 	struct segment *sp;
   1322 	SEGUSE *sup;
   1323 	SEGSUM *ssp;
   1324 	struct buf *bp, *sbp;
   1325 	int repeat;
   1326 
   1327 	sp = fs->lfs_sp;
   1328 
   1329 	repeat = 0;
   1330 	/* Advance to the next segment. */
   1331 	if (!LFS_PARTIAL_FITS(fs)) {
   1332 		/* lfs_avail eats the remaining space */
   1333 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
   1334 						   fs->lfs_curseg);
   1335 		/* Wake up any cleaning procs waiting on this file system. */
   1336 		wakeup(&lfs_allclean_wakeup);
   1337 		wakeup(&fs->lfs_nextseg);
   1338 		lfs_newseg(fs);
   1339 		repeat = 1;
   1340 		fs->lfs_offset = fs->lfs_curseg;
   1341 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1342 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
   1343 		/*
   1344 		 * If the segment contains a superblock, update the offset
   1345 		 * and summary address to skip over it.
   1346 		 */
   1347 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1348 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
   1349 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
   1350 			sp->seg_bytes_left -= LFS_SBPAD;
   1351 		}
   1352 		brelse(bp);
   1353 		/* Segment zero could also contain the labelpad */
   1354 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
   1355 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
   1356 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
   1357 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
   1358 		}
   1359 	} else {
   1360 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
   1361 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
   1362 				      (fs->lfs_offset - fs->lfs_curseg));
   1363 	}
   1364 	fs->lfs_lastpseg = fs->lfs_offset;
   1365 
   1366 	sp->fs = fs;
   1367 	sp->ibp = NULL;
   1368 	sp->idp = NULL;
   1369 	sp->ninodes = 0;
   1370 	sp->ndupino = 0;
   1371 
   1372 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
   1373 	sp->cbpp = sp->bpp;
   1374 #ifdef LFS_MALLOC_SUMMARY
   1375 	sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
   1376 				     fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
   1377   	sp->segsum = (*sp->cbpp)->b_data;
   1378 #else
   1379 	sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
   1380 				 fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
   1381 	memset(sbp->b_data, 0x5a, NBPG);
   1382 	sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
   1383 #endif
   1384 	bzero(sp->segsum, fs->lfs_sumsize);
   1385 	sp->start_bpp = ++sp->cbpp;
   1386 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
   1387 
   1388 	/* Set point to SEGSUM, initialize it. */
   1389 	ssp = sp->segsum;
   1390 	ssp->ss_next = fs->lfs_nextseg;
   1391 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
   1392 	ssp->ss_magic = SS_MAGIC;
   1393 
   1394 	/* Set pointer to first FINFO, initialize it. */
   1395 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
   1396 	sp->fip->fi_nblocks = 0;
   1397 	sp->start_lbp = &sp->fip->fi_blocks[0];
   1398 	sp->fip->fi_lastlength = 0;
   1399 
   1400 	sp->seg_bytes_left -= fs->lfs_sumsize;
   1401 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
   1402 
   1403 #ifndef LFS_MALLOC_SUMMARY
   1404 	LFS_LOCK_BUF(sbp);
   1405 	brelse(sbp);
   1406 #endif
   1407 	return (repeat);
   1408 }
   1409 
   1410 /*
   1411  * Return the next segment to write.
   1412  */
   1413 void
   1414 lfs_newseg(struct lfs *fs)
   1415 {
   1416 	CLEANERINFO *cip;
   1417 	SEGUSE *sup;
   1418 	struct buf *bp;
   1419 	int curseg, isdirty, sn;
   1420 
   1421 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
   1422 #ifdef DEBUG_SU_NBYTES
   1423 	printf("lfs_newseg: seg %d := 0 in newseg\n",   /* XXXDEBUG */
   1424 	       dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
   1425 #endif
   1426 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1427 	sup->su_nbytes = 0;
   1428 	sup->su_nsums = 0;
   1429 	sup->su_ninos = 0;
   1430 	(void) LFS_BWRITE_LOG(bp); /* Ifile */
   1431 
   1432 	LFS_CLEANERINFO(cip, fs, bp);
   1433 	--cip->clean;
   1434 	++cip->dirty;
   1435 	fs->lfs_nclean = cip->clean;
   1436 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1437 
   1438 	fs->lfs_lastseg = fs->lfs_curseg;
   1439 	fs->lfs_curseg = fs->lfs_nextseg;
   1440 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
   1441 		sn = (sn + 1) % fs->lfs_nseg;
   1442 		if (sn == curseg)
   1443 			panic("lfs_nextseg: no clean segments");
   1444 		LFS_SEGENTRY(sup, fs, sn, bp);
   1445 		isdirty = sup->su_flags & SEGUSE_DIRTY;
   1446 		brelse(bp);
   1447 		if (!isdirty)
   1448 			break;
   1449 	}
   1450 
   1451 	++fs->lfs_nactive;
   1452 	fs->lfs_nextseg = sntod(fs, sn);
   1453 	if (lfs_dostats) {
   1454 		++lfs_stats.segsused;
   1455 	}
   1456 }
   1457 
   1458 static struct buf **
   1459 lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
   1460 {
   1461 	size_t maxsize;
   1462 #ifndef LFS_NO_PAGEMOVE
   1463 	struct buf *bp;
   1464 #endif
   1465 
   1466 	maxsize = *size;
   1467 	*size = 0;
   1468 #ifdef LFS_NO_PAGEMOVE
   1469 	return bpp;
   1470 #else
   1471 	while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
   1472 		if(bp->b_flags & B_CALL)
   1473 			return bpp;
   1474 		if(bp->b_bcount % NBPG)
   1475 			return bpp;
   1476 		*size += bp->b_bcount;
   1477 		++bpp;
   1478 	}
   1479 	return NULL;
   1480 #endif
   1481 }
   1482 
   1483 #define BQUEUES 4 /* XXX */
   1484 #define BQ_EMPTY 3 /* XXX */
   1485 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
   1486 
   1487 #define	BUFHASH(dvp, lbn)	\
   1488 	(&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
   1489 extern LIST_HEAD(bufhashhdr, buf) invalhash;
   1490 /*
   1491  * Insq/Remq for the buffer hash lists.
   1492  */
   1493 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
   1494 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
   1495 
   1496 static struct buf *
   1497 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
   1498 {
   1499 	struct lfs_cluster *cl;
   1500 	struct buf **bpp, *bp;
   1501 	int s;
   1502 
   1503 	cl = (struct lfs_cluster *)malloc(sizeof(*cl), M_SEGMENT, M_WAITOK);
   1504 	bpp = (struct buf **)malloc(n*sizeof(*bpp), M_SEGMENT, M_WAITOK);
   1505 	memset(cl, 0, sizeof(*cl));
   1506 	cl->fs = fs;
   1507 	cl->bpp = bpp;
   1508 	cl->bufcount = 0;
   1509 	cl->bufsize = 0;
   1510 
   1511 	/* If this segment is being written synchronously, note that */
   1512 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
   1513 		cl->flags |= LFS_CL_SYNC;
   1514 		cl->seg = fs->lfs_sp;
   1515 		++cl->seg->seg_iocount;
   1516 		/* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
   1517 	}
   1518 
   1519 	/* Get an empty buffer header, or maybe one with something on it */
   1520 	s = splbio();
   1521 	if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
   1522 		bremfree(bp);
   1523 		/* clear out various other fields */
   1524 		bp->b_flags = B_BUSY;
   1525 		bp->b_dev = NODEV;
   1526 		bp->b_blkno = bp->b_lblkno = 0;
   1527 		bp->b_error = 0;
   1528 		bp->b_resid = 0;
   1529 		bp->b_bcount = 0;
   1530 
   1531 		/* nuke any credentials we were holding */
   1532 		/* XXXXXX */
   1533 
   1534 		bremhash(bp);
   1535 
   1536 		/* disassociate us from our vnode, if we had one... */
   1537 		if (bp->b_vp)
   1538 			brelvp(bp);
   1539 	}
   1540 	splx(s);
   1541 	while (!bp)
   1542 		bp = getnewbuf(0, 0);
   1543 	s = splbio();
   1544 	bgetvp(vp, bp);
   1545 	binshash(bp,&invalhash);
   1546 	splx(s);
   1547 	bp->b_bcount = 0;
   1548 	bp->b_blkno = bp->b_lblkno = addr;
   1549 
   1550 	bp->b_flags |= B_CALL;
   1551 	bp->b_iodone = lfs_cluster_callback;
   1552 	cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
   1553 	bp->b_saveaddr = (caddr_t)cl;
   1554 
   1555 	return bp;
   1556 }
   1557 
   1558 int
   1559 lfs_writeseg(struct lfs *fs, struct segment *sp)
   1560 {
   1561 	struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
   1562 	SEGUSE *sup;
   1563 	SEGSUM *ssp;
   1564 	dev_t i_dev;
   1565 	char *datap, *dp;
   1566 	int do_again, i, nblocks, s;
   1567 	size_t el_size;
   1568  	struct lfs_cluster *cl;
   1569 	int (*strategy)(void *);
   1570 	struct vop_strategy_args vop_strategy_a;
   1571 	u_short ninos;
   1572 	struct vnode *devvp;
   1573 	char *p;
   1574 	struct vnode *vp;
   1575 	struct inode *ip;
   1576 	size_t pmsize;
   1577 	int use_pagemove;
   1578 	daddr_t pseg_daddr;
   1579 	daddr_t *daddrp;
   1580 	int changed;
   1581 #if defined(DEBUG) && defined(LFS_PROPELLER)
   1582 	static int propeller;
   1583 	char propstring[4] = "-\\|/";
   1584 
   1585 	printf("%c\b",propstring[propeller++]);
   1586 	if (propeller == 4)
   1587 		propeller = 0;
   1588 #endif
   1589 	pseg_daddr = (*(sp->bpp))->b_blkno;
   1590 
   1591 	/*
   1592 	 * If there are no buffers other than the segment summary to write
   1593 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
   1594 	 * even if there aren't any buffers, you need to write the superblock.
   1595 	 */
   1596 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
   1597 		return (0);
   1598 
   1599 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   1600 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
   1601 
   1602 	/* Update the segment usage information. */
   1603 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
   1604 
   1605 	/* Loop through all blocks, except the segment summary. */
   1606 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
   1607 		if ((*bpp)->b_vp != devvp) {
   1608 			sup->su_nbytes += (*bpp)->b_bcount;
   1609 #ifdef DEBUG_SU_NBYTES
   1610 		printf("seg %d += %ld for ino %d lbn %d db 0x%x\n",
   1611 		       sp->seg_number, (*bpp)->b_bcount,
   1612 		       VTOI((*bpp)->b_vp)->i_number,
   1613 		       (*bpp)->b_lblkno, (*bpp)->b_blkno);
   1614 #endif
   1615 		}
   1616 	}
   1617 
   1618 	ssp = (SEGSUM *)sp->segsum;
   1619 
   1620 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
   1621 #ifdef DEBUG_SU_NBYTES
   1622 	printf("seg %d += %d for %d inodes\n",   /* XXXDEBUG */
   1623 	       sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
   1624 	       ssp->ss_ninos);
   1625 #endif
   1626 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
   1627 	/* sup->su_nbytes += fs->lfs_sumsize; */
   1628 	if (fs->lfs_version == 1)
   1629 		sup->su_olastmod = time.tv_sec;
   1630 	else
   1631 		sup->su_lastmod = time.tv_sec;
   1632 	sup->su_ninos += ninos;
   1633 	++sup->su_nsums;
   1634 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
   1635 							 fs->lfs_ibsize));
   1636 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
   1637 
   1638 	do_again = !(bp->b_flags & B_GATHERED);
   1639 	(void)LFS_BWRITE_LOG(bp); /* Ifile */
   1640 	/*
   1641 	 * Mark blocks B_BUSY, to prevent then from being changed between
   1642 	 * the checksum computation and the actual write.
   1643 	 *
   1644 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
   1645 	 * there are any, replace them with copies that have UNASSIGNED
   1646 	 * instead.
   1647 	 */
   1648 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1649 		++bpp;
   1650 		if ((*bpp)->b_flags & B_CALL)
   1651 			continue;
   1652 		bp = *bpp;
   1653 	    again:
   1654 		s = splbio();
   1655 		if (bp->b_flags & B_BUSY) {
   1656 #ifdef DEBUG
   1657 			printf("lfs_writeseg: avoiding potential data "
   1658 			       "summary corruption for ino %d, lbn %d\n",
   1659 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
   1660 #endif
   1661 			bp->b_flags |= B_WANTED;
   1662 			tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
   1663 			splx(s);
   1664 			goto again;
   1665 		}
   1666 		bp->b_flags |= B_BUSY;
   1667 		splx(s);
   1668 		/* Check and replace indirect block UNWRITTEN bogosity */
   1669 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
   1670 		   VTOI(bp->b_vp)->i_ffs_blocks !=
   1671 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
   1672 #ifdef DEBUG_LFS
   1673 			printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
   1674 			       VTOI(bp->b_vp)->i_number,
   1675 			       VTOI(bp->b_vp)->i_lfs_effnblks,
   1676 			       VTOI(bp->b_vp)->i_ffs_blocks);
   1677 #endif
   1678 			/* Make a copy we'll make changes to */
   1679 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
   1680 					   bp->b_bcount);
   1681 			newbp->b_blkno = bp->b_blkno;
   1682 			memcpy(newbp->b_data, bp->b_data,
   1683 			       newbp->b_bcount);
   1684 			*bpp = newbp;
   1685 
   1686 			changed = 0;
   1687 			for (daddrp = (daddr_t *)(newbp->b_data);
   1688 			     daddrp < (daddr_t *)(newbp->b_data +
   1689 						  newbp->b_bcount); daddrp++) {
   1690 				if (*daddrp == UNWRITTEN) {
   1691 					++changed;
   1692 #ifdef DEBUG_LFS
   1693 					printf("lfs_writeseg: replacing UNWRITTEN\n");
   1694 #endif
   1695 					*daddrp = 0;
   1696 				}
   1697 			}
   1698 			/*
   1699 			 * Get rid of the old buffer.  Don't mark it clean,
   1700 			 * though, if it still has dirty data on it.
   1701 			 */
   1702 			if (changed) {
   1703 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
   1704 				if (bp->b_flags & B_CALL) {
   1705 					lfs_freebuf(bp);
   1706 					bp = NULL;
   1707 				} else {
   1708 					/* Still on free list, leave it there */
   1709 					s = splbio();
   1710 					bp->b_flags &= ~B_BUSY;
   1711 					if (bp->b_flags & B_WANTED)
   1712 						wakeup(bp);
   1713 				 	splx(s);
   1714 					/*
   1715 					 * We have to re-decrement lfs_avail
   1716 					 * since this block is going to come
   1717 					 * back around to us in the next
   1718 					 * segment.
   1719 					 */
   1720 					fs->lfs_avail -= btofsb(fs, bp->b_bcount);
   1721 				}
   1722 			} else {
   1723 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
   1724 						 B_GATHERED);
   1725 				if (bp->b_flags & B_CALL) {
   1726 					lfs_freebuf(bp);
   1727 					bp = NULL;
   1728 				} else {
   1729 					bremfree(bp);
   1730 					bp->b_flags |= B_DONE;
   1731 					s = splbio();
   1732 					reassignbuf(bp, bp->b_vp);
   1733 					splx(s);
   1734 					LFS_UNLOCK_BUF(bp);
   1735 					brelse(bp);
   1736 				}
   1737 			}
   1738 
   1739 		}
   1740 	}
   1741 	/*
   1742 	 * Compute checksum across data and then across summary; the first
   1743 	 * block (the summary block) is skipped.  Set the create time here
   1744 	 * so that it's guaranteed to be later than the inode mod times.
   1745 	 *
   1746 	 * XXX
   1747 	 * Fix this to do it inline, instead of malloc/copy.
   1748 	 */
   1749 	if (fs->lfs_version == 1)
   1750 		el_size = sizeof(u_long);
   1751 	else
   1752 		el_size = sizeof(u_int32_t);
   1753 	datap = dp = malloc(nblocks * el_size, M_SEGMENT, M_WAITOK);
   1754 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
   1755 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1756 			if (copyin((*bpp)->b_saveaddr, dp, el_size))
   1757 				panic("lfs_writeseg: copyin failed [1]: "
   1758 				      "ino %d blk %d",
   1759 				      VTOI((*bpp)->b_vp)->i_number,
   1760 				      (*bpp)->b_lblkno);
   1761 		} else
   1762 			memcpy(dp, (*bpp)->b_data, el_size);
   1763 		dp += el_size;
   1764 	}
   1765 	if (fs->lfs_version == 1)
   1766 		ssp->ss_ocreate = time.tv_sec;
   1767 	else {
   1768 		ssp->ss_create = time.tv_sec;
   1769 		ssp->ss_serial = ++fs->lfs_serial;
   1770 		ssp->ss_ident  = fs->lfs_ident;
   1771 	}
   1772 #ifndef LFS_MALLOC_SUMMARY
   1773 	/* Set the summary block busy too */
   1774 	(*(sp->bpp))->b_flags |= B_BUSY;
   1775 #endif
   1776 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
   1777 	ssp->ss_sumsum =
   1778 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
   1779 	free(datap, M_SEGMENT);
   1780 	datap = dp = NULL;
   1781 #ifdef DIAGNOSTIC
   1782 	if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
   1783 		panic("lfs_writeseg: No diskspace for summary");
   1784 #endif
   1785 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
   1786 			  btofsb(fs, fs->lfs_sumsize));
   1787 
   1788 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
   1789 
   1790 	/*
   1791   	 * When we simply write the blocks we lose a rotation for every block
   1792 	 * written.  To avoid this problem, we use pagemove to cluster
   1793 	 * the buffers into a chunk and write the chunk.  CHUNKSIZE is the
   1794   	 * largest size I/O devices can handle.
   1795   	 *
   1796 	 * XXX - right now MAXPHYS is only 64k; could it be larger?
   1797 	 */
   1798 
   1799 #define CHUNKSIZE MAXPHYS
   1800 
   1801 	if (devvp == NULL)
   1802 		panic("devvp is NULL");
   1803 	for (bpp = sp->bpp, i = nblocks; i;) {
   1804 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
   1805 		cl = (struct lfs_cluster *)cbp->b_saveaddr;
   1806 
   1807 		cbp->b_dev = i_dev;
   1808 		cbp->b_flags |= B_ASYNC | B_BUSY;
   1809 		cbp->b_bcount = 0;
   1810 
   1811 		/*
   1812 		 * Find out if we can use pagemove to build the cluster,
   1813 		 * or if we are stuck using malloc/copy.  If this is the
   1814 		 * first cluster, set the shift flag (see below).
   1815 		 */
   1816 		pmsize = CHUNKSIZE;
   1817 		use_pagemove = 0;
   1818 		if(bpp == sp->bpp) {
   1819 			/* Summary blocks have to get special treatment */
   1820 			pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
   1821 			if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
   1822 			   pmlastbpp == NULL) {
   1823 				use_pagemove = 1;
   1824 				cl->flags |= LFS_CL_SHIFT;
   1825 			} else {
   1826 				/*
   1827 				 * If we're not using pagemove, we have
   1828 				 * to copy the summary down to the bottom
   1829 				 * end of the block.
   1830 				 */
   1831 #ifndef LFS_MALLOC_SUMMARY
   1832 				memcpy((*bpp)->b_data, (*bpp)->b_data +
   1833 				       NBPG - fs->lfs_sumsize,
   1834 				       fs->lfs_sumsize);
   1835 #endif /* LFS_MALLOC_SUMMARY */
   1836 			}
   1837 		} else {
   1838 			pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
   1839 			if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
   1840 				use_pagemove = 1;
   1841 			}
   1842 		}
   1843 		if(use_pagemove == 0) {
   1844 			cl->flags |= LFS_CL_MALLOC;
   1845 			cl->olddata = cbp->b_data;
   1846 			cbp->b_data = malloc(CHUNKSIZE, M_SEGMENT, M_WAITOK);
   1847 		}
   1848 #if defined(DEBUG) && defined(DIAGNOSTIC)
   1849 		if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
   1850 		   dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
   1851 			printf("block at %x (%d), cbp at %x (%d)\n",
   1852 				(*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
   1853 			       cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
   1854 			panic("lfs_writeseg: Segment overwrite");
   1855 		}
   1856 #endif
   1857 
   1858 		/*
   1859 		 * Construct the cluster.
   1860 		 */
   1861 		while (fs->lfs_iocount >= LFS_THROTTLE) {
   1862 #ifdef DEBUG_LFS
   1863 			printf("[%d]", fs->lfs_iocount);
   1864 #endif
   1865 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs_throttle", 0);
   1866 		}
   1867 		++fs->lfs_iocount;
   1868 
   1869 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
   1870 			bp = *bpp;
   1871 
   1872 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
   1873 				break;
   1874 
   1875 			/*
   1876 			 * Fake buffers from the cleaner are marked as B_INVAL.
   1877 			 * We need to copy the data from user space rather than
   1878 			 * from the buffer indicated.
   1879 			 * XXX == what do I do on an error?
   1880 			 */
   1881 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
   1882 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
   1883 					panic("lfs_writeseg: copyin failed [2]");
   1884 			} else if (use_pagemove) {
   1885 				pagemove(bp->b_data, p, bp->b_bcount);
   1886 				cbp->b_bufsize += bp->b_bcount;
   1887 				bp->b_bufsize -= bp->b_bcount;
   1888   			} else {
   1889 				bcopy(bp->b_data, p, bp->b_bcount);
   1890 				/* printf("copy in %p\n", bp->b_data); */
   1891   			}
   1892 
   1893 			/*
   1894 			 * XXX If we are *not* shifting, the summary
   1895 			 * block is only fs->lfs_sumsize.  Otherwise,
   1896 			 * it is NBPG but shifted.
   1897 			 */
   1898 			if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
   1899 				p += fs->lfs_sumsize;
   1900 				cbp->b_bcount += fs->lfs_sumsize;
   1901 				cl->bufsize += fs->lfs_sumsize;
   1902 			} else {
   1903 				p += bp->b_bcount;
   1904 				cbp->b_bcount += bp->b_bcount;
   1905 				cl->bufsize += bp->b_bcount;
   1906 			}
   1907 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
   1908 			cl->bpp[cl->bufcount++] = bp;
   1909 			vp = bp->b_vp;
   1910 			s = splbio();
   1911 			++vp->v_numoutput;
   1912 			splx(s);
   1913 
   1914 			/*
   1915 			 * Although it cannot be freed for reuse before the
   1916 			 * cluster is written to disk, this buffer does not
   1917 			 * need to be held busy.  Therefore we unbusy it,
   1918 			 * while leaving it on the locked list.  It will
   1919 			 * be freed or requeued by the callback depending
   1920 			 * on whether it has had B_DELWRI set again in the
   1921 			 * meantime.
   1922 			 *
   1923 			 * If we are using pagemove, we have to hold the block
   1924 			 * busy to prevent its contents from changing before
   1925 			 * it hits the disk, and invalidating the checksum.
   1926 			 */
   1927 			bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
   1928 #ifdef LFS_MNOBUSY
   1929 			if (cl->flags & LFS_CL_MALLOC) {
   1930 				if (!(bp->b_flags & B_CALL))
   1931 					brelse(bp); /* Still B_LOCKED */
   1932 			}
   1933 #endif
   1934 			bpp++;
   1935 
   1936 			/*
   1937 			 * If this is the last block for this vnode, but
   1938 			 * there are other blocks on its dirty list,
   1939 			 * set IN_MODIFIED/IN_CLEANING depending on what
   1940 			 * sort of block.  Only do this for our mount point,
   1941 			 * not for, e.g., inode blocks that are attached to
   1942 			 * the devvp.
   1943 			 * XXX KS - Shouldn't we set *both* if both types
   1944 			 * of blocks are present (traverse the dirty list?)
   1945 			 */
   1946 			s = splbio();
   1947 			if ((i == 1 ||
   1948 			     (i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
   1949 			    (bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
   1950 			    vp->v_mount == fs->lfs_ivnode->v_mount)
   1951   			{
   1952 				ip = VTOI(vp);
   1953 #ifdef DEBUG_LFS
   1954 				printf("lfs_writeseg: marking ino %d\n",
   1955 				       ip->i_number);
   1956 #endif
   1957 				if (bp->b_flags & B_CALL)
   1958 					LFS_SET_UINO(ip, IN_CLEANING);
   1959 				else
   1960 					LFS_SET_UINO(ip, IN_MODIFIED);
   1961 			}
   1962 			splx(s);
   1963 			wakeup(vp);
   1964 		}
   1965 		s = splbio();
   1966 		++cbp->b_vp->v_numoutput;
   1967 		splx(s);
   1968 		/*
   1969 		 * In order to include the summary in a clustered block,
   1970 		 * it may be necessary to shift the block forward (since
   1971 		 * summary blocks are in generay smaller than can be
   1972 		 * addressed by pagemove().  After the write, the block
   1973 		 * will be corrected before disassembly.
   1974 		 */
   1975 		if(cl->flags & LFS_CL_SHIFT) {
   1976 			cbp->b_data += (NBPG - fs->lfs_sumsize);
   1977 			cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
   1978 		}
   1979 		vop_strategy_a.a_desc = VDESC(vop_strategy);
   1980 		vop_strategy_a.a_bp = cbp;
   1981 		(strategy)(&vop_strategy_a);
   1982 	}
   1983 
   1984 	if (lfs_dostats) {
   1985 		++lfs_stats.psegwrites;
   1986 		lfs_stats.blocktot += nblocks - 1;
   1987 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
   1988 			++lfs_stats.psyncwrites;
   1989 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
   1990 			++lfs_stats.pcleanwrites;
   1991 			lfs_stats.cleanblocks += nblocks - 1;
   1992 		}
   1993 	}
   1994 	return (lfs_initseg(fs) || do_again);
   1995 }
   1996 
   1997 void
   1998 lfs_writesuper(struct lfs *fs, daddr_t daddr)
   1999 {
   2000 	struct buf *bp;
   2001 	dev_t i_dev;
   2002 	int (*strategy)(void *);
   2003 	int s;
   2004 	struct vop_strategy_args vop_strategy_a;
   2005 
   2006 	/*
   2007 	 * If we can write one superblock while another is in
   2008 	 * progress, we risk not having a complete checkpoint if we crash.
   2009 	 * So, block here if a superblock write is in progress.
   2010 	 */
   2011 	s = splbio();
   2012 	while (fs->lfs_sbactive) {
   2013 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
   2014 	}
   2015 	fs->lfs_sbactive = daddr;
   2016 	splx(s);
   2017 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
   2018 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
   2019 
   2020 	/* Set timestamp of this version of the superblock */
   2021 	if (fs->lfs_version == 1)
   2022 		fs->lfs_otstamp = time.tv_sec;
   2023 	fs->lfs_tstamp = time.tv_sec;
   2024 
   2025 	/* Checksum the superblock and copy it into a buffer. */
   2026 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   2027 	bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
   2028 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
   2029 
   2030 	bp->b_dev = i_dev;
   2031 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
   2032 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
   2033 	bp->b_iodone = lfs_supercallback;
   2034 	/* XXX KS - same nasty hack as above */
   2035 	bp->b_saveaddr = (caddr_t)fs;
   2036 
   2037 	vop_strategy_a.a_desc = VDESC(vop_strategy);
   2038 	vop_strategy_a.a_bp = bp;
   2039 	s = splbio();
   2040 	++bp->b_vp->v_numoutput;
   2041 	splx(s);
   2042 	++fs->lfs_iocount;
   2043 	(strategy)(&vop_strategy_a);
   2044 }
   2045 
   2046 /*
   2047  * Logical block number match routines used when traversing the dirty block
   2048  * chain.
   2049  */
   2050 int
   2051 lfs_match_fake(struct lfs *fs, struct buf *bp)
   2052 {
   2053 	return (bp->b_flags & B_CALL);
   2054 }
   2055 
   2056 int
   2057 lfs_match_data(struct lfs *fs, struct buf *bp)
   2058 {
   2059 	return (bp->b_lblkno >= 0);
   2060 }
   2061 
   2062 int
   2063 lfs_match_indir(struct lfs *fs, struct buf *bp)
   2064 {
   2065 	int lbn;
   2066 
   2067 	lbn = bp->b_lblkno;
   2068 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
   2069 }
   2070 
   2071 int
   2072 lfs_match_dindir(struct lfs *fs, struct buf *bp)
   2073 {
   2074 	int lbn;
   2075 
   2076 	lbn = bp->b_lblkno;
   2077 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
   2078 }
   2079 
   2080 int
   2081 lfs_match_tindir(struct lfs *fs, struct buf *bp)
   2082 {
   2083 	int lbn;
   2084 
   2085 	lbn = bp->b_lblkno;
   2086 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
   2087 }
   2088 
   2089 /*
   2090  * XXX - The only buffers that are going to hit these functions are the
   2091  * segment write blocks, or the segment summaries, or the superblocks.
   2092  *
   2093  * All of the above are created by lfs_newbuf, and so do not need to be
   2094  * released via brelse.
   2095  */
   2096 void
   2097 lfs_callback(struct buf *bp)
   2098 {
   2099 	/* struct lfs *fs; */
   2100 	/* fs = (struct lfs *)bp->b_saveaddr; */
   2101 	lfs_freebuf(bp);
   2102 }
   2103 
   2104 static void
   2105 lfs_super_aiodone(struct buf *bp)
   2106 {
   2107 	struct lfs *fs;
   2108 
   2109 	fs = (struct lfs *)bp->b_saveaddr;
   2110 	fs->lfs_sbactive = 0;
   2111 	wakeup(&fs->lfs_sbactive);
   2112 	if (--fs->lfs_iocount < LFS_THROTTLE)
   2113 		wakeup(&fs->lfs_iocount);
   2114 	lfs_freebuf(bp);
   2115 }
   2116 
   2117 static void
   2118 lfs_cluster_aiodone(struct buf *bp)
   2119 {
   2120 	struct lfs_cluster *cl;
   2121 	struct lfs *fs;
   2122 	struct buf *tbp;
   2123 	struct vnode *vp;
   2124 	int s, error=0;
   2125 	char *cp;
   2126 	extern int locked_queue_count;
   2127 	extern long locked_queue_bytes;
   2128 
   2129 	if(bp->b_flags & B_ERROR)
   2130 		error = bp->b_error;
   2131 
   2132 	cl = (struct lfs_cluster *)bp->b_saveaddr;
   2133 	fs = cl->fs;
   2134 	bp->b_saveaddr = cl->saveaddr;
   2135 
   2136 	/* If shifted, shift back now */
   2137 	if(cl->flags & LFS_CL_SHIFT) {
   2138 		bp->b_data -= (NBPG - fs->lfs_sumsize);
   2139 		bp->b_bcount += (NBPG - fs->lfs_sumsize);
   2140 	}
   2141 
   2142 	cp = (char *)bp->b_data + cl->bufsize;
   2143 	/* Put the pages back, and release the buffer */
   2144 	while(cl->bufcount--) {
   2145 		tbp = cl->bpp[cl->bufcount];
   2146 		if(!(cl->flags & LFS_CL_MALLOC)) {
   2147 			cp -= tbp->b_bcount;
   2148 			printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
   2149 			pagemove(cp, tbp->b_data, tbp->b_bcount);
   2150 			bp->b_bufsize -= tbp->b_bcount;
   2151 			tbp->b_bufsize += tbp->b_bcount;
   2152 		}
   2153 		if(error) {
   2154 			tbp->b_flags |= B_ERROR;
   2155 			tbp->b_error = error;
   2156 		}
   2157 
   2158 		/*
   2159 		 * We're done with tbp.  If it has not been re-dirtied since
   2160 		 * the cluster was written, free it.  Otherwise, keep it on
   2161 		 * the locked list to be written again.
   2162 		 */
   2163 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
   2164 			LFS_UNLOCK_BUF(tbp);
   2165 		tbp->b_flags &= ~B_GATHERED;
   2166 
   2167 		LFS_BCLEAN_LOG(fs, tbp);
   2168 
   2169 		vp = tbp->b_vp;
   2170 		/* Segment summary for a shifted cluster */
   2171 		if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
   2172 			tbp->b_flags |= B_INVAL;
   2173 		if(!(tbp->b_flags & B_CALL)) {
   2174 			bremfree(tbp);
   2175 			s = splbio();
   2176 			if(vp)
   2177 				reassignbuf(tbp, vp);
   2178 			splx(s);
   2179 			tbp->b_flags |= B_ASYNC; /* for biodone */
   2180 		}
   2181 #ifdef DIAGNOSTIC
   2182 		if (tbp->b_flags & B_DONE) {
   2183 			printf("blk %d biodone already (flags %lx)\n",
   2184 				cl->bufcount, (long)tbp->b_flags);
   2185 		}
   2186 #endif
   2187 		if (tbp->b_flags & (B_BUSY | B_CALL)) {
   2188 			biodone(tbp);
   2189 		}
   2190 	}
   2191 
   2192 	/* Fix up the cluster buffer, and release it */
   2193 	if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
   2194 		printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
   2195 			 (char *)bp->b_data, bp->b_bufsize);
   2196 		pagemove((char *)bp->b_data + bp->b_bcount,
   2197 			 (char *)bp->b_data, bp->b_bufsize);
   2198 	}
   2199 	if(cl->flags & LFS_CL_MALLOC) {
   2200 		free(bp->b_data, M_SEGMENT);
   2201 		bp->b_data = cl->olddata;
   2202 	}
   2203 	bp->b_bcount = 0;
   2204 	bp->b_iodone = NULL;
   2205 	bp->b_flags &= ~B_DELWRI;
   2206 	bp->b_flags |= B_DONE;
   2207 	s = splbio();
   2208 	reassignbuf(bp, bp->b_vp);
   2209 	splx(s);
   2210 	brelse(bp);
   2211 
   2212 	/* Note i/o done */
   2213 	if (cl->flags & LFS_CL_SYNC) {
   2214 		if (--cl->seg->seg_iocount == 0)
   2215 			wakeup(&cl->seg->seg_iocount);
   2216 		/* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
   2217 	}
   2218 #ifdef DIAGNOSTIC
   2219 	if (fs->lfs_iocount == 0)
   2220 		panic("lfs_cluster_aiodone: zero iocount");
   2221 #endif
   2222 	if (--fs->lfs_iocount < LFS_THROTTLE)
   2223 		wakeup(&fs->lfs_iocount);
   2224 #if 0
   2225 	if (fs->lfs_iocount == 0) {
   2226 		/*
   2227 		 * Vinvalbuf can move locked buffers off the locked queue
   2228 		 * and we have no way of knowing about this.  So, after
   2229 		 * doing a big write, we recalculate how many buffers are
   2230 		 * really still left on the locked queue.
   2231 		 */
   2232 		lfs_countlocked(&locked_queue_count, &locked_queue_bytes, "lfs_cluster_callback");
   2233 		wakeup(&locked_queue_count);
   2234 	}
   2235 #endif
   2236 
   2237 	free(cl->bpp, M_SEGMENT);
   2238 	free(cl, M_SEGMENT);
   2239 }
   2240 
   2241 static void
   2242 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
   2243 {
   2244 	/* reset b_iodone for when this is a single-buf i/o. */
   2245 	bp->b_iodone = aiodone;
   2246 
   2247 	simple_lock(&uvm.aiodoned_lock);        /* locks uvm.aio_done */
   2248 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
   2249 	wakeup(&uvm.aiodoned);
   2250 	simple_unlock(&uvm.aiodoned_lock);
   2251 }
   2252 
   2253 static void
   2254 lfs_cluster_callback(struct buf *bp)
   2255 {
   2256 	lfs_generic_callback(bp, lfs_cluster_aiodone);
   2257 }
   2258 
   2259 void
   2260 lfs_supercallback(struct buf *bp)
   2261 {
   2262 	lfs_generic_callback(bp, lfs_super_aiodone);
   2263 }
   2264 
   2265 /*
   2266  * Shellsort (diminishing increment sort) from Data Structures and
   2267  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
   2268  * see also Knuth Vol. 3, page 84.  The increments are selected from
   2269  * formula (8), page 95.  Roughly O(N^3/2).
   2270  */
   2271 /*
   2272  * This is our own private copy of shellsort because we want to sort
   2273  * two parallel arrays (the array of buffer pointers and the array of
   2274  * logical block numbers) simultaneously.  Note that we cast the array
   2275  * of logical block numbers to a unsigned in this routine so that the
   2276  * negative block numbers (meta data blocks) sort AFTER the data blocks.
   2277  */
   2278 
   2279 void
   2280 lfs_shellsort(struct buf **bp_array, ufs_daddr_t *lb_array, int nmemb)
   2281 {
   2282 	static int __rsshell_increments[] = { 4, 1, 0 };
   2283 	int incr, *incrp, t1, t2;
   2284 	struct buf *bp_temp;
   2285 	u_long lb_temp;
   2286 
   2287 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
   2288 		for (t1 = incr; t1 < nmemb; ++t1)
   2289 			for (t2 = t1 - incr; t2 >= 0;)
   2290 				if (lb_array[t2] > lb_array[t2 + incr]) {
   2291 					lb_temp = lb_array[t2];
   2292 					lb_array[t2] = lb_array[t2 + incr];
   2293 					lb_array[t2 + incr] = lb_temp;
   2294 					bp_temp = bp_array[t2];
   2295 					bp_array[t2] = bp_array[t2 + incr];
   2296 					bp_array[t2 + incr] = bp_temp;
   2297 					t2 -= incr;
   2298 				} else
   2299 					break;
   2300 }
   2301 
   2302 /*
   2303  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
   2304  */
   2305 int
   2306 lfs_vref(struct vnode *vp)
   2307 {
   2308 	/*
   2309 	 * If we return 1 here during a flush, we risk vinvalbuf() not
   2310 	 * being able to flush all of the pages from this vnode, which
   2311 	 * will cause it to panic.  So, return 0 if a flush is in progress.
   2312 	 */
   2313 	if (vp->v_flag & VXLOCK) {
   2314 		if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   2315 			return 0;
   2316 		}
   2317 		return (1);
   2318 	}
   2319 	return (vget(vp, 0));
   2320 }
   2321 
   2322 /*
   2323  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
   2324  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
   2325  */
   2326 void
   2327 lfs_vunref(struct vnode *vp)
   2328 {
   2329 	/*
   2330 	 * Analogous to lfs_vref, if the node is flushing, fake it.
   2331 	 */
   2332 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
   2333 		return;
   2334 	}
   2335 
   2336 	simple_lock(&vp->v_interlock);
   2337 #ifdef DIAGNOSTIC
   2338 	if (vp->v_usecount <= 0) {
   2339 		printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
   2340 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
   2341 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
   2342 		panic("lfs_vunref: v_usecount<0");
   2343 	}
   2344 #endif
   2345 	vp->v_usecount--;
   2346 	if (vp->v_usecount > 0) {
   2347 		simple_unlock(&vp->v_interlock);
   2348 		return;
   2349 	}
   2350 	/*
   2351 	 * insert at tail of LRU list
   2352 	 */
   2353 	simple_lock(&vnode_free_list_slock);
   2354 	if (vp->v_holdcnt > 0)
   2355 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2356 	else
   2357 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
   2358 	simple_unlock(&vnode_free_list_slock);
   2359 	simple_unlock(&vp->v_interlock);
   2360 }
   2361 
   2362 /*
   2363  * We use this when we have vnodes that were loaded in solely for cleaning.
   2364  * There is no reason to believe that these vnodes will be referenced again
   2365  * soon, since the cleaning process is unrelated to normal filesystem
   2366  * activity.  Putting cleaned vnodes at the tail of the list has the effect
   2367  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
   2368  * cleaning at the head of the list, instead.
   2369  */
   2370 void
   2371 lfs_vunref_head(struct vnode *vp)
   2372 {
   2373 	simple_lock(&vp->v_interlock);
   2374 #ifdef DIAGNOSTIC
   2375 	if (vp->v_usecount == 0) {
   2376 		panic("lfs_vunref: v_usecount<0");
   2377 	}
   2378 #endif
   2379 	vp->v_usecount--;
   2380 	if (vp->v_usecount > 0) {
   2381 		simple_unlock(&vp->v_interlock);
   2382 		return;
   2383 	}
   2384 	/*
   2385 	 * insert at head of LRU list
   2386 	 */
   2387 	simple_lock(&vnode_free_list_slock);
   2388 	if (vp->v_holdcnt > 0)
   2389 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
   2390 	else
   2391 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
   2392 	simple_unlock(&vnode_free_list_slock);
   2393 	simple_unlock(&vp->v_interlock);
   2394 }
   2395 
   2396