lfs_segment.c revision 1.82 1 /* $NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $");
75
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/malloc.h>
93 #include <sys/mount.h>
94
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108
109 extern int count_lock_queue(void);
110 extern struct simplelock vnode_free_list_slock; /* XXX */
111
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116 static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
117
118 /*
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
121 */
122 #define LFS_PARTIAL_FITS(fs) \
123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 fragstofsb((fs), (fs)->lfs_frag))
125
126 void lfs_callback(struct buf *);
127 int lfs_gather(struct lfs *, struct segment *,
128 struct vnode *, int (*)(struct lfs *, struct buf *));
129 int lfs_gatherblock(struct segment *, struct buf *, int *);
130 void lfs_iset(struct inode *, ufs_daddr_t, time_t);
131 int lfs_match_fake(struct lfs *, struct buf *);
132 int lfs_match_data(struct lfs *, struct buf *);
133 int lfs_match_dindir(struct lfs *, struct buf *);
134 int lfs_match_indir(struct lfs *, struct buf *);
135 int lfs_match_tindir(struct lfs *, struct buf *);
136 void lfs_newseg(struct lfs *);
137 void lfs_shellsort(struct buf **, ufs_daddr_t *, int);
138 void lfs_supercallback(struct buf *);
139 void lfs_updatemeta(struct segment *);
140 int lfs_vref(struct vnode *);
141 void lfs_vunref(struct vnode *);
142 void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
143 int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
144 int lfs_writeseg(struct lfs *, struct segment *);
145 void lfs_writesuper(struct lfs *, daddr_t);
146 int lfs_writevnodes(struct lfs *fs, struct mount *mp,
147 struct segment *sp, int dirops);
148
149 int lfs_allclean_wakeup; /* Cleaner wakeup address. */
150 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
151 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
152 int lfs_dirvcount = 0; /* # active dirops */
153
154 /* Statistics Counters */
155 int lfs_dostats = 1;
156 struct lfs_stats lfs_stats;
157
158 extern int locked_queue_count;
159 extern long locked_queue_bytes;
160
161 /* op values to lfs_writevnodes */
162 #define VN_REG 0
163 #define VN_DIROP 1
164 #define VN_EMPTY 2
165 #define VN_CLEAN 3
166
167 #define LFS_MAX_ACTIVE 10
168
169 /*
170 * XXX KS - Set modification time on the Ifile, so the cleaner can
171 * read the fs mod time off of it. We don't set IN_UPDATE here,
172 * since we don't really need this to be flushed to disk (and in any
173 * case that wouldn't happen to the Ifile until we checkpoint).
174 */
175 void
176 lfs_imtime(struct lfs *fs)
177 {
178 struct timespec ts;
179 struct inode *ip;
180
181 TIMEVAL_TO_TIMESPEC(&time, &ts);
182 ip = VTOI(fs->lfs_ivnode);
183 ip->i_ffs_mtime = ts.tv_sec;
184 ip->i_ffs_mtimensec = ts.tv_nsec;
185 }
186
187 /*
188 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
189 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
190 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
191 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
192 */
193
194 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
195 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
196 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
197
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 struct inode *ip;
202 struct lfs *fs;
203 struct segment *sp;
204 struct buf *bp, *nbp, *tbp, *tnbp;
205 int error, s;
206
207 ip = VTOI(vp);
208 fs = VFSTOUFS(vp->v_mount)->um_lfs;
209
210 if (ip->i_flag & IN_CLEANING) {
211 #ifdef DEBUG_LFS
212 ivndebug(vp,"vflush/in_cleaning");
213 #endif
214 LFS_CLR_UINO(ip, IN_CLEANING);
215 LFS_SET_UINO(ip, IN_MODIFIED);
216
217 /*
218 * Toss any cleaning buffers that have real counterparts
219 * to avoid losing new data
220 */
221 s = splbio();
222 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 nbp = LIST_NEXT(bp, b_vnbufs);
224 if (bp->b_flags & B_CALL) {
225 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
226 tbp = tnbp)
227 {
228 tnbp = LIST_NEXT(tbp, b_vnbufs);
229 if (tbp->b_vp == bp->b_vp
230 && tbp->b_lblkno == bp->b_lblkno
231 && tbp != bp)
232 {
233 fs->lfs_avail += btofsb(fs, bp->b_bcount);
234 wakeup(&fs->lfs_avail);
235 lfs_freebuf(bp);
236 bp = NULL;
237 break;
238 }
239 }
240 }
241 }
242 splx(s);
243 }
244
245 /* If the node is being written, wait until that is done */
246 s = splbio();
247 if (WRITEINPROG(vp)) {
248 #ifdef DEBUG_LFS
249 ivndebug(vp,"vflush/writeinprog");
250 #endif
251 tsleep(vp, PRIBIO+1, "lfs_vw", 0);
252 }
253 splx(s);
254
255 /* Protect against VXLOCK deadlock in vinvalbuf() */
256 lfs_seglock(fs, SEGM_SYNC);
257
258 /* If we're supposed to flush a freed inode, just toss it */
259 /* XXX - seglock, so these buffers can't be gathered, right? */
260 if (ip->i_ffs_mode == 0) {
261 printf("lfs_vflush: ino %d is freed, not flushing\n",
262 ip->i_number);
263 s = splbio();
264 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
265 nbp = LIST_NEXT(bp, b_vnbufs);
266 if (bp->b_flags & B_DELWRI) { /* XXX always true? */
267 fs->lfs_avail += btofsb(fs, bp->b_bcount);
268 wakeup(&fs->lfs_avail);
269 }
270 /* Copied from lfs_writeseg */
271 if (bp->b_flags & B_CALL) {
272 /* if B_CALL, it was created with newbuf */
273 lfs_freebuf(bp);
274 bp = NULL;
275 } else {
276 bremfree(bp);
277 LFS_UNLOCK_BUF(bp);
278 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
279 B_GATHERED);
280 bp->b_flags |= B_DONE;
281 reassignbuf(bp, vp);
282 brelse(bp);
283 }
284 }
285 splx(s);
286 LFS_CLR_UINO(ip, IN_CLEANING);
287 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
288 ip->i_flag &= ~IN_ALLMOD;
289 printf("lfs_vflush: done not flushing ino %d\n",
290 ip->i_number);
291 lfs_segunlock(fs);
292 return 0;
293 }
294
295 SET_FLUSHING(fs,vp);
296 if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
297 (fs->lfs_sp->seg_flags & SEGM_CKP)) {
298 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
299 CLR_FLUSHING(fs,vp);
300 lfs_segunlock(fs);
301 return error;
302 }
303 sp = fs->lfs_sp;
304
305 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
306 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
307 } else if ((ip->i_flag & IN_CLEANING) &&
308 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
309 #ifdef DEBUG_LFS
310 ivndebug(vp,"vflush/clean");
311 #endif
312 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
313 } else if (lfs_dostats) {
314 if (LIST_FIRST(&vp->v_dirtyblkhd) || (VTOI(vp)->i_flag & IN_ALLMOD))
315 ++lfs_stats.vflush_invoked;
316 #ifdef DEBUG_LFS
317 ivndebug(vp,"vflush");
318 #endif
319 }
320
321 #ifdef DIAGNOSTIC
322 /* XXX KS This actually can happen right now, though it shouldn't(?) */
323 if (vp->v_flag & VDIROP) {
324 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
325 /* panic("VDIROP being flushed...this can\'t happen"); */
326 }
327 if (vp->v_usecount < 0) {
328 printf("usecount=%ld\n", (long)vp->v_usecount);
329 panic("lfs_vflush: usecount<0");
330 }
331 #endif
332
333 do {
334 do {
335 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
336 lfs_writefile(fs, sp, vp);
337 } while (lfs_writeinode(fs, sp, ip));
338 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
339
340 if (lfs_dostats) {
341 ++lfs_stats.nwrites;
342 if (sp->seg_flags & SEGM_SYNC)
343 ++lfs_stats.nsync_writes;
344 if (sp->seg_flags & SEGM_CKP)
345 ++lfs_stats.ncheckpoints;
346 }
347 /*
348 * If we were called from somewhere that has already held the seglock
349 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
350 * the write to complete because we are still locked.
351 * Since lfs_vflush() must return the vnode with no dirty buffers,
352 * we must explicitly wait, if that is the case.
353 *
354 * We compare the iocount against 1, not 0, because it is
355 * artificially incremented by lfs_seglock().
356 */
357 if (fs->lfs_seglock > 1) {
358 while (fs->lfs_iocount > 1)
359 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
360 "lfs_vflush", 0);
361 }
362 lfs_segunlock(fs);
363
364 CLR_FLUSHING(fs,vp);
365 return (0);
366 }
367
368 #ifdef DEBUG_LFS_VERBOSE
369 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
370 #else
371 # define vndebug(vp,str)
372 #endif
373
374 int
375 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
376 {
377 struct inode *ip;
378 struct vnode *vp, *nvp;
379 int inodes_written = 0, only_cleaning;
380 int needs_unlock;
381
382 #ifndef LFS_NO_BACKVP_HACK
383 /* BEGIN HACK */
384 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
385 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
386 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
387
388 /* Find last vnode. */
389 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
390 vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
391 vp = LIST_NEXT(vp, v_mntvnodes));
392 for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
393 nvp = BACK_VP(vp);
394 #else
395 loop:
396 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
397 nvp = LIST_NEXT(vp, v_mntvnodes);
398 #endif
399 /*
400 * If the vnode that we are about to sync is no longer
401 * associated with this mount point, start over.
402 */
403 if (vp->v_mount != mp) {
404 printf("lfs_writevnodes: starting over\n");
405 goto loop;
406 }
407
408 ip = VTOI(vp);
409 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
410 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
411 vndebug(vp,"dirop");
412 continue;
413 }
414
415 if (op == VN_EMPTY && LIST_FIRST(&vp->v_dirtyblkhd)) {
416 vndebug(vp,"empty");
417 continue;
418 }
419
420 if (vp->v_type == VNON) {
421 continue;
422 }
423
424 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
425 && vp != fs->lfs_flushvp
426 && !(ip->i_flag & IN_CLEANING)) {
427 vndebug(vp,"cleaning");
428 continue;
429 }
430
431 if (lfs_vref(vp)) {
432 vndebug(vp,"vref");
433 continue;
434 }
435
436 needs_unlock = 0;
437 if (VOP_ISLOCKED(vp)) {
438 if (vp != fs->lfs_ivnode &&
439 vp->v_lock.lk_lockholder != curproc->p_pid) {
440 #ifdef DEBUG_LFS
441 printf("lfs_writevnodes: not writing ino %d,"
442 " locked by pid %d\n",
443 VTOI(vp)->i_number,
444 vp->v_lock.lk_lockholder);
445 #endif
446 lfs_vunref(vp);
447 continue;
448 }
449 } else if (vp != fs->lfs_ivnode) {
450 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
451 needs_unlock = 1;
452 }
453
454 only_cleaning = 0;
455 /*
456 * Write the inode/file if dirty and it's not the IFILE.
457 */
458 if ((ip->i_flag & IN_ALLMOD) ||
459 (LIST_FIRST(&vp->v_dirtyblkhd) != NULL))
460 {
461 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
462
463 if (ip->i_number != LFS_IFILE_INUM
464 && LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
465 {
466 lfs_writefile(fs, sp, vp);
467 }
468 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
469 if (WRITEINPROG(vp)) {
470 #ifdef DEBUG_LFS
471 ivndebug(vp,"writevnodes/write2");
472 #endif
473 } else if (!(ip->i_flag & IN_ALLMOD)) {
474 #ifdef DEBUG_LFS
475 printf("<%d>",ip->i_number);
476 #endif
477 LFS_SET_UINO(ip, IN_MODIFIED);
478 }
479 }
480 (void) lfs_writeinode(fs, sp, ip);
481 inodes_written++;
482 }
483
484 if (needs_unlock)
485 VOP_UNLOCK(vp, 0);
486
487 if (lfs_clean_vnhead && only_cleaning)
488 lfs_vunref_head(vp);
489 else
490 lfs_vunref(vp);
491 }
492 return inodes_written;
493 }
494
495 /*
496 * Do a checkpoint.
497 */
498 int
499 lfs_segwrite(struct mount *mp, int flags)
500 {
501 struct buf *bp;
502 struct inode *ip;
503 struct lfs *fs;
504 struct segment *sp;
505 struct vnode *vp;
506 SEGUSE *segusep;
507 ufs_daddr_t ibno;
508 int do_ckp, did_ckp, error, i;
509 int writer_set = 0;
510 int dirty;
511 int redo;
512
513 fs = VFSTOUFS(mp)->um_lfs;
514
515 if (fs->lfs_ronly)
516 return EROFS;
517
518 lfs_imtime(fs);
519
520 /* printf("lfs_segwrite: ifile flags are 0x%lx\n",
521 (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
522
523 #if 0
524 /*
525 * If we are not the cleaner, and there is no space available,
526 * wait until cleaner writes.
527 */
528 if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
529 (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
530 {
531 while (fs->lfs_avail <= 0) {
532 LFS_CLEANERINFO(cip, fs, bp);
533 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
534
535 wakeup(&lfs_allclean_wakeup);
536 wakeup(&fs->lfs_nextseg);
537 error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
538 0);
539 if (error) {
540 return (error);
541 }
542 }
543 }
544 #endif
545 /*
546 * Allocate a segment structure and enough space to hold pointers to
547 * the maximum possible number of buffers which can be described in a
548 * single summary block.
549 */
550 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
551 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
552 sp = fs->lfs_sp;
553
554 /*
555 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
556 * in which case we have to flush *all* buffers off of this vnode.
557 * We don't care about other nodes, but write any non-dirop nodes
558 * anyway in anticipation of another getnewvnode().
559 *
560 * If we're cleaning we only write cleaning and ifile blocks, and
561 * no dirops, since otherwise we'd risk corruption in a crash.
562 */
563 if (sp->seg_flags & SEGM_CLEAN)
564 lfs_writevnodes(fs, mp, sp, VN_CLEAN);
565 else {
566 lfs_writevnodes(fs, mp, sp, VN_REG);
567 if (!fs->lfs_dirops || !fs->lfs_flushvp) {
568 while (fs->lfs_dirops)
569 if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
570 "lfs writer", 0)))
571 {
572 /* XXX why not segunlock? */
573 free(sp->bpp, M_SEGMENT);
574 sp->bpp = NULL;
575 free(sp, M_SEGMENT);
576 fs->lfs_sp = NULL;
577 return (error);
578 }
579 fs->lfs_writer++;
580 writer_set = 1;
581 lfs_writevnodes(fs, mp, sp, VN_DIROP);
582 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
583 }
584 }
585
586 /*
587 * If we are doing a checkpoint, mark everything since the
588 * last checkpoint as no longer ACTIVE.
589 */
590 if (do_ckp) {
591 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
592 --ibno >= fs->lfs_cleansz; ) {
593 dirty = 0;
594 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
595
596 panic("lfs_segwrite: ifile read");
597 segusep = (SEGUSE *)bp->b_data;
598 for (i = fs->lfs_sepb; i--;) {
599 if (segusep->su_flags & SEGUSE_ACTIVE) {
600 segusep->su_flags &= ~SEGUSE_ACTIVE;
601 ++dirty;
602 }
603 if (fs->lfs_version > 1)
604 ++segusep;
605 else
606 segusep = (SEGUSE *)
607 ((SEGUSE_V1 *)segusep + 1);
608 }
609
610 /* But the current segment is still ACTIVE */
611 segusep = (SEGUSE *)bp->b_data;
612 if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
613 (ibno-fs->lfs_cleansz)) {
614 if (fs->lfs_version > 1)
615 segusep[dtosn(fs, fs->lfs_curseg) %
616 fs->lfs_sepb].su_flags |=
617 SEGUSE_ACTIVE;
618 else
619 ((SEGUSE *)
620 ((SEGUSE_V1 *)(bp->b_data) +
621 (dtosn(fs, fs->lfs_curseg) %
622 fs->lfs_sepb)))->su_flags
623 |= SEGUSE_ACTIVE;
624 --dirty;
625 }
626 if (dirty)
627 error = LFS_BWRITE_LOG(bp); /* Ifile */
628 else
629 brelse(bp);
630 }
631 }
632
633 did_ckp = 0;
634 if (do_ckp || fs->lfs_doifile) {
635 do {
636 vp = fs->lfs_ivnode;
637
638 vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
639 #ifdef DEBUG
640 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
641 #endif
642 fs->lfs_flags &= ~LFS_IFDIRTY;
643
644 ip = VTOI(vp);
645 /* if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) */
646 lfs_writefile(fs, sp, vp);
647 if (ip->i_flag & IN_ALLMOD)
648 ++did_ckp;
649 redo = lfs_writeinode(fs, sp, ip);
650
651 vput(vp);
652 redo += lfs_writeseg(fs, sp);
653 redo += (fs->lfs_flags & LFS_IFDIRTY);
654 } while (redo && do_ckp);
655
656 /* The ifile should now be all clear */
657 if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
658 struct buf *bp;
659 int s, warned = 0, dopanic = 0;
660 s = splbio();
661 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
662 if (!(bp->b_flags & B_GATHERED)) {
663 if (!warned)
664 printf("lfs_segwrite: ifile still has dirty blocks?!\n");
665 ++dopanic;
666 ++warned;
667 printf("bp=%p, lbn %d, flags 0x%lx\n",
668 bp, bp->b_lblkno, bp->b_flags);
669 }
670 }
671 if (dopanic)
672 panic("dirty blocks");
673 splx(s);
674 }
675 LFS_CLR_UINO(ip, IN_ALLMOD);
676 } else {
677 (void) lfs_writeseg(fs, sp);
678 }
679
680 /*
681 * If the I/O count is non-zero, sleep until it reaches zero.
682 * At the moment, the user's process hangs around so we can
683 * sleep.
684 */
685 fs->lfs_doifile = 0;
686 if (writer_set && --fs->lfs_writer == 0)
687 wakeup(&fs->lfs_dirops);
688
689 /*
690 * If we didn't write the Ifile, we didn't really do anything.
691 * That means that (1) there is a checkpoint on disk and (2)
692 * nothing has changed since it was written.
693 *
694 * Take the flags off of the segment so that lfs_segunlock
695 * doesn't have to write the superblock either.
696 */
697 if (do_ckp && !did_ckp) {
698 sp->seg_flags &= ~SEGM_CKP;
699 /* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
700 }
701
702 if (lfs_dostats) {
703 ++lfs_stats.nwrites;
704 if (sp->seg_flags & SEGM_SYNC)
705 ++lfs_stats.nsync_writes;
706 if (sp->seg_flags & SEGM_CKP)
707 ++lfs_stats.ncheckpoints;
708 }
709 lfs_segunlock(fs);
710 return (0);
711 }
712
713 /*
714 * Write the dirty blocks associated with a vnode.
715 */
716 void
717 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
718 {
719 struct buf *bp;
720 struct finfo *fip;
721 struct inode *ip;
722 IFILE *ifp;
723 int i, frag;
724
725 ip = VTOI(vp);
726
727 if (sp->seg_bytes_left < fs->lfs_bsize ||
728 sp->sum_bytes_left < sizeof(struct finfo))
729 (void) lfs_writeseg(fs, sp);
730
731 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
732 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
733
734 if (vp->v_flag & VDIROP)
735 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
736
737 fip = sp->fip;
738 fip->fi_nblocks = 0;
739 fip->fi_ino = ip->i_number;
740 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
741 fip->fi_version = ifp->if_version;
742 brelse(bp);
743
744 if (sp->seg_flags & SEGM_CLEAN) {
745 lfs_gather(fs, sp, vp, lfs_match_fake);
746 /*
747 * For a file being flushed, we need to write *all* blocks.
748 * This means writing the cleaning blocks first, and then
749 * immediately following with any non-cleaning blocks.
750 * The same is true of the Ifile since checkpoints assume
751 * that all valid Ifile blocks are written.
752 */
753 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode)
754 lfs_gather(fs, sp, vp, lfs_match_data);
755 } else
756 lfs_gather(fs, sp, vp, lfs_match_data);
757
758 /*
759 * It may not be necessary to write the meta-data blocks at this point,
760 * as the roll-forward recovery code should be able to reconstruct the
761 * list.
762 *
763 * We have to write them anyway, though, under two conditions: (1) the
764 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
765 * checkpointing.
766 *
767 * BUT if we are cleaning, we might have indirect blocks that refer to
768 * new blocks not being written yet, in addition to fragments being
769 * moved out of a cleaned segment. If that is the case, don't
770 * write the indirect blocks, or the finfo will have a small block
771 * in the middle of it!
772 * XXX in this case isn't the inode size wrong too?
773 */
774 frag = 0;
775 if (sp->seg_flags & SEGM_CLEAN) {
776 for (i = 0; i < NDADDR; i++)
777 if (ip->i_lfs_fragsize[i] > 0 &&
778 ip->i_lfs_fragsize[i] < fs->lfs_bsize)
779 ++frag;
780 }
781 #ifdef DIAGNOSTIC
782 if (frag > 1)
783 panic("lfs_writefile: more than one fragment!");
784 #endif
785 if (IS_FLUSHING(fs, vp) ||
786 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
787 lfs_gather(fs, sp, vp, lfs_match_indir);
788 lfs_gather(fs, sp, vp, lfs_match_dindir);
789 lfs_gather(fs, sp, vp, lfs_match_tindir);
790 }
791 fip = sp->fip;
792 if (fip->fi_nblocks != 0) {
793 sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
794 sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
795 sp->start_lbp = &sp->fip->fi_blocks[0];
796 } else {
797 sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
798 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
799 }
800 }
801
802 int
803 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
804 {
805 struct buf *bp, *ibp;
806 struct dinode *cdp;
807 IFILE *ifp;
808 SEGUSE *sup;
809 ufs_daddr_t daddr;
810 daddr_t *daddrp;
811 ino_t ino;
812 int error, i, ndx, fsb = 0;
813 int redo_ifile = 0;
814 struct timespec ts;
815 int gotblk = 0;
816
817 if (!(ip->i_flag & IN_ALLMOD))
818 return (0);
819
820 /* Allocate a new inode block if necessary. */
821 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
822 /* Allocate a new segment if necessary. */
823 if (sp->seg_bytes_left < fs->lfs_ibsize ||
824 sp->sum_bytes_left < sizeof(ufs_daddr_t))
825 (void) lfs_writeseg(fs, sp);
826
827 /* Get next inode block. */
828 daddr = fs->lfs_offset;
829 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
830 sp->ibp = *sp->cbpp++ =
831 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
832 fs->lfs_ibsize, 0, 0);
833 gotblk++;
834
835 /* Zero out inode numbers */
836 for (i = 0; i < INOPB(fs); ++i)
837 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
838
839 ++sp->start_bpp;
840 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
841 /* Set remaining space counters. */
842 sp->seg_bytes_left -= fs->lfs_ibsize;
843 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
844 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
845 sp->ninodes / INOPB(fs) - 1;
846 ((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
847 }
848
849 /* Update the inode times and copy the inode onto the inode page. */
850 TIMEVAL_TO_TIMESPEC(&time, &ts);
851 /* XXX kludge --- don't redirty the ifile just to put times on it */
852 if (ip->i_number != LFS_IFILE_INUM)
853 LFS_ITIMES(ip, &ts, &ts, &ts);
854
855 /*
856 * If this is the Ifile, and we've already written the Ifile in this
857 * partial segment, just overwrite it (it's not on disk yet) and
858 * continue.
859 *
860 * XXX we know that the bp that we get the second time around has
861 * already been gathered.
862 */
863 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
864 *(sp->idp) = ip->i_din.ffs_din;
865 ip->i_lfs_osize = ip->i_ffs_size;
866 return 0;
867 }
868
869 bp = sp->ibp;
870 cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
871 *cdp = ip->i_din.ffs_din;
872 #ifdef LFS_IFILE_FRAG_ADDRESSING
873 if (fs->lfs_version > 1)
874 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
875 #endif
876
877 /*
878 * If we are cleaning, ensure that we don't write UNWRITTEN disk
879 * addresses to disk; possibly revert the inode size.
880 */
881 if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
882 cdp->di_size = ip->i_lfs_osize;
883 #ifdef DEBUG_LFS
884 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
885 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
886 #endif
887 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
888 daddrp++) {
889 if (*daddrp == UNWRITTEN) {
890 #ifdef DEBUG_LFS
891 printf("lfs_writeinode: wiping UNWRITTEN\n");
892 #endif
893 *daddrp = 0;
894 }
895 }
896 } else {
897 /* If all blocks are goig to disk, update the "size on disk" */
898 ip->i_lfs_osize = ip->i_ffs_size;
899 }
900
901 if (ip->i_flag & IN_CLEANING)
902 LFS_CLR_UINO(ip, IN_CLEANING);
903 else {
904 /* XXX IN_ALLMOD */
905 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
906 IN_UPDATE);
907 if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
908 LFS_CLR_UINO(ip, IN_MODIFIED);
909 #ifdef DEBUG_LFS
910 else
911 printf("lfs_writeinode: ino %d: real blks=%d, "
912 "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
913 ip->i_lfs_effnblks);
914 #endif
915 }
916
917 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
918 sp->idp = ((struct dinode *)bp->b_data) +
919 (sp->ninodes % INOPB(fs));
920 if (gotblk) {
921 LFS_LOCK_BUF(bp);
922 brelse(bp);
923 }
924
925 /* Increment inode count in segment summary block. */
926 ++((SEGSUM *)(sp->segsum))->ss_ninos;
927
928 /* If this page is full, set flag to allocate a new page. */
929 if (++sp->ninodes % INOPB(fs) == 0)
930 sp->ibp = NULL;
931
932 /*
933 * If updating the ifile, update the super-block. Update the disk
934 * address and access times for this inode in the ifile.
935 */
936 ino = ip->i_number;
937 if (ino == LFS_IFILE_INUM) {
938 daddr = fs->lfs_idaddr;
939 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
940 } else {
941 LFS_IENTRY(ifp, fs, ino, ibp);
942 daddr = ifp->if_daddr;
943 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
944 #ifdef LFS_DEBUG_NEXTFREE
945 if (ino > 3 && ifp->if_nextfree) {
946 vprint("lfs_writeinode",ITOV(ip));
947 printf("lfs_writeinode: updating free ino %d\n",
948 ip->i_number);
949 }
950 #endif
951 error = LFS_BWRITE_LOG(ibp); /* Ifile */
952 }
953
954 /*
955 * The inode's last address should not be in the current partial
956 * segment, except under exceptional circumstances (lfs_writevnodes
957 * had to start over, and in the meantime more blocks were written
958 * to a vnode). Both inodes will be accounted to this segment
959 * in lfs_writeseg so we need to subtract the earlier version
960 * here anyway. The segment count can temporarily dip below
961 * zero here; keep track of how many duplicates we have in
962 * "dupino" so we don't panic below.
963 */
964 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
965 ++sp->ndupino;
966 printf("lfs_writeinode: last inode addr in current pseg "
967 "(ino %d daddr 0x%x) ndupino=%d\n", ino, daddr,
968 sp->ndupino);
969 }
970 /*
971 * Account the inode: it no longer belongs to its former segment,
972 * though it will not belong to the new segment until that segment
973 * is actually written.
974 */
975 if (daddr != LFS_UNUSED_DADDR) {
976 LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
977 #ifdef DIAGNOSTIC
978 if (sup->su_nbytes < DINODE_SIZE * (1 + sp->ndupino)) {
979 printf("lfs_writeinode: negative bytes "
980 "(segment %d short by %d)\n",
981 dtosn(fs, daddr),
982 (int)DINODE_SIZE - sup->su_nbytes);
983 panic("lfs_writeinode: negative bytes");
984 sup->su_nbytes = DINODE_SIZE;
985 }
986 #endif
987 #ifdef DEBUG_SU_NBYTES
988 printf("seg %d -= %d for ino %d inode\n",
989 dtosn(fs, daddr), DINODE_SIZE, ino);
990 #endif
991 sup->su_nbytes -= DINODE_SIZE;
992 redo_ifile =
993 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
994 if (redo_ifile)
995 fs->lfs_flags |= LFS_IFDIRTY;
996 error = LFS_BWRITE_LOG(bp); /* Ifile */
997 }
998 return (redo_ifile);
999 }
1000
1001 int
1002 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1003 {
1004 struct lfs *fs;
1005 int version;
1006
1007 /*
1008 * If full, finish this segment. We may be doing I/O, so
1009 * release and reacquire the splbio().
1010 */
1011 #ifdef DIAGNOSTIC
1012 if (sp->vp == NULL)
1013 panic ("lfs_gatherblock: Null vp in segment");
1014 #endif
1015 fs = sp->fs;
1016 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
1017 sp->seg_bytes_left < bp->b_bcount) {
1018 if (sptr)
1019 splx(*sptr);
1020 lfs_updatemeta(sp);
1021
1022 version = sp->fip->fi_version;
1023 (void) lfs_writeseg(fs, sp);
1024
1025 sp->fip->fi_version = version;
1026 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1027 /* Add the current file to the segment summary. */
1028 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1029 sp->sum_bytes_left -=
1030 sizeof(struct finfo) - sizeof(ufs_daddr_t);
1031
1032 if (sptr)
1033 *sptr = splbio();
1034 return (1);
1035 }
1036
1037 #ifdef DEBUG
1038 if (bp->b_flags & B_GATHERED) {
1039 printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
1040 sp->fip->fi_ino, bp->b_lblkno);
1041 return (0);
1042 }
1043 #endif
1044 /* Insert into the buffer list, update the FINFO block. */
1045 bp->b_flags |= B_GATHERED;
1046 bp->b_flags &= ~B_DONE;
1047
1048 *sp->cbpp++ = bp;
1049 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
1050
1051 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
1052 sp->seg_bytes_left -= bp->b_bcount;
1053 return (0);
1054 }
1055
1056 int
1057 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1058 {
1059 struct buf *bp, *nbp;
1060 int s, count = 0;
1061
1062 sp->vp = vp;
1063 s = splbio();
1064
1065 #ifndef LFS_NO_BACKBUF_HACK
1066 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1067 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1068 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1069 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1070 /* Find last buffer. */
1071 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1072 bp = LIST_NEXT(bp, b_vnbufs));
1073 for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1074 nbp = BACK_BUF(bp);
1075 #else /* LFS_NO_BACKBUF_HACK */
1076 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1077 nbp = LIST_NEXT(bp, b_vnbufs);
1078 #endif /* LFS_NO_BACKBUF_HACK */
1079 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1080 #ifdef DEBUG_LFS
1081 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1082 printf("(%d:%lx)", bp->b_lblkno, bp->b_flags);
1083 #endif
1084 continue;
1085 }
1086 if (vp->v_type == VBLK) {
1087 /* For block devices, just write the blocks. */
1088 /* XXX Do we really need to even do this? */
1089 #ifdef DEBUG_LFS
1090 if (count == 0)
1091 printf("BLK(");
1092 printf(".");
1093 #endif
1094 /* Get the block before bwrite, so we don't corrupt the free list */
1095 bp->b_flags |= B_BUSY;
1096 bremfree(bp);
1097 bwrite(bp);
1098 } else {
1099 #ifdef DIAGNOSTIC
1100 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1101 printf("lfs_gather: lbn %d is B_INVAL\n",
1102 bp->b_lblkno);
1103 VOP_PRINT(bp->b_vp);
1104 }
1105 if (!(bp->b_flags & B_DELWRI))
1106 panic("lfs_gather: bp not B_DELWRI");
1107 if (!(bp->b_flags & B_LOCKED)) {
1108 printf("lfs_gather: lbn %d blk %d"
1109 " not B_LOCKED\n", bp->b_lblkno,
1110 dbtofsb(fs, bp->b_blkno));
1111 VOP_PRINT(bp->b_vp);
1112 panic("lfs_gather: bp not B_LOCKED");
1113 }
1114 #endif
1115 if (lfs_gatherblock(sp, bp, &s)) {
1116 goto loop;
1117 }
1118 }
1119 count++;
1120 }
1121 splx(s);
1122 #ifdef DEBUG_LFS
1123 if (vp->v_type == VBLK && count)
1124 printf(")\n");
1125 #endif
1126 lfs_updatemeta(sp);
1127 sp->vp = NULL;
1128 return count;
1129 }
1130
1131 /*
1132 * Update the metadata that points to the blocks listed in the FINFO
1133 * array.
1134 */
1135 void
1136 lfs_updatemeta(struct segment *sp)
1137 {
1138 SEGUSE *sup;
1139 struct buf *bp, *sbp;
1140 struct lfs *fs;
1141 struct vnode *vp;
1142 struct indir a[NIADDR + 2], *ap;
1143 struct inode *ip;
1144 ufs_daddr_t daddr, lbn, off;
1145 daddr_t ooff;
1146 int error, i, nblocks, num;
1147 int bb, osize, obb;
1148
1149 vp = sp->vp;
1150 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1151 if (nblocks < 0)
1152 panic("This is a bad thing");
1153 if (vp == NULL || nblocks == 0)
1154 return;
1155
1156 /* Sort the blocks. */
1157 /*
1158 * XXX KS - We have to sort even if the blocks come from the
1159 * cleaner, because there might be other pending blocks on the
1160 * same inode...and if we don't sort, and there are fragments
1161 * present, blocks may be written in the wrong place.
1162 */
1163 /* if (!(sp->seg_flags & SEGM_CLEAN)) */
1164 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1165
1166 /*
1167 * Record the length of the last block in case it's a fragment.
1168 * If there are indirect blocks present, they sort last. An
1169 * indirect block will be lfs_bsize and its presence indicates
1170 * that you cannot have fragments.
1171 *
1172 * XXX This last is a lie. A cleaned fragment can coexist with
1173 * XXX a later indirect block. This will continue to be
1174 * XXX true until lfs_markv is fixed to do everything with
1175 * XXX fake blocks (including fake inodes and fake indirect blocks).
1176 */
1177 sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1178
1179 /*
1180 * Assign disk addresses, and update references to the logical
1181 * block and the segment usage information.
1182 */
1183 fs = sp->fs;
1184 for (i = nblocks; i--; ++sp->start_bpp) {
1185 lbn = *sp->start_lbp++;
1186 sbp = *sp->start_bpp;
1187
1188 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1189 off = fs->lfs_offset;
1190 if (sbp->b_blkno == sbp->b_lblkno) {
1191 printf("lfs_updatemeta: ino %d blk %d"
1192 " has same lbn and daddr\n",
1193 VTOI(vp)->i_number, off);
1194 }
1195
1196 /*
1197 * If we write a frag in the wrong place, the cleaner won't
1198 * be able to correctly identify its size later, and the
1199 * segment will be uncleanable. (Even worse, it will assume
1200 * that the indirect block that actually ends the list
1201 * is of a smaller size!)
1202 */
1203 if (sbp->b_bcount < fs->lfs_bsize && i != 0)
1204 panic("lfs_updatemeta: fragment is not last block");
1205
1206 bb = fragstofsb(fs, numfrags(fs, sbp->b_bcount));
1207 fs->lfs_offset += bb;
1208 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1209 if (daddr > 0)
1210 daddr = dbtofsb(fs, daddr);
1211 if (error)
1212 panic("lfs_updatemeta: ufs_bmaparray %d", error);
1213 ip = VTOI(vp);
1214 switch (num) {
1215 case 0:
1216 ooff = ip->i_ffs_db[lbn];
1217 #ifdef DEBUG
1218 if (ooff == 0) {
1219 printf("lfs_updatemeta[1]: warning: writing "
1220 "ino %d lbn %d at 0x%x, was 0x0\n",
1221 ip->i_number, lbn, off);
1222 }
1223 #endif
1224 if (ooff == UNWRITTEN)
1225 ip->i_ffs_blocks += bb;
1226 else {
1227 /* possible fragment truncation or extension */
1228 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1229 ip->i_ffs_blocks += (bb - obb);
1230 }
1231 ip->i_ffs_db[lbn] = off;
1232 break;
1233 case 1:
1234 ooff = ip->i_ffs_ib[a[0].in_off];
1235 #ifdef DEBUG
1236 if (ooff == 0) {
1237 printf("lfs_updatemeta[2]: warning: writing "
1238 "ino %d lbn %d at 0x%x, was 0x0\n",
1239 ip->i_number, lbn, off);
1240 }
1241 #endif
1242 if (ooff == UNWRITTEN)
1243 ip->i_ffs_blocks += bb;
1244 ip->i_ffs_ib[a[0].in_off] = off;
1245 break;
1246 default:
1247 ap = &a[num - 1];
1248 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1249 panic("lfs_updatemeta: bread bno %d",
1250 ap->in_lbn);
1251
1252 ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1253 #if DEBUG
1254 if (ooff == 0) {
1255 printf("lfs_updatemeta[3]: warning: writing "
1256 "ino %d lbn %d at 0x%x, was 0x0\n",
1257 ip->i_number, lbn, off);
1258 }
1259 #endif
1260 if (ooff == UNWRITTEN)
1261 ip->i_ffs_blocks += bb;
1262 ((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1263 (void) VOP_BWRITE(bp);
1264 }
1265 #ifdef DEBUG
1266 if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1267 printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1268 "in same pseg\n", VTOI(sp->vp)->i_number,
1269 sbp->b_lblkno, daddr);
1270 }
1271 #endif
1272 /*
1273 * Update segment usage information, based on old size
1274 * and location.
1275 */
1276 if (daddr > 0) {
1277 if (lbn >= 0 && lbn < NDADDR)
1278 osize = ip->i_lfs_fragsize[lbn];
1279 else
1280 osize = fs->lfs_bsize;
1281 LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
1282 #ifdef DIAGNOSTIC
1283 if (sup->su_nbytes < osize + DINODE_SIZE * sp->ndupino) {
1284 printf("lfs_updatemeta: negative bytes "
1285 "(segment %d short by %d)\n",
1286 dtosn(fs, daddr),
1287 osize - sup->su_nbytes);
1288 printf("lfs_updatemeta: ino %d, lbn %d, "
1289 "addr = 0x%x\n", VTOI(sp->vp)->i_number,
1290 lbn, daddr);
1291 panic("lfs_updatemeta: negative bytes");
1292 sup->su_nbytes = osize + DINODE_SIZE * sp->ndupino;
1293 }
1294 #endif
1295 #ifdef DEBUG_SU_NBYTES
1296 printf("seg %d -= %ld for ino %d lbn %d db 0x%x\n",
1297 dtosn(fs, daddr), osize, VTOI(sp->vp)->i_number,
1298 lbn, daddr);
1299 #endif
1300 sup->su_nbytes -= osize;
1301 if (!(bp->b_flags & B_GATHERED))
1302 fs->lfs_flags |= LFS_IFDIRTY;
1303 error = LFS_BWRITE_LOG(bp); /* Ifile */
1304 }
1305 /*
1306 * Now that this block has a new address, and its old
1307 * segment no longer owns it, we can forget about its
1308 * old size.
1309 */
1310 if (lbn >= 0 && lbn < NDADDR)
1311 ip->i_lfs_fragsize[lbn] = sbp->b_bcount;
1312 }
1313 }
1314
1315 /*
1316 * Start a new segment.
1317 */
1318 int
1319 lfs_initseg(struct lfs *fs)
1320 {
1321 struct segment *sp;
1322 SEGUSE *sup;
1323 SEGSUM *ssp;
1324 struct buf *bp, *sbp;
1325 int repeat;
1326
1327 sp = fs->lfs_sp;
1328
1329 repeat = 0;
1330 /* Advance to the next segment. */
1331 if (!LFS_PARTIAL_FITS(fs)) {
1332 /* lfs_avail eats the remaining space */
1333 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1334 fs->lfs_curseg);
1335 /* Wake up any cleaning procs waiting on this file system. */
1336 wakeup(&lfs_allclean_wakeup);
1337 wakeup(&fs->lfs_nextseg);
1338 lfs_newseg(fs);
1339 repeat = 1;
1340 fs->lfs_offset = fs->lfs_curseg;
1341 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1342 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1343 /*
1344 * If the segment contains a superblock, update the offset
1345 * and summary address to skip over it.
1346 */
1347 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1348 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1349 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1350 sp->seg_bytes_left -= LFS_SBPAD;
1351 }
1352 brelse(bp);
1353 /* Segment zero could also contain the labelpad */
1354 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1355 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1356 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1357 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1358 }
1359 } else {
1360 sp->seg_number = dtosn(fs, fs->lfs_curseg);
1361 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1362 (fs->lfs_offset - fs->lfs_curseg));
1363 }
1364 fs->lfs_lastpseg = fs->lfs_offset;
1365
1366 sp->fs = fs;
1367 sp->ibp = NULL;
1368 sp->idp = NULL;
1369 sp->ninodes = 0;
1370 sp->ndupino = 0;
1371
1372 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
1373 sp->cbpp = sp->bpp;
1374 #ifdef LFS_MALLOC_SUMMARY
1375 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1376 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
1377 sp->segsum = (*sp->cbpp)->b_data;
1378 #else
1379 sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1380 fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
1381 memset(sbp->b_data, 0x5a, NBPG);
1382 sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
1383 #endif
1384 bzero(sp->segsum, fs->lfs_sumsize);
1385 sp->start_bpp = ++sp->cbpp;
1386 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1387
1388 /* Set point to SEGSUM, initialize it. */
1389 ssp = sp->segsum;
1390 ssp->ss_next = fs->lfs_nextseg;
1391 ssp->ss_nfinfo = ssp->ss_ninos = 0;
1392 ssp->ss_magic = SS_MAGIC;
1393
1394 /* Set pointer to first FINFO, initialize it. */
1395 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1396 sp->fip->fi_nblocks = 0;
1397 sp->start_lbp = &sp->fip->fi_blocks[0];
1398 sp->fip->fi_lastlength = 0;
1399
1400 sp->seg_bytes_left -= fs->lfs_sumsize;
1401 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1402
1403 #ifndef LFS_MALLOC_SUMMARY
1404 LFS_LOCK_BUF(sbp);
1405 brelse(sbp);
1406 #endif
1407 return (repeat);
1408 }
1409
1410 /*
1411 * Return the next segment to write.
1412 */
1413 void
1414 lfs_newseg(struct lfs *fs)
1415 {
1416 CLEANERINFO *cip;
1417 SEGUSE *sup;
1418 struct buf *bp;
1419 int curseg, isdirty, sn;
1420
1421 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1422 #ifdef DEBUG_SU_NBYTES
1423 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
1424 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1425 #endif
1426 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1427 sup->su_nbytes = 0;
1428 sup->su_nsums = 0;
1429 sup->su_ninos = 0;
1430 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1431
1432 LFS_CLEANERINFO(cip, fs, bp);
1433 --cip->clean;
1434 ++cip->dirty;
1435 fs->lfs_nclean = cip->clean;
1436 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1437
1438 fs->lfs_lastseg = fs->lfs_curseg;
1439 fs->lfs_curseg = fs->lfs_nextseg;
1440 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1441 sn = (sn + 1) % fs->lfs_nseg;
1442 if (sn == curseg)
1443 panic("lfs_nextseg: no clean segments");
1444 LFS_SEGENTRY(sup, fs, sn, bp);
1445 isdirty = sup->su_flags & SEGUSE_DIRTY;
1446 brelse(bp);
1447 if (!isdirty)
1448 break;
1449 }
1450
1451 ++fs->lfs_nactive;
1452 fs->lfs_nextseg = sntod(fs, sn);
1453 if (lfs_dostats) {
1454 ++lfs_stats.segsused;
1455 }
1456 }
1457
1458 static struct buf **
1459 lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
1460 {
1461 size_t maxsize;
1462 #ifndef LFS_NO_PAGEMOVE
1463 struct buf *bp;
1464 #endif
1465
1466 maxsize = *size;
1467 *size = 0;
1468 #ifdef LFS_NO_PAGEMOVE
1469 return bpp;
1470 #else
1471 while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
1472 if(bp->b_flags & B_CALL)
1473 return bpp;
1474 if(bp->b_bcount % NBPG)
1475 return bpp;
1476 *size += bp->b_bcount;
1477 ++bpp;
1478 }
1479 return NULL;
1480 #endif
1481 }
1482
1483 #define BQUEUES 4 /* XXX */
1484 #define BQ_EMPTY 3 /* XXX */
1485 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1486
1487 #define BUFHASH(dvp, lbn) \
1488 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1489 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1490 /*
1491 * Insq/Remq for the buffer hash lists.
1492 */
1493 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
1494 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
1495
1496 static struct buf *
1497 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1498 {
1499 struct lfs_cluster *cl;
1500 struct buf **bpp, *bp;
1501 int s;
1502
1503 cl = (struct lfs_cluster *)malloc(sizeof(*cl), M_SEGMENT, M_WAITOK);
1504 bpp = (struct buf **)malloc(n*sizeof(*bpp), M_SEGMENT, M_WAITOK);
1505 memset(cl, 0, sizeof(*cl));
1506 cl->fs = fs;
1507 cl->bpp = bpp;
1508 cl->bufcount = 0;
1509 cl->bufsize = 0;
1510
1511 /* If this segment is being written synchronously, note that */
1512 if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1513 cl->flags |= LFS_CL_SYNC;
1514 cl->seg = fs->lfs_sp;
1515 ++cl->seg->seg_iocount;
1516 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1517 }
1518
1519 /* Get an empty buffer header, or maybe one with something on it */
1520 s = splbio();
1521 if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1522 bremfree(bp);
1523 /* clear out various other fields */
1524 bp->b_flags = B_BUSY;
1525 bp->b_dev = NODEV;
1526 bp->b_blkno = bp->b_lblkno = 0;
1527 bp->b_error = 0;
1528 bp->b_resid = 0;
1529 bp->b_bcount = 0;
1530
1531 /* nuke any credentials we were holding */
1532 /* XXXXXX */
1533
1534 bremhash(bp);
1535
1536 /* disassociate us from our vnode, if we had one... */
1537 if (bp->b_vp)
1538 brelvp(bp);
1539 }
1540 splx(s);
1541 while (!bp)
1542 bp = getnewbuf(0, 0);
1543 s = splbio();
1544 bgetvp(vp, bp);
1545 binshash(bp,&invalhash);
1546 splx(s);
1547 bp->b_bcount = 0;
1548 bp->b_blkno = bp->b_lblkno = addr;
1549
1550 bp->b_flags |= B_CALL;
1551 bp->b_iodone = lfs_cluster_callback;
1552 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1553 bp->b_saveaddr = (caddr_t)cl;
1554
1555 return bp;
1556 }
1557
1558 int
1559 lfs_writeseg(struct lfs *fs, struct segment *sp)
1560 {
1561 struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
1562 SEGUSE *sup;
1563 SEGSUM *ssp;
1564 dev_t i_dev;
1565 char *datap, *dp;
1566 int do_again, i, nblocks, s;
1567 size_t el_size;
1568 struct lfs_cluster *cl;
1569 int (*strategy)(void *);
1570 struct vop_strategy_args vop_strategy_a;
1571 u_short ninos;
1572 struct vnode *devvp;
1573 char *p;
1574 struct vnode *vp;
1575 struct inode *ip;
1576 size_t pmsize;
1577 int use_pagemove;
1578 daddr_t pseg_daddr;
1579 daddr_t *daddrp;
1580 int changed;
1581 #if defined(DEBUG) && defined(LFS_PROPELLER)
1582 static int propeller;
1583 char propstring[4] = "-\\|/";
1584
1585 printf("%c\b",propstring[propeller++]);
1586 if (propeller == 4)
1587 propeller = 0;
1588 #endif
1589 pseg_daddr = (*(sp->bpp))->b_blkno;
1590
1591 /*
1592 * If there are no buffers other than the segment summary to write
1593 * and it is not a checkpoint, don't do anything. On a checkpoint,
1594 * even if there aren't any buffers, you need to write the superblock.
1595 */
1596 if ((nblocks = sp->cbpp - sp->bpp) == 1)
1597 return (0);
1598
1599 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1600 devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1601
1602 /* Update the segment usage information. */
1603 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1604
1605 /* Loop through all blocks, except the segment summary. */
1606 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1607 if ((*bpp)->b_vp != devvp) {
1608 sup->su_nbytes += (*bpp)->b_bcount;
1609 #ifdef DEBUG_SU_NBYTES
1610 printf("seg %d += %ld for ino %d lbn %d db 0x%x\n",
1611 sp->seg_number, (*bpp)->b_bcount,
1612 VTOI((*bpp)->b_vp)->i_number,
1613 (*bpp)->b_lblkno, (*bpp)->b_blkno);
1614 #endif
1615 }
1616 }
1617
1618 ssp = (SEGSUM *)sp->segsum;
1619
1620 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1621 #ifdef DEBUG_SU_NBYTES
1622 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
1623 sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1624 ssp->ss_ninos);
1625 #endif
1626 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1627 /* sup->su_nbytes += fs->lfs_sumsize; */
1628 if (fs->lfs_version == 1)
1629 sup->su_olastmod = time.tv_sec;
1630 else
1631 sup->su_lastmod = time.tv_sec;
1632 sup->su_ninos += ninos;
1633 ++sup->su_nsums;
1634 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1635 fs->lfs_ibsize));
1636 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1637
1638 do_again = !(bp->b_flags & B_GATHERED);
1639 (void)LFS_BWRITE_LOG(bp); /* Ifile */
1640 /*
1641 * Mark blocks B_BUSY, to prevent then from being changed between
1642 * the checksum computation and the actual write.
1643 *
1644 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1645 * there are any, replace them with copies that have UNASSIGNED
1646 * instead.
1647 */
1648 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1649 ++bpp;
1650 if ((*bpp)->b_flags & B_CALL)
1651 continue;
1652 bp = *bpp;
1653 again:
1654 s = splbio();
1655 if (bp->b_flags & B_BUSY) {
1656 #ifdef DEBUG
1657 printf("lfs_writeseg: avoiding potential data "
1658 "summary corruption for ino %d, lbn %d\n",
1659 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1660 #endif
1661 bp->b_flags |= B_WANTED;
1662 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1663 splx(s);
1664 goto again;
1665 }
1666 bp->b_flags |= B_BUSY;
1667 splx(s);
1668 /* Check and replace indirect block UNWRITTEN bogosity */
1669 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1670 VTOI(bp->b_vp)->i_ffs_blocks !=
1671 VTOI(bp->b_vp)->i_lfs_effnblks) {
1672 #ifdef DEBUG_LFS
1673 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1674 VTOI(bp->b_vp)->i_number,
1675 VTOI(bp->b_vp)->i_lfs_effnblks,
1676 VTOI(bp->b_vp)->i_ffs_blocks);
1677 #endif
1678 /* Make a copy we'll make changes to */
1679 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1680 bp->b_bcount);
1681 newbp->b_blkno = bp->b_blkno;
1682 memcpy(newbp->b_data, bp->b_data,
1683 newbp->b_bcount);
1684 *bpp = newbp;
1685
1686 changed = 0;
1687 for (daddrp = (daddr_t *)(newbp->b_data);
1688 daddrp < (daddr_t *)(newbp->b_data +
1689 newbp->b_bcount); daddrp++) {
1690 if (*daddrp == UNWRITTEN) {
1691 ++changed;
1692 #ifdef DEBUG_LFS
1693 printf("lfs_writeseg: replacing UNWRITTEN\n");
1694 #endif
1695 *daddrp = 0;
1696 }
1697 }
1698 /*
1699 * Get rid of the old buffer. Don't mark it clean,
1700 * though, if it still has dirty data on it.
1701 */
1702 if (changed) {
1703 bp->b_flags &= ~(B_ERROR | B_GATHERED);
1704 if (bp->b_flags & B_CALL) {
1705 lfs_freebuf(bp);
1706 bp = NULL;
1707 } else {
1708 /* Still on free list, leave it there */
1709 s = splbio();
1710 bp->b_flags &= ~B_BUSY;
1711 if (bp->b_flags & B_WANTED)
1712 wakeup(bp);
1713 splx(s);
1714 /*
1715 * We have to re-decrement lfs_avail
1716 * since this block is going to come
1717 * back around to us in the next
1718 * segment.
1719 */
1720 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1721 }
1722 } else {
1723 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1724 B_GATHERED);
1725 if (bp->b_flags & B_CALL) {
1726 lfs_freebuf(bp);
1727 bp = NULL;
1728 } else {
1729 bremfree(bp);
1730 bp->b_flags |= B_DONE;
1731 s = splbio();
1732 reassignbuf(bp, bp->b_vp);
1733 splx(s);
1734 LFS_UNLOCK_BUF(bp);
1735 brelse(bp);
1736 }
1737 }
1738
1739 }
1740 }
1741 /*
1742 * Compute checksum across data and then across summary; the first
1743 * block (the summary block) is skipped. Set the create time here
1744 * so that it's guaranteed to be later than the inode mod times.
1745 *
1746 * XXX
1747 * Fix this to do it inline, instead of malloc/copy.
1748 */
1749 if (fs->lfs_version == 1)
1750 el_size = sizeof(u_long);
1751 else
1752 el_size = sizeof(u_int32_t);
1753 datap = dp = malloc(nblocks * el_size, M_SEGMENT, M_WAITOK);
1754 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1755 if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1756 if (copyin((*bpp)->b_saveaddr, dp, el_size))
1757 panic("lfs_writeseg: copyin failed [1]: "
1758 "ino %d blk %d",
1759 VTOI((*bpp)->b_vp)->i_number,
1760 (*bpp)->b_lblkno);
1761 } else
1762 memcpy(dp, (*bpp)->b_data, el_size);
1763 dp += el_size;
1764 }
1765 if (fs->lfs_version == 1)
1766 ssp->ss_ocreate = time.tv_sec;
1767 else {
1768 ssp->ss_create = time.tv_sec;
1769 ssp->ss_serial = ++fs->lfs_serial;
1770 ssp->ss_ident = fs->lfs_ident;
1771 }
1772 #ifndef LFS_MALLOC_SUMMARY
1773 /* Set the summary block busy too */
1774 (*(sp->bpp))->b_flags |= B_BUSY;
1775 #endif
1776 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
1777 ssp->ss_sumsum =
1778 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1779 free(datap, M_SEGMENT);
1780 datap = dp = NULL;
1781 #ifdef DIAGNOSTIC
1782 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1783 panic("lfs_writeseg: No diskspace for summary");
1784 #endif
1785 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1786 btofsb(fs, fs->lfs_sumsize));
1787
1788 strategy = devvp->v_op[VOFFSET(vop_strategy)];
1789
1790 /*
1791 * When we simply write the blocks we lose a rotation for every block
1792 * written. To avoid this problem, we use pagemove to cluster
1793 * the buffers into a chunk and write the chunk. CHUNKSIZE is the
1794 * largest size I/O devices can handle.
1795 *
1796 * XXX - right now MAXPHYS is only 64k; could it be larger?
1797 */
1798
1799 #define CHUNKSIZE MAXPHYS
1800
1801 if (devvp == NULL)
1802 panic("devvp is NULL");
1803 for (bpp = sp->bpp, i = nblocks; i;) {
1804 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1805 cl = (struct lfs_cluster *)cbp->b_saveaddr;
1806
1807 cbp->b_dev = i_dev;
1808 cbp->b_flags |= B_ASYNC | B_BUSY;
1809 cbp->b_bcount = 0;
1810
1811 /*
1812 * Find out if we can use pagemove to build the cluster,
1813 * or if we are stuck using malloc/copy. If this is the
1814 * first cluster, set the shift flag (see below).
1815 */
1816 pmsize = CHUNKSIZE;
1817 use_pagemove = 0;
1818 if(bpp == sp->bpp) {
1819 /* Summary blocks have to get special treatment */
1820 pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
1821 if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
1822 pmlastbpp == NULL) {
1823 use_pagemove = 1;
1824 cl->flags |= LFS_CL_SHIFT;
1825 } else {
1826 /*
1827 * If we're not using pagemove, we have
1828 * to copy the summary down to the bottom
1829 * end of the block.
1830 */
1831 #ifndef LFS_MALLOC_SUMMARY
1832 memcpy((*bpp)->b_data, (*bpp)->b_data +
1833 NBPG - fs->lfs_sumsize,
1834 fs->lfs_sumsize);
1835 #endif /* LFS_MALLOC_SUMMARY */
1836 }
1837 } else {
1838 pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
1839 if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
1840 use_pagemove = 1;
1841 }
1842 }
1843 if(use_pagemove == 0) {
1844 cl->flags |= LFS_CL_MALLOC;
1845 cl->olddata = cbp->b_data;
1846 cbp->b_data = malloc(CHUNKSIZE, M_SEGMENT, M_WAITOK);
1847 }
1848 #if defined(DEBUG) && defined(DIAGNOSTIC)
1849 if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
1850 dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
1851 printf("block at %x (%d), cbp at %x (%d)\n",
1852 (*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
1853 cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
1854 panic("lfs_writeseg: Segment overwrite");
1855 }
1856 #endif
1857
1858 /*
1859 * Construct the cluster.
1860 */
1861 while (fs->lfs_iocount >= LFS_THROTTLE) {
1862 #ifdef DEBUG_LFS
1863 printf("[%d]", fs->lfs_iocount);
1864 #endif
1865 tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs_throttle", 0);
1866 }
1867 ++fs->lfs_iocount;
1868
1869 for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1870 bp = *bpp;
1871
1872 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1873 break;
1874
1875 /*
1876 * Fake buffers from the cleaner are marked as B_INVAL.
1877 * We need to copy the data from user space rather than
1878 * from the buffer indicated.
1879 * XXX == what do I do on an error?
1880 */
1881 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1882 if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1883 panic("lfs_writeseg: copyin failed [2]");
1884 } else if (use_pagemove) {
1885 pagemove(bp->b_data, p, bp->b_bcount);
1886 cbp->b_bufsize += bp->b_bcount;
1887 bp->b_bufsize -= bp->b_bcount;
1888 } else {
1889 bcopy(bp->b_data, p, bp->b_bcount);
1890 /* printf("copy in %p\n", bp->b_data); */
1891 }
1892
1893 /*
1894 * XXX If we are *not* shifting, the summary
1895 * block is only fs->lfs_sumsize. Otherwise,
1896 * it is NBPG but shifted.
1897 */
1898 if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
1899 p += fs->lfs_sumsize;
1900 cbp->b_bcount += fs->lfs_sumsize;
1901 cl->bufsize += fs->lfs_sumsize;
1902 } else {
1903 p += bp->b_bcount;
1904 cbp->b_bcount += bp->b_bcount;
1905 cl->bufsize += bp->b_bcount;
1906 }
1907 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1908 cl->bpp[cl->bufcount++] = bp;
1909 vp = bp->b_vp;
1910 s = splbio();
1911 ++vp->v_numoutput;
1912 splx(s);
1913
1914 /*
1915 * Although it cannot be freed for reuse before the
1916 * cluster is written to disk, this buffer does not
1917 * need to be held busy. Therefore we unbusy it,
1918 * while leaving it on the locked list. It will
1919 * be freed or requeued by the callback depending
1920 * on whether it has had B_DELWRI set again in the
1921 * meantime.
1922 *
1923 * If we are using pagemove, we have to hold the block
1924 * busy to prevent its contents from changing before
1925 * it hits the disk, and invalidating the checksum.
1926 */
1927 bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
1928 #ifdef LFS_MNOBUSY
1929 if (cl->flags & LFS_CL_MALLOC) {
1930 if (!(bp->b_flags & B_CALL))
1931 brelse(bp); /* Still B_LOCKED */
1932 }
1933 #endif
1934 bpp++;
1935
1936 /*
1937 * If this is the last block for this vnode, but
1938 * there are other blocks on its dirty list,
1939 * set IN_MODIFIED/IN_CLEANING depending on what
1940 * sort of block. Only do this for our mount point,
1941 * not for, e.g., inode blocks that are attached to
1942 * the devvp.
1943 * XXX KS - Shouldn't we set *both* if both types
1944 * of blocks are present (traverse the dirty list?)
1945 */
1946 s = splbio();
1947 if ((i == 1 ||
1948 (i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
1949 (bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
1950 vp->v_mount == fs->lfs_ivnode->v_mount)
1951 {
1952 ip = VTOI(vp);
1953 #ifdef DEBUG_LFS
1954 printf("lfs_writeseg: marking ino %d\n",
1955 ip->i_number);
1956 #endif
1957 if (bp->b_flags & B_CALL)
1958 LFS_SET_UINO(ip, IN_CLEANING);
1959 else
1960 LFS_SET_UINO(ip, IN_MODIFIED);
1961 }
1962 splx(s);
1963 wakeup(vp);
1964 }
1965 s = splbio();
1966 ++cbp->b_vp->v_numoutput;
1967 splx(s);
1968 /*
1969 * In order to include the summary in a clustered block,
1970 * it may be necessary to shift the block forward (since
1971 * summary blocks are in generay smaller than can be
1972 * addressed by pagemove(). After the write, the block
1973 * will be corrected before disassembly.
1974 */
1975 if(cl->flags & LFS_CL_SHIFT) {
1976 cbp->b_data += (NBPG - fs->lfs_sumsize);
1977 cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
1978 }
1979 vop_strategy_a.a_desc = VDESC(vop_strategy);
1980 vop_strategy_a.a_bp = cbp;
1981 (strategy)(&vop_strategy_a);
1982 }
1983
1984 if (lfs_dostats) {
1985 ++lfs_stats.psegwrites;
1986 lfs_stats.blocktot += nblocks - 1;
1987 if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1988 ++lfs_stats.psyncwrites;
1989 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1990 ++lfs_stats.pcleanwrites;
1991 lfs_stats.cleanblocks += nblocks - 1;
1992 }
1993 }
1994 return (lfs_initseg(fs) || do_again);
1995 }
1996
1997 void
1998 lfs_writesuper(struct lfs *fs, daddr_t daddr)
1999 {
2000 struct buf *bp;
2001 dev_t i_dev;
2002 int (*strategy)(void *);
2003 int s;
2004 struct vop_strategy_args vop_strategy_a;
2005
2006 /*
2007 * If we can write one superblock while another is in
2008 * progress, we risk not having a complete checkpoint if we crash.
2009 * So, block here if a superblock write is in progress.
2010 */
2011 s = splbio();
2012 while (fs->lfs_sbactive) {
2013 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2014 }
2015 fs->lfs_sbactive = daddr;
2016 splx(s);
2017 i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2018 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2019
2020 /* Set timestamp of this version of the superblock */
2021 if (fs->lfs_version == 1)
2022 fs->lfs_otstamp = time.tv_sec;
2023 fs->lfs_tstamp = time.tv_sec;
2024
2025 /* Checksum the superblock and copy it into a buffer. */
2026 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2027 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
2028 *(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2029
2030 bp->b_dev = i_dev;
2031 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2032 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2033 bp->b_iodone = lfs_supercallback;
2034 /* XXX KS - same nasty hack as above */
2035 bp->b_saveaddr = (caddr_t)fs;
2036
2037 vop_strategy_a.a_desc = VDESC(vop_strategy);
2038 vop_strategy_a.a_bp = bp;
2039 s = splbio();
2040 ++bp->b_vp->v_numoutput;
2041 splx(s);
2042 ++fs->lfs_iocount;
2043 (strategy)(&vop_strategy_a);
2044 }
2045
2046 /*
2047 * Logical block number match routines used when traversing the dirty block
2048 * chain.
2049 */
2050 int
2051 lfs_match_fake(struct lfs *fs, struct buf *bp)
2052 {
2053 return (bp->b_flags & B_CALL);
2054 }
2055
2056 int
2057 lfs_match_data(struct lfs *fs, struct buf *bp)
2058 {
2059 return (bp->b_lblkno >= 0);
2060 }
2061
2062 int
2063 lfs_match_indir(struct lfs *fs, struct buf *bp)
2064 {
2065 int lbn;
2066
2067 lbn = bp->b_lblkno;
2068 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2069 }
2070
2071 int
2072 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2073 {
2074 int lbn;
2075
2076 lbn = bp->b_lblkno;
2077 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2078 }
2079
2080 int
2081 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2082 {
2083 int lbn;
2084
2085 lbn = bp->b_lblkno;
2086 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2087 }
2088
2089 /*
2090 * XXX - The only buffers that are going to hit these functions are the
2091 * segment write blocks, or the segment summaries, or the superblocks.
2092 *
2093 * All of the above are created by lfs_newbuf, and so do not need to be
2094 * released via brelse.
2095 */
2096 void
2097 lfs_callback(struct buf *bp)
2098 {
2099 /* struct lfs *fs; */
2100 /* fs = (struct lfs *)bp->b_saveaddr; */
2101 lfs_freebuf(bp);
2102 }
2103
2104 static void
2105 lfs_super_aiodone(struct buf *bp)
2106 {
2107 struct lfs *fs;
2108
2109 fs = (struct lfs *)bp->b_saveaddr;
2110 fs->lfs_sbactive = 0;
2111 wakeup(&fs->lfs_sbactive);
2112 if (--fs->lfs_iocount < LFS_THROTTLE)
2113 wakeup(&fs->lfs_iocount);
2114 lfs_freebuf(bp);
2115 }
2116
2117 static void
2118 lfs_cluster_aiodone(struct buf *bp)
2119 {
2120 struct lfs_cluster *cl;
2121 struct lfs *fs;
2122 struct buf *tbp;
2123 struct vnode *vp;
2124 int s, error=0;
2125 char *cp;
2126 extern int locked_queue_count;
2127 extern long locked_queue_bytes;
2128
2129 if(bp->b_flags & B_ERROR)
2130 error = bp->b_error;
2131
2132 cl = (struct lfs_cluster *)bp->b_saveaddr;
2133 fs = cl->fs;
2134 bp->b_saveaddr = cl->saveaddr;
2135
2136 /* If shifted, shift back now */
2137 if(cl->flags & LFS_CL_SHIFT) {
2138 bp->b_data -= (NBPG - fs->lfs_sumsize);
2139 bp->b_bcount += (NBPG - fs->lfs_sumsize);
2140 }
2141
2142 cp = (char *)bp->b_data + cl->bufsize;
2143 /* Put the pages back, and release the buffer */
2144 while(cl->bufcount--) {
2145 tbp = cl->bpp[cl->bufcount];
2146 if(!(cl->flags & LFS_CL_MALLOC)) {
2147 cp -= tbp->b_bcount;
2148 printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
2149 pagemove(cp, tbp->b_data, tbp->b_bcount);
2150 bp->b_bufsize -= tbp->b_bcount;
2151 tbp->b_bufsize += tbp->b_bcount;
2152 }
2153 if(error) {
2154 tbp->b_flags |= B_ERROR;
2155 tbp->b_error = error;
2156 }
2157
2158 /*
2159 * We're done with tbp. If it has not been re-dirtied since
2160 * the cluster was written, free it. Otherwise, keep it on
2161 * the locked list to be written again.
2162 */
2163 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2164 LFS_UNLOCK_BUF(tbp);
2165 tbp->b_flags &= ~B_GATHERED;
2166
2167 LFS_BCLEAN_LOG(fs, tbp);
2168
2169 vp = tbp->b_vp;
2170 /* Segment summary for a shifted cluster */
2171 if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
2172 tbp->b_flags |= B_INVAL;
2173 if(!(tbp->b_flags & B_CALL)) {
2174 bremfree(tbp);
2175 s = splbio();
2176 if(vp)
2177 reassignbuf(tbp, vp);
2178 splx(s);
2179 tbp->b_flags |= B_ASYNC; /* for biodone */
2180 }
2181 #ifdef DIAGNOSTIC
2182 if (tbp->b_flags & B_DONE) {
2183 printf("blk %d biodone already (flags %lx)\n",
2184 cl->bufcount, (long)tbp->b_flags);
2185 }
2186 #endif
2187 if (tbp->b_flags & (B_BUSY | B_CALL)) {
2188 biodone(tbp);
2189 }
2190 }
2191
2192 /* Fix up the cluster buffer, and release it */
2193 if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
2194 printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
2195 (char *)bp->b_data, bp->b_bufsize);
2196 pagemove((char *)bp->b_data + bp->b_bcount,
2197 (char *)bp->b_data, bp->b_bufsize);
2198 }
2199 if(cl->flags & LFS_CL_MALLOC) {
2200 free(bp->b_data, M_SEGMENT);
2201 bp->b_data = cl->olddata;
2202 }
2203 bp->b_bcount = 0;
2204 bp->b_iodone = NULL;
2205 bp->b_flags &= ~B_DELWRI;
2206 bp->b_flags |= B_DONE;
2207 s = splbio();
2208 reassignbuf(bp, bp->b_vp);
2209 splx(s);
2210 brelse(bp);
2211
2212 /* Note i/o done */
2213 if (cl->flags & LFS_CL_SYNC) {
2214 if (--cl->seg->seg_iocount == 0)
2215 wakeup(&cl->seg->seg_iocount);
2216 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2217 }
2218 #ifdef DIAGNOSTIC
2219 if (fs->lfs_iocount == 0)
2220 panic("lfs_cluster_aiodone: zero iocount");
2221 #endif
2222 if (--fs->lfs_iocount < LFS_THROTTLE)
2223 wakeup(&fs->lfs_iocount);
2224 #if 0
2225 if (fs->lfs_iocount == 0) {
2226 /*
2227 * Vinvalbuf can move locked buffers off the locked queue
2228 * and we have no way of knowing about this. So, after
2229 * doing a big write, we recalculate how many buffers are
2230 * really still left on the locked queue.
2231 */
2232 lfs_countlocked(&locked_queue_count, &locked_queue_bytes, "lfs_cluster_callback");
2233 wakeup(&locked_queue_count);
2234 }
2235 #endif
2236
2237 free(cl->bpp, M_SEGMENT);
2238 free(cl, M_SEGMENT);
2239 }
2240
2241 static void
2242 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2243 {
2244 /* reset b_iodone for when this is a single-buf i/o. */
2245 bp->b_iodone = aiodone;
2246
2247 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
2248 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2249 wakeup(&uvm.aiodoned);
2250 simple_unlock(&uvm.aiodoned_lock);
2251 }
2252
2253 static void
2254 lfs_cluster_callback(struct buf *bp)
2255 {
2256 lfs_generic_callback(bp, lfs_cluster_aiodone);
2257 }
2258
2259 void
2260 lfs_supercallback(struct buf *bp)
2261 {
2262 lfs_generic_callback(bp, lfs_super_aiodone);
2263 }
2264
2265 /*
2266 * Shellsort (diminishing increment sort) from Data Structures and
2267 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2268 * see also Knuth Vol. 3, page 84. The increments are selected from
2269 * formula (8), page 95. Roughly O(N^3/2).
2270 */
2271 /*
2272 * This is our own private copy of shellsort because we want to sort
2273 * two parallel arrays (the array of buffer pointers and the array of
2274 * logical block numbers) simultaneously. Note that we cast the array
2275 * of logical block numbers to a unsigned in this routine so that the
2276 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2277 */
2278
2279 void
2280 lfs_shellsort(struct buf **bp_array, ufs_daddr_t *lb_array, int nmemb)
2281 {
2282 static int __rsshell_increments[] = { 4, 1, 0 };
2283 int incr, *incrp, t1, t2;
2284 struct buf *bp_temp;
2285 u_long lb_temp;
2286
2287 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2288 for (t1 = incr; t1 < nmemb; ++t1)
2289 for (t2 = t1 - incr; t2 >= 0;)
2290 if (lb_array[t2] > lb_array[t2 + incr]) {
2291 lb_temp = lb_array[t2];
2292 lb_array[t2] = lb_array[t2 + incr];
2293 lb_array[t2 + incr] = lb_temp;
2294 bp_temp = bp_array[t2];
2295 bp_array[t2] = bp_array[t2 + incr];
2296 bp_array[t2 + incr] = bp_temp;
2297 t2 -= incr;
2298 } else
2299 break;
2300 }
2301
2302 /*
2303 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
2304 */
2305 int
2306 lfs_vref(struct vnode *vp)
2307 {
2308 /*
2309 * If we return 1 here during a flush, we risk vinvalbuf() not
2310 * being able to flush all of the pages from this vnode, which
2311 * will cause it to panic. So, return 0 if a flush is in progress.
2312 */
2313 if (vp->v_flag & VXLOCK) {
2314 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2315 return 0;
2316 }
2317 return (1);
2318 }
2319 return (vget(vp, 0));
2320 }
2321
2322 /*
2323 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2324 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2325 */
2326 void
2327 lfs_vunref(struct vnode *vp)
2328 {
2329 /*
2330 * Analogous to lfs_vref, if the node is flushing, fake it.
2331 */
2332 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2333 return;
2334 }
2335
2336 simple_lock(&vp->v_interlock);
2337 #ifdef DIAGNOSTIC
2338 if (vp->v_usecount <= 0) {
2339 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2340 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2341 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2342 panic("lfs_vunref: v_usecount<0");
2343 }
2344 #endif
2345 vp->v_usecount--;
2346 if (vp->v_usecount > 0) {
2347 simple_unlock(&vp->v_interlock);
2348 return;
2349 }
2350 /*
2351 * insert at tail of LRU list
2352 */
2353 simple_lock(&vnode_free_list_slock);
2354 if (vp->v_holdcnt > 0)
2355 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2356 else
2357 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2358 simple_unlock(&vnode_free_list_slock);
2359 simple_unlock(&vp->v_interlock);
2360 }
2361
2362 /*
2363 * We use this when we have vnodes that were loaded in solely for cleaning.
2364 * There is no reason to believe that these vnodes will be referenced again
2365 * soon, since the cleaning process is unrelated to normal filesystem
2366 * activity. Putting cleaned vnodes at the tail of the list has the effect
2367 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2368 * cleaning at the head of the list, instead.
2369 */
2370 void
2371 lfs_vunref_head(struct vnode *vp)
2372 {
2373 simple_lock(&vp->v_interlock);
2374 #ifdef DIAGNOSTIC
2375 if (vp->v_usecount == 0) {
2376 panic("lfs_vunref: v_usecount<0");
2377 }
2378 #endif
2379 vp->v_usecount--;
2380 if (vp->v_usecount > 0) {
2381 simple_unlock(&vp->v_interlock);
2382 return;
2383 }
2384 /*
2385 * insert at head of LRU list
2386 */
2387 simple_lock(&vnode_free_list_slock);
2388 if (vp->v_holdcnt > 0)
2389 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2390 else
2391 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2392 simple_unlock(&vnode_free_list_slock);
2393 simple_unlock(&vp->v_interlock);
2394 }
2395
2396