Home | History | Annotate | Line # | Download | only in lfs
lfs_subr.c revision 1.38
      1 /*	$NetBSD: lfs_subr.c,v 1.38 2003/03/15 06:58:50 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.38 2003/03/15 06:58:50 perseant Exp $");
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/namei.h>
     79 #include <sys/vnode.h>
     80 #include <sys/buf.h>
     81 #include <sys/mount.h>
     82 #include <sys/malloc.h>
     83 #include <sys/proc.h>
     84 
     85 #include <ufs/ufs/inode.h>
     86 #include <ufs/lfs/lfs.h>
     87 #include <ufs/lfs/lfs_extern.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 /*
     92  * Return buffer with the contents of block "offset" from the beginning of
     93  * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
     94  * remaining space in the directory.
     95  */
     96 int
     97 lfs_blkatoff(void *v)
     98 {
     99 	struct vop_blkatoff_args /* {
    100 		struct vnode *a_vp;
    101 		off_t a_offset;
    102 		char **a_res;
    103 		struct buf **a_bpp;
    104 		} */ *ap = v;
    105 	struct lfs *fs;
    106 	struct inode *ip;
    107 	struct buf *bp;
    108 	daddr_t lbn;
    109 	int bsize, error;
    110 
    111 	ip = VTOI(ap->a_vp);
    112 	fs = ip->i_lfs;
    113 	lbn = lblkno(fs, ap->a_offset);
    114 	bsize = blksize(fs, ip, lbn);
    115 
    116 	*ap->a_bpp = NULL;
    117 	if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
    118 		brelse(bp);
    119 		return (error);
    120 	}
    121 	if (ap->a_res)
    122 		*ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
    123 	*ap->a_bpp = bp;
    124 	return (0);
    125 }
    126 
    127 #ifdef LFS_DEBUG_MALLOC
    128 char *lfs_res_names[LFS_NB_COUNT] = {
    129 	"summary",
    130 	"superblock",
    131 	"ifile block",
    132 	"cluster",
    133 	"clean",
    134 };
    135 #endif
    136 
    137 int lfs_res_qty[LFS_NB_COUNT] = {
    138 	LFS_N_SUMMARIES,
    139 	LFS_N_SBLOCKS,
    140 	LFS_N_IBLOCKS,
    141 	LFS_N_CLUSTERS,
    142 	LFS_N_CLEAN,
    143 };
    144 
    145 void
    146 lfs_setup_resblks(struct lfs *fs)
    147 {
    148 	int i, j;
    149 	int maxbpp;
    150 
    151 	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
    152 					  M_WAITOK);
    153 	for (i = 0; i < LFS_N_TOTAL; i++) {
    154 		fs->lfs_resblk[i].inuse = 0;
    155 		fs->lfs_resblk[i].p = NULL;
    156 	}
    157 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
    158 		LIST_INIT(fs->lfs_reshash + i);
    159 
    160 	/*
    161 	 * These types of allocations can be larger than a page,
    162 	 * so we can't use the pool subsystem for them.
    163 	 */
    164 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
    165 		fs->lfs_resblk[i].size = fs->lfs_sumsize;
    166 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
    167 		fs->lfs_resblk[i].size = LFS_SBPAD;
    168 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
    169 		fs->lfs_resblk[i].size = fs->lfs_bsize;
    170 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
    171 		fs->lfs_resblk[i].size = MAXPHYS;
    172 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
    173 		fs->lfs_resblk[i].size = MAXPHYS;
    174 
    175 	for (i = 0; i < LFS_N_TOTAL; i++) {
    176 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
    177 					     M_SEGMENT, M_WAITOK);
    178 	}
    179 
    180 	/*
    181 	 * Initialize pools for small types (XXX is BPP small?)
    182 	 */
    183 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0,
    184 		LFS_N_CL, "lfsclpl", &pool_allocator_nointr);
    185 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0,
    186 		LFS_N_SEG, "lfssegpool", &pool_allocator_nointr);
    187 	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
    188 	maxbpp = MIN(maxbpp, fs->lfs_ssize / fs->lfs_fsize + 2);
    189 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0,
    190 		LFS_N_BPP, "lfsbpppl", &pool_allocator_nointr);
    191 }
    192 
    193 void
    194 lfs_free_resblks(struct lfs *fs)
    195 {
    196 	int i;
    197 
    198 	pool_destroy(&fs->lfs_bpppool);
    199 	pool_destroy(&fs->lfs_segpool);
    200 	pool_destroy(&fs->lfs_clpool);
    201 
    202 	for (i = 0; i < LFS_N_TOTAL; i++) {
    203 		while(fs->lfs_resblk[i].inuse)
    204 			tsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0);
    205 		if (fs->lfs_resblk[i].p != NULL)
    206 			free(fs->lfs_resblk[i].p, M_SEGMENT);
    207 	}
    208 	free(fs->lfs_resblk, M_SEGMENT);
    209 }
    210 
    211 static unsigned int
    212 lfs_mhash(void *vp)
    213 {
    214 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
    215 }
    216 
    217 /*
    218  * Return memory of the given size for the given purpose, or use one of a
    219  * number of spare last-resort buffers, if malloc returns NULL.
    220  */
    221 void *
    222 lfs_malloc(struct lfs *fs, size_t size, int type)
    223 {
    224 	struct lfs_res_blk *re;
    225 	void *r;
    226 	int i, s, start;
    227 	unsigned int h;
    228 
    229 	r = NULL;
    230 
    231 	/* If no mem allocated for this type, it just waits */
    232 	if (lfs_res_qty[type] == 0) {
    233 		r = malloc(size, M_SEGMENT, M_WAITOK);
    234 		return r;
    235 	}
    236 
    237 	/* Otherwise try a quick malloc, and if it works, great */
    238 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
    239 		return r;
    240 	}
    241 
    242 	/*
    243 	 * If malloc returned NULL, we are forced to use one of our
    244 	 * reserve blocks.  We have on hand at least one summary block,
    245 	 * at least one cluster block, at least one superblock,
    246 	 * and several indirect blocks.
    247 	 */
    248 	/* skip over blocks of other types */
    249 	for (i = 0, start = 0; i < type; i++)
    250 		start += lfs_res_qty[i];
    251 	while (r == NULL) {
    252 		for (i = 0; i < lfs_res_qty[type]; i++) {
    253 			if (fs->lfs_resblk[start + i].inuse == 0) {
    254 				re = fs->lfs_resblk + start + i;
    255 				re->inuse = 1;
    256 				r = re->p;
    257 				KASSERT(re->size >= size);
    258 				h = lfs_mhash(r);
    259 				s = splbio();
    260 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
    261 				splx(s);
    262 				return r;
    263 			}
    264 		}
    265 #ifdef LFS_DEBUG_MALLOC
    266 		printf("sleeping on %s (%d)\n", lfs_res_names[type], lfs_res_qty[type]);
    267 #endif
    268 		tsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0);
    269 #ifdef LFS_DEBUG_MALLOC
    270 		printf("done sleeping on %s\n", lfs_res_names[type]);
    271 #endif
    272 	}
    273 	/* NOTREACHED */
    274 	return r;
    275 }
    276 
    277 void
    278 lfs_free(struct lfs *fs, void *p, int type)
    279 {
    280 	int s;
    281 	unsigned int h;
    282 	res_t *re;
    283 #ifdef DEBUG
    284 	int i;
    285 #endif
    286 
    287 	h = lfs_mhash(p);
    288 	s = splbio();
    289 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
    290 		if (re->p == p) {
    291 			KASSERT(re->inuse == 1);
    292 			LIST_REMOVE(re, res);
    293 			re->inuse = 0;
    294 			wakeup(&fs->lfs_resblk);
    295 			splx(s);
    296 			return;
    297 		}
    298 	}
    299 #ifdef DEBUG
    300 	for (i = 0; i < LFS_N_TOTAL; i++) {
    301 		if (fs->lfs_resblk[i].p == p)
    302 			panic("lfs_free: inconsistent reserved block");
    303 	}
    304 #endif
    305 	splx(s);
    306 
    307 	/*
    308 	 * If we didn't find it, free it.
    309 	 */
    310 	free(p, M_SEGMENT);
    311 }
    312 
    313 /*
    314  * lfs_seglock --
    315  *	Single thread the segment writer.
    316  */
    317 int
    318 lfs_seglock(struct lfs *fs, unsigned long flags)
    319 {
    320 	struct segment *sp;
    321 
    322 	simple_lock(&fs->lfs_interlock);
    323 	if (fs->lfs_seglock) {
    324 		if (fs->lfs_lockpid == curproc->p_pid) {
    325 			simple_unlock(&fs->lfs_interlock);
    326 			++fs->lfs_seglock;
    327 			fs->lfs_sp->seg_flags |= flags;
    328 			return 0;
    329 		} else if (flags & SEGM_PAGEDAEMON) {
    330 			simple_unlock(&fs->lfs_interlock);
    331 			return EWOULDBLOCK;
    332 		} else while (fs->lfs_seglock)
    333 			(void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
    334 				      "lfs seglock", 0, &fs->lfs_interlock);
    335 	}
    336 
    337 	fs->lfs_seglock = 1;
    338 	fs->lfs_lockpid = curproc->p_pid;
    339 	simple_unlock(&fs->lfs_interlock);
    340 	fs->lfs_cleanind = 0;
    341 
    342 	/* Drain fragment size changes out */
    343 	lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
    344 
    345 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
    346 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
    347 	sp->seg_flags = flags;
    348 	sp->vp = NULL;
    349 	sp->seg_iocount = 0;
    350 	(void) lfs_initseg(fs);
    351 
    352 	/*
    353 	 * Keep a cumulative count of the outstanding I/O operations.  If the
    354 	 * disk drive catches up with us it could go to zero before we finish,
    355 	 * so we artificially increment it by one until we've scheduled all of
    356 	 * the writes we intend to do.
    357 	 */
    358 	++fs->lfs_iocount;
    359 	return 0;
    360 }
    361 
    362 static void lfs_unmark_dirop(struct lfs *);
    363 
    364 static void
    365 lfs_unmark_dirop(struct lfs *fs)
    366 {
    367 	struct inode *ip, *nip;
    368 	struct vnode *vp;
    369 	extern int lfs_dirvcount;
    370 
    371 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
    372 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
    373 		vp = ITOV(ip);
    374 
    375 		if (VOP_ISLOCKED(vp) &&
    376 			   vp->v_lock.lk_lockholder != curproc->p_pid) {
    377 			continue;
    378 		}
    379 		if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
    380 			--lfs_dirvcount;
    381 			vp->v_flag &= ~VDIROP;
    382 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    383 			wakeup(&lfs_dirvcount);
    384 			fs->lfs_unlockvp = vp;
    385 			vrele(vp);
    386 			fs->lfs_unlockvp = NULL;
    387 		}
    388 	}
    389 }
    390 
    391 static void
    392 lfs_auto_segclean(struct lfs *fs)
    393 {
    394 	int i, error;
    395 
    396 	/*
    397 	 * Now that we've swapped lfs_activesb, but while we still
    398 	 * hold the segment lock, run through the segment list marking
    399 	 * the empty ones clean.
    400 	 * XXX - do we really need to do them all at once?
    401 	 */
    402 	for (i = 0; i < fs->lfs_nseg; i++) {
    403 		if ((fs->lfs_suflags[0][i] &
    404 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
    405 		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
    406 		    (fs->lfs_suflags[1][i] &
    407 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
    408 		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
    409 
    410 			if ((error = lfs_do_segclean(fs, i)) != 0) {
    411 #ifdef DEBUG
    412 				printf("lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i);
    413 #endif /* DEBUG */
    414 			}
    415 		}
    416 		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
    417 			fs->lfs_suflags[fs->lfs_activesb][i];
    418 	}
    419 }
    420 
    421 /*
    422  * lfs_segunlock --
    423  *	Single thread the segment writer.
    424  */
    425 void
    426 lfs_segunlock(struct lfs *fs)
    427 {
    428 	struct segment *sp;
    429 	unsigned long sync, ckp;
    430 	struct buf *bp;
    431 	extern int locked_queue_count;
    432 	extern long locked_queue_bytes;
    433 
    434 	sp = fs->lfs_sp;
    435 
    436 	simple_lock(&fs->lfs_interlock);
    437 	if (fs->lfs_seglock == 1) {
    438 		simple_unlock(&fs->lfs_interlock);
    439 		if ((sp->seg_flags & SEGM_PROT) == 0)
    440 			lfs_unmark_dirop(fs);
    441 		sync = sp->seg_flags & SEGM_SYNC;
    442 		ckp = sp->seg_flags & SEGM_CKP;
    443 		if (sp->bpp != sp->cbpp) {
    444 			/* Free allocated segment summary */
    445 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    446 			bp = *sp->bpp;
    447 			lfs_freebuf(fs, bp);
    448 		} else
    449 			printf ("unlock to 0 with no summary");
    450 
    451 		pool_put(&fs->lfs_bpppool, sp->bpp);
    452 		sp->bpp = NULL;
    453 
    454 		/*
    455 		 * If we're not sync, we're done with sp, get rid of it.
    456 		 * Otherwise, we keep a local copy around but free
    457 		 * fs->lfs_sp so another process can use it (we have to
    458 		 * wait but they don't have to wait for us).
    459 		 */
    460 		if (!sync)
    461 			pool_put(&fs->lfs_segpool, sp);
    462 		fs->lfs_sp = NULL;
    463 
    464 		/*
    465 		 * If the I/O count is non-zero, sleep until it reaches zero.
    466 		 * At the moment, the user's process hangs around so we can
    467 		 * sleep.
    468 		 */
    469 		if (--fs->lfs_iocount == 0) {
    470 			lfs_countlocked(&locked_queue_count,
    471 					&locked_queue_bytes, "lfs_segunlock");
    472 			wakeup(&locked_queue_count);
    473 		}
    474 		if (fs->lfs_iocount <= 1)
    475 			wakeup(&fs->lfs_iocount);
    476 		/*
    477 		 * If we're not checkpointing, we don't have to block
    478 		 * other processes to wait for a synchronous write
    479 		 * to complete.
    480 		 */
    481 		if (!ckp) {
    482 			simple_lock(&fs->lfs_interlock);
    483 			--fs->lfs_seglock;
    484 			fs->lfs_lockpid = 0;
    485 			simple_unlock(&fs->lfs_interlock);
    486 			wakeup(&fs->lfs_seglock);
    487 		}
    488 		/*
    489 		 * We let checkpoints happen asynchronously.  That means
    490 		 * that during recovery, we have to roll forward between
    491 		 * the two segments described by the first and second
    492 		 * superblocks to make sure that the checkpoint described
    493 		 * by a superblock completed.
    494 		 */
    495 		while (ckp && sync && fs->lfs_iocount)
    496 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
    497 				     "lfs_iocount", 0);
    498 		while (sync && sp->seg_iocount) {
    499 			(void)tsleep(&sp->seg_iocount, PRIBIO + 1,
    500 				     "seg_iocount", 0);
    501 			/* printf("sleeping on iocount %x == %d\n", sp, sp->seg_iocount); */
    502 		}
    503 		if (sync)
    504 			pool_put(&fs->lfs_segpool, sp);
    505 
    506 		if (ckp) {
    507 			fs->lfs_nactive = 0;
    508 			/* If we *know* everything's on disk, write both sbs */
    509 			/* XXX should wait for this one	 */
    510 			if (sync)
    511 				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
    512 			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
    513 			if (!(fs->lfs_ivnode->v_mount->mnt_flag & MNT_UNMOUNT))
    514 				lfs_auto_segclean(fs);
    515 			fs->lfs_activesb = 1 - fs->lfs_activesb;
    516 			simple_lock(&fs->lfs_interlock);
    517 			--fs->lfs_seglock;
    518 			fs->lfs_lockpid = 0;
    519 			simple_unlock(&fs->lfs_interlock);
    520 			wakeup(&fs->lfs_seglock);
    521 		}
    522 		/* Reenable fragment size changes */
    523 		lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
    524 	} else if (fs->lfs_seglock == 0) {
    525 		simple_unlock(&fs->lfs_interlock);
    526 		panic ("Seglock not held");
    527 	} else {
    528 		--fs->lfs_seglock;
    529 		simple_unlock(&fs->lfs_interlock);
    530 	}
    531 }
    532