lfs_subr.c revision 1.40 1 /* $NetBSD: lfs_subr.c,v 1.40 2003/04/23 07:20:38 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.40 2003/04/23 07:20:38 perseant Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/vnode.h>
80 #include <sys/buf.h>
81 #include <sys/mount.h>
82 #include <sys/malloc.h>
83 #include <sys/proc.h>
84
85 #include <ufs/ufs/inode.h>
86 #include <ufs/lfs/lfs.h>
87 #include <ufs/lfs/lfs_extern.h>
88
89 #include <uvm/uvm.h>
90
91 /*
92 * Return buffer with the contents of block "offset" from the beginning of
93 * directory "ip". If "res" is non-zero, fill it in with a pointer to the
94 * remaining space in the directory.
95 */
96 int
97 lfs_blkatoff(void *v)
98 {
99 struct vop_blkatoff_args /* {
100 struct vnode *a_vp;
101 off_t a_offset;
102 char **a_res;
103 struct buf **a_bpp;
104 } */ *ap = v;
105 struct lfs *fs;
106 struct inode *ip;
107 struct buf *bp;
108 daddr_t lbn;
109 int bsize, error;
110
111 ip = VTOI(ap->a_vp);
112 fs = ip->i_lfs;
113 lbn = lblkno(fs, ap->a_offset);
114 bsize = blksize(fs, ip, lbn);
115
116 *ap->a_bpp = NULL;
117 if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
118 brelse(bp);
119 return (error);
120 }
121 if (ap->a_res)
122 *ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
123 *ap->a_bpp = bp;
124 return (0);
125 }
126
127 #ifdef LFS_DEBUG_MALLOC
128 char *lfs_res_names[LFS_NB_COUNT] = {
129 "summary",
130 "superblock",
131 "ifile block",
132 "cluster",
133 "clean",
134 };
135 #endif
136
137 int lfs_res_qty[LFS_NB_COUNT] = {
138 LFS_N_SUMMARIES,
139 LFS_N_SBLOCKS,
140 LFS_N_IBLOCKS,
141 LFS_N_CLUSTERS,
142 LFS_N_CLEAN,
143 };
144
145 void
146 lfs_setup_resblks(struct lfs *fs)
147 {
148 int i, j;
149 int maxbpp;
150
151 fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
152 M_WAITOK);
153 for (i = 0; i < LFS_N_TOTAL; i++) {
154 fs->lfs_resblk[i].inuse = 0;
155 fs->lfs_resblk[i].p = NULL;
156 }
157 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
158 LIST_INIT(fs->lfs_reshash + i);
159
160 /*
161 * These types of allocations can be larger than a page,
162 * so we can't use the pool subsystem for them.
163 */
164 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
165 fs->lfs_resblk[i].size = fs->lfs_sumsize;
166 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
167 fs->lfs_resblk[i].size = LFS_SBPAD;
168 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
169 fs->lfs_resblk[i].size = fs->lfs_bsize;
170 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
171 fs->lfs_resblk[i].size = MAXPHYS;
172 for (j = 0; j < LFS_N_CLEAN; j++, i++)
173 fs->lfs_resblk[i].size = MAXPHYS;
174
175 for (i = 0; i < LFS_N_TOTAL; i++) {
176 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
177 M_SEGMENT, M_WAITOK);
178 }
179
180 /*
181 * Initialize pools for small types (XXX is BPP small?)
182 */
183 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0,
184 LFS_N_CL, "lfsclpl", &pool_allocator_nointr);
185 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0,
186 LFS_N_SEG, "lfssegpool", &pool_allocator_nointr);
187 maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
188 maxbpp = MIN(maxbpp, fs->lfs_ssize / fs->lfs_fsize + 2);
189 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0,
190 LFS_N_BPP, "lfsbpppl", &pool_allocator_nointr);
191 }
192
193 void
194 lfs_free_resblks(struct lfs *fs)
195 {
196 int i;
197
198 pool_destroy(&fs->lfs_bpppool);
199 pool_destroy(&fs->lfs_segpool);
200 pool_destroy(&fs->lfs_clpool);
201
202 for (i = 0; i < LFS_N_TOTAL; i++) {
203 while (fs->lfs_resblk[i].inuse)
204 tsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0);
205 if (fs->lfs_resblk[i].p != NULL)
206 free(fs->lfs_resblk[i].p, M_SEGMENT);
207 }
208 free(fs->lfs_resblk, M_SEGMENT);
209 }
210
211 static unsigned int
212 lfs_mhash(void *vp)
213 {
214 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
215 }
216
217 /*
218 * Return memory of the given size for the given purpose, or use one of a
219 * number of spare last-resort buffers, if malloc returns NULL.
220 */
221 void *
222 lfs_malloc(struct lfs *fs, size_t size, int type)
223 {
224 struct lfs_res_blk *re;
225 void *r;
226 int i, s, start;
227 unsigned int h;
228
229 r = NULL;
230
231 /* If no mem allocated for this type, it just waits */
232 if (lfs_res_qty[type] == 0) {
233 r = malloc(size, M_SEGMENT, M_WAITOK);
234 return r;
235 }
236
237 /* Otherwise try a quick malloc, and if it works, great */
238 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
239 return r;
240 }
241
242 /*
243 * If malloc returned NULL, we are forced to use one of our
244 * reserve blocks. We have on hand at least one summary block,
245 * at least one cluster block, at least one superblock,
246 * and several indirect blocks.
247 */
248 /* skip over blocks of other types */
249 for (i = 0, start = 0; i < type; i++)
250 start += lfs_res_qty[i];
251 while (r == NULL) {
252 for (i = 0; i < lfs_res_qty[type]; i++) {
253 if (fs->lfs_resblk[start + i].inuse == 0) {
254 re = fs->lfs_resblk + start + i;
255 re->inuse = 1;
256 r = re->p;
257 KASSERT(re->size >= size);
258 h = lfs_mhash(r);
259 s = splbio();
260 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
261 splx(s);
262 return r;
263 }
264 }
265 #ifdef LFS_DEBUG_MALLOC
266 printf("sleeping on %s (%d)\n", lfs_res_names[type], lfs_res_qty[type]);
267 #endif
268 tsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0);
269 #ifdef LFS_DEBUG_MALLOC
270 printf("done sleeping on %s\n", lfs_res_names[type]);
271 #endif
272 }
273 /* NOTREACHED */
274 return r;
275 }
276
277 void
278 lfs_free(struct lfs *fs, void *p, int type)
279 {
280 int s;
281 unsigned int h;
282 res_t *re;
283 #ifdef DEBUG
284 int i;
285 #endif
286
287 h = lfs_mhash(p);
288 s = splbio();
289 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
290 if (re->p == p) {
291 KASSERT(re->inuse == 1);
292 LIST_REMOVE(re, res);
293 re->inuse = 0;
294 wakeup(&fs->lfs_resblk);
295 splx(s);
296 return;
297 }
298 }
299 #ifdef DEBUG
300 for (i = 0; i < LFS_N_TOTAL; i++) {
301 if (fs->lfs_resblk[i].p == p)
302 panic("lfs_free: inconsistent reserved block");
303 }
304 #endif
305 splx(s);
306
307 /*
308 * If we didn't find it, free it.
309 */
310 free(p, M_SEGMENT);
311 }
312
313 /*
314 * lfs_seglock --
315 * Single thread the segment writer.
316 */
317 int
318 lfs_seglock(struct lfs *fs, unsigned long flags)
319 {
320 struct segment *sp;
321
322 simple_lock(&fs->lfs_interlock);
323 if (fs->lfs_seglock) {
324 if (fs->lfs_lockpid == curproc->p_pid) {
325 simple_unlock(&fs->lfs_interlock);
326 ++fs->lfs_seglock;
327 fs->lfs_sp->seg_flags |= flags;
328 return 0;
329 } else if (flags & SEGM_PAGEDAEMON) {
330 simple_unlock(&fs->lfs_interlock);
331 return EWOULDBLOCK;
332 } else while (fs->lfs_seglock)
333 (void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
334 "lfs seglock", 0, &fs->lfs_interlock);
335 }
336
337 fs->lfs_seglock = 1;
338 fs->lfs_lockpid = curproc->p_pid;
339 simple_unlock(&fs->lfs_interlock);
340 fs->lfs_cleanind = 0;
341
342 /* Drain fragment size changes out */
343 lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
344
345 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
346 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
347 sp->seg_flags = flags;
348 sp->vp = NULL;
349 sp->seg_iocount = 0;
350 (void) lfs_initseg(fs);
351
352 /*
353 * Keep a cumulative count of the outstanding I/O operations. If the
354 * disk drive catches up with us it could go to zero before we finish,
355 * so we artificially increment it by one until we've scheduled all of
356 * the writes we intend to do.
357 */
358 ++fs->lfs_iocount;
359 return 0;
360 }
361
362 static void lfs_unmark_dirop(struct lfs *);
363
364 static void
365 lfs_unmark_dirop(struct lfs *fs)
366 {
367 struct inode *ip, *nip;
368 struct vnode *vp;
369 int doit;
370 extern int lfs_dirvcount;
371
372 simple_lock(&fs->lfs_interlock);
373 doit = !(fs->lfs_flags & LFS_UNDIROP);
374 if (doit)
375 fs->lfs_flags |= LFS_UNDIROP;
376 simple_unlock(&fs->lfs_interlock);
377 if (!doit)
378 return;
379
380 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
381 nip = TAILQ_NEXT(ip, i_lfs_dchain);
382 vp = ITOV(ip);
383
384 if (VOP_ISLOCKED(vp) &&
385 vp->v_lock.lk_lockholder != curproc->p_pid) {
386 continue;
387 }
388 if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
389 --lfs_dirvcount;
390 vp->v_flag &= ~VDIROP;
391 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
392 wakeup(&lfs_dirvcount);
393 fs->lfs_unlockvp = vp;
394 vrele(vp);
395 fs->lfs_unlockvp = NULL;
396 }
397 }
398
399 simple_lock(&fs->lfs_interlock);
400 fs->lfs_flags &= ~LFS_UNDIROP;
401 simple_unlock(&fs->lfs_interlock);
402 }
403
404 static void
405 lfs_auto_segclean(struct lfs *fs)
406 {
407 int i, error;
408
409 /*
410 * Now that we've swapped lfs_activesb, but while we still
411 * hold the segment lock, run through the segment list marking
412 * the empty ones clean.
413 * XXX - do we really need to do them all at once?
414 */
415 for (i = 0; i < fs->lfs_nseg; i++) {
416 if ((fs->lfs_suflags[0][i] &
417 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
418 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
419 (fs->lfs_suflags[1][i] &
420 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
421 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
422
423 if ((error = lfs_do_segclean(fs, i)) != 0) {
424 #ifdef DEBUG
425 printf("lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i);
426 #endif /* DEBUG */
427 }
428 }
429 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
430 fs->lfs_suflags[fs->lfs_activesb][i];
431 }
432 }
433
434 /*
435 * lfs_segunlock --
436 * Single thread the segment writer.
437 */
438 void
439 lfs_segunlock(struct lfs *fs)
440 {
441 struct segment *sp;
442 unsigned long sync, ckp;
443 struct buf *bp;
444 int do_unmark_dirop = 0;
445 extern int locked_queue_count;
446 extern long locked_queue_bytes;
447
448 sp = fs->lfs_sp;
449
450 simple_lock(&fs->lfs_interlock);
451 if (fs->lfs_seglock == 1) {
452 if ((sp->seg_flags & SEGM_PROT) == 0)
453 do_unmark_dirop = 1;
454 simple_unlock(&fs->lfs_interlock);
455 sync = sp->seg_flags & SEGM_SYNC;
456 ckp = sp->seg_flags & SEGM_CKP;
457 if (sp->bpp != sp->cbpp) {
458 /* Free allocated segment summary */
459 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
460 bp = *sp->bpp;
461 lfs_freebuf(fs, bp);
462 } else
463 printf ("unlock to 0 with no summary");
464
465 pool_put(&fs->lfs_bpppool, sp->bpp);
466 sp->bpp = NULL;
467
468 /*
469 * If we're not sync, we're done with sp, get rid of it.
470 * Otherwise, we keep a local copy around but free
471 * fs->lfs_sp so another process can use it (we have to
472 * wait but they don't have to wait for us).
473 */
474 if (!sync)
475 pool_put(&fs->lfs_segpool, sp);
476 fs->lfs_sp = NULL;
477
478 /*
479 * If the I/O count is non-zero, sleep until it reaches zero.
480 * At the moment, the user's process hangs around so we can
481 * sleep.
482 */
483 if (--fs->lfs_iocount == 0) {
484 lfs_countlocked(&locked_queue_count,
485 &locked_queue_bytes, "lfs_segunlock");
486 wakeup(&locked_queue_count);
487 }
488 if (fs->lfs_iocount <= 1)
489 wakeup(&fs->lfs_iocount);
490 /*
491 * If we're not checkpointing, we don't have to block
492 * other processes to wait for a synchronous write
493 * to complete.
494 */
495 if (!ckp) {
496 simple_lock(&fs->lfs_interlock);
497 --fs->lfs_seglock;
498 fs->lfs_lockpid = 0;
499 simple_unlock(&fs->lfs_interlock);
500 wakeup(&fs->lfs_seglock);
501 }
502 /*
503 * We let checkpoints happen asynchronously. That means
504 * that during recovery, we have to roll forward between
505 * the two segments described by the first and second
506 * superblocks to make sure that the checkpoint described
507 * by a superblock completed.
508 */
509 while (ckp && sync && fs->lfs_iocount)
510 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
511 "lfs_iocount", 0);
512 while (sync && sp->seg_iocount) {
513 (void)tsleep(&sp->seg_iocount, PRIBIO + 1,
514 "seg_iocount", 0);
515 /* printf("sleeping on iocount %x == %d\n", sp, sp->seg_iocount); */
516 }
517 if (sync)
518 pool_put(&fs->lfs_segpool, sp);
519
520 if (ckp) {
521 fs->lfs_nactive = 0;
522 /* If we *know* everything's on disk, write both sbs */
523 /* XXX should wait for this one */
524 if (sync)
525 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
526 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
527 if (!(fs->lfs_ivnode->v_mount->mnt_flag & MNT_UNMOUNT))
528 lfs_auto_segclean(fs);
529 fs->lfs_activesb = 1 - fs->lfs_activesb;
530 simple_lock(&fs->lfs_interlock);
531 --fs->lfs_seglock;
532 fs->lfs_lockpid = 0;
533 simple_unlock(&fs->lfs_interlock);
534 wakeup(&fs->lfs_seglock);
535 }
536 /* Reenable fragment size changes */
537 lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
538 if (do_unmark_dirop)
539 lfs_unmark_dirop(fs);
540 } else if (fs->lfs_seglock == 0) {
541 simple_unlock(&fs->lfs_interlock);
542 panic ("Seglock not held");
543 } else {
544 --fs->lfs_seglock;
545 simple_unlock(&fs->lfs_interlock);
546 }
547 }
548