lfs_subr.c revision 1.50 1 /* $NetBSD: lfs_subr.c,v 1.50 2005/03/08 00:18:20 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.50 2005/03/08 00:18:20 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/buf.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/proc.h>
80
81 #include <ufs/ufs/inode.h>
82 #include <ufs/lfs/lfs.h>
83 #include <ufs/lfs/lfs_extern.h>
84
85 #include <uvm/uvm.h>
86
87 /*
88 * Return buffer with the contents of block "offset" from the beginning of
89 * directory "ip". If "res" is non-zero, fill it in with a pointer to the
90 * remaining space in the directory.
91 */
92 int
93 lfs_blkatoff(void *v)
94 {
95 struct vop_blkatoff_args /* {
96 struct vnode *a_vp;
97 off_t a_offset;
98 char **a_res;
99 struct buf **a_bpp;
100 } */ *ap = v;
101 struct lfs *fs;
102 struct inode *ip;
103 struct buf *bp;
104 daddr_t lbn;
105 int bsize, error;
106
107 ip = VTOI(ap->a_vp);
108 fs = ip->i_lfs;
109 lbn = lblkno(fs, ap->a_offset);
110 bsize = blksize(fs, ip, lbn);
111
112 *ap->a_bpp = NULL;
113 if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
114 brelse(bp);
115 return (error);
116 }
117 if (ap->a_res)
118 *ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
119 *ap->a_bpp = bp;
120 return (0);
121 }
122
123 #ifdef DEBUG
124 char *lfs_res_names[LFS_NB_COUNT] = {
125 "summary",
126 "superblock",
127 "ifile block",
128 "cluster",
129 "clean",
130 };
131 #endif
132
133 int lfs_res_qty[LFS_NB_COUNT] = {
134 LFS_N_SUMMARIES,
135 LFS_N_SBLOCKS,
136 LFS_N_IBLOCKS,
137 LFS_N_CLUSTERS,
138 LFS_N_CLEAN,
139 };
140
141 void
142 lfs_setup_resblks(struct lfs *fs)
143 {
144 int i, j;
145 int maxbpp;
146
147 fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
148 M_WAITOK);
149 for (i = 0; i < LFS_N_TOTAL; i++) {
150 fs->lfs_resblk[i].inuse = 0;
151 fs->lfs_resblk[i].p = NULL;
152 }
153 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
154 LIST_INIT(fs->lfs_reshash + i);
155
156 /*
157 * These types of allocations can be larger than a page,
158 * so we can't use the pool subsystem for them.
159 */
160 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
161 fs->lfs_resblk[i].size = fs->lfs_sumsize;
162 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
163 fs->lfs_resblk[i].size = LFS_SBPAD;
164 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
165 fs->lfs_resblk[i].size = fs->lfs_bsize;
166 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
167 fs->lfs_resblk[i].size = MAXPHYS;
168 for (j = 0; j < LFS_N_CLEAN; j++, i++)
169 fs->lfs_resblk[i].size = MAXPHYS;
170
171 for (i = 0; i < LFS_N_TOTAL; i++) {
172 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
173 M_SEGMENT, M_WAITOK);
174 }
175
176 /*
177 * Initialize pools for small types (XXX is BPP small?)
178 */
179 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
180 "lfsclpl", &pool_allocator_nointr);
181 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
182 "lfssegpool", &pool_allocator_nointr);
183 maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
184 maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
185 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
186 "lfsbpppl", &pool_allocator_nointr);
187 }
188
189 void
190 lfs_free_resblks(struct lfs *fs)
191 {
192 int i;
193
194 pool_destroy(&fs->lfs_bpppool);
195 pool_destroy(&fs->lfs_segpool);
196 pool_destroy(&fs->lfs_clpool);
197
198 for (i = 0; i < LFS_N_TOTAL; i++) {
199 while (fs->lfs_resblk[i].inuse)
200 tsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0);
201 if (fs->lfs_resblk[i].p != NULL)
202 free(fs->lfs_resblk[i].p, M_SEGMENT);
203 }
204 free(fs->lfs_resblk, M_SEGMENT);
205 }
206
207 static unsigned int
208 lfs_mhash(void *vp)
209 {
210 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
211 }
212
213 /*
214 * Return memory of the given size for the given purpose, or use one of a
215 * number of spare last-resort buffers, if malloc returns NULL.
216 */
217 void *
218 lfs_malloc(struct lfs *fs, size_t size, int type)
219 {
220 struct lfs_res_blk *re;
221 void *r;
222 int i, s, start;
223 unsigned int h;
224
225 r = NULL;
226
227 /* If no mem allocated for this type, it just waits */
228 if (lfs_res_qty[type] == 0) {
229 r = malloc(size, M_SEGMENT, M_WAITOK);
230 return r;
231 }
232
233 /* Otherwise try a quick malloc, and if it works, great */
234 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
235 return r;
236 }
237
238 /*
239 * If malloc returned NULL, we are forced to use one of our
240 * reserve blocks. We have on hand at least one summary block,
241 * at least one cluster block, at least one superblock,
242 * and several indirect blocks.
243 */
244 /* skip over blocks of other types */
245 for (i = 0, start = 0; i < type; i++)
246 start += lfs_res_qty[i];
247 while (r == NULL) {
248 for (i = 0; i < lfs_res_qty[type]; i++) {
249 if (fs->lfs_resblk[start + i].inuse == 0) {
250 re = fs->lfs_resblk + start + i;
251 re->inuse = 1;
252 r = re->p;
253 KASSERT(re->size >= size);
254 h = lfs_mhash(r);
255 s = splbio();
256 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
257 splx(s);
258 return r;
259 }
260 }
261 DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n", lfs_res_names[type], lfs_res_qty[type]));
262 tsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0);
263 DLOG((DLOG_MALLOC, "done sleeping on %s\n", lfs_res_names[type]));
264 }
265 /* NOTREACHED */
266 return r;
267 }
268
269 void
270 lfs_free(struct lfs *fs, void *p, int type)
271 {
272 int s;
273 unsigned int h;
274 res_t *re;
275 #ifdef DEBUG
276 int i;
277 #endif
278
279 h = lfs_mhash(p);
280 s = splbio();
281 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
282 if (re->p == p) {
283 KASSERT(re->inuse == 1);
284 LIST_REMOVE(re, res);
285 re->inuse = 0;
286 wakeup(&fs->lfs_resblk);
287 splx(s);
288 return;
289 }
290 }
291 #ifdef DEBUG
292 for (i = 0; i < LFS_N_TOTAL; i++) {
293 if (fs->lfs_resblk[i].p == p)
294 panic("lfs_free: inconsistent reserved block");
295 }
296 #endif
297 splx(s);
298
299 /*
300 * If we didn't find it, free it.
301 */
302 free(p, M_SEGMENT);
303 }
304
305 /*
306 * lfs_seglock --
307 * Single thread the segment writer.
308 */
309 int
310 lfs_seglock(struct lfs *fs, unsigned long flags)
311 {
312 struct segment *sp;
313
314 simple_lock(&fs->lfs_interlock);
315 if (fs->lfs_seglock) {
316 if (fs->lfs_lockpid == curproc->p_pid) {
317 simple_unlock(&fs->lfs_interlock);
318 ++fs->lfs_seglock;
319 fs->lfs_sp->seg_flags |= flags;
320 return 0;
321 } else if (flags & SEGM_PAGEDAEMON) {
322 simple_unlock(&fs->lfs_interlock);
323 return EWOULDBLOCK;
324 } else while (fs->lfs_seglock)
325 (void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
326 "lfs seglock", 0, &fs->lfs_interlock);
327 }
328
329 fs->lfs_seglock = 1;
330 fs->lfs_lockpid = curproc->p_pid;
331 simple_unlock(&fs->lfs_interlock);
332 fs->lfs_cleanind = 0;
333
334 /* Drain fragment size changes out */
335 lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
336
337 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
338 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
339 sp->seg_flags = flags;
340 sp->vp = NULL;
341 sp->seg_iocount = 0;
342 (void) lfs_initseg(fs);
343
344 /*
345 * Keep a cumulative count of the outstanding I/O operations. If the
346 * disk drive catches up with us it could go to zero before we finish,
347 * so we artificially increment it by one until we've scheduled all of
348 * the writes we intend to do.
349 */
350 ++fs->lfs_iocount;
351 return 0;
352 }
353
354 static void lfs_unmark_dirop(struct lfs *);
355
356 static void
357 lfs_unmark_dirop(struct lfs *fs)
358 {
359 struct inode *ip, *nip;
360 struct vnode *vp;
361 int doit;
362
363 simple_lock(&fs->lfs_interlock);
364 doit = !(fs->lfs_flags & LFS_UNDIROP);
365 if (doit)
366 fs->lfs_flags |= LFS_UNDIROP;
367 simple_unlock(&fs->lfs_interlock);
368 if (!doit)
369 return;
370
371 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
372 nip = TAILQ_NEXT(ip, i_lfs_dchain);
373 vp = ITOV(ip);
374
375 if (VOP_ISLOCKED(vp) &&
376 vp->v_lock.lk_lockholder != curproc->p_pid) {
377 continue;
378 }
379 if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
380 --lfs_dirvcount;
381 vp->v_flag &= ~VDIROP;
382 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
383 wakeup(&lfs_dirvcount);
384 fs->lfs_unlockvp = vp;
385 vrele(vp);
386 fs->lfs_unlockvp = NULL;
387 }
388 }
389
390 simple_lock(&fs->lfs_interlock);
391 fs->lfs_flags &= ~LFS_UNDIROP;
392 simple_unlock(&fs->lfs_interlock);
393 }
394
395 static void
396 lfs_auto_segclean(struct lfs *fs)
397 {
398 int i, error, s, waited;
399
400 /*
401 * Now that we've swapped lfs_activesb, but while we still
402 * hold the segment lock, run through the segment list marking
403 * the empty ones clean.
404 * XXX - do we really need to do them all at once?
405 */
406 waited = 0;
407 for (i = 0; i < fs->lfs_nseg; i++) {
408 if ((fs->lfs_suflags[0][i] &
409 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
410 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
411 (fs->lfs_suflags[1][i] &
412 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
413 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
414
415 /* Make sure the sb is written before we clean */
416 s = splbio();
417 while (waited == 0 && fs->lfs_sbactive)
418 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
419 0);
420 splx(s);
421 waited = 1;
422
423 if ((error = lfs_do_segclean(fs, i)) != 0) {
424 DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
425 }
426 }
427 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
428 fs->lfs_suflags[fs->lfs_activesb][i];
429 }
430 }
431
432 /*
433 * lfs_segunlock --
434 * Single thread the segment writer.
435 */
436 void
437 lfs_segunlock(struct lfs *fs)
438 {
439 struct segment *sp;
440 unsigned long sync, ckp;
441 struct buf *bp;
442 int do_unmark_dirop = 0;
443
444 sp = fs->lfs_sp;
445
446 simple_lock(&fs->lfs_interlock);
447 if (fs->lfs_seglock == 1) {
448 if ((sp->seg_flags & SEGM_PROT) == 0)
449 do_unmark_dirop = 1;
450 simple_unlock(&fs->lfs_interlock);
451 sync = sp->seg_flags & SEGM_SYNC;
452 ckp = sp->seg_flags & SEGM_CKP;
453 if (sp->bpp != sp->cbpp) {
454 /* Free allocated segment summary */
455 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
456 bp = *sp->bpp;
457 lfs_freebuf(fs, bp);
458 } else
459 DLOG((DLOG_SEG, "lfs_segunlock: unlock to 0 with no summary"));
460
461 pool_put(&fs->lfs_bpppool, sp->bpp);
462 sp->bpp = NULL;
463
464 /*
465 * If we're not sync, we're done with sp, get rid of it.
466 * Otherwise, we keep a local copy around but free
467 * fs->lfs_sp so another process can use it (we have to
468 * wait but they don't have to wait for us).
469 */
470 if (!sync)
471 pool_put(&fs->lfs_segpool, sp);
472 fs->lfs_sp = NULL;
473
474 /*
475 * If the I/O count is non-zero, sleep until it reaches zero.
476 * At the moment, the user's process hangs around so we can
477 * sleep.
478 */
479 if (--fs->lfs_iocount == 0)
480 LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
481 if (fs->lfs_iocount <= 1)
482 wakeup(&fs->lfs_iocount);
483 /*
484 * If we're not checkpointing, we don't have to block
485 * other processes to wait for a synchronous write
486 * to complete.
487 */
488 if (!ckp) {
489 simple_lock(&fs->lfs_interlock);
490 --fs->lfs_seglock;
491 fs->lfs_lockpid = 0;
492 simple_unlock(&fs->lfs_interlock);
493 wakeup(&fs->lfs_seglock);
494 }
495 /*
496 * We let checkpoints happen asynchronously. That means
497 * that during recovery, we have to roll forward between
498 * the two segments described by the first and second
499 * superblocks to make sure that the checkpoint described
500 * by a superblock completed.
501 */
502 while (ckp && sync && fs->lfs_iocount)
503 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
504 "lfs_iocount", 0);
505 while (sync && sp->seg_iocount) {
506 (void)tsleep(&sp->seg_iocount, PRIBIO + 1,
507 "seg_iocount", 0);
508 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
509 }
510 if (sync)
511 pool_put(&fs->lfs_segpool, sp);
512
513 if (ckp) {
514 fs->lfs_nactive = 0;
515 /* If we *know* everything's on disk, write both sbs */
516 /* XXX should wait for this one */
517 if (sync)
518 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
519 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
520 if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
521 lfs_auto_segclean(fs);
522 /* If sync, we can clean the remainder too */
523 if (sync)
524 lfs_auto_segclean(fs);
525 }
526 fs->lfs_activesb = 1 - fs->lfs_activesb;
527 simple_lock(&fs->lfs_interlock);
528 --fs->lfs_seglock;
529 fs->lfs_lockpid = 0;
530 simple_unlock(&fs->lfs_interlock);
531 wakeup(&fs->lfs_seglock);
532 }
533 /* Reenable fragment size changes */
534 lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
535 if (do_unmark_dirop)
536 lfs_unmark_dirop(fs);
537 } else if (fs->lfs_seglock == 0) {
538 simple_unlock(&fs->lfs_interlock);
539 panic ("Seglock not held");
540 } else {
541 --fs->lfs_seglock;
542 simple_unlock(&fs->lfs_interlock);
543 }
544 }
545
546 /*
547 * drain dirops and start writer.
548 */
549 int
550 lfs_writer_enter(struct lfs *fs, const char *wmesg)
551 {
552 int error = 0;
553
554 simple_lock(&fs->lfs_interlock);
555
556 /* disallow dirops during flush */
557 fs->lfs_writer++;
558
559 while (fs->lfs_dirops > 0) {
560 ++fs->lfs_diropwait;
561 error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
562 &fs->lfs_interlock);
563 --fs->lfs_diropwait;
564 }
565
566 if (error)
567 fs->lfs_writer--;
568
569 simple_unlock(&fs->lfs_interlock);
570
571 return error;
572 }
573
574 void
575 lfs_writer_leave(struct lfs *fs)
576 {
577 boolean_t dowakeup;
578
579 simple_lock(&fs->lfs_interlock);
580 dowakeup = !(--fs->lfs_writer);
581 simple_unlock(&fs->lfs_interlock);
582 if (dowakeup)
583 wakeup(&fs->lfs_dirops);
584 }
585