lfs_subr.c revision 1.52 1 /* $NetBSD: lfs_subr.c,v 1.52 2005/04/16 17:28:37 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.52 2005/04/16 17:28:37 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/buf.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/proc.h>
80
81 #include <ufs/ufs/inode.h>
82 #include <ufs/lfs/lfs.h>
83 #include <ufs/lfs/lfs_extern.h>
84
85 #include <uvm/uvm.h>
86
87 /*
88 * Return buffer with the contents of block "offset" from the beginning of
89 * directory "ip". If "res" is non-zero, fill it in with a pointer to the
90 * remaining space in the directory.
91 */
92 int
93 lfs_blkatoff(void *v)
94 {
95 struct vop_blkatoff_args /* {
96 struct vnode *a_vp;
97 off_t a_offset;
98 char **a_res;
99 struct buf **a_bpp;
100 } */ *ap = v;
101 struct lfs *fs;
102 struct inode *ip;
103 struct buf *bp;
104 daddr_t lbn;
105 int bsize, error;
106
107 ip = VTOI(ap->a_vp);
108 fs = ip->i_lfs;
109 lbn = lblkno(fs, ap->a_offset);
110 bsize = blksize(fs, ip, lbn);
111
112 *ap->a_bpp = NULL;
113 if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
114 brelse(bp);
115 return (error);
116 }
117 if (ap->a_res)
118 *ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
119 *ap->a_bpp = bp;
120 return (0);
121 }
122
123 #ifdef DEBUG
124 char *lfs_res_names[LFS_NB_COUNT] = {
125 "summary",
126 "superblock",
127 "file block",
128 "cluster",
129 "clean",
130 "blkiov",
131 };
132 #endif
133
134 int lfs_res_qty[LFS_NB_COUNT] = {
135 LFS_N_SUMMARIES,
136 LFS_N_SBLOCKS,
137 LFS_N_IBLOCKS,
138 LFS_N_CLUSTERS,
139 LFS_N_CLEAN,
140 LFS_N_BLKIOV,
141 };
142
143 void
144 lfs_setup_resblks(struct lfs *fs)
145 {
146 int i, j;
147 int maxbpp;
148
149 ASSERT_NO_SEGLOCK(fs);
150 fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
151 M_WAITOK);
152 for (i = 0; i < LFS_N_TOTAL; i++) {
153 fs->lfs_resblk[i].inuse = 0;
154 fs->lfs_resblk[i].p = NULL;
155 }
156 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
157 LIST_INIT(fs->lfs_reshash + i);
158
159 /*
160 * These types of allocations can be larger than a page,
161 * so we can't use the pool subsystem for them.
162 */
163 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
164 fs->lfs_resblk[i].size = fs->lfs_sumsize;
165 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
166 fs->lfs_resblk[i].size = LFS_SBPAD;
167 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
168 fs->lfs_resblk[i].size = fs->lfs_bsize;
169 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
170 fs->lfs_resblk[i].size = MAXPHYS;
171 for (j = 0; j < LFS_N_CLEAN; j++, i++)
172 fs->lfs_resblk[i].size = MAXPHYS;
173 for (j = 0; j < LFS_N_BLKIOV; j++, i++)
174 fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
175
176 for (i = 0; i < LFS_N_TOTAL; i++) {
177 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
178 M_SEGMENT, M_WAITOK);
179 }
180
181 /*
182 * Initialize pools for small types (XXX is BPP small?)
183 */
184 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
185 "lfsclpl", &pool_allocator_nointr);
186 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
187 "lfssegpool", &pool_allocator_nointr);
188 maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
189 maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
190 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
191 "lfsbpppl", &pool_allocator_nointr);
192 }
193
194 void
195 lfs_free_resblks(struct lfs *fs)
196 {
197 int i;
198
199 pool_destroy(&fs->lfs_bpppool);
200 pool_destroy(&fs->lfs_segpool);
201 pool_destroy(&fs->lfs_clpool);
202
203 simple_lock(&fs->lfs_interlock);
204 for (i = 0; i < LFS_N_TOTAL; i++) {
205 while (fs->lfs_resblk[i].inuse)
206 ltsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
207 &fs->lfs_interlock);
208 if (fs->lfs_resblk[i].p != NULL)
209 free(fs->lfs_resblk[i].p, M_SEGMENT);
210 }
211 free(fs->lfs_resblk, M_SEGMENT);
212 simple_unlock(&fs->lfs_interlock);
213 }
214
215 static unsigned int
216 lfs_mhash(void *vp)
217 {
218 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
219 }
220
221 /*
222 * Return memory of the given size for the given purpose, or use one of a
223 * number of spare last-resort buffers, if malloc returns NULL.
224 */
225 void *
226 lfs_malloc(struct lfs *fs, size_t size, int type)
227 {
228 struct lfs_res_blk *re;
229 void *r;
230 int i, s, start;
231 unsigned int h;
232
233 ASSERT_MAYBE_SEGLOCK(fs);
234 r = NULL;
235
236 /* If no mem allocated for this type, it just waits */
237 if (lfs_res_qty[type] == 0) {
238 r = malloc(size, M_SEGMENT, M_WAITOK);
239 return r;
240 }
241
242 /* Otherwise try a quick malloc, and if it works, great */
243 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
244 return r;
245 }
246
247 /*
248 * If malloc returned NULL, we are forced to use one of our
249 * reserve blocks. We have on hand at least one summary block,
250 * at least one cluster block, at least one superblock,
251 * and several indirect blocks.
252 */
253
254 simple_lock(&fs->lfs_interlock);
255 /* skip over blocks of other types */
256 for (i = 0, start = 0; i < type; i++)
257 start += lfs_res_qty[i];
258 while (r == NULL) {
259 for (i = 0; i < lfs_res_qty[type]; i++) {
260 if (fs->lfs_resblk[start + i].inuse == 0) {
261 re = fs->lfs_resblk + start + i;
262 re->inuse = 1;
263 r = re->p;
264 KASSERT(re->size >= size);
265 h = lfs_mhash(r);
266 s = splbio();
267 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
268 splx(s);
269 simple_unlock(&fs->lfs_interlock);
270 return r;
271 }
272 }
273 DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
274 lfs_res_names[type], lfs_res_qty[type]));
275 ltsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
276 &fs->lfs_interlock);
277 DLOG((DLOG_MALLOC, "done sleeping on %s\n",
278 lfs_res_names[type]));
279 }
280 /* NOTREACHED */
281 simple_unlock(&fs->lfs_interlock);
282 return r;
283 }
284
285 void
286 lfs_free(struct lfs *fs, void *p, int type)
287 {
288 int s;
289 unsigned int h;
290 res_t *re;
291 #ifdef DEBUG
292 int i;
293 #endif
294
295 ASSERT_MAYBE_SEGLOCK(fs);
296 h = lfs_mhash(p);
297 simple_lock(&fs->lfs_interlock);
298 s = splbio();
299 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
300 if (re->p == p) {
301 KASSERT(re->inuse == 1);
302 LIST_REMOVE(re, res);
303 re->inuse = 0;
304 wakeup(&fs->lfs_resblk);
305 splx(s);
306 simple_unlock(&fs->lfs_interlock);
307 return;
308 }
309 }
310 #ifdef DEBUG
311 for (i = 0; i < LFS_N_TOTAL; i++) {
312 if (fs->lfs_resblk[i].p == p)
313 panic("lfs_free: inconsistent reserved block");
314 }
315 #endif
316 splx(s);
317 simple_unlock(&fs->lfs_interlock);
318
319 /*
320 * If we didn't find it, free it.
321 */
322 free(p, M_SEGMENT);
323 }
324
325 /*
326 * lfs_seglock --
327 * Single thread the segment writer.
328 */
329 int
330 lfs_seglock(struct lfs *fs, unsigned long flags)
331 {
332 struct segment *sp;
333
334 simple_lock(&fs->lfs_interlock);
335 if (fs->lfs_seglock) {
336 if (fs->lfs_lockpid == curproc->p_pid) {
337 simple_unlock(&fs->lfs_interlock);
338 ++fs->lfs_seglock;
339 fs->lfs_sp->seg_flags |= flags;
340 return 0;
341 } else if (flags & SEGM_PAGEDAEMON) {
342 simple_unlock(&fs->lfs_interlock);
343 return EWOULDBLOCK;
344 } else {
345 while (fs->lfs_seglock) {
346 (void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
347 "lfs seglock", 0, &fs->lfs_interlock);
348 }
349 }
350 }
351
352 fs->lfs_seglock = 1;
353 fs->lfs_lockpid = curproc->p_pid;
354 simple_unlock(&fs->lfs_interlock);
355 fs->lfs_cleanind = 0;
356
357 #ifdef DEBUG
358 LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
359 #endif
360 /* Drain fragment size changes out */
361 lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
362
363 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
364 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
365 sp->seg_flags = flags;
366 sp->vp = NULL;
367 sp->seg_iocount = 0;
368 (void) lfs_initseg(fs);
369
370 /*
371 * Keep a cumulative count of the outstanding I/O operations. If the
372 * disk drive catches up with us it could go to zero before we finish,
373 * so we artificially increment it by one until we've scheduled all of
374 * the writes we intend to do.
375 */
376 simple_lock(&fs->lfs_interlock);
377 ++fs->lfs_iocount;
378 simple_unlock(&fs->lfs_interlock);
379 return 0;
380 }
381
382 static void lfs_unmark_dirop(struct lfs *);
383
384 static void
385 lfs_unmark_dirop(struct lfs *fs)
386 {
387 struct inode *ip, *nip;
388 struct vnode *vp;
389 int doit;
390
391 ASSERT_NO_SEGLOCK(fs);
392 simple_lock(&fs->lfs_interlock);
393 doit = !(fs->lfs_flags & LFS_UNDIROP);
394 if (doit)
395 fs->lfs_flags |= LFS_UNDIROP;
396 if (!doit) {
397 simple_unlock(&fs->lfs_interlock);
398 return;
399 }
400
401 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
402 nip = TAILQ_NEXT(ip, i_lfs_dchain);
403 simple_unlock(&fs->lfs_interlock);
404 vp = ITOV(ip);
405
406 simple_lock(&vp->v_interlock);
407 if (VOP_ISLOCKED(vp) &&
408 vp->v_lock.lk_lockholder != curproc->p_pid) {
409 simple_lock(&fs->lfs_interlock);
410 simple_unlock(&vp->v_interlock);
411 continue;
412 }
413 if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
414 simple_lock(&fs->lfs_interlock);
415 simple_lock(&lfs_subsys_lock);
416 --lfs_dirvcount;
417 simple_unlock(&lfs_subsys_lock);
418 vp->v_flag &= ~VDIROP;
419 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
420 simple_unlock(&fs->lfs_interlock);
421 wakeup(&lfs_dirvcount);
422 simple_unlock(&vp->v_interlock);
423 simple_lock(&fs->lfs_interlock);
424 fs->lfs_unlockvp = vp;
425 simple_unlock(&fs->lfs_interlock);
426 vrele(vp);
427 simple_lock(&fs->lfs_interlock);
428 fs->lfs_unlockvp = NULL;
429 simple_unlock(&fs->lfs_interlock);
430 } else
431 simple_unlock(&vp->v_interlock);
432 simple_lock(&fs->lfs_interlock);
433 }
434
435 fs->lfs_flags &= ~LFS_UNDIROP;
436 simple_unlock(&fs->lfs_interlock);
437 wakeup(&fs->lfs_flags);
438 }
439
440 static void
441 lfs_auto_segclean(struct lfs *fs)
442 {
443 int i, error, s, waited;
444
445 ASSERT_SEGLOCK(fs);
446 /*
447 * Now that we've swapped lfs_activesb, but while we still
448 * hold the segment lock, run through the segment list marking
449 * the empty ones clean.
450 * XXX - do we really need to do them all at once?
451 */
452 waited = 0;
453 for (i = 0; i < fs->lfs_nseg; i++) {
454 if ((fs->lfs_suflags[0][i] &
455 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
456 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
457 (fs->lfs_suflags[1][i] &
458 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
459 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
460
461 /* Make sure the sb is written before we clean */
462 simple_lock(&fs->lfs_interlock);
463 s = splbio();
464 while (waited == 0 && fs->lfs_sbactive)
465 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
466 0, &fs->lfs_interlock);
467 splx(s);
468 simple_unlock(&fs->lfs_interlock);
469 waited = 1;
470
471 if ((error = lfs_do_segclean(fs, i)) != 0) {
472 DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
473 }
474 }
475 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
476 fs->lfs_suflags[fs->lfs_activesb][i];
477 }
478 }
479
480 /*
481 * lfs_segunlock --
482 * Single thread the segment writer.
483 */
484 void
485 lfs_segunlock(struct lfs *fs)
486 {
487 struct segment *sp;
488 unsigned long sync, ckp;
489 struct buf *bp;
490 int do_unmark_dirop = 0;
491
492 sp = fs->lfs_sp;
493
494 simple_lock(&fs->lfs_interlock);
495 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
496 if (fs->lfs_seglock == 1) {
497 if ((sp->seg_flags & SEGM_PROT) == 0)
498 do_unmark_dirop = 1;
499 simple_unlock(&fs->lfs_interlock);
500 sync = sp->seg_flags & SEGM_SYNC;
501 ckp = sp->seg_flags & SEGM_CKP;
502 if (sp->bpp != sp->cbpp) {
503 /* Free allocated segment summary */
504 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
505 bp = *sp->bpp;
506 lfs_freebuf(fs, bp);
507 } else
508 DLOG((DLOG_SEG, "lfs_segunlock: unlock to 0 with no summary"));
509
510 pool_put(&fs->lfs_bpppool, sp->bpp);
511 sp->bpp = NULL;
512
513 /*
514 * If we're not sync, we're done with sp, get rid of it.
515 * Otherwise, we keep a local copy around but free
516 * fs->lfs_sp so another process can use it (we have to
517 * wait but they don't have to wait for us).
518 */
519 if (!sync)
520 pool_put(&fs->lfs_segpool, sp);
521 fs->lfs_sp = NULL;
522
523 /*
524 * If the I/O count is non-zero, sleep until it reaches zero.
525 * At the moment, the user's process hangs around so we can
526 * sleep.
527 */
528 simple_lock(&fs->lfs_interlock);
529 if (--fs->lfs_iocount == 0)
530 LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
531 if (fs->lfs_iocount <= 1)
532 wakeup(&fs->lfs_iocount);
533 simple_unlock(&fs->lfs_interlock);
534 /*
535 * If we're not checkpointing, we don't have to block
536 * other processes to wait for a synchronous write
537 * to complete.
538 */
539 if (!ckp) {
540 #ifdef DEBUG
541 LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
542 #endif
543 simple_lock(&fs->lfs_interlock);
544 --fs->lfs_seglock;
545 fs->lfs_lockpid = 0;
546 simple_unlock(&fs->lfs_interlock);
547 wakeup(&fs->lfs_seglock);
548 }
549 /*
550 * We let checkpoints happen asynchronously. That means
551 * that during recovery, we have to roll forward between
552 * the two segments described by the first and second
553 * superblocks to make sure that the checkpoint described
554 * by a superblock completed.
555 */
556 simple_lock(&fs->lfs_interlock);
557 while (ckp && sync && fs->lfs_iocount)
558 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
559 "lfs_iocount", 0, &fs->lfs_interlock);
560 while (sync && sp->seg_iocount) {
561 (void)ltsleep(&sp->seg_iocount, PRIBIO + 1,
562 "seg_iocount", 0, &fs->lfs_interlock);
563 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
564 }
565 simple_unlock(&fs->lfs_interlock);
566 if (sync)
567 pool_put(&fs->lfs_segpool, sp);
568
569 if (ckp) {
570 fs->lfs_nactive = 0;
571 /* If we *know* everything's on disk, write both sbs */
572 /* XXX should wait for this one */
573 if (sync)
574 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
575 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
576 if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
577 lfs_auto_segclean(fs);
578 /* If sync, we can clean the remainder too */
579 if (sync)
580 lfs_auto_segclean(fs);
581 }
582 fs->lfs_activesb = 1 - fs->lfs_activesb;
583 #ifdef DEBUG
584 LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
585 #endif
586 simple_lock(&fs->lfs_interlock);
587 --fs->lfs_seglock;
588 fs->lfs_lockpid = 0;
589 simple_unlock(&fs->lfs_interlock);
590 wakeup(&fs->lfs_seglock);
591 }
592 /* Reenable fragment size changes */
593 lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
594 if (do_unmark_dirop)
595 lfs_unmark_dirop(fs);
596 } else if (fs->lfs_seglock == 0) {
597 simple_unlock(&fs->lfs_interlock);
598 panic ("Seglock not held");
599 } else {
600 --fs->lfs_seglock;
601 simple_unlock(&fs->lfs_interlock);
602 }
603 }
604
605 /*
606 * drain dirops and start writer.
607 */
608 int
609 lfs_writer_enter(struct lfs *fs, const char *wmesg)
610 {
611 int error = 0;
612
613 ASSERT_MAYBE_SEGLOCK(fs);
614 simple_lock(&fs->lfs_interlock);
615
616 /* disallow dirops during flush */
617 fs->lfs_writer++;
618
619 while (fs->lfs_dirops > 0) {
620 ++fs->lfs_diropwait;
621 error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
622 &fs->lfs_interlock);
623 --fs->lfs_diropwait;
624 }
625
626 if (error)
627 fs->lfs_writer--;
628
629 simple_unlock(&fs->lfs_interlock);
630
631 return error;
632 }
633
634 void
635 lfs_writer_leave(struct lfs *fs)
636 {
637 boolean_t dowakeup;
638
639 ASSERT_MAYBE_SEGLOCK(fs);
640 simple_lock(&fs->lfs_interlock);
641 dowakeup = !(--fs->lfs_writer);
642 simple_unlock(&fs->lfs_interlock);
643 if (dowakeup)
644 wakeup(&fs->lfs_dirops);
645 }
646