lfs_subr.c revision 1.58 1 /* $NetBSD: lfs_subr.c,v 1.58 2006/04/07 23:44:14 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1991, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.58 2006/04/07 23:44:14 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/buf.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/proc.h>
80
81 #include <ufs/ufs/inode.h>
82 #include <ufs/lfs/lfs.h>
83 #include <ufs/lfs/lfs_extern.h>
84
85 #include <uvm/uvm.h>
86
87 #ifdef DEBUG
88 const char *lfs_res_names[LFS_NB_COUNT] = {
89 "summary",
90 "superblock",
91 "file block",
92 "cluster",
93 "clean",
94 "blkiov",
95 };
96 #endif
97
98 int lfs_res_qty[LFS_NB_COUNT] = {
99 LFS_N_SUMMARIES,
100 LFS_N_SBLOCKS,
101 LFS_N_IBLOCKS,
102 LFS_N_CLUSTERS,
103 LFS_N_CLEAN,
104 LFS_N_BLKIOV,
105 };
106
107 void
108 lfs_setup_resblks(struct lfs *fs)
109 {
110 int i, j;
111 int maxbpp;
112
113 ASSERT_NO_SEGLOCK(fs);
114 fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
115 M_WAITOK);
116 for (i = 0; i < LFS_N_TOTAL; i++) {
117 fs->lfs_resblk[i].inuse = 0;
118 fs->lfs_resblk[i].p = NULL;
119 }
120 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
121 LIST_INIT(fs->lfs_reshash + i);
122
123 /*
124 * These types of allocations can be larger than a page,
125 * so we can't use the pool subsystem for them.
126 */
127 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
128 fs->lfs_resblk[i].size = fs->lfs_sumsize;
129 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
130 fs->lfs_resblk[i].size = LFS_SBPAD;
131 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
132 fs->lfs_resblk[i].size = fs->lfs_bsize;
133 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
134 fs->lfs_resblk[i].size = MAXPHYS;
135 for (j = 0; j < LFS_N_CLEAN; j++, i++)
136 fs->lfs_resblk[i].size = MAXPHYS;
137 for (j = 0; j < LFS_N_BLKIOV; j++, i++)
138 fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
139
140 for (i = 0; i < LFS_N_TOTAL; i++) {
141 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
142 M_SEGMENT, M_WAITOK);
143 }
144
145 /*
146 * Initialize pools for small types (XXX is BPP small?)
147 */
148 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
149 "lfsclpl", &pool_allocator_nointr);
150 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
151 "lfssegpool", &pool_allocator_nointr);
152 maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
153 maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
154 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
155 "lfsbpppl", &pool_allocator_nointr);
156 }
157
158 void
159 lfs_free_resblks(struct lfs *fs)
160 {
161 int i;
162
163 pool_destroy(&fs->lfs_bpppool);
164 pool_destroy(&fs->lfs_segpool);
165 pool_destroy(&fs->lfs_clpool);
166
167 simple_lock(&fs->lfs_interlock);
168 for (i = 0; i < LFS_N_TOTAL; i++) {
169 while (fs->lfs_resblk[i].inuse)
170 ltsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
171 &fs->lfs_interlock);
172 if (fs->lfs_resblk[i].p != NULL)
173 free(fs->lfs_resblk[i].p, M_SEGMENT);
174 }
175 free(fs->lfs_resblk, M_SEGMENT);
176 simple_unlock(&fs->lfs_interlock);
177 }
178
179 static unsigned int
180 lfs_mhash(void *vp)
181 {
182 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
183 }
184
185 /*
186 * Return memory of the given size for the given purpose, or use one of a
187 * number of spare last-resort buffers, if malloc returns NULL.
188 */
189 void *
190 lfs_malloc(struct lfs *fs, size_t size, int type)
191 {
192 struct lfs_res_blk *re;
193 void *r;
194 int i, s, start;
195 unsigned int h;
196
197 ASSERT_MAYBE_SEGLOCK(fs);
198 r = NULL;
199
200 /* If no mem allocated for this type, it just waits */
201 if (lfs_res_qty[type] == 0) {
202 r = malloc(size, M_SEGMENT, M_WAITOK);
203 return r;
204 }
205
206 /* Otherwise try a quick malloc, and if it works, great */
207 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
208 return r;
209 }
210
211 /*
212 * If malloc returned NULL, we are forced to use one of our
213 * reserve blocks. We have on hand at least one summary block,
214 * at least one cluster block, at least one superblock,
215 * and several indirect blocks.
216 */
217
218 simple_lock(&fs->lfs_interlock);
219 /* skip over blocks of other types */
220 for (i = 0, start = 0; i < type; i++)
221 start += lfs_res_qty[i];
222 while (r == NULL) {
223 for (i = 0; i < lfs_res_qty[type]; i++) {
224 if (fs->lfs_resblk[start + i].inuse == 0) {
225 re = fs->lfs_resblk + start + i;
226 re->inuse = 1;
227 r = re->p;
228 KASSERT(re->size >= size);
229 h = lfs_mhash(r);
230 s = splbio();
231 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
232 splx(s);
233 simple_unlock(&fs->lfs_interlock);
234 return r;
235 }
236 }
237 DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
238 lfs_res_names[type], lfs_res_qty[type]));
239 ltsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
240 &fs->lfs_interlock);
241 DLOG((DLOG_MALLOC, "done sleeping on %s\n",
242 lfs_res_names[type]));
243 }
244 /* NOTREACHED */
245 simple_unlock(&fs->lfs_interlock);
246 return r;
247 }
248
249 void
250 lfs_free(struct lfs *fs, void *p, int type)
251 {
252 int s;
253 unsigned int h;
254 res_t *re;
255 #ifdef DEBUG
256 int i;
257 #endif
258
259 ASSERT_MAYBE_SEGLOCK(fs);
260 h = lfs_mhash(p);
261 simple_lock(&fs->lfs_interlock);
262 s = splbio();
263 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
264 if (re->p == p) {
265 KASSERT(re->inuse == 1);
266 LIST_REMOVE(re, res);
267 re->inuse = 0;
268 wakeup(&fs->lfs_resblk);
269 splx(s);
270 simple_unlock(&fs->lfs_interlock);
271 return;
272 }
273 }
274 #ifdef DEBUG
275 for (i = 0; i < LFS_N_TOTAL; i++) {
276 if (fs->lfs_resblk[i].p == p)
277 panic("lfs_free: inconsistent reserved block");
278 }
279 #endif
280 splx(s);
281 simple_unlock(&fs->lfs_interlock);
282
283 /*
284 * If we didn't find it, free it.
285 */
286 free(p, M_SEGMENT);
287 }
288
289 /*
290 * lfs_seglock --
291 * Single thread the segment writer.
292 */
293 int
294 lfs_seglock(struct lfs *fs, unsigned long flags)
295 {
296 struct segment *sp;
297
298 simple_lock(&fs->lfs_interlock);
299 if (fs->lfs_seglock) {
300 if (fs->lfs_lockpid == curproc->p_pid &&
301 fs->lfs_locklwp == curlwp->l_lid) {
302 simple_unlock(&fs->lfs_interlock);
303 ++fs->lfs_seglock;
304 fs->lfs_sp->seg_flags |= flags;
305 return 0;
306 } else if (flags & SEGM_PAGEDAEMON) {
307 simple_unlock(&fs->lfs_interlock);
308 return EWOULDBLOCK;
309 } else {
310 while (fs->lfs_seglock) {
311 (void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
312 "lfs seglock", 0, &fs->lfs_interlock);
313 }
314 }
315 }
316
317 fs->lfs_seglock = 1;
318 fs->lfs_lockpid = curproc->p_pid;
319 fs->lfs_locklwp = curlwp->l_lid;
320 simple_unlock(&fs->lfs_interlock);
321 fs->lfs_cleanind = 0;
322
323 #ifdef DEBUG
324 LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
325 #endif
326 /* Drain fragment size changes out */
327 lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
328
329 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
330 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
331 sp->seg_flags = flags;
332 sp->vp = NULL;
333 sp->seg_iocount = 0;
334 (void) lfs_initseg(fs);
335
336 /*
337 * Keep a cumulative count of the outstanding I/O operations. If the
338 * disk drive catches up with us it could go to zero before we finish,
339 * so we artificially increment it by one until we've scheduled all of
340 * the writes we intend to do.
341 */
342 simple_lock(&fs->lfs_interlock);
343 ++fs->lfs_iocount;
344 simple_unlock(&fs->lfs_interlock);
345 return 0;
346 }
347
348 static void lfs_unmark_dirop(struct lfs *);
349
350 static void
351 lfs_unmark_dirop(struct lfs *fs)
352 {
353 struct inode *ip, *nip;
354 struct vnode *vp;
355 int doit;
356
357 ASSERT_NO_SEGLOCK(fs);
358 simple_lock(&fs->lfs_interlock);
359 doit = !(fs->lfs_flags & LFS_UNDIROP);
360 if (doit)
361 fs->lfs_flags |= LFS_UNDIROP;
362 if (!doit) {
363 simple_unlock(&fs->lfs_interlock);
364 return;
365 }
366
367 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
368 nip = TAILQ_NEXT(ip, i_lfs_dchain);
369 simple_unlock(&fs->lfs_interlock);
370 vp = ITOV(ip);
371
372 simple_lock(&vp->v_interlock);
373 if (VOP_ISLOCKED(vp) &&
374 vp->v_lock.lk_lockholder != curproc->p_pid) {
375 simple_lock(&fs->lfs_interlock);
376 simple_unlock(&vp->v_interlock);
377 continue;
378 }
379 if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
380 simple_lock(&fs->lfs_interlock);
381 simple_lock(&lfs_subsys_lock);
382 --lfs_dirvcount;
383 simple_unlock(&lfs_subsys_lock);
384 vp->v_flag &= ~VDIROP;
385 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
386 simple_unlock(&fs->lfs_interlock);
387 wakeup(&lfs_dirvcount);
388 simple_unlock(&vp->v_interlock);
389 simple_lock(&fs->lfs_interlock);
390 fs->lfs_unlockvp = vp;
391 simple_unlock(&fs->lfs_interlock);
392 vrele(vp);
393 simple_lock(&fs->lfs_interlock);
394 fs->lfs_unlockvp = NULL;
395 simple_unlock(&fs->lfs_interlock);
396 } else
397 simple_unlock(&vp->v_interlock);
398 simple_lock(&fs->lfs_interlock);
399 }
400
401 fs->lfs_flags &= ~LFS_UNDIROP;
402 simple_unlock(&fs->lfs_interlock);
403 wakeup(&fs->lfs_flags);
404 }
405
406 static void
407 lfs_auto_segclean(struct lfs *fs)
408 {
409 int i, error, s, waited;
410
411 ASSERT_SEGLOCK(fs);
412 /*
413 * Now that we've swapped lfs_activesb, but while we still
414 * hold the segment lock, run through the segment list marking
415 * the empty ones clean.
416 * XXX - do we really need to do them all at once?
417 */
418 waited = 0;
419 for (i = 0; i < fs->lfs_nseg; i++) {
420 if ((fs->lfs_suflags[0][i] &
421 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
422 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
423 (fs->lfs_suflags[1][i] &
424 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
425 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
426
427 /* Make sure the sb is written before we clean */
428 simple_lock(&fs->lfs_interlock);
429 s = splbio();
430 while (waited == 0 && fs->lfs_sbactive)
431 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
432 0, &fs->lfs_interlock);
433 splx(s);
434 simple_unlock(&fs->lfs_interlock);
435 waited = 1;
436
437 if ((error = lfs_do_segclean(fs, i)) != 0) {
438 DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
439 }
440 }
441 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
442 fs->lfs_suflags[fs->lfs_activesb][i];
443 }
444 }
445
446 /*
447 * lfs_segunlock --
448 * Single thread the segment writer.
449 */
450 void
451 lfs_segunlock(struct lfs *fs)
452 {
453 struct segment *sp;
454 unsigned long sync, ckp;
455 struct buf *bp;
456 int do_unmark_dirop = 0;
457
458 sp = fs->lfs_sp;
459
460 simple_lock(&fs->lfs_interlock);
461 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
462 if (fs->lfs_seglock == 1) {
463 if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
464 LFS_STARVED_FOR_SEGS(fs) == 0)
465 do_unmark_dirop = 1;
466 simple_unlock(&fs->lfs_interlock);
467 sync = sp->seg_flags & SEGM_SYNC;
468 ckp = sp->seg_flags & SEGM_CKP;
469
470 /* We should have a segment summary, and nothing else */
471 KASSERT(sp->cbpp == sp->bpp + 1);
472
473 /* Free allocated segment summary */
474 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
475 bp = *sp->bpp;
476 lfs_freebuf(fs, bp);
477
478 pool_put(&fs->lfs_bpppool, sp->bpp);
479 sp->bpp = NULL;
480
481 /*
482 * If we're not sync, we're done with sp, get rid of it.
483 * Otherwise, we keep a local copy around but free
484 * fs->lfs_sp so another process can use it (we have to
485 * wait but they don't have to wait for us).
486 */
487 if (!sync)
488 pool_put(&fs->lfs_segpool, sp);
489 fs->lfs_sp = NULL;
490
491 /*
492 * If the I/O count is non-zero, sleep until it reaches zero.
493 * At the moment, the user's process hangs around so we can
494 * sleep.
495 */
496 simple_lock(&fs->lfs_interlock);
497 if (--fs->lfs_iocount == 0)
498 LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
499 if (fs->lfs_iocount <= 1)
500 wakeup(&fs->lfs_iocount);
501 simple_unlock(&fs->lfs_interlock);
502 /*
503 * If we're not checkpointing, we don't have to block
504 * other processes to wait for a synchronous write
505 * to complete.
506 */
507 if (!ckp) {
508 #ifdef DEBUG
509 LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
510 #endif
511 simple_lock(&fs->lfs_interlock);
512 --fs->lfs_seglock;
513 fs->lfs_lockpid = 0;
514 fs->lfs_locklwp = 0;
515 simple_unlock(&fs->lfs_interlock);
516 wakeup(&fs->lfs_seglock);
517 }
518 /*
519 * We let checkpoints happen asynchronously. That means
520 * that during recovery, we have to roll forward between
521 * the two segments described by the first and second
522 * superblocks to make sure that the checkpoint described
523 * by a superblock completed.
524 */
525 simple_lock(&fs->lfs_interlock);
526 while (ckp && sync && fs->lfs_iocount)
527 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
528 "lfs_iocount", 0, &fs->lfs_interlock);
529 while (sync && sp->seg_iocount) {
530 (void)ltsleep(&sp->seg_iocount, PRIBIO + 1,
531 "seg_iocount", 0, &fs->lfs_interlock);
532 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
533 }
534 simple_unlock(&fs->lfs_interlock);
535 if (sync)
536 pool_put(&fs->lfs_segpool, sp);
537
538 if (ckp) {
539 fs->lfs_nactive = 0;
540 /* If we *know* everything's on disk, write both sbs */
541 /* XXX should wait for this one */
542 if (sync)
543 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
544 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
545 if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
546 lfs_auto_segclean(fs);
547 /* If sync, we can clean the remainder too */
548 if (sync)
549 lfs_auto_segclean(fs);
550 }
551 fs->lfs_activesb = 1 - fs->lfs_activesb;
552 #ifdef DEBUG
553 LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
554 #endif
555 simple_lock(&fs->lfs_interlock);
556 --fs->lfs_seglock;
557 fs->lfs_lockpid = 0;
558 fs->lfs_locklwp = 0;
559 simple_unlock(&fs->lfs_interlock);
560 wakeup(&fs->lfs_seglock);
561 }
562 /* Reenable fragment size changes */
563 lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
564 if (do_unmark_dirop)
565 lfs_unmark_dirop(fs);
566 } else if (fs->lfs_seglock == 0) {
567 simple_unlock(&fs->lfs_interlock);
568 panic ("Seglock not held");
569 } else {
570 --fs->lfs_seglock;
571 simple_unlock(&fs->lfs_interlock);
572 }
573 }
574
575 /*
576 * drain dirops and start writer.
577 */
578 int
579 lfs_writer_enter(struct lfs *fs, const char *wmesg)
580 {
581 int error = 0;
582
583 ASSERT_MAYBE_SEGLOCK(fs);
584 simple_lock(&fs->lfs_interlock);
585
586 /* disallow dirops during flush */
587 fs->lfs_writer++;
588
589 while (fs->lfs_dirops > 0) {
590 ++fs->lfs_diropwait;
591 error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
592 &fs->lfs_interlock);
593 --fs->lfs_diropwait;
594 }
595
596 if (error)
597 fs->lfs_writer--;
598
599 simple_unlock(&fs->lfs_interlock);
600
601 return error;
602 }
603
604 void
605 lfs_writer_leave(struct lfs *fs)
606 {
607 boolean_t dowakeup;
608
609 ASSERT_MAYBE_SEGLOCK(fs);
610 simple_lock(&fs->lfs_interlock);
611 dowakeup = !(--fs->lfs_writer);
612 simple_unlock(&fs->lfs_interlock);
613 if (dowakeup)
614 wakeup(&fs->lfs_dirops);
615 }
616
617 /*
618 * Unlock, wait for the cleaner, then relock to where we were before.
619 * To be used only at a fairly high level, to address a paucity of free
620 * segments propagated back from lfs_gop_write().
621 */
622 void
623 lfs_segunlock_relock(struct lfs *fs)
624 {
625 int n = fs->lfs_seglock;
626 u_int16_t seg_flags;
627
628 if (n == 0)
629 return;
630
631 /* Write anything we've already gathered to disk */
632 lfs_writeseg(fs, fs->lfs_sp);
633
634 /* Save segment flags for later */
635 seg_flags = fs->lfs_sp->seg_flags;
636
637 fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
638 while(fs->lfs_seglock)
639 lfs_segunlock(fs);
640
641 /* Wait for the cleaner */
642 wakeup(&lfs_allclean_wakeup);
643 wakeup(&fs->lfs_nextseg);
644 simple_lock(&fs->lfs_interlock);
645 while (LFS_STARVED_FOR_SEGS(fs))
646 ltsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
647 &fs->lfs_interlock);
648 simple_unlock(&fs->lfs_interlock);
649
650 /* Put the segment lock back the way it was. */
651 while(n--)
652 lfs_seglock(fs, seg_flags);
653
654 return;
655 }
656