Home | History | Annotate | Line # | Download | only in lfs
lfs_subr.c revision 1.65
      1 /*	$NetBSD: lfs_subr.c,v 1.65 2006/11/16 01:33:53 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1991, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.65 2006/11/16 01:33:53 christos Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/vnode.h>
     76 #include <sys/buf.h>
     77 #include <sys/mount.h>
     78 #include <sys/malloc.h>
     79 #include <sys/proc.h>
     80 #include <sys/kauth.h>
     81 
     82 #include <ufs/ufs/inode.h>
     83 #include <ufs/lfs/lfs.h>
     84 #include <ufs/lfs/lfs_extern.h>
     85 
     86 #include <uvm/uvm.h>
     87 
     88 #ifdef DEBUG
     89 const char *lfs_res_names[LFS_NB_COUNT] = {
     90 	"summary",
     91 	"superblock",
     92 	"file block",
     93 	"cluster",
     94 	"clean",
     95 	"blkiov",
     96 };
     97 #endif
     98 
     99 int lfs_res_qty[LFS_NB_COUNT] = {
    100 	LFS_N_SUMMARIES,
    101 	LFS_N_SBLOCKS,
    102 	LFS_N_IBLOCKS,
    103 	LFS_N_CLUSTERS,
    104 	LFS_N_CLEAN,
    105 	LFS_N_BLKIOV,
    106 };
    107 
    108 void
    109 lfs_setup_resblks(struct lfs *fs)
    110 {
    111 	int i, j;
    112 	int maxbpp;
    113 
    114 	ASSERT_NO_SEGLOCK(fs);
    115 	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
    116 					  M_WAITOK);
    117 	for (i = 0; i < LFS_N_TOTAL; i++) {
    118 		fs->lfs_resblk[i].inuse = 0;
    119 		fs->lfs_resblk[i].p = NULL;
    120 	}
    121 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
    122 		LIST_INIT(fs->lfs_reshash + i);
    123 
    124 	/*
    125 	 * These types of allocations can be larger than a page,
    126 	 * so we can't use the pool subsystem for them.
    127 	 */
    128 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
    129 		fs->lfs_resblk[i].size = fs->lfs_sumsize;
    130 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
    131 		fs->lfs_resblk[i].size = LFS_SBPAD;
    132 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
    133 		fs->lfs_resblk[i].size = fs->lfs_bsize;
    134 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
    135 		fs->lfs_resblk[i].size = MAXPHYS;
    136 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
    137 		fs->lfs_resblk[i].size = MAXPHYS;
    138 	for (j = 0; j < LFS_N_BLKIOV; j++, i++)
    139 		fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
    140 
    141 	for (i = 0; i < LFS_N_TOTAL; i++) {
    142 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
    143 					     M_SEGMENT, M_WAITOK);
    144 	}
    145 
    146 	/*
    147 	 * Initialize pools for small types (XXX is BPP small?)
    148 	 */
    149 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
    150 		"lfsclpl", &pool_allocator_nointr);
    151 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
    152 		"lfssegpool", &pool_allocator_nointr);
    153 	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
    154 	maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
    155 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
    156 		"lfsbpppl", &pool_allocator_nointr);
    157 }
    158 
    159 void
    160 lfs_free_resblks(struct lfs *fs)
    161 {
    162 	int i;
    163 
    164 	pool_destroy(&fs->lfs_bpppool);
    165 	pool_destroy(&fs->lfs_segpool);
    166 	pool_destroy(&fs->lfs_clpool);
    167 
    168 	simple_lock(&fs->lfs_interlock);
    169 	for (i = 0; i < LFS_N_TOTAL; i++) {
    170 		while (fs->lfs_resblk[i].inuse)
    171 			ltsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
    172 				&fs->lfs_interlock);
    173 		if (fs->lfs_resblk[i].p != NULL)
    174 			free(fs->lfs_resblk[i].p, M_SEGMENT);
    175 	}
    176 	free(fs->lfs_resblk, M_SEGMENT);
    177 	simple_unlock(&fs->lfs_interlock);
    178 }
    179 
    180 static unsigned int
    181 lfs_mhash(void *vp)
    182 {
    183 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
    184 }
    185 
    186 /*
    187  * Return memory of the given size for the given purpose, or use one of a
    188  * number of spare last-resort buffers, if malloc returns NULL.
    189  */
    190 void *
    191 lfs_malloc(struct lfs *fs, size_t size, int type)
    192 {
    193 	struct lfs_res_blk *re;
    194 	void *r;
    195 	int i, s, start;
    196 	unsigned int h;
    197 
    198 	ASSERT_MAYBE_SEGLOCK(fs);
    199 	r = NULL;
    200 
    201 	/* If no mem allocated for this type, it just waits */
    202 	if (lfs_res_qty[type] == 0) {
    203 		r = malloc(size, M_SEGMENT, M_WAITOK);
    204 		return r;
    205 	}
    206 
    207 	/* Otherwise try a quick malloc, and if it works, great */
    208 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
    209 		return r;
    210 	}
    211 
    212 	/*
    213 	 * If malloc returned NULL, we are forced to use one of our
    214 	 * reserve blocks.  We have on hand at least one summary block,
    215 	 * at least one cluster block, at least one superblock,
    216 	 * and several indirect blocks.
    217 	 */
    218 
    219 	simple_lock(&fs->lfs_interlock);
    220 	/* skip over blocks of other types */
    221 	for (i = 0, start = 0; i < type; i++)
    222 		start += lfs_res_qty[i];
    223 	while (r == NULL) {
    224 		for (i = 0; i < lfs_res_qty[type]; i++) {
    225 			if (fs->lfs_resblk[start + i].inuse == 0) {
    226 				re = fs->lfs_resblk + start + i;
    227 				re->inuse = 1;
    228 				r = re->p;
    229 				KASSERT(re->size >= size);
    230 				h = lfs_mhash(r);
    231 				s = splbio();
    232 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
    233 				splx(s);
    234 				simple_unlock(&fs->lfs_interlock);
    235 				return r;
    236 			}
    237 		}
    238 		DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
    239 		      lfs_res_names[type], lfs_res_qty[type]));
    240 		ltsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
    241 			&fs->lfs_interlock);
    242 		DLOG((DLOG_MALLOC, "done sleeping on %s\n",
    243 		      lfs_res_names[type]));
    244 	}
    245 	/* NOTREACHED */
    246 	simple_unlock(&fs->lfs_interlock);
    247 	return r;
    248 }
    249 
    250 void
    251 lfs_free(struct lfs *fs, void *p, int type)
    252 {
    253 	int s;
    254 	unsigned int h;
    255 	res_t *re;
    256 #ifdef DEBUG
    257 	int i;
    258 #endif
    259 
    260 	ASSERT_MAYBE_SEGLOCK(fs);
    261 	h = lfs_mhash(p);
    262 	simple_lock(&fs->lfs_interlock);
    263 	s = splbio();
    264 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
    265 		if (re->p == p) {
    266 			KASSERT(re->inuse == 1);
    267 			LIST_REMOVE(re, res);
    268 			re->inuse = 0;
    269 			wakeup(&fs->lfs_resblk);
    270 			splx(s);
    271 			simple_unlock(&fs->lfs_interlock);
    272 			return;
    273 		}
    274 	}
    275 #ifdef DEBUG
    276 	for (i = 0; i < LFS_N_TOTAL; i++) {
    277 		if (fs->lfs_resblk[i].p == p)
    278 			panic("lfs_free: inconsistent reserved block");
    279 	}
    280 #endif
    281 	splx(s);
    282 	simple_unlock(&fs->lfs_interlock);
    283 
    284 	/*
    285 	 * If we didn't find it, free it.
    286 	 */
    287 	free(p, M_SEGMENT);
    288 }
    289 
    290 /*
    291  * lfs_seglock --
    292  *	Single thread the segment writer.
    293  */
    294 int
    295 lfs_seglock(struct lfs *fs, unsigned long flags)
    296 {
    297 	struct segment *sp;
    298 
    299 	simple_lock(&fs->lfs_interlock);
    300 	if (fs->lfs_seglock) {
    301 		if (fs->lfs_lockpid == curproc->p_pid &&
    302 		    fs->lfs_locklwp == curlwp->l_lid) {
    303 			simple_unlock(&fs->lfs_interlock);
    304 			++fs->lfs_seglock;
    305 			fs->lfs_sp->seg_flags |= flags;
    306 			return 0;
    307 		} else if (flags & SEGM_PAGEDAEMON) {
    308 			simple_unlock(&fs->lfs_interlock);
    309 			return EWOULDBLOCK;
    310 		} else {
    311 			while (fs->lfs_seglock) {
    312 				(void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
    313 					"lfs seglock", 0, &fs->lfs_interlock);
    314 			}
    315 		}
    316 	}
    317 
    318 	fs->lfs_seglock = 1;
    319 	fs->lfs_lockpid = curproc->p_pid;
    320 	fs->lfs_locklwp = curlwp->l_lid;
    321 	simple_unlock(&fs->lfs_interlock);
    322 	fs->lfs_cleanind = 0;
    323 
    324 #ifdef DEBUG
    325 	LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
    326 #endif
    327 	/* Drain fragment size changes out */
    328 	lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
    329 
    330 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
    331 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
    332 	sp->seg_flags = flags;
    333 	sp->vp = NULL;
    334 	sp->seg_iocount = 0;
    335 	(void) lfs_initseg(fs);
    336 
    337 	/*
    338 	 * Keep a cumulative count of the outstanding I/O operations.  If the
    339 	 * disk drive catches up with us it could go to zero before we finish,
    340 	 * so we artificially increment it by one until we've scheduled all of
    341 	 * the writes we intend to do.
    342 	 */
    343 	simple_lock(&fs->lfs_interlock);
    344 	++fs->lfs_iocount;
    345 	simple_unlock(&fs->lfs_interlock);
    346 	return 0;
    347 }
    348 
    349 static void lfs_unmark_dirop(struct lfs *);
    350 
    351 static void
    352 lfs_unmark_dirop(struct lfs *fs)
    353 {
    354 	struct inode *ip, *nip;
    355 	struct vnode *vp;
    356 	int doit;
    357 
    358 	ASSERT_NO_SEGLOCK(fs);
    359 	simple_lock(&fs->lfs_interlock);
    360 	doit = !(fs->lfs_flags & LFS_UNDIROP);
    361 	if (doit)
    362 		fs->lfs_flags |= LFS_UNDIROP;
    363 	if (!doit) {
    364 		simple_unlock(&fs->lfs_interlock);
    365 		return;
    366 	}
    367 
    368 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
    369 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
    370 		simple_unlock(&fs->lfs_interlock);
    371 		vp = ITOV(ip);
    372 
    373 		simple_lock(&vp->v_interlock);
    374 		if (VOP_ISLOCKED(vp) == LK_EXCLOTHER) {
    375 			simple_lock(&fs->lfs_interlock);
    376 			simple_unlock(&vp->v_interlock);
    377 			continue;
    378 		}
    379 		if ((VTOI(vp)->i_flag & (IN_ADIROP | IN_ALLMOD)) == 0) {
    380 			simple_lock(&fs->lfs_interlock);
    381 			simple_lock(&lfs_subsys_lock);
    382 			--lfs_dirvcount;
    383 			simple_unlock(&lfs_subsys_lock);
    384 			--fs->lfs_dirvcount;
    385 			vp->v_flag &= ~VDIROP;
    386 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    387 			simple_unlock(&fs->lfs_interlock);
    388 			wakeup(&lfs_dirvcount);
    389 			simple_unlock(&vp->v_interlock);
    390 			simple_lock(&fs->lfs_interlock);
    391 			fs->lfs_unlockvp = vp;
    392 			simple_unlock(&fs->lfs_interlock);
    393 			vrele(vp);
    394 			simple_lock(&fs->lfs_interlock);
    395 			fs->lfs_unlockvp = NULL;
    396 			simple_unlock(&fs->lfs_interlock);
    397 		} else
    398 			simple_unlock(&vp->v_interlock);
    399 		simple_lock(&fs->lfs_interlock);
    400 	}
    401 
    402 	fs->lfs_flags &= ~LFS_UNDIROP;
    403 	simple_unlock(&fs->lfs_interlock);
    404 	wakeup(&fs->lfs_flags);
    405 }
    406 
    407 static void
    408 lfs_auto_segclean(struct lfs *fs)
    409 {
    410 	int i, error, s, waited;
    411 
    412 	ASSERT_SEGLOCK(fs);
    413 	/*
    414 	 * Now that we've swapped lfs_activesb, but while we still
    415 	 * hold the segment lock, run through the segment list marking
    416 	 * the empty ones clean.
    417 	 * XXX - do we really need to do them all at once?
    418 	 */
    419 	waited = 0;
    420 	for (i = 0; i < fs->lfs_nseg; i++) {
    421 		if ((fs->lfs_suflags[0][i] &
    422 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
    423 		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
    424 		    (fs->lfs_suflags[1][i] &
    425 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
    426 		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
    427 
    428 			/* Make sure the sb is written before we clean */
    429 			simple_lock(&fs->lfs_interlock);
    430 			s = splbio();
    431 			while (waited == 0 && fs->lfs_sbactive)
    432 				ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
    433 					0, &fs->lfs_interlock);
    434 			splx(s);
    435 			simple_unlock(&fs->lfs_interlock);
    436 			waited = 1;
    437 
    438 			if ((error = lfs_do_segclean(fs, i)) != 0) {
    439 				DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
    440 			}
    441 		}
    442 		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
    443 			fs->lfs_suflags[fs->lfs_activesb][i];
    444 	}
    445 }
    446 
    447 /*
    448  * lfs_segunlock --
    449  *	Single thread the segment writer.
    450  */
    451 void
    452 lfs_segunlock(struct lfs *fs)
    453 {
    454 	struct segment *sp;
    455 	unsigned long sync, ckp;
    456 	struct buf *bp;
    457 	int do_unmark_dirop = 0;
    458 
    459 	sp = fs->lfs_sp;
    460 
    461 	simple_lock(&fs->lfs_interlock);
    462 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
    463 	if (fs->lfs_seglock == 1) {
    464 		if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
    465 		    LFS_STARVED_FOR_SEGS(fs) == 0)
    466 			do_unmark_dirop = 1;
    467 		simple_unlock(&fs->lfs_interlock);
    468 		sync = sp->seg_flags & SEGM_SYNC;
    469 		ckp = sp->seg_flags & SEGM_CKP;
    470 
    471 		/* We should have a segment summary, and nothing else */
    472 		KASSERT(sp->cbpp == sp->bpp + 1);
    473 
    474 		/* Free allocated segment summary */
    475 		fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    476 		bp = *sp->bpp;
    477 		lfs_freebuf(fs, bp);
    478 
    479 		pool_put(&fs->lfs_bpppool, sp->bpp);
    480 		sp->bpp = NULL;
    481 
    482 		/*
    483 		 * If we're not sync, we're done with sp, get rid of it.
    484 		 * Otherwise, we keep a local copy around but free
    485 		 * fs->lfs_sp so another process can use it (we have to
    486 		 * wait but they don't have to wait for us).
    487 		 */
    488 		if (!sync)
    489 			pool_put(&fs->lfs_segpool, sp);
    490 		fs->lfs_sp = NULL;
    491 
    492 		/*
    493 		 * If the I/O count is non-zero, sleep until it reaches zero.
    494 		 * At the moment, the user's process hangs around so we can
    495 		 * sleep.
    496 		 */
    497 		simple_lock(&fs->lfs_interlock);
    498 		if (--fs->lfs_iocount == 0) {
    499 			LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
    500 		}
    501 		if (fs->lfs_iocount <= 1)
    502 			wakeup(&fs->lfs_iocount);
    503 		simple_unlock(&fs->lfs_interlock);
    504 		/*
    505 		 * If we're not checkpointing, we don't have to block
    506 		 * other processes to wait for a synchronous write
    507 		 * to complete.
    508 		 */
    509 		if (!ckp) {
    510 #ifdef DEBUG
    511 			LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    512 #endif
    513 			simple_lock(&fs->lfs_interlock);
    514 			--fs->lfs_seglock;
    515 			fs->lfs_lockpid = 0;
    516 			fs->lfs_locklwp = 0;
    517 			simple_unlock(&fs->lfs_interlock);
    518 			wakeup(&fs->lfs_seglock);
    519 		}
    520 		/*
    521 		 * We let checkpoints happen asynchronously.  That means
    522 		 * that during recovery, we have to roll forward between
    523 		 * the two segments described by the first and second
    524 		 * superblocks to make sure that the checkpoint described
    525 		 * by a superblock completed.
    526 		 */
    527 		simple_lock(&fs->lfs_interlock);
    528 		while (ckp && sync && fs->lfs_iocount)
    529 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
    530 				      "lfs_iocount", 0, &fs->lfs_interlock);
    531 		while (sync && sp->seg_iocount) {
    532 			(void)ltsleep(&sp->seg_iocount, PRIBIO + 1,
    533 				     "seg_iocount", 0, &fs->lfs_interlock);
    534 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
    535 		}
    536 		simple_unlock(&fs->lfs_interlock);
    537 		if (sync)
    538 			pool_put(&fs->lfs_segpool, sp);
    539 
    540 		if (ckp) {
    541 			fs->lfs_nactive = 0;
    542 			/* If we *know* everything's on disk, write both sbs */
    543 			/* XXX should wait for this one	 */
    544 			if (sync)
    545 				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
    546 			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
    547 			if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
    548 				lfs_auto_segclean(fs);
    549 				/* If sync, we can clean the remainder too */
    550 				if (sync)
    551 					lfs_auto_segclean(fs);
    552 			}
    553 			fs->lfs_activesb = 1 - fs->lfs_activesb;
    554 #ifdef DEBUG
    555 			LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    556 #endif
    557 			simple_lock(&fs->lfs_interlock);
    558 			--fs->lfs_seglock;
    559 			fs->lfs_lockpid = 0;
    560 			fs->lfs_locklwp = 0;
    561 			simple_unlock(&fs->lfs_interlock);
    562 			wakeup(&fs->lfs_seglock);
    563 		}
    564 		/* Reenable fragment size changes */
    565 		lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
    566 		if (do_unmark_dirop)
    567 			lfs_unmark_dirop(fs);
    568 	} else if (fs->lfs_seglock == 0) {
    569 		simple_unlock(&fs->lfs_interlock);
    570 		panic ("Seglock not held");
    571 	} else {
    572 		--fs->lfs_seglock;
    573 		simple_unlock(&fs->lfs_interlock);
    574 	}
    575 }
    576 
    577 /*
    578  * drain dirops and start writer.
    579  */
    580 int
    581 lfs_writer_enter(struct lfs *fs, const char *wmesg)
    582 {
    583 	int error = 0;
    584 
    585 	ASSERT_MAYBE_SEGLOCK(fs);
    586 	simple_lock(&fs->lfs_interlock);
    587 
    588 	/* disallow dirops during flush */
    589 	fs->lfs_writer++;
    590 
    591 	while (fs->lfs_dirops > 0) {
    592 		++fs->lfs_diropwait;
    593 		error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
    594 				&fs->lfs_interlock);
    595 		--fs->lfs_diropwait;
    596 	}
    597 
    598 	if (error)
    599 		fs->lfs_writer--;
    600 
    601 	simple_unlock(&fs->lfs_interlock);
    602 
    603 	return error;
    604 }
    605 
    606 void
    607 lfs_writer_leave(struct lfs *fs)
    608 {
    609 	boolean_t dowakeup;
    610 
    611 	ASSERT_MAYBE_SEGLOCK(fs);
    612 	simple_lock(&fs->lfs_interlock);
    613 	dowakeup = !(--fs->lfs_writer);
    614 	simple_unlock(&fs->lfs_interlock);
    615 	if (dowakeup)
    616 		wakeup(&fs->lfs_dirops);
    617 }
    618 
    619 /*
    620  * Unlock, wait for the cleaner, then relock to where we were before.
    621  * To be used only at a fairly high level, to address a paucity of free
    622  * segments propagated back from lfs_gop_write().
    623  */
    624 void
    625 lfs_segunlock_relock(struct lfs *fs)
    626 {
    627 	int n = fs->lfs_seglock;
    628 	u_int16_t seg_flags;
    629 	CLEANERINFO *cip;
    630 	struct buf *bp;
    631 
    632 	if (n == 0)
    633 		return;
    634 
    635 	/* Write anything we've already gathered to disk */
    636 	lfs_writeseg(fs, fs->lfs_sp);
    637 
    638 	/* Tell cleaner */
    639 	LFS_CLEANERINFO(cip, fs, bp);
    640 	cip->flags |= LFS_CLEANER_MUST_CLEAN;
    641 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    642 
    643 	/* Save segment flags for later */
    644 	seg_flags = fs->lfs_sp->seg_flags;
    645 
    646 	fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
    647 	while(fs->lfs_seglock)
    648 		lfs_segunlock(fs);
    649 
    650 	/* Wait for the cleaner */
    651 	lfs_wakeup_cleaner(fs);
    652 	simple_lock(&fs->lfs_interlock);
    653 	while (LFS_STARVED_FOR_SEGS(fs))
    654 		ltsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
    655 			&fs->lfs_interlock);
    656 	simple_unlock(&fs->lfs_interlock);
    657 
    658 	/* Put the segment lock back the way it was. */
    659 	while(n--)
    660 		lfs_seglock(fs, seg_flags);
    661 
    662 	/* Cleaner can relax now */
    663 	LFS_CLEANERINFO(cip, fs, bp);
    664 	cip->flags &= ~LFS_CLEANER_MUST_CLEAN;
    665 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    666 
    667 	return;
    668 }
    669 
    670 /*
    671  * Wake up the cleaner, provided that nowrap is not set.
    672  */
    673 void
    674 lfs_wakeup_cleaner(struct lfs *fs)
    675 {
    676 	if (fs->lfs_nowrap > 0)
    677 		return;
    678 
    679 	wakeup(&fs->lfs_nextseg);
    680 	wakeup(&lfs_allclean_wakeup);
    681 }
    682