lfs_subr.c revision 1.93 1 /* $NetBSD: lfs_subr.c,v 1.93 2017/06/08 01:23:01 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.93 2017/06/08 01:23:01 chs Exp $");
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/namei.h>
68 #include <sys/vnode.h>
69 #include <sys/buf.h>
70 #include <sys/mount.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/kauth.h>
74
75 #include <ufs/lfs/ulfs_inode.h>
76 #include <ufs/lfs/lfs.h>
77 #include <ufs/lfs/lfs_accessors.h>
78 #include <ufs/lfs/lfs_kernel.h>
79 #include <ufs/lfs/lfs_extern.h>
80
81 #include <uvm/uvm.h>
82
83 #ifdef DEBUG
84 const char *lfs_res_names[LFS_NB_COUNT] = {
85 "summary",
86 "superblock",
87 "file block",
88 "cluster",
89 "clean",
90 "blkiov",
91 };
92 #endif
93
94 int lfs_res_qty[LFS_NB_COUNT] = {
95 LFS_N_SUMMARIES,
96 LFS_N_SBLOCKS,
97 LFS_N_IBLOCKS,
98 LFS_N_CLUSTERS,
99 LFS_N_CLEAN,
100 LFS_N_BLKIOV,
101 };
102
103 void
104 lfs_setup_resblks(struct lfs *fs)
105 {
106 int i, j;
107 int maxbpp;
108
109 ASSERT_NO_SEGLOCK(fs);
110 fs->lfs_resblk = malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
111 M_WAITOK);
112 for (i = 0; i < LFS_N_TOTAL; i++) {
113 fs->lfs_resblk[i].inuse = 0;
114 fs->lfs_resblk[i].p = NULL;
115 }
116 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
117 LIST_INIT(fs->lfs_reshash + i);
118
119 /*
120 * These types of allocations can be larger than a page,
121 * so we can't use the pool subsystem for them.
122 */
123 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
124 fs->lfs_resblk[i].size = lfs_sb_getsumsize(fs);
125 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
126 fs->lfs_resblk[i].size = LFS_SBPAD;
127 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
128 fs->lfs_resblk[i].size = lfs_sb_getbsize(fs);
129 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
130 fs->lfs_resblk[i].size = MAXPHYS;
131 for (j = 0; j < LFS_N_CLEAN; j++, i++)
132 fs->lfs_resblk[i].size = MAXPHYS;
133 for (j = 0; j < LFS_N_BLKIOV; j++, i++)
134 fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
135
136 for (i = 0; i < LFS_N_TOTAL; i++) {
137 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
138 M_SEGMENT, M_WAITOK);
139 }
140
141 /*
142 * Initialize pools for small types (XXX is BPP small?)
143 */
144 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
145 "lfsclpl", &pool_allocator_nointr, IPL_NONE);
146 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
147 "lfssegpool", &pool_allocator_nointr, IPL_NONE);
148 /* XXX: should this int32 be 32/64? */
149 maxbpp = ((lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
150 maxbpp = MIN(maxbpp, lfs_segsize(fs) / lfs_sb_getfsize(fs) + 2);
151 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
152 "lfsbpppl", &pool_allocator_nointr, IPL_NONE);
153 }
154
155 void
156 lfs_free_resblks(struct lfs *fs)
157 {
158 int i;
159
160 pool_destroy(&fs->lfs_bpppool);
161 pool_destroy(&fs->lfs_segpool);
162 pool_destroy(&fs->lfs_clpool);
163
164 mutex_enter(&lfs_lock);
165 for (i = 0; i < LFS_N_TOTAL; i++) {
166 while (fs->lfs_resblk[i].inuse)
167 mtsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
168 &lfs_lock);
169 if (fs->lfs_resblk[i].p != NULL)
170 free(fs->lfs_resblk[i].p, M_SEGMENT);
171 }
172 free(fs->lfs_resblk, M_SEGMENT);
173 mutex_exit(&lfs_lock);
174 }
175
176 static unsigned int
177 lfs_mhash(void *vp)
178 {
179 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
180 }
181
182 /*
183 * Return memory of the given size for the given purpose, or use one of a
184 * number of spare last-resort buffers, if malloc returns NULL.
185 */
186 void *
187 lfs_malloc(struct lfs *fs, size_t size, int type)
188 {
189 struct lfs_res_blk *re;
190 void *r;
191 int i, start;
192 unsigned int h;
193
194 ASSERT_MAYBE_SEGLOCK(fs);
195 r = NULL;
196
197 /* If no mem allocated for this type, it just waits */
198 if (lfs_res_qty[type] == 0) {
199 r = malloc(size, M_SEGMENT, M_WAITOK);
200 return r;
201 }
202
203 /* Otherwise try a quick malloc, and if it works, great */
204 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
205 return r;
206 }
207
208 /*
209 * If malloc returned NULL, we are forced to use one of our
210 * reserve blocks. We have on hand at least one summary block,
211 * at least one cluster block, at least one superblock,
212 * and several indirect blocks.
213 */
214
215 mutex_enter(&lfs_lock);
216 /* skip over blocks of other types */
217 for (i = 0, start = 0; i < type; i++)
218 start += lfs_res_qty[i];
219 while (r == NULL) {
220 for (i = 0; i < lfs_res_qty[type]; i++) {
221 if (fs->lfs_resblk[start + i].inuse == 0) {
222 re = fs->lfs_resblk + start + i;
223 re->inuse = 1;
224 r = re->p;
225 KASSERT(re->size >= size);
226 h = lfs_mhash(r);
227 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
228 mutex_exit(&lfs_lock);
229 return r;
230 }
231 }
232 DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
233 lfs_res_names[type], lfs_res_qty[type]));
234 mtsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
235 &lfs_lock);
236 DLOG((DLOG_MALLOC, "done sleeping on %s\n",
237 lfs_res_names[type]));
238 }
239 /* NOTREACHED */
240 mutex_exit(&lfs_lock);
241 return r;
242 }
243
244 void
245 lfs_free(struct lfs *fs, void *p, int type)
246 {
247 unsigned int h;
248 res_t *re;
249
250 ASSERT_MAYBE_SEGLOCK(fs);
251 h = lfs_mhash(p);
252 mutex_enter(&lfs_lock);
253 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
254 if (re->p == p) {
255 KASSERT(re->inuse == 1);
256 LIST_REMOVE(re, res);
257 re->inuse = 0;
258 wakeup(&fs->lfs_resblk);
259 mutex_exit(&lfs_lock);
260 return;
261 }
262 }
263
264 for (int i = 0; i < LFS_N_TOTAL; i++) {
265 KDASSERTMSG(fs->lfs_resblk[i].p == p,
266 "lfs_free: inconsistent reserved block");
267 }
268
269 mutex_exit(&lfs_lock);
270
271 /*
272 * If we didn't find it, free it.
273 */
274 free(p, M_SEGMENT);
275 }
276
277 /*
278 * lfs_seglock --
279 * Single thread the segment writer.
280 */
281 int
282 lfs_seglock(struct lfs *fs, unsigned long flags)
283 {
284 struct segment *sp;
285
286 mutex_enter(&lfs_lock);
287 if (fs->lfs_seglock) {
288 if (fs->lfs_lockpid == curproc->p_pid &&
289 fs->lfs_locklwp == curlwp->l_lid) {
290 ++fs->lfs_seglock;
291 fs->lfs_sp->seg_flags |= flags;
292 mutex_exit(&lfs_lock);
293 return 0;
294 } else if (flags & SEGM_PAGEDAEMON) {
295 mutex_exit(&lfs_lock);
296 return EWOULDBLOCK;
297 } else {
298 while (fs->lfs_seglock) {
299 (void)mtsleep(&fs->lfs_seglock, PRIBIO + 1,
300 "lfs_seglock", 0, &lfs_lock);
301 }
302 }
303 }
304
305 fs->lfs_seglock = 1;
306 fs->lfs_lockpid = curproc->p_pid;
307 fs->lfs_locklwp = curlwp->l_lid;
308 mutex_exit(&lfs_lock);
309 fs->lfs_cleanind = 0;
310
311 LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
312
313 /* Drain fragment size changes out */
314 rw_enter(&fs->lfs_fraglock, RW_WRITER);
315
316 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
317 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
318 sp->seg_flags = flags;
319 sp->vp = NULL;
320 sp->seg_iocount = 0;
321 (void) lfs_initseg(fs);
322
323 /*
324 * Keep a cumulative count of the outstanding I/O operations. If the
325 * disk drive catches up with us it could go to zero before we finish,
326 * so we artificially increment it by one until we've scheduled all of
327 * the writes we intend to do.
328 */
329 mutex_enter(&lfs_lock);
330 ++fs->lfs_iocount;
331 fs->lfs_startseg = lfs_sb_getcurseg(fs);
332 mutex_exit(&lfs_lock);
333 return 0;
334 }
335
336 static void lfs_unmark_dirop(struct lfs *);
337
338 static void
339 lfs_unmark_dirop(struct lfs *fs)
340 {
341 struct inode *ip, *nip;
342 struct vnode *vp;
343 int doit;
344
345 ASSERT_NO_SEGLOCK(fs);
346 mutex_enter(&lfs_lock);
347 doit = !(fs->lfs_flags & LFS_UNDIROP);
348 if (doit)
349 fs->lfs_flags |= LFS_UNDIROP;
350 if (!doit) {
351 mutex_exit(&lfs_lock);
352 return;
353 }
354
355 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
356 nip = TAILQ_NEXT(ip, i_lfs_dchain);
357 vp = ITOV(ip);
358 if ((ip->i_flag & (IN_ADIROP | IN_CDIROP)) == IN_CDIROP) {
359 --lfs_dirvcount;
360 --fs->lfs_dirvcount;
361 vp->v_uflag &= ~VU_DIROP;
362 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
363 wakeup(&lfs_dirvcount);
364 fs->lfs_unlockvp = vp;
365 mutex_exit(&lfs_lock);
366 vrele(vp);
367 mutex_enter(&lfs_lock);
368 fs->lfs_unlockvp = NULL;
369 ip->i_flag &= ~IN_CDIROP;
370 }
371 }
372
373 fs->lfs_flags &= ~LFS_UNDIROP;
374 wakeup(&fs->lfs_flags);
375 mutex_exit(&lfs_lock);
376 }
377
378 static void
379 lfs_auto_segclean(struct lfs *fs)
380 {
381 int i, error, waited;
382
383 ASSERT_SEGLOCK(fs);
384 /*
385 * Now that we've swapped lfs_activesb, but while we still
386 * hold the segment lock, run through the segment list marking
387 * the empty ones clean.
388 * XXX - do we really need to do them all at once?
389 */
390 waited = 0;
391 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
392 if ((fs->lfs_suflags[0][i] &
393 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
394 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
395 (fs->lfs_suflags[1][i] &
396 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
397 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
398
399 /* Make sure the sb is written before we clean */
400 mutex_enter(&lfs_lock);
401 while (waited == 0 && fs->lfs_sbactive)
402 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
403 0, &lfs_lock);
404 mutex_exit(&lfs_lock);
405 waited = 1;
406
407 if ((error = lfs_do_segclean(fs, i)) != 0) {
408 DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
409 }
410 }
411 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
412 fs->lfs_suflags[fs->lfs_activesb][i];
413 }
414 }
415
416 /*
417 * lfs_segunlock --
418 * Single thread the segment writer.
419 */
420 void
421 lfs_segunlock(struct lfs *fs)
422 {
423 struct segment *sp;
424 unsigned long sync, ckp;
425 struct buf *bp;
426 int do_unmark_dirop = 0;
427
428 sp = fs->lfs_sp;
429
430 mutex_enter(&lfs_lock);
431 KASSERT(LFS_SEGLOCK_HELD(fs));
432 if (fs->lfs_seglock == 1) {
433 if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0)
434 do_unmark_dirop = 1;
435 mutex_exit(&lfs_lock);
436 sync = sp->seg_flags & SEGM_SYNC;
437 ckp = sp->seg_flags & SEGM_CKP;
438
439 /* We should have a segment summary, and nothing else */
440 KASSERT(sp->cbpp == sp->bpp + 1);
441
442 /* Free allocated segment summary */
443 lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
444 bp = *sp->bpp;
445 lfs_freebuf(fs, bp);
446
447 pool_put(&fs->lfs_bpppool, sp->bpp);
448 sp->bpp = NULL;
449
450 /*
451 * If we're not sync, we're done with sp, get rid of it.
452 * Otherwise, we keep a local copy around but free
453 * fs->lfs_sp so another process can use it (we have to
454 * wait but they don't have to wait for us).
455 */
456 if (!sync)
457 pool_put(&fs->lfs_segpool, sp);
458 fs->lfs_sp = NULL;
459
460 /*
461 * If the I/O count is non-zero, sleep until it reaches zero.
462 * At the moment, the user's process hangs around so we can
463 * sleep.
464 */
465 mutex_enter(&lfs_lock);
466 if (--fs->lfs_iocount <= 1)
467 wakeup(&fs->lfs_iocount);
468 mutex_exit(&lfs_lock);
469
470 /*
471 * If we're not checkpointing, we don't have to block
472 * other processes to wait for a synchronous write
473 * to complete.
474 */
475 if (!ckp) {
476 LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
477
478 mutex_enter(&lfs_lock);
479 --fs->lfs_seglock;
480 fs->lfs_lockpid = 0;
481 fs->lfs_locklwp = 0;
482 mutex_exit(&lfs_lock);
483 wakeup(&fs->lfs_seglock);
484 }
485 /*
486 * We let checkpoints happen asynchronously. That means
487 * that during recovery, we have to roll forward between
488 * the two segments described by the first and second
489 * superblocks to make sure that the checkpoint described
490 * by a superblock completed.
491 */
492 mutex_enter(&lfs_lock);
493 while (ckp && sync && fs->lfs_iocount) {
494 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
495 "lfs_iocount", 0, &lfs_lock);
496 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", fs, fs->lfs_iocount));
497 }
498 while (sync && sp->seg_iocount) {
499 (void)mtsleep(&sp->seg_iocount, PRIBIO + 1,
500 "seg_iocount", 0, &lfs_lock);
501 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
502 }
503 mutex_exit(&lfs_lock);
504 if (sync)
505 pool_put(&fs->lfs_segpool, sp);
506
507 if (ckp) {
508 fs->lfs_nactive = 0;
509 /* If we *know* everything's on disk, write both sbs */
510 /* XXX should wait for this one */
511 if (sync)
512 lfs_writesuper(fs, lfs_sb_getsboff(fs, fs->lfs_activesb));
513 lfs_writesuper(fs, lfs_sb_getsboff(fs, 1 - fs->lfs_activesb));
514 if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
515 lfs_auto_segclean(fs);
516 /* If sync, we can clean the remainder too */
517 if (sync)
518 lfs_auto_segclean(fs);
519 }
520 fs->lfs_activesb = 1 - fs->lfs_activesb;
521
522 LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
523
524 mutex_enter(&lfs_lock);
525 --fs->lfs_seglock;
526 fs->lfs_lockpid = 0;
527 fs->lfs_locklwp = 0;
528 mutex_exit(&lfs_lock);
529 wakeup(&fs->lfs_seglock);
530 }
531 /* Reenable fragment size changes */
532 rw_exit(&fs->lfs_fraglock);
533 if (do_unmark_dirop)
534 lfs_unmark_dirop(fs);
535 } else if (fs->lfs_seglock == 0) {
536 mutex_exit(&lfs_lock);
537 panic ("Seglock not held");
538 } else {
539 --fs->lfs_seglock;
540 mutex_exit(&lfs_lock);
541 }
542 }
543
544 /*
545 * Drain dirops and start writer.
546 *
547 * No simple_locks are held when we enter and none are held when we return.
548 */
549 int
550 lfs_writer_enter(struct lfs *fs, const char *wmesg)
551 {
552 int error = 0;
553
554 ASSERT_MAYBE_SEGLOCK(fs);
555 mutex_enter(&lfs_lock);
556
557 /* disallow dirops during flush */
558 fs->lfs_writer++;
559
560 while (fs->lfs_dirops > 0) {
561 ++fs->lfs_diropwait;
562 error = mtsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
563 &lfs_lock);
564 --fs->lfs_diropwait;
565 }
566
567 if (error)
568 fs->lfs_writer--;
569
570 mutex_exit(&lfs_lock);
571
572 return error;
573 }
574
575 void
576 lfs_writer_leave(struct lfs *fs)
577 {
578 bool dowakeup;
579
580 ASSERT_MAYBE_SEGLOCK(fs);
581 mutex_enter(&lfs_lock);
582 dowakeup = !(--fs->lfs_writer);
583 if (dowakeup)
584 cv_broadcast(&fs->lfs_diropscv);
585 mutex_exit(&lfs_lock);
586 }
587
588 /*
589 * Unlock, wait for the cleaner, then relock to where we were before.
590 * To be used only at a fairly high level, to address a paucity of free
591 * segments propagated back from lfs_gop_write().
592 */
593 void
594 lfs_segunlock_relock(struct lfs *fs)
595 {
596 int n = fs->lfs_seglock;
597 u_int16_t seg_flags;
598 CLEANERINFO *cip;
599 struct buf *bp;
600
601 if (n == 0)
602 return;
603
604 /* Write anything we've already gathered to disk */
605 lfs_writeseg(fs, fs->lfs_sp);
606
607 /* Tell cleaner */
608 LFS_CLEANERINFO(cip, fs, bp);
609 lfs_ci_setflags(fs, cip,
610 lfs_ci_getflags(fs, cip) | LFS_CLEANER_MUST_CLEAN);
611 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
612
613 /* Save segment flags for later */
614 seg_flags = fs->lfs_sp->seg_flags;
615
616 fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
617 while(fs->lfs_seglock)
618 lfs_segunlock(fs);
619
620 /* Wait for the cleaner */
621 lfs_wakeup_cleaner(fs);
622 mutex_enter(&lfs_lock);
623 while (LFS_STARVED_FOR_SEGS(fs))
624 mtsleep(&fs->lfs_availsleep, PRIBIO, "relock", 0,
625 &lfs_lock);
626 mutex_exit(&lfs_lock);
627
628 /* Put the segment lock back the way it was. */
629 while(n--)
630 lfs_seglock(fs, seg_flags);
631
632 /* Cleaner can relax now */
633 LFS_CLEANERINFO(cip, fs, bp);
634 lfs_ci_setflags(fs, cip,
635 lfs_ci_getflags(fs, cip) & ~LFS_CLEANER_MUST_CLEAN);
636 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
637
638 return;
639 }
640
641 /*
642 * Wake up the cleaner, provided that nowrap is not set.
643 */
644 void
645 lfs_wakeup_cleaner(struct lfs *fs)
646 {
647 if (fs->lfs_nowrap > 0)
648 return;
649
650 wakeup(&fs->lfs_nextsegsleep);
651 wakeup(&lfs_allclean_wakeup);
652 }
653